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ABSTRACT
Current and upcoming radio telescopes are being designed
with increasing sensitivity to detect new and mysterious ra-
dio sources of astrophysical origin. While this increased sen-
sitivity improves the likelihood of discoveries, it also makes
these instruments more susceptible to the deleterious effects
of Radio Frequency Interference (RFI). The challenge posed
by RFI is exacerbated by the high data-rates achieved by mod-
ern radio telescopes, which require real-time processing to
keep up with the data. Furthermore, the high data-rates do
not allow for permanent storage of observations at high res-
olution. Offline RFI mitigation is therefore not possible any-
more. The real-time requirement makes RFI mitigation even
more challenging because, on one side, the techniques used
for mitigation need to be fast and simple, and on the other
side they also need to be robust enough to cope with just a
partial view of the data.

The Apertif Radio Transient System (ARTS) is the real-
time, time-domain, transient detection instrument of the
Westerbork Synthesis Radio Telescope (WSRT), and it is
a perfect example of this challenging scenario. This system
processes 73 Gb of data per second, in real-time, searching
for faint pulsars and Fast Radio Bursts. Despite the radio
quiet zone around WSRT, the generation of RFI is becom-
ing increasingly part of anthropic activities, especially in a
densely populated environment like the Netherlands where
the telescope is located. Furthermore, our sky is populated by
a growing number of satellites for world-wide telecommu-
nication. Hence, the ARTS pipeline requires state-of-the-art
real-time RFI mitigation, even if it contains a deep learning
classifier to reduce the number of false-positive detections.

† These authors contributed equally to this work.

Our solution to this challenge is RFIm, a high-performance,
open-source, tuned, and extensible RFI mitigation library.
The goal of this library is to provide users with RFI mitigation
routines that are designed to run in real-time on many-core
accelerators, such as Graphics Processing Units, and that can
be highly-tuned to achieve code and performance portabil-
ity to different hardware platforms and scientific use-cases.
Results on ARTS show that we can achieve real-time RFI
mitigation, with a minimal impact on the total execution time
of the search pipeline, and considerably reduce the number of
false-positives.

1. INTRODUCTION

For a little over a decade [1], Fast Radio Bursts (FRBs)
have represented the source of highly discussed open ques-
tions among astronomy academics. FRBs are millisecond-
duration, highly energetic, dispersed radio pulses emitted
from distant regions of space-time, far beyond the vicinity
of the Milky Way (MW). Without considering propagation
effects like scintillation and scattering, FRBs follow a rel-
atively simple time-frequency structure described as being
broadband and of narrow width [2].

Similarly to what is observed for single pulses from pul-
sars1, as an FRB travels through regions of ionized medium,
a frequency-dependent time delay is imposed on its sig-
nal, where longer wavelengths of the propagating signal are
slowed down more intensely than shorter ones. This delay is
quantified by a dispersion measure (DM), in unit of parsec

1Pulsars are neutron stars of a few kilometers in radius, with a few times
the mass of our Sun, and stable rotation periods duration varying between
seconds [3] to milliseconds [4].
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per cubic centimeter (pc/cm3), proportional to the number of
free electrons along the line of sight:

DM =

∫ d

0

ne(l)dl , (1)

where ne is the electron number density, l is a path length, and
d is the distance to the FRB [5]. While DM values for most
known pulsars place them within the MW when compared to
electron-density models [6,7], the large DM values measured
for FRBs suggest an extragalactic origin.

Among other international efforts, the observation pro-
gram ALERT2 searches for FRBs using the Westerbork Syn-
thesis Radio Telescope (WSRT) located in the Netherlands.
The receivers of the WSRT were recently upgraded with
phased-array feeds called Apertif, which along with the Aper-
tif Radio Transient System (ARTS [8])—a hybrid machine
of combined Field-Programmable Gate Arrays (FPGAs) and
Graphics Processing Units (GPUs)—allow to form ∼ 103

beams on the sky with a high duty cycle. The resulting data
stream is searched in real-time using the AMBER pipeline [9]
on the ARTS cluster, generating a list of single-pulse candi-
dates for any detection having a Signal-to-Noise Ratio (SNR)
greater than a specified threshold.

The common FRB searching strategy (such as [9, 10])
consists in incoherently de-dispersing the signal to correct for
the time-delay among frequencies caused by dispersion (Fig-
ure 1). ARTS searches for FRBs by forming many different
time series on the GPU corresponding to a wide range of dis-
persion measures. The amount of dispersion in seconds is
quantified by the time delay of the pulse between the lowest
and highest radio frequencies of the observation in MHz, vlow
and vhigh respectively, as

∆t = kDM (v−2
low − v

−2
high)DM s, (2)

where kDM = e2

2πmec
≈ 4.15 × 103 MHz2 pc−1 cm3 s is the

dispersion constant, with me being the mass of the electron,
and c the speed of light.

ARTS processes 73 Gb/s of Apertif data, in real-time,
searching for faint pulsars and FRBs, while at the same time
aiming to mitigate the effects of Radio Frequency Interference
(RFI) in a densely populated environment like the Nether-
lands. Hence, our real-time requirement translates to the need
for RFI mitigation methods that are fast and simple, while
also being robust enough to cope with a partial view of the
data.

Even with a radio quiet zone around WSRT, the genera-
tion of RFI is becoming increasingly part of anthropic activi-
ties. Furthermore, our sky is populated by a growing number
of satellites for world-wide telecommunications. In fact, RFI

2ALERT stands for Apertif Legacy Exploration of the Radio Transient
Sky.
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Fig. 1. A signal dispersed in time as a function of frequency in
zero-DM plane (blue), and the same pulse after incoherent de-
dispersion (orange). The amounts of de-dispersion (Eq. 2) ap-
plied to different frequency channels are shown by the black
arrows.

can be stronger than astrophysical signals due to the inverse-
square law of propagation which stipulates that electromag-
netic radiation dissipates at a quadratic rate with respect to
distance [11]. As opposed to the prototypical FRB signal,
RFI is generated on or near Earth and displays a wide range
of time and frequency structures not generally found in na-
ture.

Without RFI mitigation, spurious bright individual RFI
signals at different frequencies can artificially align at higher
DMs, in which case the sum of these signals can become
greater than the detection threshold, therefore causing arti-
ficial detections. These false positives can rapidly increase
the size of the single-pulse candidates list, which needs to
be verified by astronomers. Not only can RFI cause false-
positive detections (i.e. non-astrophysical pulses erroneously
classified as FRBs), but can also mask real, weak astrophysi-
cal signals and reduce the rate of true positives. While a deep
learning classifier [12] is being used a posteriori to reduce the
number of false-positive detections that need to be verified by
eye, removing RFI early on in the pipeline helps to reduce the
overall compute time.

2. RELATED WORK

RFI mitigation has previously been tackled via different
methods, including linear methods (e.g. Singular Value De-
composition [13] and Principal Component Analysis [14]),
test of non-Gaussianity (e.g. Spectral Kurtosis [15, 16]),
threshold-based methods (e.g. SumThreshold algorithm [17],
where RFI is defined as values above a defined threshold in
the time-frequency plane), and more recently via machine
learning methods like K-nearest neighbour, Gaussian mixture
model, and convolutional neural network [18–20].
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3. RFIM: A RFI MITIGATION LIBRARY

Our proposed solution to the challenge of real-time RFI mit-
igation is RFIm, a high-performance, open-source, tuned and
extensible RFI mitigation library. The goal of this library is
to provide highly-tuned RFI mitigation routines that are de-
signed to run in real-time on many-core accelerators, such as
the many GPUs installed on ARTS, while at the same time
be accurate enough to reduce false positives and increase the
measured SNR of real astrophysical events. Although RFIm
is designed to be the main ARTS RFI mitigation library, it
was also designed to be used on its own outside of the ARTS
pipeline.

All mitigation methods are implemented in C++ and
OpenCL, the Open Computing Language [21]. The C++ im-
plementations are reference implementations, optimized for
testing and readability, and are not used in production, while
the OpenCL implementations are meant to be used in produc-
tion, and are therefore highly optimized to run in real-time on
GPUs. The library is open source, released under version 2.0
of the Apache licence, and can be downloaded from GitHub3.

One of the main characteristics of RFIm is that it is de-
signed with both code and performance portability in mind,
and this is achieved using code generation and auto-tuning.
This means not only that the same code can be executed, with-
out changes, on different hardware platforms, but also that the
expected efficiency should be similar on these platforms. In
fact, the OpenCL code of the computational kernels is gener-
ated at run-time from a set of templates, so that it can be au-
tomatically tailored to the specific use-cases of the user, and
it can take advantage of run-time knowledge of system and
input parameters.

Moreover, a variety of parameters, such as the number of
threads, the amount of work per thread, or synchronization
schemes, can be tuned during code generation, so that the re-
sulting code can achieve high performance running on dif-
ferent hardware. This also allows processing efficiently data
generated by different telescopes, or simply when observa-
tional parameters are changed because of different observa-
tions. To help the user define all these tunable parameters,
RFIm includes a tuning routine for each of the mitigation al-
gorithms included. By using these auto-tuning routines, a user
can identify the best code generation parameters to use for
a specific observational setup and computing platform, and
save the resulting configurations for use in production.

RFIm currently contains two mitigation methods, both of
them real-time thresholding methods: time-domain sigma cut
(TDSC), and frequency-domain sigma cut (FDSC). Further
methods are being developed and will be integrated into RFIm
in the future, including the Sum-threshold [17] and Edge-
threshold [11] algorithms.

3Available at https://github.com/AA-ALERT/RFIm

Fig. 2. Schematic diagram of the TDSC algorithm com-
puted within an OpenCL kernel. For a given frequency
channel (f i), each time sample (t i) of a batch is compared
to the statistics of the batch: mean (µ), and n times the stan-
dard deviation (σ). If a sample is an outlier within the batch, it
is replaced by the mean of the batch. We note that in practice,
the applied comparison is symmetric.

4. TIME AND FREQUENCY DOMAIN SIGMA CUT

During observations, AMBER splits the input time-series in
order to process data in batches, where the number of time
samples inside a batch varies depending on the number of
samples per second and the DM range being searched. There-
fore, RFI mitigation within RFIm is performed on a per-batch
basis. Below, we briefly describe the two algorithms currently
implemented within RFIm.

The TDSC method (Figure 2) targets bright broadband
events of low-DM. For a given frequency channel (f i), each
time sample (t i) of a batch is compared to the global statistics
of the batch: the mean (µ), and the standard deviation (σ). If
t i is an outlier within the batch (e.g. |t i− µ| > nσ, where n
is the user-defined threshold) it is replaced by the mean of the
batch.

The FDSC method (Figure 3) targets bright narrow-band
pulses of short duration. FDSC comprises two steps. Firstly,
for cases where no bandpass correction was applied to the
data, frequency channels at a given time (t i) are grouped into
n bins, and the mean of the bin is subtracted from t i, resulting
in a mean-corrected sample. Secondly, each mean-corrected
frequency channel is compared to the mean-corrected statis-
tics of all frequency channels following a similar process as
described for TDSC. If a mean-corrected sample is an out-
lier, the original channel value is replaced by the mean of its
respective bin.

Although the currently implemented replacement strategy
for both TDSC and FDSC is to use the mean, this is done
purely to reduce the computational cost of these algorithms.
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Fig. 3. Schematic diagram of the FDSC algorithm com-
puted within an OpenCL kernel. The algorithm proceeds
in two steps: (1) for a given time sample (t i), each frequency
channel (f i) is first attributed a bin, and a difference between
each frequency channel and the mean of the bin is computed;
(2) each mean-corrected frequency channel is compared to the
mean-corrected statistics of all frequency channels following
a similar process as in TDSC. If a mean-corrected sample is
an outlier, the original channel value is replaced by the mean
of its respective bin. We note that in practice, the applied
comparison is symmetric.

In fact, both TDSC and FDSC support a parameter repre-
senting the replacement strategy for the flagged samples, and
RFIm users can implement their own strategies, such as us-
ing the median, random unflagged samples, or any other user-
defined strategy.

5. EXPERIMENTAL RESULTS

5.1. Accuracy

To evaluate how the methods proposed in the previous sec-
tion perform we test the algorithms on both artificial and real
data. We begin with simulated data based on surveying pa-
rameters of ARTS (time sampling, total bandwidth, channel-
ization, etc.). Using this canvas, we generate Gaussian noise
data with µ = 0 and σ = 1. We then add to the noise a
faint, broadband highly dispersed pulse representing an FRB.
Finally, we add strong RFI signals (two bright low-DM broad-
band pulses, and two narrow-band periodic pulses). Figure 4
shows the test data generation procedure.

To highlight the behaviour of each mitigation technique,
we proceed in applying our mitigation algorithms on the
dispersed data (DM=0, Figure 5): TDSC only (top panel),
FDSC only (central panel), and both methods combined (bot-
tom panel). As expected, bright broadband RFI is cleaned by
the TDSC, and bright narrow-band RFI is cleaned by FDSC.

Fig. 4. Time-frequency plots of simulated data in the
Apertif frequency band. Top: gaussian noise; middle: one
faint high DM pulse, with DM = 500 pc/cm3 and SNR =
15 is added to the noise; bottom: two low DM pulses with
DM ∈ {1, 10} and S/N ∈ {100, 150} respectively, and two
periodic narrow band pulses with SNR = 125 covering 10,
15 frequency channels respectively. Data intensity (as high-
lighted in the colorbars) is in an arbitrary unit.

When applying both techniques on the test data, the faint
FRB becomes apparent.

We then de-disperse the data to the FRB’s DM value,
and compare the result with and without RFI mitigation (Fig-
ure 6). In this specific case, the faint FRB would not have
been detected by the pipeline as the SNR of the dedispersed
burst is below the detection threshold (top two panels). On
the other hand, the time-series cleaned with RFIm shows the
dedispersed burst having a SNR greater than the detection
threshold.

Finally, to assure we do not radically remove high-DM
pulses from observations, we evaluate our method on real
data. We apply TDSC and FDSC to a 299 seconds Apertif
observation of PSR B0531+214 using the OpenCL implemen-
tation of AMBER. To simulate the iterative mitigation process
used in the production pipeline, we perform three iterations of
the algorithms.

Figure 7 highlights the effect of mitigation on SNR
for three experimental cases, where we apply RFI mitiga-
tion using threshold values of: TDSC=3.25σ, combined
TDSC=3.25σ and FDSC=2.75σ, and TDSC=4.00σ respec-
tively. The scatter plot shows the SNR ratio—the SNR com-
puted after applying RFI mitigation divided by the SNR
computed on the original data—for multiple single pulse de-
tections, as a function of the original SNR (no mitigation
applied). A ratio of 1 means there was no difference after

4PSR B0531+21 is commonly known as the Crab pulsar. The data is sam-
pled at 81.92 µs, with 300 MHz of bandwidth at L-Band, and a channel width
of 0.195 MHz. It is common to see variations in SNR between individual
pulses.
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Fig. 5. RFI mitigation applied to data from the bottom
panel of Fig. 4. From top to bottom: mitigation in time
with threshold=3.25σ; mitigation in frequency with a bin size
of 32 channels, and threshold=2.75σ; both mitigation meth-
ods applied (zero-DM plane); and dedispersed window (DM
= 500 pc/cm3) with both mitigation methods applied. The
faint dispersed pulse can be seen starting from t=0.04s at the
highest frequency.

Fig. 6. Time series from Fig. 4 with and without RFI miti-
gation dedispersed at FRB’s DM. The dashed line shows the
threshold separating a trigger (signal going above the thresh-
old) from a non-trigger. After RFI mitigation, this specific
FRB is detected.
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Fig. 7. Effect of applying TDSC and FDSC to detection’s
signal-to-noise ratio (SNR) with AMBER to an Apertif
observation of PSR B0531+21. The plot compares the
SNR ratio as a function of the SNR computed using the
original data (without RFI mitigation). The ratio is com-
puted between SNR detected with and without RFI mitiga-
tion (X/Original), where X corresponds to one of three exper-
imental cases, where we apply RFI mitigation using thresh-
old values of: TDSC=3.25σ, combined TDSC=3.25σ and
FDSC=2.75σ, and TDSC=4.00σ respectively.

applying mitigation for a given set of parameters; a ratio
greater than 1 means an improved SNR after applying miti-
gation; and a ratio smaller than 1 means a reduced SNR after
applying mitigation.

It is interesting to note that applying TDSC with 3.25σ
(blue circles) improves the SNR in most cases (74%), and
that the largest differences are found close to our detection
threshold of 8. Similarly, applying both TDSC with 3.25σ
and FDSC with 2.75σ (orange x symbols) gives the same re-
sults as when using only TDSC with 3.25σ (the blue circles
and orange x symbols overlap)—which is expected as FDSC
should not affect broadband signal. Unsurprisingly, applying
TDSC with a poorly constraining 4.00σ threshold (green +
symbols) gives identical results as in the case where no RFI
mitigation is being applied.

We keep further analysis of trigger reduction factors,
causes of specific SNR improvements or reductions, and the
effect on true- and false-positive detections (e.g. precision
and recall) as future work. However, we note that the total
trigger counts prior to the machine learning classification
step vary between the various cases: 200 triggers without RFI
mitigation, 195 when applying TDSC=3.25σ, and 93 with
the combination of TDSC=3.25σ and FDSC=2.75σ—hence
reducing the amount of data to be post-processed. Finally, we
note some events detected in the original data are not detected
after RFI mitigation with 3.25σ (10 missed detections), and
vice-versa (14 new detections previously undetected in the
original data)—which is in agreement with our simulation
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Fig. 8. Scalability experiment for the TDSC algorithm.

Fig. 9. Scalability experiment for the FDSC algorithm.

results.

5.2. Performance

One of the design goals of RFIm is to provide accurate results
in real-time, and while accuracy has been already discussed
in Section 5.1, this section focuses on performance. Figure 8
presents the scalability of the TDSC algorithm, while Figure 9
shows the same experiment for the FDSC algorithm.

In these experiments, tuned OpenCL implementations of
the two algorithms are run on one of the NVIDIA GTX 1080Ti
cards of the ARTS cluster, and execution time is measured;
presented results are the average of multiple executions, to
remove statistical fluctuations from the data. The parame-
ters that are varied in the experiment are: (1) the number of
frequency channels, (2) the number of time samples, and (3)
the number of input beams; to improve the readability of the
figures, a representative selection of the results is plotted. In
both Figure 8 and 9, each color coded line represents the ex-
ecution time for a given combination of number of frequency
channels and time samples, in correspondence with the num-
ber of beams on the x axis; both the x and the y axes are in
logarithmic scale.

The first noticeable result is that both algorithms run in
real-time, with the execution time being, in the most complex
cases, at most a tenth of a second for a whole batch of in-
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Fig. 10. Median execution time of three different instances
of AMBER. RFI mitigation (in red) takes between 0.3% and
1% of the total execution time.

put data. This is important because, in the context of an FRB
searching pipeline, most of the processing time can still be
dedicated to the search itself. Another result is that both al-
gorithms scale linearly not just in terms of number of beams,
but also in terms of number of frequency channels and time
samples. Therefore, an increase in sensitivity or resolution
in WSRT, or any other telescope for which RFIm is used,
can more easily be accommodated, without requiring major
changes in the software.

Another way to look at the performance of RFIm is to
measure its contribution to the total execution time of AM-
BER, the ARTS FRB pipeline. The timing data was recorded
during a survey observation in July 2019. Figure 10 presents
an overview of the time, in seconds, spent inside each compo-
nent of the AMBER pipeline, for this three hours observation;
the three columns in the figure correspond to three different
instances of AMBER, each running on a subset of the DM
space.

During this observation, the TDSC algorithm of RFIm
was enabled, and three iterations with 3.25σ were executed
for each batch; the number of frequency channels is 1536, the
number of beams 12, and the number of samples per second
12,208. Results show that the contribution of TDSC to AM-
BER’s execution time varies between the 0.33% for the low
DMs search, to the 1.02% of the high DMs search. There-
fore, using RFIm we can mitigate the effects of RFI for ARTS,
without significantly affecting the execution time of the whole
pipeline.

6. CONCLUSIONS

RFI will be an important problem for all upcoming FRB
surveys, including the Square Kilometre Array. As such,
there is a need for real-time RFI mitigation. In this paper we
introduced RFIm, a high-performance, open-source, tuned
and extensible RFI mitigation library, and showed how it can
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improve the quality of results with real and simulated data.
Moreover, we showed that RFIm achieves real-time perfor-
mance in different scenarios (varying number of frequency
channels, number of time samples per batch, number of in-
put beams). RFIm is already used in production for ARTS,
mitigating RFI while barely affecting the execution time of
AMBER.

While we aim to mitigate RFI, there exists a trade-off be-
tween pre-dedispersion RFI cleaning and false-positive rejec-
tion post-triggering by the deep-learning classifier. To all cur-
rent and future actions to remove RFI during real-time pul-
sar and FRB searches, the risk of over-cleaning the data and
removing astronomical events needs to be considered [12].
With this in mind, we note that RFIm mitigation actions are
currently performed in GPU memory only, leaving the orig-
inal data unmodified, while the FRB search is performed on
the mitigated data stream in memory. Hence, provided the
raw data is stored to disk during observation, one can also
process the data a posteriori using different cleaning methods
for further analysis.
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