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A B S T R A C T

Picosecond time-resolved infrared spectroscopy was used to probe the photo-induced early state dynamics
preceding CO loss in the Fischer carbene complex, [(CO)5WC(NC4H8)CH3]. Time-dependent density functional
theory calculations were employed to help in understanding the photochemical and photophysical processes
leading to CO-loss. Electrochemical initiated CO release was quantified using gas chromatography. The potential
of [(CO)5WC(NC4H8)CH3], as an antimicrobial agent under irradiation conditions was studied using a
Staphylococcus aureus strain.

1. Introduction

Fischer carbene complexes have been used widely as reagents in
various organic transformations, and in organometallic synthesis, using
both thermal and photochemical approaches [1–5]. Fischer carbene
complexes of group 6 metals have been shown to react under photo-
chemical conditions with imines, alkenes, aldehydes or alcohols pro-
ducing a wide variety of useful compounds including β-lactams, β-
lactones, cyclobutanones, or amino esters [6–9]. Recently low tem-
perature matrix isolation and time resolved spectroscopy has been used
in identifying the various intermediates generated in these processes. In
1988, Hegedus and co-workers, proposed that visible light irradiation
results in photocarbonylation of alkoxy Fischer carbenes, via either a
short lived metallocyclopropanone or a metallaketene intermediate
[10–12]. We and others have used picosecond time-resolved infrared
spectroscopy to confirm the formation of a metallaketene intermediate
species [13,14]. Fischer carbene complexes containing alkoxy groups
on the carbene carbon, such as [(CO)5MC(OMe)Me] (M = Cr or W),
undergo anti-syn isomerisation of the alkoxy substituent following low
energy photolysis. Increasing the excitation energy, however, can result
in the formation of a reactive metallaketene intermediate (100 ps) in

the case of the chromium analogue. This excited state was detected
using picosecond time-resolved infrared spectroscopy (psTRIR) [13],
and supported by quantum chemical calculations. For M = Cr, time-
dependent density functional theory (TDDFT) calculations indicate that
the metallaketene-chromium intermediate has singlet character, while
in the case of the tungsten analogue, the metallaketene intermediate is
produced from a triplet state [13,15]. In addition, to these two process,
the alkoxy based Fischer carbene compounds also undergo photo-
induced CO-loss following higher energy photolysis [16,17]. Previously
we have shown that replacement of the alkoxy group by an amino
substituent (pyrrolidine), greatly enhances the quantum efficiency for
CO loss, and the photon energy required to achieve CO-loss is greatly
reduced [18]. For example, when [(CO)5CrC(NC4H8)(Me)] was irra-
diated at λ = 400 nm, rapid (< 50 ps) CO loss occurs, with a quantum
yield of approximately 70%. No evidence was obtained for the forma-
tion of metallaketene intermediates or metallacyclopropanone excited
states with this system, which is not surprising as amino Fischer car-
bene complexes are known to be poor reagents in the synthesis of β-
lactams. Among the very few reports on the photochemistry of tungsten
based amino Fischer carbene complexes Rooney et al. used Raman
spectroscopy, to identify [(CH3CN)(CO)4WC(NC4H8)(SiPh3)] following
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excitation of [(CO)5WC(NC4H8)(SiPh3)] in acetonitrile [19]. While the
synthetic applications of Fischer carbenes are well known, more re-
cently metal carbonyls have been studied for both antimicrobial effects
and therapeutic applications [20]. The toxic effects of inhaled en-
vironmental CO are well known, but surprisingly the important role of
CO as an intracellular messenger, regulating physiological and cryo-
protective processes in the body is less understood [21]. The positive
effects of CO, which may have clinical applications include vasodila-
tion, anti-inflammatory, anti-proliferative and anti-apoptotic activities
[22]. However, for clinical applications, controlling the delivery of CO
gas is essential but challenging. Harnessing CO, in CO-releasing com-
pounds (CO-RMs) where a light or electrochemical stimuli can be used
to break bonds and liberate “free CO” has been suggested as a means to
control delivery for clinical applications [23,24]. Light induced CO
release from molecules (photo-CORMS) may facilitate controlled
timing, dosage and location of CO release for on-target applications
[25,26]. The development of photoCORMs includes compounds ab-
sorbing in the ultraviolet, the visible region, and ideally into the ther-
apeutic window [27]. The photochemistry of a wide range of metal
carbonyls have been studied in aqueous media, from the original stu-
dies which focused on Fe(CO)5 and Mn2(CO)10 [28], to others con-
taining for example tripodal, di-imine or bipyridine type ligands, and
including metal centers such as Mo, W, Re or Ru [29–42]. The anti-
microbial properties of metal carbonyl compounds against both E. coli
and S. aureus were reported by Nobre and co-workers who demon-
strated the superior bactericidal activity of CORMs versus using solely
carbon monoxide gas [43]. Following these initial antimicrobial stu-
dies, many other metal carbonyls compounds based on Mn, Fe and Cu
have been assessed for bactericidal properties, both in the presence and
absence of a light source [44–47,50–54]. Chromium based Fischer
carbene complexes have previously been studied as CO-releasing
modalities in the absence of light in aqueous media where myogloblin
was used to quantify CO. [34] Under the conditions employed, nu-
cleophilic attack by water was reported to be important for CO loss, and
a clear correlation between the electrophilicity of the carbene carbon
and the rate of CO release in solution was reported. In this study, we
report the results from a ps-TRIR investigation on the
[(CO)5WC(NC4H8)CH3] compound combined with an electrochemical
study where induced CO loss is confirmed using gas chromatography.
Similarly, to the chromium analogue, the tungsten amino Fischer car-
bene complex, undergoes efficient CO-loss using 400 nm excitation,
with no evidence for the formation a metallaketene intermediate from
the time resolved studies [13,18]. The photochemistry and the high
quantum yield for CO-loss is supported using TDDFT calculations.
Furthermore, the potential application of the compound as an anti-
microbial agent was assessed using a Staphylococcus aureus strain (ATCC
25923).

2. Materials and instrumentation

2.1. UV–vis spectroscopy

UV–vis spectra were measured on an Agilent 8453 UV–vis spectro-
photometer in a 1 cm quartz cell using spectroscopic grade solvents.

2.2. NMR spectroscopy

1H NMR was recorded on a Bruker AC 400 spectrophotometer in
CDCl3 and were calibrated according to the deuterated solvent peak.

2.3. Picosecond time-resolved infrared spectroscopy

The TRIR experiments were performed at the University of
Amsterdam. UV pump and mid-IR probe pulses were generated by a
Ti:sapphire laser with a repetition rate of 1 kHz were utilised. The UV
pump pulse (400 nm) was generated by second harmonic generation

(SHG). Typical pulse energies employed were 0.8–1.0 μJ. IR probe
pulses were generated by difference frequency generation (DFG) of the
signal and idler from a β-barium borate (BBO)-based optical parametric
amplifier (OPA) in AgGaS2. The delay between pump and probe was
scanned by mechanically adjusting the beam-path of the UV pump
using a translation stage. The temporal resolution of 200 fs has been
obtained from the full width at half maximum (FWHM) of the pump-
probe cross-correlate function. Solutions were continually circulated
(flowed) through IR cells containing CaF2 windows with a path length
of 500 μm.

2.4. Cyclic voltammetry and electrochemical loss

Cyclic voltammetry (CVs) and bulk electrolysis profiles were re-
corded in anhydrous acetonitrile (Sigma-Aldrich) with tetra-
butylammonium hexafluorophosphate (TBAPF6) (0.1 M), as a sup-
porting electrolyte. The concentration of the sample was 0.001 M
throughout. Experiments were carried out using a CH Instruments 750C
electrochemical potentiostat. All electrochemical experiments were
performed at room temperature (20 °C) unless stated otherwise. A
three-electrode cell was employed which consisted of a glassy carbon
working electrode, a Pt wire auxiliary electrode and Ag/AgCl reference
electrode (E1/2 Fc/Fc+ redox couple = + 0.43 V). The scan rate was
0.1 Vs−1 unless otherwise stated. All experiments were performed with
the cell in the absence of light. CO release was detected using a
Shimadzu GC-2010 Plus unit (Lab Solutions version 5.57 software) with
a dielectric barrier discharge ionisation detector (BID) and a
ShinCarbon micropacked column with 0.53 mm internal diameter.

2.5. Computational studies

All calculations were performed using the Gaussian 16 (Revision
B.01) program suite [55], using the exchange functional of Becke [56]
and the correlation functional of Lee Yang and Parr [57,58] i.e. the
B3LYP method and a triple zeta quality basis set def2-TZVP [59,60]. All
molecular geometries were optimised to tight convergence criteria, and
different solvent environments were modelled using a polarisable
continuum model [61]. Relaxed potential energy scans were under-
taken along the chosen reaction coordinates, providing sets of atomic
coordinates at each point, which were then used to calculate the excited
state energies of both singlet and triplet excited states using Time-De-
pendent Density Functional Theory (TDDFT) [62,63].

2.6. General remarks

All chemicals were purchased from Sigma Aldrich, ABCR or ACROS
and were of reagent grade. The chemicals were used without further
purification.

2.7. Synthesis

2.7.1. Preparation of [(CO)5WC(NC4H8)Me]
The synthesis of [(CO)5WC(NC4H8)Me] was carried out according to

previously reported procedures [64,65]. 0.31 mmol (0.026 mL) of
pyrrolidine was added via syringe to a solution of [(CO)5WC(OMe)Me]
[66] (0.26 mmol, 0.100 g) in diethyl ether (15 mL) at −78 °C (this
temperature was achieved by combining liquid nitrogen and acetone
and monitored using an alcohol thermometer). The reaction was stirred
and allowed to reach room temperature. The solution changed from a
bright yellow colour to cream. The solvent and any excess pyrrolidine
were removed at reduced pressure. The crude complex was purified on
a silica gel column using a solvent mix of pentane:dichloromethane
(9:1). The spectroscopic data was in agreement with reported data
[19,20].
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2.8. Antimicrobial evaluation

The antimicrobial activity of [(CO)5WC(NC4H8)Me] was assessed
using a Staphylococcus aureus reference strain, (ATCC 25923). Bacteria
were grown overnight at 37 °C on Mueller-Hinton (MH) agar and sus-
pensions were prepared from isolated colonies to the density of a 0.5
McFarland standard (bioMѐrieux, Ireland) and were further diluted 1/
100 in phosphate buffered saline (PBS), pH 7.4 (approximately
1 × 106 CFU/ml, where CFU is colony forming units). Assays were
prepared in micro centrifuge tubes and contained approximately
1 × 105 CFU/ml of bacteria and varying concentrations of tungsten
carbonyl carbene complex (50–200 μM in 10% DMSO) in PBS. Control
assays contained no complex and a DMSO control was also included.
For irradiation, 100 μl aliquots were transferred to the wells of a 96 well
tissue culture plate which was irradiated for 1 h using a LED lamp with
wavelength (λexc. ~ 355 nm). For non-irradiated controls, aliquots were
transferred to another 96-well plate which was incubated in the dark
for 1 h. The contents of the wells were then diluted, 1/100 with PBS and
100 μl spread onto MH agar and incubated at 37 °C overnight before
counting colony forming units (CFU). For irradiated and non-irradiated
assays, the percentage killing activity was calculated based on the CFU/
mL from treated bacteria compared to untreated (control assays con-
taining DMSO). To confirm the contribution of CO to bactericidal ac-
tivity, assays were performed in the presence of a CO scavenger, bovine
haemoglobin at 20 μM for comparison (see ESI).

3. Results and discussion

The UV–vis spectrum of [(CO)5WC(NC4H8)Me] in n-heptane is
presented in Fig. 1. The main features of this spectrum are an absorp-
tion maximum at 337 nm and a shoulder at 364 nm. The spectrum is
consistent with those of other Fischer carbene complexes reported in
the literature [19,67]. Superimposed on the experimental spectrum are
the vertical excitation energies to singlet excited states (represented by
black lines) calculated by TDDFT methods and the excitation wave-
length used in the TRIR studies (400 nm) is indicated by a downward
arrow. The electron density difference maps for the two singlet excited
states close to this wavelength are also presented, and these can be

characterised as metal-to-carbene (1ES1) and metal-to-cis-CO (1ES2)
charge-transfer in nature. It is clear from Fig. 1, that irradiation at
400 nm will populate predominantly 1ES1. The behaviour of this ex-
cited state was then modelled along either the cis- or trans-CO loss re-
action coordinates (see later).

Prior to performing time resolved studies, steady-state experiments
confirmed that photolysis of [(CO)5WC(NC4H8)Me] (λexc = 395 nm) in
n-pentane solution, in the presence of the trapping ligand PPh3, (1.1
molar equivalent excess) produced a CO-loss product [(CO)4(PPh3)
WC(NC4H8)Me] by the appearance of product bands at 2007, 1900, and
1875 cm−1. Two isomeric products are possible from this reaction,
either the cis- or trans-[(CO)4(PPh3)WC(NC4H8)Me]. Modelling of the
infrared spectrum of cis- or trans-products confirmed that the cis-isomer
is the dominant photoproduct (Fig. 2). It is clear from these results that
the band at approximately 2007 cm−1 is absent from the spectrum of
the trans-isomer, and consequently it can be used as a diagnostic feature
for the cis-CO loss process. These spectral features are consistent with
those previously reported for the CO loss photoproduct, [(pentane)
(CO)4WC(NC4H8)SiPh3], which exhibited IR stretching vibrations at
2015, 1923, 1909 and 1856 cm−1, following excitation of
[(CO)4WC(NC4H8)SiPh3] at 355 nm in pentane [19].

3.1. Picosecond time-resolved infrared spectroscopy and time-dependent
density functional theory calculations

The photophysical processes leading to CO-loss were studied by
calculating the energy profile along two reaction coordinates, cis- and
trans-CO loss, in the 1ES1 state. The 1ES1 state is bound with respect to
both of the reaction coordinates (Fig. 3). These TDDFT results show that
the barrier for trans-CO loss is larger by ~20 kJ mol−1 compared to the
cis-CO loss reaction which explains the dominant formation of the cis-
CO loss product in the steady-state experiments. Furthermore, the
bound nature of this excited state implies that the CO-loss process will

Fig. 1. The UV/vis spectrum of [(CO)5WC(NC4H8)Me] in n-heptane solution
superimposed on the calculated vertical excitation energies to singlet excited
states (vertical black lines, obtained from TDDFT calculations) an d the electron
density difference maps for the two lowest energy singlet excited states (1ES1
and 1ES2) with the regions where the electron density is reduced in the excited
state compared to the ground state coloured blue, and regions where the
electron density is increased in the excited state relative to the ground state
coloured red.

Fig. 2. The red spectrum is the experimental difference spectrum obtained
following steady-state (λexc = 395 nm) photolysis of [(CO)5WC(NC4H8)Me] in
n-pentane solution in the presence of a trapping ligand (PPh3, in 1.1 molar
equivalent excess). The blue spectrum is the calculated spectrum of cis-
[(CO)4(PPh3)WC(NC4H8)Me] minus the spectrum of [(CO)5WC(NC4H8)Me] and
the green spectrum represents the calculated spectrum of trans-
[(CO)5WC(NC4H8)Me] minus the spectrum of [(CO)5WC(NC4H8)Me]. All cal-
culated spectra were modelled in n-heptane.
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be “arrested” [68] i.e. it will occur slowly compared to the ultrafast CO-
loss following photolysis of, for instance, Cr(CO)6 [69,70].

Based on this, picosecond time-resolved infrared (TRIR) measure-
ments using 400 nm were performed in n-heptane solution at room
temperature. The ground state FTIR spectrum of [(CO)5WC(NC4H8)Me]
exhibits metal carbonyl stretching vibrations at 2063(w), 1967(vw),
1932(s) and 1925(s) cm−1. The very weak parent feature at 1967 cm−1

is not evident in the psTRIR experiments. Following excitation at
400 nm, two new intense features at 1906 and 1892 cm−1 together
with a very weak feature at approximately 2012 cm−1 are produced.
The IR changes (in the νCO region) observed in these experiments are
consistent with the initial formation of an excited state (1ES1 in Fig. 4).
The main IR feature of this excited state was observed at approximately
1892 cm−1 (labelled 1ES1 in Fig. 4) which decays over the initial 80 ps,
with concomitant formation of bands at 2028, 1911 and 1873 cm−1,
which are assigned to the cis-[(CO)4WC(NC4H8)Me], i.e. the vacant
coordination site on the metal lies cis to the carbene ligand. This co-
ordinatively unsaturated complex was modelled using DFT methods,
and the IR difference spectrum was calculated by subtracting the si-
mulated spectrum of the parent pentacarbonyl complex from the si-
mulated cis-CO loss species. This simulated spectrum is also presented
as the blue spectrum in Fig. 4. The similarity between this simulated
spectrum and the final difference measured at 120 ps after excitation
strongly supports characterisation of the main photoproduct as the cis-
[(CO)4WC(NC4H8)Me] complex.

3.2. Evaluation of CO loss by [(CO)5WC(NC4H8)Me] using cyclic
voltammetry

Electrolysis was carried out to determine the efficiency of CO loss
for [(CO)5WC(NC4H8)Me], using an electrochemical stimulus compared
to a photo-stimulus. As shown in Fig. 5, the compound is oxidised at a
potential of +0.52 V vs. Fc/Fc+, an irreversible process at slow scan
rates up to 1.0 V/s. This process becomes quasi-reversible at higher scan
rates (up to 70 V/s) with an anodic to cathodic peak current ratio of
approximately 1:0.5 and is assigned to the metal centered W0/I redox
couple as previously reported [71,72]. The oxidation peak is metal-
centered whereas the reduction peak points to the metal-carbene
double bond. Comparing the oxidation potential of [(CO)5WC(NC4H8)
Me] with its Cr analogue, reveals an increase of 180 mV. This behaviour
has been shown for other Cr and W based complexes which supports
that the oxidation peak is metal-centered [71]. The reduction potential
at −2.75 V, vs. Fc/Fc+ is irreversible at the range of scan rates in-
vestigated (0.1–50 V/s).

The three anodic processes are observed in the range of −1.0 to
−0.4 V are followed with the reduction of the complex (shown in
Fig. 5). In the present study, electrochemical initiation of CO release
from a 1 mM solution of the complex in CH3CN was confirmed and is
shown in Fig. 6(b), over five intervals approximately 20 min apart over
1.5 h of controlled potential electrolysis (E = +0.87, vs. Fc/Fc+). In
these electrolysis experiments, CO loss over the course of the experi-
ment is ~1 molecule of CO per molecule of complex, which is similar to

Fig. 3. The non-adiabatic description of the excited state energy change for the
1ES1 as the cis-W-CO (blue) and trans-W-CO (green) bond length increases
showing a lower barrier to cis-CO-loss of approximately 20 kJ mol−1.

Fig. 4. Picosecond time-resolved infrared spectra obtained at 1, 4, 10, 60, and
120 ps following excitation of [(CO)5WC(NC4H8)Me] in n-heptane solution
(black spectra) and the calculated difference spectrum obtained by subtracting
the simulated spectrum of [(CO)5WC(NC4H8)Me] from cis-[(CO)4WC(NC4H8)
Me] in n-heptane assuming a quantum yield of 0.7 (blue spectrum), the vertical
dashed arrows shows the formation of product bands and the shaded area (*)
indicates a region of apparent depletion which is an artefact of a detector fault.

Fig. 5. Cyclic voltammogram depicting the oxidation and reduction of
[(CO)5WC(NC4H8)Me] in dry CH3CN and 0.1 M nBu4PF6, Scan rate = 0.1 V/ s.
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other studies performed by us on chromium analogues [18,55].

3.3. Bactericidal activity of [(CO)5WC(NC4H8)Me]

The TRIR studies indicated that the quantum yield of photoinduced
CO-loss from [(CO)5WC(NC4H8)Me] is high at ~70%, and therefore
suggests this complex is an ideal candidate to be used as a CO releasing
compound with antibacterial properties.

[(CO)5WC(NC4H8)CH3] demonstrated concentration dependent
bactericidal, against S. aureus, when photo-activated for 1 h at 355 nm
(Fig. 7). The greatest differential between photo-activation and no ir-
radiation was observed at 200 μM. Apparent low-level killing activity
(10–20%) was observed in the absence of light, over the concentration
range investigated. To investigate the dependence of photoactivated
bactericidal activity on CO-release, bovine haemoglobin (Hb), a high

affinity CO scavenger was added to the assays [43]. The bactericidal
activity decreased by ~65%, following the addition of Hb, thereby in-
dicating the cytotoxic role of CO (Fig. S3). Singlet oxygen measure-
ments (see ESI) indicated no evidence for the formation of 1O2, which
may also photodynamically inactivate bacteria (Fig. S2). For this
complex, the cytotoxicity was attributed predominantly to CO release
and to a lesser extent, tungsten carbonyl degradation products.

4. Conclusion

The tungsten based amino carbene complex, [(CO)5WC(NC4H8)Me]
was assessed for both photo, and electrochemical CO-release. The CO-
loss photoproduct cis-[(CO)4WC(NC4H8)Me] was generated via the
formation of an excited state over 80 ps, as evident by picosecond time
resolved infrared spectroscopy, and was further supported by quantum
chemical calculations. From cyclic voltammetry studies, the complex
also releases CO, but this approach is less efficient than when a photo-
stimuli is used. The potential of this complex for antibacterial activity
was assessed using a representative Gram-positive bacteria, S. aureus.
Enhanced antibacterial activity was evident following irradiation,
thereby indicating the potential of such complexes to act as anti-
bacterial agents. CO trapping studies indicate that CO is predominantly
responsible for the bactericidal activity. While carbon monoxide-re-
leasing molecules have been shown to act as promising antimicrobials
against several pathogens over the last decade [39,73,74], the mode of
action is not fully clear and depending on the compound, multiple in-
teractions with intracellular targets may occur that result in cell
membrane perturbations, inhibition of DNA repair or iron chelation.
Determining the fate of CO and its mechanisms of interaction with
bacteria was beyond the scope of this work. However, for other CORMs
Nobre et al. [43] showed that CO gas does not dissolve in the medium
following its release, inferring that CO interacts directly with in-
tracellular targets once released. Furthermore, for one CO-RM, tetra-
ethylammonium molybdenum pentacarbonyl bromide (ALF 062) they
noted accumulation of Mo inside E. coli cells suggesting that this CORM
transports CO across the membranes for intracellular delivery.

One of the key challenges in using CO as a therapeutic is to control
its delivery, such as using light or a redox stimulus, the approaches
taken in this study. In our preliminary antimicrobial studies, a high
quantum yield for photo-induced CO release, resulted in modest anti-
bacterial activity against S. aureus. However, the potential of this ap-
proach for clinical applications requiring controlled delivery of anti-
microbial activity was demonstrated.

Fig. 6. (a). Scan rate dependence of the first oxidation process for (CO)5WC(NC4H8)Me in 0.1 M TBAPF6 in CH3CN, vs. Fc/Fc+. CVs for scan rate of 1.0, 5.0 and
10.0 V/s shown here. (b). Time-dependent electrochemically induced CO release from [(CO)5WC(NC4H8)Me] (1 mM) in CH3CN.

Fig. 7. Photo-activated bactericidal activity of [(CO)5WC(NC4H8)CH3] against
S. aureus ATCC25923 in PBS, pH 7.4. Activity in the absence of irradiation
(light grey bars) and with irradiation for 1 h, λ = 355 nm (dark grey bars) over
the concentration of catalyst ranging from 50 μM to 200 μM. Assays were
performed in duplicate on 3 separate occasions and percentage killing activity
was calculated from CFU/ml in the presence of complex relative to CFU/ml
from control assays (assay with no complex). The mean value and standard
error are shown. In the absence of complex, no killing effect was observed
following irradiation (CFU/ml = 141,550 ± 50,113 - no light Vs
196,700 ± 54,591-with light).
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