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Michel Häıssaguerre4,5,6[0000−0001−7644−6146]

1 Computational Science Lab, University of Amsterdam Amsterdam, The
Netherlands

2 Institute of Advanced Studies, University of Amsterdam, Amsterdam, The
Netherlands

3 Cardiac Arrhythmia Service, Johns Hopkins University School of Medicine,
Maryland, USA

4 Electrophysiology and Cardiac Stimulation, Bordeaux University Hospital,
Bordeaux, France

5 IHU LIRYC, Electrophysiology and Heart Modeling Institute, Bordeaux, France
6 University of Bordeaux, Bordeaux, France

Abstract. Ventricular fibrillation (VF) is a dangerous type of cardiac
arrhythmia which, without intervention, almost always results in sudden
death. Implantable automatic defibrillators are among the most success-
ful devices to prevent sudden death by automatically applying a shock
to the heart when fibrillation occurs. However, the electric shock is very
painful and could lead to dangerous situations when a patient is, for
example, driving or biking. An early warning signal for VF could re-
duce the risk in such situations or, in the future, reduce the need for
defibrillation altogether. Here, we test for the presence of critical slow-
ing down (CSD), which has proven to be an early warning indicator for
critical transitions in a range of different systems. CSD is characterized
by a buildup of autocorrelation; we therefore study the residuals of heart
surface electrocardiograms (ECGs) of patients that suffered VF to inves-
tigate if we can measure positive trends in autocorrelation. We consider
several methods to extract these residuals from the original signals. For
three out of four VF victims, we find a significant amount of positive
autocorrelation trends in the residuals, which might be explained by
CSD. We show that these positive trends may not be measurable from
the original body surface ECGs, but only from certain areas around the
heart surface. We argue that additional experimental studies involving
heart surface ECG data of subjects that did not suffer VF are required
to quantify the prediction accuracy of the promising results we get from
the data of VF victims.

Keywords: Critical slowing down · Ventricular fibrillation · Critical
transition · Early warning signal.
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1 Introduction

Ventricular Fibrillation (VF) is a dangerous type of cardiac arrhythmia where
the ventricles, instead of beating normally, tremble uncontrollably. As a result,
the heart is unable to regulate the blood circulation around the body, resulting
almost always in sudden death. The most important contributions to the treat-
ment of VF to date are automated defibrillators. For example, an implantable
cardioverter-defibrillator (ICD) can be used for patients at an increased risk of
suffering dangerous arrhythmia. The ICD detects cardiac arrhythmia and auto-
matically intervenes by applying an electric shock. For these devices it is crucial
to correctly detect the onset of VF in real time to be able to prevent permanent
damage or death of the patient. In earlier research, several algorithms have been
proposed to this end [1]. The ICD does not prevent the arrhythmia itself, but
provides treatment by shock after the occurence. Intervention with ICD is not
without drawbacks: the electric shock is experienced by patients as very painful
[2] and can in some cases cause psychological problems [3]. Moreover, the shock
could lead to dangerous situations if the patient is, for example, driving or biking.
In the latter case, an early warning signal seconds before the shock could greatly
reduce risk of accidents. Furthermore, early warning signals in combination with
future methods to prevent VF from happening would reduce the need for defib-
rillation. Many possible indicators have been proposed in earlier work [4] from
which Heart Rate Variability (HRV) is the most promising. However, contrary
evidence has also been found, as HRV is influenced by characteristics - for exam-
ple, medical conditions - of the individual patients [5]. Evidenty, a generic early
warning signal for VF that is independent of patient characteristics is highly
desirable.

If we look at VF from a general perspective, we can argue that the shift
from a state where the ventricles are pumping normally to a state in which they
quiver is a sudden transition between two different dynamical regimes for which
the manifestation of VF is the tipping point. Such abrupt changes in dynamical
behavior are seen in many real complex systems in nature and are generally
called ”critical transitions”. In critical transitions, once the tipping point is ex-
ceeded, it is not easy to return to the previous state. A real-life example of this
is desertification: once a patch of land reaches a barren state, it is hard for vege-
tation to reappear. This ”irreversible” character has made possible predictors of
these critical transitions much sought-after. Earlier research [6] has shown that
there exists a domain-free early-warning signal for critical transitions in complex
dynamical systems in different fields of research: critical slowing down (CSD).
The theory behind CSD is based on the fact that, mathematically, some critical
transitions in real systems can be interpreted as catastrophic bifurcations. It
has been shown [7] that systems that approach such bifurcations experience a
decrease in resilience; the system needs more time to recover from perturbations
when a critical event is close. This decrease in resilience can be measured by in-
creasing autocorrelation and standard deviation in the corresponding time series
data (as we will explain in the Method section). These symptoms have indeed
been identified in a wide range of real complex systems. For example: the ending
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of multiple different glacial periods by abrupt climate changes are preceded by
the building up of autocorrelation in deuterium measurements [8], and brain ac-
tivity shows increasing amounts of variance when close to an epileptic seizure [9].
Here, the same underlying principle applies, independent of the scientific field.
If we assume that the onset of VF can be viewed as such a critical transition,
we expect that we can detect the same early warning signals that are found in
a variety of other real systems.

Historically, there has been controversy about the mechanism that drives VF
[10], with some research suggesting that fibrillation represents a chaotic system
[11], and others stating that it is rather similar to a nonchaotic random signal
[12]. Nowadays it is commonly believed that the onset of VF is a transition to
spatiotemporal chaos [13, 16] and thus a shift to a different, chaotic attractor.
This transition is initiated by a wavebreak that arises when a wavefront and
waveback of the cardiac excitation meet [15]. Under normal circumstances this
never occurs, but in certain conditions the propagating impulse does not die
out but returns to reexite the heart (called reentry [14]). When reentry triggers
a wavebreak, it can in turn produce daughter waves, causing new wavebreaks
etc., quickly degenerating into spatiotemporal chaos and VF. The transition
from normal heart rhythm to abnormal, chaotic, heart rhythm (the process from
reentry to VF) takes place through a series of bifurcations [16]. There exist
different theories about how we can exactly describe this route to chaos [17]. In
the context of nonlinear dynamics, however, we can consider the shift from a
normal heart rhythm to VF as a change in topology of electrical wave dynamics
or a transition between two states with different basins of attraction [18]. This
drastic change in dynamical regime may therefore bear resemblance to critical
transitions in other complex systems and may possibly be signaled by CSD.

In this thesis, we investigate if CSD can be observed in the residuals of heart
surface electrocardiogram (ECG) recordings from patients that suffered VF. We
analyze data sets from four patients provided by IHU LIRYC (Electrophysiol-
ogy and Heart Modeling Institute) in Bordeaux, France. All patients suffered
sudden cardiac arrest due to documented VF resulting from ischemic heart dis-
ease (n=2), early repolarization syndrome (n=1), or idiopathic VF (n=1). All
patients were male and the age range was between 15 and 74 years old. Each set
contains around 1400 ECG signals (leads) over the heart surface, which are es-
timated using body surface ECG measurements by solving an ill-posed, inverse
problem [19]. The original body surface potential maps consist of around 250
leads. Each lead in the set is a 20-second ECG recording; 10 seconds of normal
heart rhythm followed by 10 seconds of arrhythmia, with a sampling rate of
1 kHz. We examine the 10 seconds of the signal that precede the tipping point
looking for CSD. Specifically, we look for a significant increase in autocorrelation
in the residual.

The main challenge of our research is the actual extraction of the residu-
als; the short-term fluctuations relative to the main ECG waves. To expose the
residual, we have to filter out the wave components that are typical to the ECG.
The difficulty resides in the high frequency characteristic of some of these typical
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waves, which impedes the use of a simple frequency filter. In this thesis, we go
over several alternatives to correctly obtain the residuals, which is essential for
credible autocorrelation measurements.

Electrocardiography is traditionally prone to different types of noise like
power line interference, electrode contact noise and motion artifacts. We have
to keep in mind that some of this noise (in particular, high frequency noise) we
can not distinguish from fluctuations in the real signal and will end up in the
residual. The ill-posed nature of the inverse solution may also induce errors in
the residual. Therefore, to quantify the prediction accuracy of autocorrelation
measurements for ECG data from VF victims, we have to conduct the same
analysis on heart surface ECG estimations of subjects that did not suffer VF.
The main goal of this thesis to show the necessity of such data.

2 Method

Critical slowing down (CSD) is the increase of recovery time needed by the sys-
tem when it is perturbed from the stable state. In our case, this stable state is
described by the well-known features of an ECG signal. Therefore, to be able
to measure a possible CSD effect, we aim to find the fluctuations relative to
the typical ECG curve: the residual. In this section we discuss several methods
we considered to extract the residuals from the original signals and argue which
method is the most preferable. To look for CSD, we have to analyze the time evo-
lution of the autocorrelation of the extracted residuals. Because autocorrelation
measures the likeness of a signal with a lagged version of itself, a slowly varying
signal has a higher autocorrelation than a rapidly fluctuating signal. For that
reason it is expected that, if residuals show a slowing down effect, we measure a
significant positive trend in autocorrelation.

2.1 Measuring the autocorrelation

The most straightforward autocorrelation measure for equispaced data is the
lag-1 autocorrelation, where the state of the signal at time t is directly com-
pared to its state in the previous time unit t− 1. The lag-1 autocorrelation can
be estimated by treating the signal as a first-order autoregressive (AR(1)) pro-
cess and calculating the corresponding lag-1 autoregression coefficient. We esti-
mate this parameter using Yule-Walker equations with Python library statsmod-
els.tsa.stattools. To capture the time evolution of the autocorrelation, the autore-
gression coefficient is calculated over a moving window. The window length is
chosen to be exactly half the signal length, so that there is a reasonable trade-off
between a sufficiently long window to compute the autocorrelation, and a long
enough sequence of autocorrelation values to be able to study its time-evolution.
(The influence of different window lengths on our result is shown in Appendix
A.10)
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2.2 Extracting fluctuations

The typical ECG signal is composed of a set of main wave components (PQRST)
formed by electrical currents produced by the depolarization and re-polarization
of different heart chambers. Depolarization is responsible for the contraction of
cardiac muscle, while with re-polarization, cardiac muscle relaxes. A schematic
representation is provided in Fig. 1. The P-wave is produced by the depolariza-
tion and contraction of both atria. The QRS-complex is composed of the electri-
cal signals from both the depolarization of the ventricles and the re-polarization
of the atria. Finally, the re-polarization of the ventricles produces the T-wave.
The orientation of the waves is dependent on the polarity (positive or negative)
of the electrode.

Normally, an effective technique to extract short term fluctuations from a
signal would be to filter out the lower frequency components using by applying
a high-pass filter. However, the QRS-complex has a significantly higher frequency
range than the P- and T-waves. A high-pass filter that removes all characteristic
waves requires a high cutoff frequency, and thus imposes risk of filtering out
short-term fluctuations that possibly show a CSD effect. The same problem
arises for methods using wavelet decomposition: by removing high frequency sub-
bands from the signal to remove the QRS complex we might accidentally remove
fluctuations we want to analyze. For this reason, we have to consider other
methods to extract the residuals: by utilizing the knowledge of the recurring
wave components we create a model for the signal containing all characteristic
waves and subtract it from the original signal.

In the following subsections we go over techniques we considered to extract
the residues of the ECG leads.

Fig. 1: The main wave components of an ECG; the P-wave, QRS-complex and T-wave.

Pre-processing We aim to remove characteristic components (Fig. 1) from the
signal to extract the fluctuations. Baseline wandering in the signal makes it hard
to distinguish wave components from the zero-volt level. Moreover, the height of
characteristic waves may vary between heartbeats. In all methods discussed in
this section, the baseline trend is first removed from the signal. Some methods
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require the signal to be cut into segments of one heartbeat cycle. These pre-
processing steps are described in detail in Appendix A.1.

Fitting Gaussian curves To isolate the fluctuations in the ECG signal, we can
directly subtract the characteristic ECG waves for every cardiac cycle. By fitting
a mixture of Gaussian curves to the original ECG that approximate the PQRST-
waves we can construct an characteristic version (as shown in Fig. 1) of the signal,
which can in turn be subtracted to reveal the residual. The implementation of
this method is explained in more detail in Appendix A.2.

Fig. 2: Segments of detrended ECG signals, their corresponding model fit and the
residuals after subtracting the model. A: The model seemingly fits the signal. However,
we observe high frequency errors in the residual (red arrows) resulting in peaks and
dips in the AR(1) measurements (right) occurring at the same frequency as the QRS-
complexes. B: The signal, while we can identify the PQRST-waves, slightly deviates
from the characteristic shape portrayed in Fig. 7. The fitting method fails to reproduce
the characteristic waves resulting in periodically recurring errors in the residual (green
arrows).

Techniques modeling ECG waveforms using Gaussian curves have been around
for some time [21] and are generally used to extract clinical features like the lo-
cation, height and width of the characteristic waves. When we apply our method
to the ECG data we observe that indeed, for signals that resemble the PQRST-
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composition portrayed in Fig. 1 like the example given in Fig. 2A, the Gaussian
fitting method seemingly provides a good model. However, when we subtract the
model fit, the parts of the residual at the location of the QRS-complex clearly
have higher frequency compared to other parts of the residual, which indicates
that they are error artifacts induced by the fitting method. The effect of these
errors is clearly visible in the AR(1) measurements: rapidly fluctuating parts of
the signal have relatively low autocorrelation; combined with the moving window
this results in peaks and dips in AR(1) values. These peaks and dips recur with
the same frequency as the QRS-complexes. Clearly, while this modeling tech-
nique may be suitable for clinical feature extraction, it is not ideal to extract
correct residuals of the signals. Moreover, to obtain a correct model, the signal
has to resemble the characteristic shape from Fig. 1. When the signal deviates
from this shape the fitting technique becomes infeasible, resulting in errors in the
residual. An example of this is given in Fig. 2B. We conclude that this method
is ineffective for the extraction of fluctuations from the signal since the majority
of the signals in the provided data set do not have the required characteristic
PQRST-composition.

Computing an average beat The method described above to extract fluc-
tuations from the signal turns out to be ineffective as it requires each signal to
have a certain characteristic shape. In reality, characteristics may be different for
each signal. To capture characteristic features of a signal, one can also construct
an average beat using the individual beat cycles. Characteristic features recur
periodically and are thus automatically present in the average curve. Everything
relative to the average beat can be classified as fluctuations. We cut the signal
into segments containing one beat cycle. The fluctuations can be extracted beat
by beat by subtracting the average beat from every cycle. However, the height
as well as the overall shape of the characteristic waves is not constant over the
whole signal. Therefore, the average curve must be adjusted for each beat to
provide a good model for the signal. A detailed description of the average beat
fit and these adjustments is given in Appendix A.3. It turns out that in almost
all signals one or more QRS-complexes deviate too much from the average curve,
even after the adjustments are made. As a result, the average curve is unable
to fit the signal and errors occur in the residual (Fig. 3). For this reason, we
conclude that the average beat method is unusable for credible autocorrelation
measurements.

Excluding QRS-complexes In the methods discussed above, we encounter
the problem that we can not (correctly) extract the fluctuations of parts of the
signal around the QRS-complex. This inability is mainly caused by the fact
that during the QRS-complex, a lot of change in y-axis value takes place in a
limited amount of time points. Here, small fitting errors on the time axis can
lead to big errors in y-axis value in the residual, and this heavily influences
autocorrelation calculations. Therefore, to get more reliable results, it might be
preferable to remove the QRS-complexes, or, generally, all parts with high first-
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Fig. 3: Segment of an ECG signal and the average beat fit. The average beat is not
able to fit all QRS-complexes, leading to jumps in the AR(1) measurements similar to
Fig. 2A. This is typical for almost all signals in the data sets.

order differences, from the signal altogether. This has a clear disadvantage; we
discard information by cutting parts of the signal. However, if the autocorrelation
in the residual is gradually building up, this effect should still be observable,
even if the signal is not complete. We implement a sequence of steps to remove
unwanted parts of the ECG. This procedure accounts for the fact that, when
cutting out parts of the signal, the difference in y-value at the edges might induce
sudden ”jumps” in the signal which affect any autocorrelation measurements.
The cutting process is illustrated in Appendix A.4. Besides the fact that this
procedure solves the problems we encountered in the methods mentioned above,
it also opens up the possibility to use a frequency filter to extract the residual.
As mentioned in the introduction of section 2.2, this filtering technique was not
possible before due to the high-frequency characteristic of the QRS-complexes.
Now that we are excluding these parts of the signal, we are able to extract
the fluctuations using a simple low-pass filter. This is shown in Fig. 4: after
removing the QRS-complexes the resulting signal is filtered using a 10 Hz cutoff
frequency, which is sufficient to filter out any recurring ECG features. With this
method, we are able to extract the residues of almost all signals without the
major errors we encountered using other methods. We keep in mind that while
the cutting procedure avoids major jumps in the resulting residual for most
leads, it might still cause unwanted disruptions for some (for example, very
noisy) signals. However, we have no reason to assume that this would result in
more positive than negative trends in autocorrelation.

3 Results

We measure the trend of the lag-1 autocorrelation in the residuals calculated
using the filtering method in 2.2. The parameter setting can be found in Ap-
pendix A.6. The trend is obtained by fitting a linear function to the calculated
AR(1)-coefficients using a least-squares method and taking the slope. Evidently,
applying this method to signals that exhibit CSD should result in significant
positive slopes.

To determine the statistical significance of the slope of the AR(1) coefficients,
we generate a distribution of AR(1)-slopes from 1000 surrogate time series. The
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Fig. 4: ECG signal from Fig. 9 before (top) and after (middle) applying the cutting
procedure in Fig. 13. The residual (bottom) is calculated by subtracting a filtered
version of the signal (dotted line). A low-pass filter with a cutoff frequency of 10 Hz
is used. The relative change in width of the plots represents the portion of the signal
that is cut. The resulting AR(1) measurements form a smooth curve compared to the
results from methods discussed above.

surrogate time series are created by taking the Fourier transform of the residual,
multiplying the computed coefficients by random phases and transforming back.
In the transformation, linear properties (amplitudes) are preserved and nonlin-
ear properties (phase angles) are randomized. This way, the power spectrum is
preserved and the surrogate time series have the same overall autocorrelation as
the original residual but are random otherwise [22]. The AR(1)-slopes of the sur-
rogates are normally distributed. A slope is considered significant if it does not
fall within the two-sided 95% confidence interval of the obtained distribution.
An example of this significance test is given in Appendix A.5.

Our null hypothesis is a situation where the heart is not close to VF, and no
CSD is found in the corresponding ECG data. In that case, given the significance
testing method described above, we should find an equal amount of positive and
negative significant trends. We represent this by letting significant positive and
negative slopes be drawn from a binomial distribution with success probability
0.5. H0 : p = 0.5. We reject this null hypothesis if p > 0.5 with a significance
level of 5% (i.e. if the probability of p = 0.5 is lower than 5%). For cases where
the null hypothesis is rejected the alternative hypothesis Ha : p > 0.5 is accepted
and are considered to have a substantial amount of significant positive trends
that may possibly be explained by CSD.

We evaluate the trend of the autocorrelation in the ECG data of four patients
that suffered VF. Each data set contains around 1400 leads. In Fig. 5 the slope
of the AR(1) coefficients is plotted against the power (root mean square) of the
residual. Each scatter plot represents results from a different patient. Significant
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positive or negative AR(1)-slopes are highlighted in red. The figure shows that
in three of the four cases there is a substantial majority of leads that show a
significant positive trend in the lag-1 autocorrelation, compared to the number
of significant negative trends. For these cases, H0 is rejected and CSD might
be at play. The corresponding scatter plots seem to have a similar shape, with
the number of positive trends increasing as the power of the residual decreases.
A possible explanation for this could be that residuals with high power contain
a bigger proportion of measurement noise of the ECG recording, distorting the
component of the residual that could contain CSD.

Fig. 5: Trend of the lag-1 autocorrelation in ECG residuals of four different VF events,
plotted against the power of the residual. The trend is measured by the slope. Each
dot represents one lead. Significant slopes are colored red. The table on the right shows
the amount of significant positive/negative trends for the corresponding plot. For three
out of the four patients H0 is rejected (red cells) (Note that some points may be out
of bounds for the sake of better visualization)

Before we draw the conclusion that the number of significant positive slopes
is in fact the result of a CSD effect we examine sets of test data that consist
of ECG signals from hearts that are not close to a VF event. Because we do
not have access to similar heart surface electrograms for this category we use
open source ECG data from PhysioNet [23] for this purpose. We analyze 9 sets
of test data consisting of 10-second samples from 24-hour, 250 Hz Holter ECG
recordings. As expected, we find no substantial majority of significant positive
trends in any of these test sets. The results of the analysis of the test data are
shown in Appendix A.7.

We also perform our analysis on the data set containing the original body
surface ECGs that are used to compute the inverse solution. Strikingly, we do
not observe the same substantial majority of positive trends we see for three of
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the four data sets of estimated heart surface ECGs. If our measurements are in
fact the result of CSD, it seems this is not measurable with the original data and
that the transformation to the inverse solution does provide extra information
necessary to observe this effect.

An overview of all AR(1)-trend measurements is given in Appendix A.11.
Given our significance testing method, under the null hypothesis (no CSD) we
expect that around 5% of the autocorrelation trends we observe will be sig-
nificant. Remarkably, for most data sets where H0 is valid, we find that more
than 5% of the trends are significant. It is likely that a portion of these signifi-
cant trends is the result of residuals that are corrupted by noise, either directly
(the noise directly influences the autocorrelation), or indirectly (the noise forces
errors in the extraction of the residual, which in turn influences the autocorre-
lation). This can also be deducted from the plots in Fig. 15, where we can see
that significant trends are relatively common for residuals with high power com-
pared to points in the ”main cluster”. These results indicate that, while artifacts
can cause more significant trends than expected, they occur both in positive or
negative form, and are therefore not likely to lead to a rejection of H0.

The sets of heart surface ECGs include triangulation coordinates, mapping
each ECG signal to a point in 3D-space that corresponds to the location around
the heart for which the inverse solution is calculated. We use this information
to reproduce the plots from Fig. 5 where every point is color-coded based on
its coordinates. These plots are shown in Appendix A.9. The results show that
the points are clustered, which means that the significant positive trends in the
heart surface data (red in Fig. 5) can be measured from specific angles, rather
than all around the heart surface. We do not have enough information to couple
the 3D-coordinates to a physical location of the heart surface; this would not
be difficult to realize in future data acquisition. If the substantial amounts of
significant trends are the result of CSD this can be valuable information, since
one would know exactly where to look for possible early warning signals.

If, in further research, we can prove the presence of CSD in heart surface elec-
trograms of VF victims, it may be possible for implantable devices such as ICDs
to detect this effect and provide early warning signal for an oncoming arrhyth-
mia. If, additionally, we can isolate from which area around the heart surface it
can be measured, this may even be done by using just a single lead rather than
the full potential map of the heart surface we used for this experiment.

4 Conclusion and Disussion

CSD has been used as a generic early warning signal for critical transition in
a wide range of systems ranging from finance to climate. We reason that the
heart as a complex system may bear similarities to such systems, since, in the
context of dynamical systems theory, the transition from a normal heart rhythm
to VF can be understood as a shift between two states with a different attractor.
We hypothesized that when the heart is close to VF (i.e., close to the basin of
attraction of the chaotic attractor) it may show decreasing resilience to pertur-
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bations, which can be measured as CSD. To test this hypothesis we investigate
heart surface ECG signals right before the onset of VF.

In our results we indeed find signs of CSD: for three out of four VF victims,
we find a substantial majority of significant positive autocorrelation trends in
the residuals of heart surface ECG signals compared to the amount of signifi-
cant negative trends. The heart surface ECGs are estimated by solving an inverse
problem using body surface ECGs. If we perform the same analysis on the orig-
inal body surface data we do not find such a majority, suggesting that, if CSD
is in fact present, we have to compute the inverse solution to observe this effect.
Furthermore, triangulation coordinates of the heart surface ECGs suggest that
the possible CSD effect can only be measured from specific, yet unspecified an-
gles surrounding the heart. We compare the results of the heart surface ECGs of
VF victims to results from Holter recordings of subjects that are not close to a
VF event. For the latter (no VF) data, we find that none of the nine recordings
we analyze contain a substantial amount of significant positive autocorrelation
trends and thus exhibit no CSD.

It has become clear, however, that this test data does not serve as an appro-
priate comparison the VF data for a number of reasons. Firstly, the test signals
have a lower sampling rate of 250 Hz compared to the 1000 Hz of the VF data.
It is possible that fluctuations in the residuals that show CSD can be captured
by a sampling rate of 1000 Hz but not by a sampling rate of 250 Hz. If this is in
fact the case, using a sampling rate 250 Hz can not prove the absence of CSD
in the test data. Secondly, with Holter recordings, the electrodes are placed on
the chest of the patient. If we assume that the substantial amount of significant
positive trends in the heart surface data is caused by CSD, our analysis of the
data used to compute the inverse solution already seems to indicate that this
effect is not as easily measured on the body surface. It would therefore only be
logical if the test also does not show CSD. Lastly, the triangulation coordinates
of the heart surface ECGs suggest that, if the data shows CSD, it can probably
only be measured from specific angles surrounding the heart surface. Since the
test data consists Holter recordings with only one lead, and thus only one angle
of incidence, it is already unlikely to measure CSD for these signals.

The test data we use serves more as a validation of our method, rather than
a validation of our result. While we do not expect CSD, the test signals are
prone to the same types of noise as the VF data [25], which could influence
autocorrelation measurements. Our analysis has shown, however, that this does
not lead to a substantial majority of significant positive trends in any of the test
data sets. This could indicate that the signs of CSD we find for the VF data are
no artifacts of measurement noise. On the other hand, we can argue that some
types of measurement noise (for example, noise caused by the movement of a
patient) could affect multiple leads at once for the heart surface data since each
lead covers that same ten-second time span. For this reason, the test data is still
not sufficient to rule out the possibility that measurement noise influences our
results.
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To prove that the predominant amount of significant positive autocorrelation
trends we find in the residuals of heart surface ECGs of patients that suffered VF
is in fact the result of CSD, we have to directly compare it to data of subjects that
did not suffer VF, recorded in a similar manner. We therefore advocate further
data acquisition. An important first step would be to obtain the 1400-lead heart
surface ECG of subjects that did not suffer VF by solving the inverse problem
using the body surface potentials. If the analysis of such data does not result in
a majority of significant positive trends, this would be a strong indication that
our measurements are showing CSD. Additional data from patients that suffered
VF would also enable better statistical grounding. For future ECG recordings
it is important to be able to map each signal to an exact physical location so
that, if we can indeed prove CSD, we can also pinpoint angles from which this
effect is measurable. So far we have checked for CSD by looking for a buildup in
autocorrelation in the 10 seconds prior to the VF event. However, it is possible
that this buildup initiates at an earlier time. If we can indeed use CSD as an
early warning signal in this setting, it would be valuable to detect this as early
as possible. For future data sets, it might therefore be useful to record ECG even
longer before the onset of VF, where possible.

We concluded that for the extraction of the residuals from the signals it is
best practice to remove parts of the signal with high first-order differences, which
are otherwise hard to filter out. Evidently, for future research it is desirable to
develop a method that can correctly extract residuals for the full signal, for
example by improving the average beat method proposed in 2.2 or developing
more advanced modeling techniques than the Gaussian fitting method in 2.2.

Acknowledgements This work was partly supported by the Fondation Leducq
Transatlantic Network of Excellence 16CVD02.

A Appendix

A.1 Pre-processing

Removing baseline wandering The majority of the provided leads exhibit a
baseline trend. Baseline wandering of the ECG signal might be caused by dif-
ferent phenomena like respiration or movement of the patient. Many different
methods have been proposed the remove this baseline wandering [26]. We con-
struct a filter that estimates the baseline drift, after which this drift is subtracted
from the original signal to leave an ECG signal centered around the zero-volt
level. The filter consists of a median filter with a moving window and a third-
order Savitzky–Golay smoothing filter. The window lengths of both the median
filter and the smoothing filter are set to a number of points corresponding to a
250 ms interval (250 points for a sampling rate of 1000 Hz). The window lengths
are chosen such that the intervals between the characteristic waves (the baseline)
are aligned with the x-axis. In some leads this may cause suppression of the T-
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and/or P-wave (which, in all proposed methods, are removed anyway in later fil-
tering steps). This does not influence our measurements concerning fluctuations
in the signal. The detrending process is illustrated in Fig. 6.

Fig. 6: top: original ECG signal. middle: ECG signal with estimated baseline drift
(in red). bottom: ECG signal after removing baseline drift. (Note that the height
of the T-wave is not preserved after filtering. This will not influence our results; we
are interested in the preservation of short-term fluctuations rather than typical ECG
components.)

Segmentation of the signal As explained in the opening of the Method sec-
tion, we aim to create a model for the well known ECG components that we
can subtract from the signal to reveal the residual. However, the height and/or
shape of these components may vary from beat to beat. For some methods
we will discuss in this section, it is therefore necessary to approach each beat
separately. To do so, we divide the signal into segments, each containing one
heartbeat cycle. We choose our segments to be centered around the R-peak; we
cut the signal at every halfway point of the R-R interval. The locations of the
R-peaks are detected by a simple peak-finding algorithm that finds the biggest
local maxima with a minimum distance between them. Depending on the quality
of the ECG data, other methods can be used to this end; for example, advanced
QRS-detection algorithms [27].

A.2 Gaussian curve fitting method

In 2.2 we propose a method to extract fluctuations from an ECG signal by
subtracting a model version of the signal composed of a mixture of Gaussians. In
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this model, each component except the T-wave is described by a single Gaussian
curve of the form 2aiexp(−(t − ti)2/2w2

i ). Here ai represents the amplitude of
the curve, wi is the width, and ti is the position on the time-axis. For the T-
wave, two Gaussian curves are used to account for its asymmetry. The ECG
signal is cut into heartbeat segments as described in A.1. The model curve is
then composed of the sum of six Gaussians, each described by three variables :

f(t,a,w, t) =
∑
i

2aiexp
(
− (t− ti)2/2w2

i

)
i ∈ {P,Q,R, S, T1, T2}

The composition of the ECG model is illustrated in Fig. 7

Fig. 7: Composition of the model ECG curve (bottom): six Gaussian curves (top)
represent the characteristic ECG components.

The optimal fit is found by solving the 18-variable nonlinear least-squares
problem minimizing the cost function:

ε = ||s(t)− f(t,a,w, t)||2

Where s(t) is the original ECG signal. Good estimates for aR, aS , tR and tS
can be found by peak-finding methods (like described in Appendix A.1), and
are set as initial values to reduce the run time of the least-squares procedure.
Initial guesses for ti and ai values for other waves can be chosen relative to
tR and aR using general knowledge about normal ECG intervals lengths and
relative signal strengths. Similarly, initial estimates for wi can be made using
typical wave durations. Furthermore, boundaries are set for the search space of
the least-squares algorithm to maintain the orientation and order of the PQRST-
waves.

A.3 Average beat fit method

In this section, we describe the method proposed in 2.2 to compose an average
beat, which can be subtracted from the signal in order to extract the residual.

First, we cut the signal into segments containing one beat cycle. The indi-
vidual segments are aligned by locating the R- and S- peaks and finding the
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intersection with the y-axis in between. This is chosen as point of alignment
because it is the part of the signal with the highest first-order derivative and
therefore the most prone to errors in the y-direction due to placement errors
on the x-axis. The average beat is then computed by taking the mean of all
the individual beat cycles. The fluctuations can be extracted beat by beat by
subtracting the average beat from every cycle. As mentioned earlier, the height
of the characteristic waves is not constant over the whole signal. Therefore the
average curve must be adjusted to match the signal strength of the respective
beats. We do so by calculating a multiplication factor for all points in the time
series by dividing the value of the signal by the value of the average beat. For
points with amplitude below a certain (small, for example < 0.1) threshold, the
multiplication factor is set to one (to avoid division by very small numbers).

Fig. 8: Segment of an ECG signal, the average beat fit and the resulting residual
after subtraction. While the height of the waves is matched by the average beat fit,
errors appear in the residual as a result of the varying shape of the QRS-complexes. We
observe dips and peaks in the AR(1) measurements similar to the errors we encountered
with the previous method.

Fig. 9: ECG signal from Fig. 8 and the model fit after applying the correction method.
While the errors seen in the residuals in Fig. 8 are somewhat suppressed, jumps in the
AR(1) measurements is still clearly visible. This is typical for almost all signals in the
data sets.

Then the average beat is multiplied by a smoothed version of the multiplica-
tion factor array, so that it matches the original signal amplitude, but does not
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Fig. 10: left: Original ECG signal, average beat and residual. The S-wave in this
segment is slightly lagged compared to the average, resulting in a large error in the
residual. middle: For each wave in the QRS-complex, the location of the peak and the
two halfway points are compared for the original signal and the average beat. The wave
is considered to be lagged if at least two of these three points occur at a later time. If so,
two fixed points (where the residual is zero) are chosen to on the left and right side of
the wave. For both the original and the average curve, the length of the segment from
the left fixed point to the peak and the segment from the peak to the right fixed point
are compared. Next, both the segments of the average curve are resampled to match
the length of the segments from the original signal. right: Original signal, average beat
and residual after applying the correction technique.

contain any short term fluctuations from the signal. In most cases, the smoothed
multiplication curve is unable to reproduce the Q, R and S peak heights, because
the QRS-complex is characterized by higher frequencies. To correct this, an ad-
ditional multiplication curve is constructed for the QRS-complex by calculating
the multiplication factor at the peaks, setting the multiplication factor to one at
the intersections with the y-axis, and interpolating using a linear spline for the
remaining points.

While this technique accounts for the varying heights of the QRS-waves,
errors in the residual still appear due to variations in the overall shape of the
QRS-complex (see Fig. 8). We introduce two adjustment steps in an attempt
to limit such errors in the residual, which are described in Fig. 10 and Fig. 11.
The adjustment steps use resampling of parts of the signal to optimize the fit
of the average curve. While this procedure improves the quality of the fit in
most cases, often one or more of the QRS-complexes deviate too much from the
average curve for the correction method to succeed. In Fig. 9 we show what the
residual from Fig. 8 looks like after applying the correction.

We conclude that this correction method is not sufficient to remove all errors
in the residuals. An example in which this method is unable to remove the error
is given in Fig. 12.

A.4 Excluding QRS-complexes

In 2.2 we propose a method to remove parts of the signal with high first-order
derivative since they often lead to errors in the residual. When cutting out parts
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Fig. 11: left: Original signal ECG, average beat and residual after applying the cor-
rection step from Fig. 10. middle: Two fixed points (where the residual is zero) are
chosen at the base of the error in the residual. Then, the central point on the original
signal and the corresponding point (in y-axis value) on the average beat are found and
the displacement is calculated. Next, the segment of the average curve from the left
fixed point to the central point and the segment from the central point to the right
fixed point are resampled to match the segment lengths of the original curve. right:
Original signal, average beat and residual after applying the correction technique.

Fig. 12: Segment of an ECG signal (S-wave) before (left) and after (right) applying
the correction method described in Fig. 11. The shape of the wave deviates from the
average wave in such a way that the method can not correct this. On the contrary, in
this case, the error in the residue increases by applying the correction method.

of the signal, one has to take into account that sudden jumps may appear in the
resulting signal. In Fig. 13 we introduce a method that avoids these jumps for
most signals.

A.5 Significance testing

We measure the trend in the lag-1 autocorrelation of the residuals by fitting
a line to the calculated AR(1)-coefficients and taking the slope. To determine
the significance of the autocorrelation trend of a residual, we compare it to the
autocorrelation trends of 1000 surrogate residuals. The surrogates are created as
follows: First, we take the Fourier transform of the original residual and random-
ize the phase angles. The amplitudes of the Fourier components are kept. Then
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Fig. 13: Cutting procedure for ECG signals. left: Original signal. middle: First, the
first-order differences of the signal are calculated (blue line). As initial guesses, the
intersections of a smoothed version of the first-order differences (black line) with a
threshold (dotted) line (of a number of standard deviations, depending on the noisiness
of the data) are taken. right: A search space of a fixed number of points to the left
and right of the initial guesses is defined (grey area). Within these search spaces, the
two points with the least difference in y-axis value are chosen as cutting points (black
crosses)

the surrogate signal is obtained using the inverse Fourier transform. By construc-
tion, the original and the surrogate signal have the same power spectrum and
overall autocorrelation [22]. However, the time evolution of the autocorrelation
is different for both signals. An example is given in Figure 14, where a residual
(A) and one of its surrogate signals (B) are shown. The autocorrelation trends
of the surrogates are normally distributed; Figure 14 shows the distribution of
AR(1)-slopes of 1000 surrogates of residual (A). The slope is considered signif-
icant if it falls outside the 95% confidence range (i.e. more than 1.96 standard
deviations from the average) of the distribution. The range for which slopes are
significant is colored red. In this example, the original residual is considered to
have a significant positive autocorrelation trend.

A.6 Parameter settings

To extract the residuals from the data leading to the results in Section 3, we use
the following settings in our cutting procedure:

The first-order differences of the signal are smoothed using a Savitzky-Golay
filter with a moving window of 3 points.

As initial cutting points, the intersections of this smoothed version with a
threshold line are taken. The threshold must be chosen by hand for each data
set according to the noisiness of the data. This can easily be done with only a
few trial signals. The value of the threshold usually lies between 0.75-2 standard
deviations.

Next, the width of the search space is chosen relative to the average R-R
interval; in our case, 1/20 part of the average number of points R-R interval.
Choosing the search space relative to the beat intervals is best practice, as it
may vary between patients. This is also the right way to account for switching
between different sampling rates.
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Fig. 14: top: Residual (A), one of its surrogate signals (B). middle: The corresponding
AR(1) measurements. bottom: Distribution of AR(1)-slopes of 1000 surrogates of
residual (A). The value of the slope of (A) and (B) are indicated with an arrow.

After the unwanted parts of the signal are cut out, we apply a low-pass filter
of 10 Hz to the signal. The filtered version is then subtracted from the signal to
obtain the residual.

A.7 Test data

To validate our analysis methods, we examine sets of test data that consist of
ECG signals from hearts that are not close to a VF event. We take 10-second
samples from 24-hour, 250 Hz Holter ECG recordings of patients that eventually
suffered VF. We make sure, however, that the samples are taken hours before
the actual VF event and we expect no slowing down effect to take place. We use
Holter recordings from the database [24] with sinus (normal) rhythm and with
no known history of disease or medication. We choose to take 1400 samples per
subject, which is approximately the amount of leads in each heart surface data
set.

We analyze the test sets using the same approach as before, taking 10-second
samples, computing the trend in autocorrelation and plotting against the power.
The results of 2 of the 9 test sets are shown in Fig. 15. From the plots, we can
immediately observe that the number of positive and negative trends is much
more balanced, as they look almost symmetrical about the x-axis. This is also
true for the significant trends; we see approximately equal amounts of significant
positive and negative trends, and H0 is not rejected. The results of all 9 test data
sets are included in Appendix A.11.
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Fig. 15: Trend of the lag-1 autocorrelation in ECG residuals from test samples from
Holter recordings of two different individuals plotted against the power of the residual.
The trend is measured by the slope. Each dot represents one 10-second sample taken
from the recording. Significant slopes are colored red. The table on the right shows the
amount of significant positive/negative trends for the corresponding plot. For these
cases H0 is not rejected. (Note that some points may be out of bounds for the sake of
better visualization)

A.8 Body surface ECGs

Fig. 16: Trend of the lag-1 autocorrelation of the body surface ECGs that are used
to estimate the heart surface leads we analyze (Figure 5). The trend, measured as the
slope of a linear function fitted to the data, is plotted against the power of the residual.
The table on the right shows the amount of significant positive/negative trends for the
corresponding plot. (Note that some points may be out of bounds for the sake of better
visualization)

In Figure 5 we show autocorrelation trend measurements for heart surface
ECG residues of patients that suffered VF. The heart surface ECGs are estimated
using body surface ECG measurements by solving an ill-posed, inverse problem.
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We perform the same analysis on these original signals to investigate if we observe
a similar majority of significant positive trends we see for the estimated heart
surface leads. The resulting plots are shown in Figure 16. The individual plots
are linked to the plots in Figure 5 (the top-right plot contains the body surface
data from the top-right plot in Figure 5, etc.). Evidently, in these plots, no
notable majority of positive trends is visible. This indicates that, if the majority
of significant positive trends in the heart surface data is the result of CSD, this
effect might not be measurable in the corresponding body surface data. (See
Table 1 for a complete overview of the measurement results.)

A.9 Triangulation

Fig. 17: Trend of the lag-1 autocorrelation in ECG residuals of four different VF events,
plotted against the power of the residual. The plots contain the same measurement
results as Figure 5. The color of the dots (RGB-value) is based on the (x,y,z) coordinates
of the location around the heart for which the inverse solution is calculated, by (r,g,b)
= (x,y,z). The triangulation of the data sets differ from each other, meaning that dots
with the same color in different plots do not necessarily have the same physical location.

The estimated heart surface ECGs we analyze are labeled with triangulation
coordinates which correspond the point in 3D-space for which the inverse solution
is calculated. We use this information to reproduce Figure 5, but with color-
coded points based on the 3D-coordinates: Figure 17. From the plots we can
see that the points are clustered. This indicates that the substantial amount of
significant trends we observed for this data can be measured from specific angles.
If the positive trends are in fact the result of CSD, it would be valuable if we can
link these angles to physical locations on the heart surface so we know where to
look for early warning signals. The triangulation differs between the individual
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plots, meaning, for example, that yellow points in one plot do not necessarily
originate from the same position as yellow points in another plot, etc. In future
data acquisition, it is therefore useful to keep track of the physical mapping of
the data points.

A.10 Window lengths

The length of the moving window over which the autocorrelation of the signal is
measured is important for the results of our analysis. Our results are obtained
by using a window size of 0.5 times the signal length. We illustrate the effect of
different window sizes by showing results of our autocorrelation trend measure-
ments for window sizes of 0.25, 0.5 and 0.75 times the signal length (Figure 18).
The window length must be sufficiently long for a realistic measurement of the

Fig. 18: Trend of autocorrelation against the power of the residual for three different
autocorrelation window sizes: 0.25, 0.5 and 0.75 times the signal length, respectively.

autocorrelation of the signal; short window lengths allow more fluctuation in the
trend, since the autocorrelation is calculated over a small number of points. Fig-
ure 18 shows that this results in a smaller amount of positive significant trends,
while the majority of the significant trends are still positive. On the other hand,
we require a long enough sequence of autocorrelation values to be able to study
its time-evolution; if we take a large window size, we are only able to capture
the time evolution of a small part of the signal, which is more likely to deviate
from the overall trend. This is also visible in Figure 18 we observe that choosing
a large window size results in a more balanced number of positive and negative
trends. Taking this into account, we argue that taking the window length to be
exactly half the signal length is the best trade-off.

A.11 Summary results

This section contains an overview of the autocorrelation measurements for ECG
data of VF victims (over the heart surface and body surface) and Holter test
recordings of subjects that are not close to VF. The number of significant positive
and negative trends found for each data set is shown in Table 1.
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Table 1: Number of significant positive and negative trends in the lag-1 autocorrelation
of ECG residuals in the VF data sets, containing 10-second signals right before the onset
of VF, and in the test data sets, containing 10-second samples of Holter recordings hours
before the onset of VF. Cases where H0 is rejected are colored red and are considered
to have a substantial majority of significant positive trends.

VF data (heart surface) VF data (body surface) test data

sig. trend sig. trend sig. trend
set samples

pos. neg.
set samples

pos. neg.
set samples

pos. neg.

1 1408 214 33 1 252 15 13 1 1400 95 97

2 1375 504 100 2 250 22 33 2 1400 96 92

3 1406 231 25 3 251 6 10 3 1400 109 109

4 1354 23 50 4 252 10 10 4 1400 25 22

5 1400 108 122

6 1400 46 51

7 1400 86 93

8 1400 103 110

9 1400 87 108
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