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Reciprocation Effort Games

Gleb Polevoy1 and Mathijs de Weerdt2

1 University of Amsterdam??, g.polevoy@uva.nl
2 Delft University of Technology, m.m.deweerdt@tudelft.nl

Abstract. Consider people dividing their time and effort between
friends, interest clubs, and reading seminars. These are all reciprocal
interactions, and the reciprocal processes determine the utilities of the
agents from these interactions. To advise on efficient effort division, we
determine the existence and efficiency of the Nash equilibria of the game
of allocating effort to such projects. When no minimum effort is required
to receive reciprocation, an equilibrium always exists, and if acting is
either easy to everyone, or hard to everyone, then every equilibrium is
socially optimal. If a minimal effort is needed to participate, we prove
that not contributing at all is an equilibrium, and for two agents, also a
socially optimal equilibrium can be found. Next, we extend the model,
assuming that the need to react requires more than the agents can con-
tribute to acting, rendering the reciprocation imperfect. We prove that
even then, each interaction converges and the corresponding game has
an equilibrium.

1 Introduction

In many real-world situations people invest effort in several interactions, such as
in discretionary daily activities [16], daily communication between school pupils,
sharing files over networks, or in business cooperation. In such an interaction,
people tend to reciprocate, i.e., react on the past actions of others (sometimes
only if a certain minimum effort is invested) [10, 12]. For example, users of various
social networks (Facebook, VKontakte) repeatedly interact in those projects
(networks). To recommend how to divide one’s limited efforts efficiently, we aim
to predict stable strategies for these settings and estimate their efficiency. We
study settings with and without a threshold for minimum effort.

Dividing a budget of effort is studied in shared effort games [4]. In these
games players contribute to various projects, and given their contributions, each
project attains a value, which is subsequently divided between the contributors.
In order to support decisions regarding individually and publicly good stable
strategy profiles in these games, the social welfare (total utility) of strategy
profiles is important, and in particular of Nash equilibria (NE). For this, the
price of anarchy (PoA) [15], and stability (PoS) [23, 1] are the most famous
efficiency measures. The price of anarchy is the ratio of the least social welfare
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in an equilibrium to the optimal social welfare, and the price of stability is the
ratio of the social welfare in a best NE to the optimal social welfare.

Bachrach et al. [4] bound the price of anarchy, but only when a player obtains
at least a constant share of her marginal contribution to the project’s value; this
does not hold for a positive participation threshold. Polevoy et al. [20] have ana-
lyzed the Nash equilibria, and price of anarchy and stability also in the case with
a threshold. When the threshold is equal to the highest contribution, such shared
effort games are equivalent to all-pay auctions. In all-pay auctions, only one con-
tributor benefits from the project. Its equilibria are analyzed by Baye et al. [5]
and many others. Anshelevich and Hoefer [2] study graph nodes contributing
to edges, which are minimum effort projects. In the literature, the utilities are
based on the project values, which are directly defined by the contributions, such
as in contributions to online communities, Wikipedia, political campaigns [25],
and paper co-authorship [14]. Unlike the existing literature, our paper assumes
contributions to the projects determine the interactions, which define utility.

We now review the reciprocation models. Existing models of reciprocation
often consider why reciprocation has emerged. The following works consider the
emergence of reciprocation. Axelrod [3] studies and motivates direct evolution
of reciprocal behavior. Others consider a more elaborate evolution, like Bic-
chieri’s work on norm emergence [6, Chapter 6] or [27]. Trivers [26] describes
how altruism-related emotions like guilt and suspicion have evolved. There exist
also other approaches to the nature of reciprocation, such as the strong recipro-
cation [11]. Works like [8, 10, 22] assume the reciprocal behavior and analyze the
development of certain interactions, modeling them as appropriate games.

With a model inspired by works on arms races [7, 28] and spouses’ interac-
tion [13], Polevoy et al. [21] formally analyze lengthy repeated reciprocation and
show convergence. They define an action on an agent as a convex combination3

between one’s own last action, the considered other agent’s and all the other
agents’ last actions. They call this the floating reciprocation attitude.

The main contributions of this paper comprise of the analysis of a unifying
model of shared effort games with reciprocal projects and creating a basis for
further analysis. We define two games: one without a threshold, and another
one with a threshold. In the second game, those who are below the threshold in
an interaction, are not allowed to participate in the respective interaction. We
identify when Nash equilibria exist and find the prices of anarchy and stability.
In addition to the main part, where the initial actions are fully reciprocated by
the reciprocal agents [26], we model the situation when the budget of an agent
to invest in the various projects may fall short of satisfying the requirements
of every reciprocal interaction. This forces the agent to curb her investments in
some interactions, complicating the process, but we prove it still converges, and
therefore, generalizing the definitions to that case is well-defined. We also prove
that the corresponding reciprocation effort game and its exclusive thresholded
version have an equilibrium. We consider only pure equilibria throughout the
paper, even when we do not mention this explicitly. Since the strategies include

3 A combination is convex if it has nonnegative weights that sum up to 1.
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all the ways to divide budget among the interactions, the set of pure strategies
is already uncountably infinite.

The model of several reciprocal interactions is given in Section 2. Section 3
characterizes the equilibria and their efficiency in a game without a thresh-
old. Then, we analyze the game with a threshold in Section 4. We prove the
convergence of an interaction with insufficient budgets and the NE existence
in Section 5. Section 6 concludes and outlines new research directions.

2 Model

This section models dividing effort between reciprocal interactions. Adopting
the reciprocation model from [21] and the inspired by shared effort games mod-
els from [4] and [20], we define a reciprocation effort game. First, we define a
reciprocal process and the agents’ utilities in this process. Next, we define a re-
ciprocation effort game, where agents divide their effort budgets between several
such processes. We define a thresholded variation on this game, to model the
minimal required investment, in Section 4.

We begin with the reciprocation model, based on models for arms race and

arguments. Given agents N = {1, . . . , n}, at any time t ∈ T ∆
= {0, 1, 2, . . .}, every

agent acts on any other agent. The action by agent i ∈ N on another agent j ∈ N
at moment t is characterized by its weight, denoted by acti,j(t) : T → R. Since
only the weight of an action is relevant, we usually write “action” while referring
to its weight. For example, the weights of the actions of helping, nothing, or
insulting are in the decreasing order.

In order to define how agents reciprocate, we need the following notation. The
kindness of agent i, constant for a given reciprocal process, is denoted by ki ∈ R.
Agent i’s kindness models i’s inherent inclination to act on any other agent: the
larger the kindness, the kinder the agent acts; in particular, it determines the first
action of an agent, before the others have acted. We model agent i’s inclination
to mimic another agent’s action and the actions of all the other participants in
the project by reciprocation coefficients ri ∈ [0, 1] and r′i ∈ [0, 1] respectively,
both staying constant for all interactions. ri is the fraction of acti,j(t) that is
determined by the previous action of j upon i, and r′i is the fraction that is
determined by 1

n−1 th of the total action on i by all the other agents at the
previous time. Fractions sum up to 1, thus ri + r′i ≤ 1. We denote the total
received action from all the other agents at time t by goti(t) : T → R; formally,

goti(t)
∆
=
∑
j∈N actj,i(t).

We now define the actions. At time 0, there is nothing to react to, so the

kindness determines the action: acti,j(0)
∆
= ki.

Definition 1 At any positive time t, agent i’s action is a weighted average of
her own last action (inertia), of that of the other agent j (direct reaction) and of
the total action of all the other agents divided over all the others (social reaction):

act
i,j

(t)
∆
= (1− ri − r′i) · act

i,j
(t− 1) + ri · act

j,i
(t− 1) + r′i ·

goti(t− 1)

n− 1
.
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We have defined how agents reciprocate. An agent’s utility from a given
reciprocation project at a given time is the action one receives minus effort to
act, following [19]. This is classical (see, for example, the quasilinear preferences
of auction theory [17, Chapter 9.3]). Formally, define the utility of agent i at
time t, ui,t : Rn−1 × Rn−1 → R, as

ui,t

({
act
i,j

(t)

}
i,j∈N

,

{
act
j,i

(t)

}
i,j∈N

)
∆
=
∑
j∈N

act
j,i

(t)− βi
∑
j∈N

act
i,j

(t)

where the constant βi ∈ R is the importance of performing actions relatively
to receiving them for i’s utility. The personal price of acting is higher, equal
or lower than of receiving an action if βi is bigger, equal or smaller than 1,
respectively. The minus in front of i’s actions subtracts the effort of acting from
one’s utility (unless βi is negative, where that is added). Since the presence of
negative actions would mess up this logic (since negative actions would still take
effort while increasing the above expression), we assume that actions are always
non-negative, which occurs if and only if all kindness values are non-negative.
We can have negative influence, but we assume having added large enough a
constant to all the actions, to avoid negative actions.

Every such interaction converges, as shown in [21]. To model the util-
ity in the long run, we define the asymptotic utility, or just the utility, of
agent i, as the limit of her utilities as the time approaches infinity. In for-

mulas, ui :
(
Rn−1

)∞ × (Rn−1
)∞ → R, as ui (

⋃∞
t′=0 {acti,j(t), actj,i(t)})

∆
=

limt→∞ ui,t (acti,j(t), actj,i(t)). This is the utility we consider here. This defi-
nition of the utility of a process is equivalent to the discounted sum of utilities
when the discounting is slow enough. The proof is omitted for the lack of space.

We now define a reciprocation effort game. Our agents N participate in m in-
teractions Ω = {1, 2, . . . ,m}. Each of the m interactions is what we have defined
till now, with its own kindness values and actions. The kindness, the actions,
the total received action, and the utility in a concrete interaction ω ∈ Ω will be
denoted, when the concrete interaction is important, by (ki)ω and (acti,j(t))ω,
(goti(t))ω, and (ui,t)ω or (ui)ω, respectively. Each player’s strategies are the
possible contributions to the interactions at time zero (the further contributions
are determined by the reciprocation and not by the player). A contribution goes
to the whole interaction, not to a particular action on another agent, but it
determines the kindness values of the interactions as follows.

Player i’s kindness at reciprocal interaction ω is determined by her contri-
bution to that interaction at time zero, called just “the contribution”, divided
by the number of other agents who participate in the interaction at ω, account-

ing for acting on them. This means that i’s kindness at interaction j is
xi
j(0)

n−1 .
Therefore, the sum of all the actions of agent i at time t = 0 is equal to her
contributions to all the reciprocation projects, which are bounded by her bud-
get bi. The contribution of player i ∈ N to interaction project ω ∈ Ω at a general
time t ∈ T is defined as the sum of her actions in that interaction at that time,

i.e. xiω(t)
∆
=
∑
j∈N\{i} (acti,j(t))ω.
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Fig. 1. People divide their own effort between interactions.

An agent contributes something in the beginning of a reciprocation, and from
that time on the reciprocation “automatically” uncurls according to Definition 1.
We assume that not only the sum of the contributions at t = 0, but also the sum
of the contributions at any time t > 0 is within the acting agent’s budget. Each
player i has a normal budget bi > 0 (or just a budget) to contribute from at t = 0
and an extended budget Bi ≥ bi that can be used when the actions are required
by the reciprocation process at t > 0, perhaps resulting in a higher summarized
contribution than the voluntarily chosen at t = 0. We differentiate between
these two budgets, since the need to reciprocate can urge people to act more
actively [11], and we assume that Bis are high enough to allow reciprocation.

Formally, the strategy space of player i consists of her contribu-
tions (at time zero), determining her kindness values at the interactions,{
xi = (xiω)ω∈Ω ∈ R|Ω|+ |

∑
ω∈Ω x

i
ω ≤ bi

}
. As mentioned, a “contribution” always

means the contribution at t = 0. Since the strategy profile x = (xi)i∈N deter-
mines all the interactions, the above defined utilities in a reciprocal interaction,

namely (ui,t)ω and (ui)ω
∆
= limt→∞ (ui,t)ω, are also functions of x. The utility

ui(x) of a player i ∈ N in the game is defined to be the sum of the utilities

it obtains from the various projects, ui(x)
∆
=
∑
ω∈Ω (ui(x))ω, completing the

definition of a reciprocation effort game.

An agent does not have to use up all her budget, so that the inequality∑
ω∈Ω x

i
ω ≤ bi may be strict. The strategies of all the players except i are

denoted x−i. We denote the vector of all the contributions by x = (xiω)i∈Nω∈Ω .

We now give a concrete example of the model.

Example 1. People choose between going to an interest club, meeting friends,
or going to a scientific reading seminar, as illustrated in Figure 1. A player
first decides on how much she wants to invest in each interaction, determining
her kindness in each one of them. Subsequently, she reciprocates. Each of these
projects is an interaction; for instance, in an interest club, a positive action
can be supporting another person, while showing contempt would be negative.
Interacting, a person continues her previous course of action, represented by
(1− ri − r′i) · acti,j(t− 1) in Definition 1, reacts on the other person’s previous
action, represented by ri ·actj,i(t−1), and reacts on the social climate, for which

r′i ·
goti(t−1)
n−1 stands.
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For the sake of efficiency analysis, we remind that the social welfare is defined

as SW
∆
=
∑
i∈N ui(x), and the prices of anarchy [15] and stability [23, 1] are

defined as min{SW(x)|x is an NE}
max{SW(x)|x is a strategy} and max{SW(x)|x is an NE}

max{SW(x)|x is a strategy} , respectively. We

define 0/0 to be 1, because 0 from 0 means no loss occurs in the social welfare
in the equilibria.

Polevoy et al. [21] prove

Theorem 1. In an interaction, where for any agent i, r′i > 0 and at least one
agent i has ri + r′i < 1, for all pairs of agents i 6= j, the limit limt→∞ acti,j(t)
exists. The convergence is geometrically fast (exponential). All these limits are
equal to each other and it is a convex combination of the kindness values, namely

L =

∑
i∈N

(
1

ri+r′i
· ki
)

∑
i∈N

(
1

ri+r′i

) . (1)

3 Reciprocation Effort Game without a Threshold

We first completely analyze existence of NE, and then we find all the prices of
anarchy and stability. This theorem characterizes the existence of equilibria.

Theorem 2. Assume that for any agent i, r′i > 0, and in addition, either n > 2
or r1 + r′1 + r2 + r′2 < 2. The set of all the NE is exactly all the strategy profiles
where every agent with βi < 1 somehow divides all her budget among the projects
{1, . . . ,m}, and every agent with βi > 1 contributes nothing. These strategies are
also dominant. In particular, there always exists an NE.

Proof. Consider an arbitrary player l, and let her strategy (her contributions4)
be xl = (xl1, . . . , x

l
m). By Formula(s) (1), the limit of the actions at (project)

interaction j is 
(

1
rl+r′l

· (xlj)
)

∑
i∈N

(
1

ri+r′i

) + Cj

 ,

where Cj is independent of l’s strategy. This is both given and received by
an agent w.r.t. the n − 1 other agents, so we need to multiply the limit by
(n− 1)(1− βl). Summarizing, agent j’s utility from this strategy is

(n− 1)(1− βl)


(

1
rl+r′l

· (xl1 + . . .+ xlm)
)

∑
i∈N

(
1

ri+r′i

) + C

 ,

for C that is independent of l’s strategy. Therefore, if βl < 1, then l’s strategy
is a best response to others’ strategies if and only if l arbitrarily divides all her
budget among the projects {1, . . . ,m}. On the other hand, if βl > 1, then a

4 Contributions by default refer to the contributions at time zero.
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strategy is a best response if and only if all the contributions are zero. This is
true for every agent l, proving that this is an NE. Since each agent is independent
of the others, these strategies are also dominant.

The possible variations in an NE profile are what the agents with β = 1 do.
This is important for analyzing the efficiency of the NE.5 To analyze efficiency, we

define: N< ∆
= {i ∈ N : βi < 1}, N≤ ∆

= {i ∈ N : βi ≤ 1}, N= ∆
= {i ∈ N : βi = 1}.

We now analyze the efficiency of the most and the least efficient equilibria,
comparing their social welfare to the maximum possible social welfare.

Proposition 1. Under the assumptions of Theorem 2, if (n >
∑
i∈N βi), we

have PoA =

∑
i∈N<

(
1

ri+r′
i
·bi
)

∑
i∈N

(
1

ri+r′
i
·bi
) , and the PoS is given by the same expression,

where we use N≤ instead of N<. Consequently, if (n =
∑
i∈N βi), we have

PoA = PoS = 1. If (n <
∑
i∈N βi), then:

If N< 6= ∅, then we have PoA = PoS = −∞.
If N< = ∅, but N≤ 6= ∅, then PoA = −∞, but PoS = 1.
If N≤ = ∅, then PoA = PoS = 1.

The proof compares the possible social welfare in equilibria with the optimum
social welfare.
Proof. The possible social welfare values that an NE can achieve are exactly

(n− 1)(n−
∑
i∈N

βi)

∑
i∈N<

(
1

ri+r′i
· bi
)

+
∑
i∈N=

(
1

ri+r′i
· xi
)

∑
i∈N

(
1

ri+r′i

) ,

where 0 ≤ xi ≤ bi. The optimum social welfare is

(n− 1)(n−
∑
i∈N

βi)

∑
i∈N

(
1

ri+r′i
· bi
)

∑
i∈N

(
1

ri+r′i

)
if (n >

∑
i∈N βi), and 0 otherwise.

Thus, if (n >
∑
i∈N βi), we have

PoA =

∑
i∈N<

(
1

ri+r′i
· bi
)

∑
i∈N

(
1

ri+r′i
· bi
) and PoS =

∑
i∈N≤

(
1

ri+r′i
· bi
)

∑
i∈N

(
1

ri+r′i
· bi
) .

If (n =
∑
i∈N βi), we have PoA = PoS = 1, since the social welfare is always

zero, and we define here 0/0 = 1.
If (n <

∑
i∈N βi), then we may get negative social welfare, since zero is

optimal, while some NE yield a negative social welfare. Concretely, we have the
following subcases:

5 βi > 1 implies negative utilities that sometimes result in negative PoA and PoS.
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If N< 6= ∅, then we have PoA = PoS = −∞, because any NE has the social

welfare of at most (n− 1)(n−
∑
i∈N βi)

∑
i∈N++

(
1

ri+r′
i
·bi
)

∑
i∈N

(
1

ri+r′
i

) .

If N< = ∅, but N≤ 6= ∅, then PoA = −∞ but PoS = 1. The reason is that
an NE can have the social welfare from zero and down to (n − 1)(n −∑
i∈N βi)

∑
i∈N≤

(
1

ri+r′
i
·bi
)

∑
i∈N

(
1

ri+r′
i

) .

If N≤ = ∅, then PoA = PoS = 1, since an NE has the social welfare of zero.

In particular, we have shown that if all the agents find acting easy (i.e.,
all βi < 1), or if all agents really do not like acting (i.e., all βi > 1), then
PoA = PoS = 1, so that any NE is optimum for the society. Intuitively, this is
because here, all the agents have similar preferences: either everyone wants to act
and receive action, or no one does. We have also shown, that if the average agent
finds not contributing more important than receiving (i.e.,

∑
i∈N βi > n), but

still βi < 1 for some agent i, then PoA = PoS = −∞, so any NE is catastrophic to
the society. Intuitively, this stems from the differences in the agents’ preferences.
Finally, we see that if

∑
i∈N βi > n, some agents have βi = 1, but none have

β1 < 1, then PoA = −∞ but PoS = 1, requiring regulation.
Theorem 2 implies that if all the projects have β ≤ 1, then any dividing of

all the budget in cooperating is always an NE. This is unintuitive, since usually,
some groups are more efficient to interact with than some other groups. The
reason for this is that the model assumes that all agents always interact at
every project ω ∈ {1, . . . ,m}, and only their kindness depends on the strategy.
Basically, everyone attends all the interactions, and some people are passive.

4 Exclusive Thresholded Reciprocation Effort Game

We now define a variation on a shared effort game with reciprocation, where
only the agents who contribute at least the threshold may interact. First, follow-
ing [20], we define a θ-sharing mechanism. This models, for example, a minimum
invested effort to be considered a coauthor, or a minimum effort to master a tech-
nology before working with it. Define, for every θ ∈ [0, 1], the players who get a

share from project ω to be Nθ
ω

∆
=
{
i ∈ N |xiω ≥ θ ·maxj∈N x

j
ω

}
, which are those

who bid at least θ fraction of the maximum contribution to ω.
We now define an exclusive thresholded reciprocation effort game, as a re-

ciprocation effort game, where exclusively the agents in Nθ
ω interact. Others do

not obtain utility and do not even interact. If an agent ends up participating
alone at a project, he obtains zero utility from that project, since no interaction
occurs. Exclusive thresholded reciprocation effort games model situations when
joining an interaction requires contributing enough, like the initial effort it takes
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to learn the required technology to contribute to Wikipedia, the effort to become
a member of a file sharing community or to start a firm.

In this section, we assume w.l.o.g. that bn ≥ . . . ≥ b1. The existence of an
equilibrium is easy, since no-one contributing constitutes an NE. Then, we show
that also less trivial equilibria exist. Finally, the harder question of equilibrium
efficiency is answered for two agents. We first notice a trivial equilibrium.

Observation 1 The profile where all agents contribute nothing is an NE.

Proof. In this profile, any agent who deviates by contributing a positive amount
to a project will be the only one to interact there, so her utility will still be zero.

We call an NE where at any project, at most one agent interacts (reaches the
threshold) and positively contributes there, a Zero NE. There may be multiple
Zero NE. We have just shown that a Zero NE always exists. A natural question
is whether there exist non-Zero NE as well. They do.

Theorem 3. Assume that all agents have βi ≤ 1. Assume that for any agent i,
r′i > 0 and in addition, for any pair of agents i, j we have ri + r′i + rj + r′j < 2.
There exists a non-Zero NE.

Proof. Consider the profile where all agents 1, . . . , n− 1 contribute their whole

respective budgets to project 1, and agent n contributes min
{
bn,

bn−1

θ

}
to

project 1, and nothing to other projects.
This is an NE, for the following reasons. Any agent would be alone at any

project other than 1 if it contributed to such a project, and therefore, it will
not contribute there. At project 1, the only agent who perhaps can increase her
contribution is n, but she will stay alone, if she does, so no deviation is profitable.

The next question is the efficiency of the equilibria. Since we always have the
Zero NE, and by contributing to the same project the same positive amounts we
achieve a positive social welfare, we always have PoA = 0. Regarding the price
of stability, we immediately know that it is positive, since there always exists
a non-Zero NE. We now show that the price of stability for two agents is 1,
meaning that there exists a socially optimal NE.

Proposition 2. For n = 2 and under the assumptions of Theorem 3, PoS = 1.

Proof. When we have only two players, we can assume w.l.o.g. that in a profile
with maximum social welfare, a project that receives a positive contribution, re-
ceives it from both agents. Therefore, social welfare is maximized by maximizing
the total contribution to the projects where interaction occurs.

Then, the following profile maximizes the social welfare. Agent 1 spreads her
budget equally between all the projects. If b1 ≥ θb2, then agent 2 divides her
budget equally between all the projects, and otherwise, she contributes 1

θ
b1
m to

every project. Since this profile constitutes an NE, we conclude that PoS = 1.
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5 Insufficient Budgets

Till now, we have been assuming that there is enough extended budget to allow
the agents make the contributions required by the sum of the reciprocal actions at
any time. In this section, we consider dividing effort between reciprocal projects,
where the extended budgets Bi may not suffice to reciprocate at some positive
time t, and therefore the actions have to be curbed, such that the total action
at any time is bounded by the Bi. In Example 1, this can happen if people are
unable to keep up with the others because their free time is strictly limited.
In order to justify studying the asymptotic behavior here, we prove that for
any curbing, the actions in all interactions converge, as time approaches infinity.
Then, we study the equilibria of the corresponding game.

The convergence of normal reciprocation is proven in [21], and we now prove
the convergence of curbed reciprocation. Consider the undirected interaction
graph G = (N,E) of an interaction project, such that agent i can act on j
and vice versa if and only if (i, j) ∈ E. Our model assumes that this graph is a
clique, meaning that everyone interacts, but this is not necessary for the following
theorem. At a given time, let the reciprocation from Definition 1 require actions

denoted by the column vector q ∈ R|E|+ , in the sense that its (i, j)th coordinate
contains acti,j (for (i, j) ∈ E). Then, the curbing is denoted by Dq · q, where
Dq is the diagonal curbing matrix. We omit the subscript q when the vector on
which we act is clear. We denote the curbing matrix at time t by D(t).

Theorem 4. Consider dividing effort between reciprocal interactions, where ev-
ery interaction has some connected interaction graph, and for all agents i, r′i > 0.
At every interaction, if there exists a cycle of an odd length in the interaction
graph, or at least one agent i has ri + r′i < 1, then, for all pairs of agents i 6= j,

the limit Li,j
∆
= limt→∞ acti,j(t) exists.

In our model, we assume a completely connected graph, so if at least 3 agents
interact, we have an odd cycle, namely a triangle. Therefore, then we only need
to assume that for all agents i, r′i > 0.

The proof expresses reciprocation as matrix multiplication. Without curbing,
the convergence is proven using the Perron-Frobenius theorem. Keeping conver-
gence when curbing can occur uses the following definition and lemma.

Definition 2 We remind that a square non-negative matrix A is called primi-
tive, if there exists a positive l, such that Al > 0 (see [24, Definition 1.1]).

The following lemma, used to prove the theorem, has a value of its own as
well. Given a convergent sequence of primitive matrices, the lemma shows that
arbitrarily squeezing the matrices keeps the convergence.

Lemma 2. Given a vector p(0) ∈ Rd, a primitive matrix A ∈ Rd2 ,
such that limt→∞At exists, and a sequence of diagonal matrices {D(t)}∞t=0,
D(t) = diag(λ1(t), . . . , λd(t)), where each λi(t) ∈ (0, 1], define the sequence

{p(t)}∞t=0 by p(t)
∆
= D(t)AD(t− 1)A . . .D(1)Ap(0). Then, limt→∞ p(t) exists.
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Proof. Assume to the contrary, that {p(t)} diverges. Define the sequence

{p′(t)}∞t=0 by p′(t)
∆
= Atp(0). Since {p(t)} diverges and {p′(t)} converges, they

differ at some point, intuitively speaking. We now formalize this argument. Since
{p(t)} diverges and the space is complete, it is not a Cauchy sequence, and so
there exists a positive ε, such that for each N > 0 there exist n,m > N , such
that |p(n)− p(m)| > ε (|| is the Euclidean norm). Since {p′(t)} converges, it
is a Cauchy sequence, so there exists N > 0, such that for all n,m > N we
have |p′(n)− p′(m)| < ε/2. If |p(n)− p(m)| > ε and |p′(n)− p′(m)| < ε/2, we
cannot both have |p(n)− p′(n)| < ε/4 and |p(m)− p′(m)| < ε/4. Therefore, for
some integer l, |p(l)− p′(l)| > δ, for some δ > 0, depending solely on ε. Since
the product defining p(l) is like that of p′(l), but with more D(t) matrices, and
D(t) = diag(λ1(t), . . . , λd(t)), where each λi(t) ∈ (0, 1], we have 0 ≤ p(l) ≤ p′(l).
Remembering this, and that matrix A is primitive, thereby propagating a change
of an entry to every entry, we can choose l such that every coordinate of p(l) will
be at most α fraction of the corresponding coordinate of p′(l), for some α < 1.
The α can be made to depend solely on ε, because of the boundedness of all the
relevant vectors. So, we have p(l) ≤ αAlp(0).

By reiterating the same argument with p′1(t)
∆
= Atp(l) and p1(t)

∆
= p(t+l), we

find l1 > 0, such that p1(l1) ≤ αAl1p(l). Thus, p(l1 + l) = p1(l1) ≤ αAl1p(l) ≤
αAl1αAlp(0) = α2Al1+lp(0).

Continuing in this manner, and using the boundedness of the converging
{Atp(0)}, we prove that {p(t)} converges to zero. A contradiction.6

We can now prove Theorem 4.
Proof. We extend the proof of the Theorem 1 from [21], which proves the
convergence without the curbing. We show that the curbing still keeps the con-
vergence. We recapitulate the used properties from there, to stay self-contained.

We express the dynamics of interaction in a matrix, and prove the theorem by
applying the Perron–Frobenius theorem [24, Theorem 1.1, 1.2], using the above
lemma to handle the curbing of actions. Denoting the neighbors of i as N(i), we

define the dynamics matrix A ∈ R|E|×|E|+ as

A((i, j), (k, l))
∆
=


(1− ri − r′i) k = i, l = j;

ri + r′i
1
|N(i)| k = j, l = i;

r′i
1
|N(i)| k 6= j, l = i;

0 otherwise.

(2)

Assume that for each time t ∈ T , the column vector p(t) ∈ R|E|+ describes the
actions at time t. Then, p(t+1) = D(t)Ap(t), where D(t) is the diagonal matrix,
describing the curbing. We call p(t) an action vector. Initially, p(0)(i,j) = ki.

We will use the Perron-Frobenius theorem for primitive matrices. We now
prepare to use it, and first we show that A is primitive. In the proof of Theorem 1,

6 The actual limit does not have to be zero; zero is just the result from the contradic-
tory assumption.
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it is shown that A is irreducible and aperiodic, and therefore primitive by [24,
Theorem 1.4]. Since the sum of every row is 1, the spectral radius is 1.

According to the Perron-Frobenius theorem for primitive matrices [24, Theo-
rem 1.1], the absolute values of all the eigenvalues except one eigenvalue of 1 are
strictly less than 1. The eigenvalue 1 has unique right and left eigenvectors, up
to a constant factor. Both these eigenvectors are strictly positive. Therefore, [24,
Theorem 1.2] implies that limt→∞At = 1v′, where v′ is the left eigenvector of
the value 1, normalized such that v′1 = 1.

Now, Lemma 2 implies that Li,j exists.

We have proven the reciprocation effort game where curbing can occur is
well defined, because all the reciprocation processes converge. We now prove
the existence of equilibria in such a game. In the exclusive thresholded model,
Observation 1 holds in the curbed case as well, so contributing nothing is an NE.
From now on, assume that no threshold exists. Since the curbing renders finding
a formula for the actions in the limit unlikely, we take an abstract approach.

Theorem 5. Consider dividing effort between reciprocal interactions, where for
all agents i, r′i > 0. Assume that n ≥ 3 or at least one agent i has ri + r′i < 1.
Assume that the curbing function D : Rn → Rn is a weak contraction w.r.t. norm
L∞, i.e. ||Dxx−Dyy||∞ ≤ ||x− y||∞.

Then, there exist small enough βis such that an NE exists.

Proof. By Theorem 4, the reciprocation processes converge and so the game
is well defined. We prove the existence using Proposition 20.3 from [18]. The
strategy set of every player consists of all the possible divisions of the budgets
between the projects, which is a nonempty compact convex set.

The continuity of the utility functions follows from the action limits de-
pending continuously on the total contributions of agents to projects. To this
end, we can inductively show that at ant time t, the change in the action
is ||p′(t)− p(t)||∞ ≤ ||∆x||∞, where p′(t) represents the actions at time t if
p′(0) = p(0) + ∆x. This boundedness keeps holding in the limit of time ap-
proaching infinity as well, implying continuity. For the quasi-concavity of an
agent’s strategy space, notice that for small enough βi, agent i would like to
increase its contribution exactly till it can increase the limit of the actions of at
least one another agent. Finally, Proposition 20.3 implies the theorem.

We also prove that when agents react identically, the game boils down to a
single reciprocal interaction.

Proposition 3. Assume that the curbing is determined by the sum of the ac-
tions of an agent and that all the reciprocation coefficients are equal among the
agents, i.e. ri = rj and r′i = r′j ,∀i 6= j. Then, the total contribution of agent

i at any time t ∈ T , i.e. xi(t)
∆
=
∑
ω∈Ω x

i
ω(t), and the total received action,

i.e.
∑
ω∈Ω (goti(t))ω, are fully determined by the total contributions and the to-

tal received actions at time zero of the agents (i and others), regardless how the
actions were divided between the projects.
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Proof. We prove this by induction on time. At the basis, t = 0 and the
statement is trivial. At the induction step, assume that

∑
ω∈Ω x

i
ω(t− 1) and∑

ω∈Ω (goti(t− 1))ω are fully determined by the total contributions and the to-
tal received actions at time zero and prove this determinancy for

∑
ω∈Ω x

i
ω(t)

and
∑
ω∈Ω (goti(t))ω. Indeed, xiω(t) is equal to∑

j 6=i

act
i,j

= (1− ri − r′i)
∑
j 6=i

(act
i,j

(t− 1))ω + ri
∑
j 6=i

(act
j,i

(t− 1))ω + r′i(got
i

(t− 1))ω =

= (1− ri − r′i)xiω(t− 1) + ri(got
i

(t− 1))ω + r′i(got
i

(t− 1))ω.

Sum it up over all the projects to obtain∑
ω∈Ω

xiω(t) = (1− ri − r′i)
∑
ω∈Ω

xiω(t− 1) + ri
∑
ω∈Ω

(got
i

(t− 1))ω + r′i
∑
ω∈Ω

(got
i

(t− 1))ω.

Since everything on the right hand side is, by the induction hypothesis, deter-
mined by the total contribution and the total received action at time zero, the
actions on time t before curbing are determined by them as well. Furthermore,
curbing is determined by the total action of the agents, and thus, the curbed
actions are also determined by by the total contribution and the total received
action at time zero.

Regarding the total received action, the derivation of the step is analogous,
but it requires moving 1 − rj − r′j , rj and r′j out of the parentheses, where we
use the equality of these parameters across the agents.

6 Conclusions and Further Research

In order to predict investing effort in several reciprocal interactions, we define a
game that models dividing efforts between several reciprocal projects. We include
an analysis of a model both with and without a contribution threshold.

When no contribution threshold exists, there always exists an equilibrium,
and if acting is easy to everyone (for all i, βi < 1) or hard to everyone (for all i,
βi > 1), then every NE is socially optimal. We also show that any dividing of all
the budget when acting is easy to everyone is a Nash equilibrium. The result may
seem surprising. Intuitively, this happens because everyone participates in each
interaction, and the concrete division of the budget does not matter to the social
welfare. However, life does not often provide such situations. We also characterize
when both efficient and inefficient equilibria exist, calling for regulation.

If a minimum contribution is necessary to participate in interaction, we show
that the situation where no-one contributes is an equilibrium. This models the
case where people are very passive, and this continues since no-one can start an
interaction project on his own. In addition to this trivial equilibrium, we find an
equilibrium where all the agents contribute to the same project, like Facebook,
instead of participating in the other social networks. This describes the case



XIV

when people interact with each other on the same topic. Such a situation is
clearly not the only option, since people often have many friendships [9]. For
two agents, there exists an equilibrium which is socially optimal.

The choices of strategies by the agents who are indifferent can significantly
influence the social welfare. For instance, this happens in the case without thresh-
old to agents for whom acting and receiving action are equally important. Making
such agents do what benefits the society can increase the social welfare.

We also model the case when the extended budgets are not big enough and
curbing is required. We show that any way of dividing effort between recipro-
cal interactions results in converging interactions, regardless of how actions are
curbed to fit the budgets. We also prove that the resulting reciprocation effort
game possesses an equilibrium, with and without threshold.

For future research, we are curious about the efficiency of the equilibria in
the game with curbing. Consecutive decisions can be modeled by the agents first
contributing to the interactions and then deciding on their reciprocation param-
eters. Additionally, looking at interactions in large groups where not everyone
can act on everyone else would be a natural generalization of our work. Another
point is that we assumed that two agents who interact in multiple projects, in-
teract in these projects independently. Modeling the dependency between these
interactions is realistic. Analyzing a mixed set of projects, only some of which are
interaction projects, would model reality better. Also modeling and analyzing
voting to approve who else may participate in an interaction seems promising.

This work models and analyzes a ubiquitous class of interactions and lays
the basis for further research, aimed to provide more advice to the agents and
to the manager who wants to maximize the social welfare.
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