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Competition between Cooperative Projects

Gleb Polevoy1 and Mathijs de Weerdt2

1 University of Amsterdam??, g.polevoy@uva.nl
2 Delft University of Technology, m.m.deweerdt@tudelft.nl

Abstract. A paper needs to be good enough to be published; a grant
proposal needs to be sufficiently convincing compared to the other pro-
posals, in order to get funded. Papers and proposals are examples of co-
operative projects that compete with each other and require effort from
the involved agents, while often these agents need to divide their efforts
across several such projects. We aim to provide advice how an agent
can act optimally and how the designer of such a competition (e.g., the
program chairs) can create the conditions under which a socially opti-
mal outcome can be obtained. We therefore extend a model for dividing
effort across projects with two types of competition: a quota or a suc-
cess threshold. In the quota competition type, only a given number of
the best projects survive, while in the second competition type, only the
projects that are better than a predefined success threshold survive. For
these two types of games we prove conditions for equilibrium existence
and efficiency. Additionally we find that competitions using a success
threshold can more often have an efficient equilibrium than those using
a quota. We also show that often a socially optimal Nash equilibrium
exists, but there exist inefficient equilibria as well, requiring regulation.

1 Introduction

Cooperative projects often compete with each other. For example, a paper needs
to have a certain quality, or to be among a certain number of the best papers to
be published, and a grant needs to be one of the best to be awarded. Either the
projects that achieve a certain minimum level, or those that are among a certain
quota of the best projects attain their value. Agents endowed with a resource
budget (such as time) need to divide this resource across several such projects.
We consider so-called public projects where agents contribute resources to create
something together. If such a project survives the competition, its rewards are
typically divided among the contributors based on their individual investments.

Agents often divide effort across competing projects. In addition to co-
authoring articles or books [6, 7, 10] and research proposals, examples include
participating in crowdsensing projects [8] and online communities [9]. Exam-
ples of quotas for successful projects include investing effort in manufacturing
several products, where the market becomes saturated with a certain number
of products. Examples of success thresholds are investing in start-ups, where a

?? Most of this work was done at Delft University of Technology.
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minimum investment is needed to survive, or funding agencies contributing to
social projects, where a minimum contribution is required to make the project
succeed. Another example is students investing effort in study projects.

The ubiquity and the complexity of such competing projects calls for a
decision-support system, helping agents to divide their efforts wisely. Assum-
ing rationality of all the others, an agent needs to know how to behave given the
behavior of the others, and the designer of the competition would like to know
which rules lead to better results. In the terms of non-cooperative game theory,
the objective of this work is to find the equilibria and their efficiency.

Analyzing the NE and their efficiency helps characterizing the influence of
a quota or a success threshold on how efficient the stable strategies are for the
society and thus increase the efficiency of investing time in the mentioned enter-
prises. For example, Batchelor [4] suggests increasing the publication standards.
However, in addition to maximizing the total value of the published papers, he
considers goals such as reducing the noise (number of low quality publications).

To make things clear, we employ this running example:

Example 1. Consider scientists investing time from their time budget in writing
papers. A paper attains its value (representing the acknowledgment and all the
related rewards) if it stands up to the competition with other papers. The com-
petition can mean either being one of the q best papers, or achieving at least the
minimum level of δ, depending on the circumstances. A scientist is rewarded by
a paper by becoming its co-author if she has contributed enough to that paper.

Here, the submitters need to know how to split their efforts between the
papers, and the conference chairs need to properly organize the selection process,
e.g. by defining the quota or threshold on the papers to get accepted.

There were several studies of contributing to projects but the projects did
not compete. For example, in the all-pay auction model, only one contributor
benefits from the project, but everyone contributes. Its equilibria are analyzed
in [5], etc. A famous example is the colonel Blotto game with two players [14],
where these players spread their forces among the battlefields, winning a battle
if allocating it more forces than the opponent does. The relative number of
won battles determines the player’s utility. Anshelevich and Hoefer [2] model
two-player games by an undirected graph where nodes contribute to the edges.
A project, being an edge, obtains contributions from two players. They study
minimum-effort projects, proving the existence of an NE and showing that the
price of anarchy (PoA)3 is at most 2.

The effort-dividing model [13] used the model of a shared effort game [3],
where each player has a budget to divide among a given set of projects. The
game possesses a contribution threshold θ, and the project’s value is equally
shared among the players who invest above this threshold. They analyzed Nash

3 The social welfare is the sum of the utilities of all the players. The price of anar-
chy [11, 12] is the ratio of the minimum social welfare in an NE to the maximum
possible social welfare. The price of stability [15, 1] is the ratio of the maximum
social welfare in an NE to the maximum possible social welfare.

18



equilibria (NE) and their price of anarchy (PoA) and stability (PoS) for such
games. However, they ignored that projects may compete for survival. We fill
this gap, extending their model by allowing the projects only to obtain their
modeled value if they stand up to a competition. To conclude, we study the yet
unanswered question of strategic behavior with multiple competing projects.

Compared to the contribution in [10], we model contributing to multiple
projects by an agent, and concentrate on the competition, rather than on shar-
ing a project’s utility. Unlike devising division rules to make people contribute
properly, studied in cooperative game theory (see Shapley value [16] for a promi-
nent example), we model given division rules and analyze the obtained game,
using non-cooperative game theory.

We formally define the following models:

1. Given a quota q, only q projects receive their value. This models the limit
on the number of papers to be accepted to a conference, the number of
politicians in a city council, the lobbyists being the agents and the politicians
being the projects, or the number of projects an organization can fund.

2. There exists a success threshold δ, such that only the projects that have
a value of at least δ actually receive their value. This models a paper or
proposal acceptance process that is purely based on quality.

Our contributions are as follows: We analyze existence and efficiency of NE
in these games. In particular, we demonstrate that introducing a quota or a
success threshold can sometimes kill existing equilibria, but sometimes allow for
new ones. We study how adjusting a quota or a success threshold influences the
contribution efficiency, and thereby the social welfare of the participants. We
derive that competitions using a success threshold have efficient equilibria more
often than those with a quota. We also prove that characterizing the existence
of an NE would require more parameters than just the quota or the threshold
and the number of the agents and the projects.

We formalize our models in Section 2, analyze the Nash equilibria of the first
model and their efficiency in Section 3, and analyze the second model in Sec-
tion 4. Theorems 2, 3, 5 and 6 are inspired by the existence and efficiency results
for the model without competition. Having analyzed both models of competition
between projects, Section 5 compares their characteristics, the possibility to in-
fluence the authors’ behavior through tuning the acceptance criteria, and draws
further conclusions. Some proofs are deferred to the appendix (Section A).

2 Model

We build our model on that from [13], since that is a model of investment
in common projects with a general threshold. We first present their model for
shared effort games, which also appears in [3]. From Definition 1 on, we introduce
competition among the projects.

There are n players N = {1, . . . , n} and a set Ω of m projects. Each
player i ∈ N can contribute to any of the projects in Ωi, where ∅ ( Ωi ⊆ Ω;
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the contribution of player i to project ω ∈ Ωi is denoted by xiω ∈ R+. Each
player i has a budget Bi > 0, so that the strategy space of player i (i.e., the set

of her possible actions) is defined as
{
xi = (xiω)ω∈Ωi ∈ R|Ωi|+ |∑ω∈Ωi x

i
ω ≤ Bi

}
.

Denote the strategies of all the players except i by x−i.
The next step to define a game is defining the utilities. Let us associate each

project ω ∈ Ω with its project function, which determines its value, based on the
total contribution xω = (xiω)i∈N that it receives; formally, Pω(xω) : Rn+ → R+.
The assumption is that every Pω is increasing in every parameter. The increasing
part stems from the idea that receiving more effort does not make a project
worse off. When we write a project function as a function of a single parameter,
like Pω(x) = αx, we assume that project functions Pω depend only on the∑
i∈N (xiω), which is denoted by xω as well, when it is clear from the context.

The project’s value is distributed among the players in Nω
∆
= {i ∈ N |ω ∈ Ωi}

according to the following rule. From each project ω ∈ Ωi, each player i gets a
share φiω(xω) : Rn+ → R+ with free disposal:

∀ω ∈ Ω :
∑

i∈Nω
φiω(xω) ≤ Pω(xω). (1)

We assume the sharing functions are non-decreasing. The non-decreasing as-
sumption fits the intuition that contributing more does not get the players less.

Denote the vector of all the contributions by x = (xiω)i∈Nω∈Ω . The utility of a
player i ∈ N is defined to be

ui(x)
∆
=
∑

ω∈Ωi
φiω(xω).

Consider the numerous applications where a minimum contribution is re-
quired to share the revenue, such as paper co-authorship and homework.
To analyze these applications, define a specific variant of a shared effort
game, called a θ-sharing mechanism. This variant is relevant to many ap-
plications, including co-authoring papers and participating in crowdsensing
projects. For any θ ∈ [0, 1], the players who get a share are defined to be

Nθ
ω

∆
=
{
i ∈ Nω|xiω ≥ θ ·maxj∈Nω x

j
ω

}
, which are those who bid at least θ fraction

of the maximum bid size to ω. Define the θ-equal sharing mechanism as equally
dividing the project’s value between all the users who contribute to the project
at least θ of the maximum bid to the project.

The θ-equal sharing mechanism, denoted by Mθ
eq, is

φiω(xω)
∆
=

{
Pω(xω)
|Nθω|

if i ∈ Nθ
ω,

0 otherwise.

Let us consider θ-equal sharing, where all the project functions are linear,
i.e. Pω(xω) = αω(

∑
i∈N x

i
ω). W.l.o.g., αm ≥ αm−1 ≥ . . . ≥ α1. We denote

the number of projects with the largest coefficient project functions by k ∈ N,
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Fig. 1. Scientists contribute time to papers (arrows up), and share the value of the
accepted ones (arrows down).

i.e. αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1. We call those
projects steep. Assume w.l.o.g. that Bn ≥ . . . ≥ B2 ≥ B1.

A project that receives no contribution in a given profile is called a vacant

project. A player is dominated at a project ω, if it belongs to the set Dω
∆
=

Nω \ Nθ
ω. A player is suppressed at a project ω, if it belongs to the set Sω

∆
={

i ∈ Nω : xiω > 0
}
\ Nθ

ω. That is, a player who is contributing to a project but
is dominated there.

We now depart from [13] and model competition in two different ways.

Definition 1 In the quota model, given a natural number q > 0, only the q
highest valued projects actually obtain a value to be divided between their con-
tributors. The rest obtain zero. In the case of ties, all the projects that would
have belonged to the highest q under some tie breaking rule receive their value;
therefore, more than q projects can receive their value in this case. Formally,
project ω is in the quota if |{ω′ ∈ Ω|Pω′(xω′) > Pω(xω)}| < q, and ω is out of
the quota otherwise, and, effectively, Pω(xω) = 0.

The second model is called the success threshold model.

Definition 2 In the success threshold model, given a threshold δ, only the
projects with value at least δ, meaning that Pω(xω) ≥ δ, obtain a value, while if
Pω(xω) < δ, then, effectively, Pω(xω) = 0.

Example 1 (Continued). Figure 1 depicts a success threshold model, where paper
C does not make it to the success threshold, and is, therefore, unpublished. The
other two papers are above the success threshold, and get published; such a
paper’s recognition is equally divided between the contributors who contribute
at least θ of the maximum contribution to the paper, and become co-authors.

3 The Quota Model

In this section, we study the equilibria of shared effort games with a quota
and their efficiency. We first give an example of an NE, and generalize it to a
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sufficiency theorem. Then, we provide equilibrium existence and efficiency theo-
rems for the quota model. Finally, we show that no simple setting of parameters
guarantees the existence of an equilibrium or the lack thereof.

Intuitively, introducing a quota can make previously unstable profiles become
NE, by making deviations non-profitable. This would increase the price of sta-
bility but decrease the price of anarchy. On the other hand, a profile that is an
NE without a quota can cease being so in our model, since some projects may
obtain no value because of the quota.

Having a quota can lead to counter-intuitive results. In the following example,
there can be an NE where no steep project obtains a contribution. The idea is
that any deviation from the project where everyone contributes is non-profitable,
because it would still leave the other projects out of quota.

Example 2. Given projects 1 and 2, such that α2 > α1, assume that all the
players contribute all their budgets to project 1. If α2Bn < α1

∑n−1
i=1 Bi and

q = 1, then no player can deviate to project 2, as this would still leave that
project out of the quota, and therefore, this profile is an NE.

In this NE, the social welfare is equal to α1

∑
i∈N Bi. The optimal social

welfare, achieved if and only if all the players contribute all their budgets to
project 2, is equal to α2

∑
i∈N Bi. The ratio between the social welfare in this

NE and the optimal one is α1

α2
. That ratio is an upper bound on the price of

anarchy of this game. In addition, since the optimal profile is also an NE, the
price of stability is 1.

The price of anarchy is smaller than α1

α2
if and only if some agents do not

contribute all their budgets. This can only happen in an NE if θ is positive, and
if this is the case, then we can have arbitrarily low price of anarchy, down to the
case when only agent n contributes, if θBn > Bn−1, and then, PoA = α1Bn

α2

∑
i∈N Bi

.

We now generalize these ideas to the following theorem about possible NE.

Theorem 1. Consider a θ-equal sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g.), and quota q.

This game has a pure strategy NE, if q = 1 and Bn <
∑n−1
i=1 Bi. Addition-

ally, PoA =
αl

∑
i : Bi≥θBn Bi

αm
∑
i∈N Bi

≤ αl
αm

, for l
∆
= min

{
j ∈ Ω : αmBn < αj

∑n−1
i=1 Bi

}
,

PoS = 1.

Proof. If all the players contribute to any single project j ≥ l, then since
Bn <

∑n−1
i=1 Bi, no player can deviate to any project, because this would still

leave this project out of the quota. Therefore, this profile is an NE.
In particular, when all the players invest all their budgets in project m, it is

an NE, and thus, PoS = 1.
To find the price of anarchy, notice that the worst equilibrium for the so-

cial welfare is when everyone contributes to the least profitable possible project,
i.e. l, and only those who have a reason to do so contribute. Having an incen-
tive means being not below the threshold amount, θBn. This equilibrium yields
αl
∑
i : Bi≥θBn Bi.
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This theorem, in accord with the intuition above, shows that reducing the
quota can either facilitate an optimal NE, or a very inferior NE. Actually, every
efficiency of the form αi

αm
is possible at equilibrium, which brings us to the

question of equilibria appearing and disappearing, which we treat next.

Example 3. A game with NE can cease having equilibria after introducing a
quota. For example, consider θ ∈ (0, 1), 2 players with budgets B1 = θB2 and 2
projects with the coefficients α, (1−ε)α. This game has an NE if no quota exists,
by Theorem 3 from [13]. However, introducing the quota of q = 1 implies there
is no NE. Indeed, the only candidate profile for an equilibrium is both agents
contributing everything to the same project or when both projects obtain the
same value. In the former case, agent 2 would like to deviate, to avoid sharing,
since the projects are close for small enough an ε. In the latter case, agent 2
contributes to both projects, since for small enough an ε, agent 1 alone would
make the project be out of quota. Since there exists at least one project where
agent 1 contributes less than θB2, say project i, agent 2 would benefit from
contributing to that project all its budget. This is because she would gain at
least (1− ε)αx2

ω while losing at most α(B1 + x2
ω)/2, which is smaller, for small

enough ε and θ.
A game can also start having equilibria after introducing a quota. For in-

stance, consider a game with two players, B2 = B1, αm = 1.9αm−1. Then
Theorem 3 from [13] implies that no NE exists, but if we introduce the quota of
1, then both agents contributing to project m is an NE, since a deviator would
be out of quota.

We now present an existence theorem. The theorem presents possible equi-
libria, providing advice on possible stable states. Afterwards, we study efficiency.

Theorem 2. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g.), and quota q.
This game has a pure NE if one of the following holds.4

1. B1 ≥ kθBn, k ≤ q and 1
nαm−k+1 ≥ αm−k,

2. B1 ≥ qθBn, k ≥ q and Bn <
∑n−1
j=1 Bi/q;

3. Bn−1 <
θ
|Ω|Bn and all the project functions are equal, i.e. αm = α1.

The proof provides a profile and shows that no deviation is profitable.
Proof. To prove part 1, distinguish between the case where k ≤ q and k > q.
If k ≤ q, then the profile where all the players allocate 1/kth of their respective
budgets to each of the steep projects is an NE for the same reasons that were
given for the original model, since here, the quota’s existence can only reduce
the motivation to deviate.

4 If αm−k does not exist, consider the containing condition to be vacuously true.
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As for the part 2, consider the profile where all the players allocate 1/qth of
their respective budgets to each of the q steep projects m,m− 1, . . . ,m− q+ 1.
This is an NE, since the only deviation that is possibly profitable, besides real-
locating between the non vacant projects, is a player moving all of her contribu-
tions from some projects to one or more of the vacant projects. This cannot bring
profit, because these previously vacant projects will be outside of the quota, since
Bn <

∑n−1
j=1 Bi/q. As for reallocating between the non-vacant projects, this is

not profitable, since B1 ≥ qθBn means that suppressing is impossible. Therefore,
this is an NE.

We now prove part 3. Let every player divide her budget equally among
all the projects. No player wants to deviate, for the following reasons. All the
projects obtain equal value, and therefore are in the quota. Player n suppresses
all the rest and obtains her maximum possible profit, αm(

∑
i∈N Bi). The rest

obtain no profit, since they are suppressed whatever they do.

We now prove an efficiency result, based on Theorem 2.

Theorem 3. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1, 0 < θ < 1 (the order is w.l.o.g.), linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g).5, and quota q.

1. If at least one of the following holds.
(a) B1 ≥ kθBn, k ≤ q and 1

nαm−k+1 ≥ αm−k,

(b) B1 ≥ qθBn, k ≥ q and Bn <
∑n−1
j=1 Bi/q;

Then, there exists a pure strategy NE and there holds: PoS = 1.
2. Assume Bn−1 <

θ
|Ω|Bn and all the project functions are equal, i.e. αm = α1.

Then, there exists a pure strategy NE and the following holds: PoS =
1,PoA = Bn∑

i∈{1,2,...,n} Bi
.

Proof. We first prove part 1a and 1b. According to the proof of parts 1 and 2
of Theorem 2, equally dividing all the budgets among min {k, q} steep projects
is an NE. Therefore, PoS = 1.

For part 2, recall that in the proof of part 3 of Theorem 2, we show that
everyone equally dividing the budgets between all the projects is an NE. This
is optimal for the social welfare, and so PoS = 1. We turn to find the price
of anarchy now. If player n acts as just mentioned, while the other players do
not contribute anything, then this is an NE, since all the projects are equal
and therefore, in the quota, and players 1, . . . , n − 1 will be suppressed at any
contribution. An NE cannot have a lower social welfare, since n gets at least
αmBn in any NE, since this is obtainable alone. Therefore, the fraction between
the two social welfare values, namely αmBn

αm
∑
i∈{1,2,...,n} Bi

, is the PoA.

The condition “k ≥ q and Bn <
∑n−1
j=1 Bi/q” in Theorem 3 does not hold

if the largest budget can be much larger than the rest, implying that we shall

5 If αm−k does not exist, consider the containing condition to be vacuously true.
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ask whether our optimum NE is guaranteed by part 1a, which requires that the
quota has to be at least k. When there are many equally glorious projects to
contribute to, meaning that k is large, this constraint becomes non-trivial to
implement. The condition “k ≤ q and 1

nαm−k+1 ≥ αm−k” in Theorem 3 does
not hold if the difference between the two largest projects is not big enough, and
then the quota has to be at most k if one wants our optimum NE to follow from
part 1b. This is non-trivial when we have few most glorious (steep) projects.

We do not know a full characterization of the existence of equilibria; we do
know that it would require many parameters. We prove now that the quota with
the number of agents and projects do not determine existence.

Proposition 1. For any quota q ≥ 1, any number of agents n ≥ 2 and projects
m ≥ 2, there exists a game which possesses an NE, and a game which does not.

The proof engineers games with the given parameters with and without NE.
Proof. A game that satisfies the conditions of Theorem 2 provides evidence for
the existence.

To find a game without an NE, we first treat the case of q = 1. Let all the
project coefficient be equal to one another and let

Bn >
n−1∑

i=1

Bi, (2)

and Bn >

∑n
i=1Bi

|{i ∈ N : Bi ≥ θBn}|
. (3)

Because of the equality of all the project coefficients and of (2), in an equilibrium,
all the agents with budgets at least θBn will be together with n. Then, (3) implies
agent n will deviate, contradictory to having an equilibrium.

For quota q ≥ 2, let Bn−1 <
θ
mBn. In any NE, agent n dominates all the

rest in the sense that it invests (strictly) more than Bn−1θ in any project that
is in the quota, because otherwise, the other agents could get a share at some
projects, and assuming αl(x + x

θ ) > αm(xθ ) for every project l, agent n would
prefer to suppress that. However, if αm > αm−1, n would always prefer to move
a bit more contribution to project m, contradictory to the assumption of an NE.

4 The Success Threshold Model

In this section, we consider the NE of shared effort games with a success thresh-
old. We allow success thresholds δ be at most the sum of all the budgets times
αm, to let at least one project to obtain its value, in at least one strategy pro-
file. We begin with an example, which inspires a theorem, and then we study
existence and efficiency with a given success threshold.
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In a profile, we call a project that has a value of at least the threshold an
accepted project, and we call it unaccepted otherwise. In Example 1, the accepted
papers are A and B.

Success threshold can cause counter-intuitive results, as follows.

Example 4. Given the projects 1 and 2, such that α2 > α1, assume that all the
players contribute all their budgets to project 1. If δ > α2Bn, then no player can
deviate to project 2, as this would leave that project unaccepted, and therefore,
this profile is an NE.

The conclusions about the prices of anarchy and stability are the same as in
Example 2, besides that the price of anarchy can be even zero if α1

∑n
i=1Bi < δ.

The exemplified ideas yield the following theorem.

Theorem 4. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g.), and success threshold δ.
This game has a pure NE, if αmBn < δ. In addition, PoA ≤ α1

αm
and PoS = 1.

If α1

∑n
i=1Bi < δ, then PoA = 0.

Proof. If all the players contribute to any single project, then since αmBn < δ,
no player can deviate to any project, because this would still leave that project
unaccepted. Therefore, this profile is an NE.

In particular, when all the players invest all their budgets in project m, it is
an NE, and thus, PoS = 1. When all the players invest in 1, it also is an NE,
showing that PoA ≤ α1

αm
, and if α1

∑n
i=1Bi < δ, then PoA = 0.

This theorem, in accord with the intuition above, shows that increasing the
success threshold can either facilitate an optimal NE, or an inferior NE. Actually,
every efficiency of the form

αj
αm

, for j ≥ min {i : αi
∑n
l=1Bl ≥ δ}, is possible at

an equilibrium.

Example 5 (Introducing a success threshold can kill or create new NE). The
game with θ ∈ (0, 0.5), 2 players with budgets B1 = 2θB2 and 2 projects with
the coefficients α, α has an NE if no success threshold exists, by Theorem 3
from [13]. If we introduce the success threshold of αB2, then in any NE both
agents have to contribute to the same project. Then, agent 2 will deviate. For an
emerging NE, consider a game with two players, B2 = B1, αm = 1.9αm−1. Then
Theorem 3 from [13] implies that no NE exists, but if we introduce the success
threshold of 2B1αm, then both agents contributing to project m constitute an
NE, since a deviator would be at a project below the success threshold.

Next, we provide sufficient conditions for the existence of an NE.

Theorem 5. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g.), and success threshold δ.
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This game has a pure NE, if one of the following holds.6 Define p
∆
=⌊

αm
∑
i∈N Bi
δ

⌋
; intuitively, it is the number of the projects that can be accepted.

1. B1 ≥ kθBn, k ≤ p and 1
nαm−k+1 ≥ αm−k,

2. B1 ≥ pθBn, k ≥ p ≥ 1 and αmBn < δ;
3. Bn−1 <

θ
|Ω|Bn, all the project functions are equal, i.e. αm = α1.

Proof. We first prove part 1. The profile where all the players allocate 1/kth
of their respective budgets to each of the steep projects is an NE for the same
reasons that were given for the original model, since here, the requirement to be
not less than the success threshold can only reduce the motivation to deviate.

In part 2, consider the profile where all the players allocate 1/pth of their
respective budgets to each of the p steep projectsm,m−1, . . . ,m−p+1. This is an
NE, since the only deviation that is possibly profitable, besides moving budgets
between the non vacant projects, is a player moving all of her contributions from
some projects to one or more of the vacant projects. This cannot bring profit,
because these previously vacant projects will be unaccepted, since αmBn < δ.
Additionally, any reallocating between the non-vacant projects is not profitable,
since B1 ≥ pθB2 means that suppressing is impossible. Therefore, the current
profile is an NE.

We now prove part 3. We distinguish between the case where the condition
p ≥ |Ω| holds or not. If p ≥ |Ω|, then the proof continues as in the case of part 3
of Theorem 2, where every player divides her budget equally among all the
projects. All the projects are accepted, so no new deviations become profitable.

In the case that p < |Ω|, consider the profile where all the players allocate
1/pth of their respective budgets to each of the p projects m,m−1, . . . ,m−p+1.
This is an NE, since the only deviation that is possibly profitable is some player
j < n moving all her budget to a vacant project. However, this is not profitable,
since the project would be unaccepted, because Bj ≤ Bn−1 <

θ
|Ω|Bn < θδ/αm ≤

δ/αm. The penultimate inequality stems from p < |Ω| ⇐⇒ αm
∑
i∈N Bi
|Ω| < δ.

Therefore, this is an NE.

We now provide an efficiency result, proven in the appendix.

Theorem 6. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1, 0 < θ < 1 (the order is w.l.o.g.), linear project functions
with coefficients αm = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1 (the order

is w.l.o.g).7, and success threshold δ. Define p
∆
=
⌊
αm

∑
i∈N Bi
δ

⌋
, as in Theorem 5.

1. If at least one of the following holds.
(a) B1 ≥ kθBn, k ≤ p and 1

nαm−k+1 ≥ αm−k,
(b) B1 ≥ pθBn, k ≥ p ≥ 1 and αmBn < δ;
Then, there exists a pure NE and there holds: PoS = 1.

6 If αm−k does not exist, consider the containing condition to be vacuously true.
7 If αm−k does not exist, consider the containing condition to be vacuously true.
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2. Assume Bn−1 <
θ
|Ω|Bn, all the project functions are equal, i.e. αm = α1.

Then, there exists a pure NE and PoS = 1. If, an addition, αmBn ≥ δ, then
PoA = Bn∑

i∈{1,2,...,n} Bi
.

Condition 1a of Theorem 6 implies that if the second best project is close to a
best one, then the threshold should be big enough, for condition 1b to guarantee
our optimum NE. The contrapositive of the condition 1b implies that if the
biggest player is able to make a project succeed on her own, then the threshold
should be small enough so that p is at least the number of the most profitable
projects, for our optimum NE to be guaranteed by condition 1a.

There exists no simple characterization for the NE existence when δ ≤ αmBn.

Proposition 2. For any success threshold δ ∈ [0, αmBn] and any number of
agents n ≥ 2 and projects m ≥ 2, there exists a game which possesses an NE,
and a game which does not.

The proof appears in Section A.

5 Conclusions and Further Research

We analyze the stable investments in projects, where a project has to comply
to certain requirements to obtain its value. This models paper co-authorship,
investment in firms, etc. The goal is to advise which investments are individually
and socially preferable. Each agent freely divides her budget of time or effort
between the projects. A project that succeeds in the competition obtains a value,
which is divided between the contributors who have contributed at least a given
fraction of the maximum contribution to the project. We model succeeding in a
competition either by a quota of projects that actually obtain their value, or by
a success threshold on the value of projects that do.

For purposes like organizing a conference, we ask which quota or success
threshold would make the behavior of the players better for the social welfare.
Theorem 1 implies that if no player has a budget as large as the total budget
of all the other players times the ratio between the least and the largest project
coefficient, then the quota of 1 makes many equilibria, including an optimal one,
possible. Theorem 4 promises the same by choosing a success threshold that dis-
ables any player to make a project successful on her own. The first problem of
this approach is that it also allows very inefficient profiles constitute equilibria,
asking for some coordination. The second problem is that the discussed equilibria
have all the players investing in the same project, which is understandable be-
cause of the linear project functions but practically unreasonable in conferences,
though possible in other applications, such as sponsorship of large projects like
Uber, Lyft, Facebook and VKontakte.

Comparing these models, we see from Theorems 1 and 4 that the success
threshold allows ensuring that there exists a socially optimal equilibrium while
the quota requires also assuming that the largest effort budget is less than the
sum of the other ones times the ratio of the least to the most profitable project
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coefficients. In addition, comparing Theorems 3 and 6 shows that provided the
smallest budget is at least a certain fraction of the largest one, choosing large
enough a threshold or small enough a quota guarantees that an optimal profile
will be an equilibrium. Unlike in the described cases, where success threshold
seems stronger than quota, we notice that the second part of Theorem 6 actu-
ally contains an additional condition, relatively to the second part of Theorem 3,
but since the second parts of these theorems refer to the case of a single agent
being able to dominate everyone everywhere and all the projects being equally
rewarding, this is less practical. To conclude the comparison, sometimes, choos-
ing success threshold has more power, since choosing quota needs to assume an
additional relation between the budgets, in order to guarantee that socially opti-
mal equilibria exist. Intuitively, this stems from a quota needing an assumption
on what the players are able to do to increase their utility, given the quota, while
providing a success threshold can be done already with the budgets in mind.

Both a quota and a success threshold have a concentrating effect: equilibria
where the agents contribute to less projects than without any of these conditions.

Many directions to expand the research exist. First, some common projects
like papers and books have an upper bound on the maximal number of partici-
pants. Also a person has an upper bound on the maximal number of projects she
can contribute to. The model should account for these bounds. Second, compe-
tition can be of many sorts. For instance, a project may need to have a winning
coalition of contributors, in the sense of cooperative games. The fate of the
projects that fail the competition can also vary; for example, their value can be
distributed between the winning projects. We have extended the sufficiency re-
sults for existence from [13], and proven the necessity to be harder for analytical
analysis. Simulations or other analytical approaches may be tried to delineate
the set of Nash equilibria more clearly. Naturally, project functions do not have
to be linear, so there is a clear need to model various non-linear functions. Such
a more general model will make the conclusions on scientific investments, paper
co-authorship, and the many other application domains more precise, and en-
able us to further improve the advice to participants as well as organizers. We
can look at submitting a paper to a highly-ranked conference and reducing the
conference level till the paper gets accepted as on a series of shared effort games
with various quotas, success thresholds and participants. If we model the cost of
each submission, then the question is to which conference to submit first.
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A Omitted Proofs

We now prove Theorem 6.

Theorem 6. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1, 0 < θ < 1 (the order is w.l.o.g.), linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g).8, and success threshold δ. Define p
∆
=
⌊
αm

∑
i∈N Bi
δ

⌋
, as in

Theorem 5.
8 If αm−k does not exist, consider the containing condition to be vacuously true.
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1. If at least one of the following holds.
(a) B1 ≥ kθBn, k ≤ p and 1

nαm−k+1 ≥ αm−k,
(b) B1 ≥ pθBn, k ≥ p ≥ 1 and αmBn < δ;
Then, there exists a pure NE and there holds: PoS = 1.

2. Assume Bn−1 <
θ
|Ω|Bn, all the project functions are equal, i.e. αm = α1.

Then, there exists a pure NE and PoS = 1. If, in addition, αmBn ≥ δ, then
PoA = Bn∑

i∈{1,2,...,n} Bi
.

Proof. We first prove parts 1a and 1b. According to proof of parts 1 and 2 in
Theorem 5, equally dividing all the budgets among min {k, p} steep projects is
an NE. Therefore, PoS = 1.

Part 2 is proven as follows. Since all the players dividing their budgets equally
between any min {p,m} projects constitutes an NE, we have PoS = 1.

To treat the PoA, we define the number of projects player n can make ac-

cepted on her own, r
∆
=
⌊
αm

Bn
δ

⌋
, and distinguish between the case where m ≤ r

and m > r. If m ≤ r, consider the profile where player n divides her budget
equally between all the projects, while the other players contribute nothing at
all. This is an NE, because all the projects are accepted, player n cannot increase
her profit and any other player will be suppressed, if she contributes anything
anywhere. On the other hand, if m > r, consider the profile where player n di-
vides her budget equally between m,m−1, . . . ,m−r+1, while the other players
contribute nothing at all. The only possible deviation is player j < n contributing
to a vacant project. However, we have Bj ≤ Bn−1 <

θ
|Ω|Bn < θδ/αm ≤ δ/αm.

This means that the project would be unaccepted. Therefore, this is an NE.
Therefore, PoA ≤ αmBn

αm(
∑
i∈N Bi)

. Since αmBn ≥ δ, in any NE, player n receives

at least αmBn, and therefore, PoA = Bn∑
i∈{1,2,...,n} Bi

.

We finally prove Proposition 2.

Proposition 2. For any success threshold δ ∈ [0, αmBn] and any number of
agents n ≥ 2 and projects m ≥ 2, there exists a game which possesses an NE,
and a game which does not.

Proof. For δ = 0, which means for no threshold, the theorem follows from The-
orem 3 from [13]. Therefore, we assume henceforth a positive success threshold.

A game that satisfies the conditions of Theorem 5 provides an example of
the existence. Notice that the p they define is positive, since δ ≤ αmBN .

To find a game that does not possess an equilibrium, let αm = α1 and let

Bn >

n−1∑

i=1

Bi, (4)

B1 = . . . = Bn−1 = θBn and δ = αBn. (5)

Because of the equality of all the project coefficients, of (4) and of the choice of
the success threshold, in an equilibrium, all the agents with budgets at least θBn
(which are 1, . . . , Bn−1 here) will be together with n on the same single project.
Then, agent n will deviate, contradictory to being in an equilibrium.
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