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Abstract:
We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts
when faced with a large number of predictors. This approach goes beyond the usual practice of combining
conditional mean forecasts from parametric time series models with only a few predictors. The hybrid method-
ology adopts the adaptive LASSO regularization to simultaneously reduce predictor dimension and obtain
quantile forecasts. Several recent empirical studies have considered a large set of macroeconomic predictors and
technical indicators with the goal of forecasting the S&P 500 equity risk premium. To illustrate the merit of the
proposed approach, we extend the mean-based equity premium forecasting into the conditional quantile con-
text. The application offers three main findings. First, combining parametric and non-parametric approaches
adds quantile forecast accuracy over and above the constituent methods. Second, a handful of macroeconomic
predictors are found to have systematic forecasting power. Third, different predictors are identified as impor-
tant when considering lower, central and upper quantiles of the equity premium distribution.
Keywords: large database, non-parametric, parametric, penalized averaging, quantile forecasting
DOI: 10.1515/jtse-2019-0021

1 Introduction

The increasing availability of a large database of time series variables across diverse disciplines of business
and economics has motivated a new strand of forecasting research catered to data rich environments. For ex-
ample, Ma, Fildes, and Huang (2016) use variable selection and model estimation by a multistage LASSO re-
gression, followed by a scheme to generate out-of-sample forecasts in the field of inventory management. Jiang
et al. (2018) obtain forecasts of a large set of Australian macroeconomic predictors using a wide variety of di-
mension reduction methods. Another forecasting study in high-dimensions is by Exterkate et al. (2011) who
consider least angle regression, a shrinkage and variable selection method proposed by Efron et al. (2004), and
multi-response sparse regression (Similä and Tikka 2006). The above examples are far from exhaustive, and the
literature is growing rapidly.

Mimicking a similar trend in non-forecasting studies, most high-dimensional forecasting research focuses
mainly on conditional mean forecasts (Garcia, Medeiros, and Vasconcelos 2017; Konzen and Ziegelmann 2016).
Further, the modeling framework of existing high-dimensional studies is often based on the assumption that
high-dimensional data come from a linear data generating process (DGP); see, e. g. Bonaccolto, Caporin, and
Paterlini (2018) and Bayer (2018). In an attempt to provide modeling flexibility, few studies have introduced
extensions. For instance, Bai and Ng (2008) and Giovannelli (2012) introduce nonlinear principal component
methods within the conditional mean context. Recently, deviating from parametric modeling approaches, Chen
et al. (2018) introduce non-parametric based high-dimensional averaging.

With the goal of offering yet another modeling option in the presence of high-dimensional predictors, we
consider the case of conditional quantile forecasts. In particular, we further extend the non-parametric averag-
ing method of De Gooijer and Zerom (2019). Similar to that of Chen et al. (2018), the approach of De Gooijer
and Zerom (2019) rests on the idea of combining or averaging a large number of possibly misspecified non-
parametric quantile forecasts to form an approximation of a target conditional quantile. In addition to incorpo-
rating possible nonlinearities in the effect of exogenous predictors, the non-parametric approach has robustness
to distributional assumptions (such as normality) of the innovation process in fully specified parametric mod-
els.

Given our focus on quantile forecasting, it is also of practical interest to explore if the non-parametric av-
eraging approach can be complemented by parametric models. To motivate such a hybrid approach, consider
Jan G. De Gooijer is the corresponding author.
© 2019Walter de Gruyter GmbH, Berlin/Boston.
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the case of conditional quantile estimation of financial data such as stock returns. In financial applications,
conditional quantiles play an essential role in risk assessment. For example, evaluation of Value-at-Risk is a
conditional quantile estimation problem. Although the literature on estimating conditional quantiles is large,
the overwhelming majority of the approaches rely on the assumption that returns follow a fully specified con-
ditional distribution (such as normality or t). As a result, the estimation of conditional quantiles is equivalent
to estimating conditional variance (volatility) of returns. The massive literature on GARCH models (volatility
modeling) reflect the popularity of such an approach. In addition to their computational convenience, GARCH
type models have proven highly successful in modeling financial data. For instance, one key practical appeal of
GARCH family of models is that they can parsimoniously capture the persistent influence of long past shocks.
In contrast, the averaging method of De Gooijer and Zerom (2019) only allows dependence up to certain au-
toregressive lags. In other words, the non-parametric method considers a truncated quantile auto-regression
(possibly nonlinear) approximation of persistence. If the GARCH type behavior (i. e. infinite ARCH) is indeed
an important feature, the averaging method will not completely capture it even with a large autoregressive
term.

An important implication of the foregoing discussion is that non-parametric approaches do not necessarily
include all parametric models as special cases. Thus, the role of non-parametric and parametric approaches
can be complementary. Motivated by this observation, we propose augmenting the non-parametric approach
by parametric models. To illustrate the merit of the proposed hybrid quantile averaging approach, we apply
it to quantile forecasting of the S&P 500 equity risk premium using a large data set of predictors involving
both macroeconomic variables and technical indicators. Our findings show that the hybrid averaging method
provides more accurate quantile forecasts than several benchmark methods including the non-parametric av-
eraging method of De Gooijer and Zerom (2019). These findings hold for the full out-of-sample forecasting
period as well as for periods of expansion and contraction of the U.S. economy.

The remainder of the paper is organized as follows. Section 2 provides details of the proposed hybrid av-
eraging method including various methodological and numerical issues of the penalization methods. Section
3 describes the empirical data and forecasting procedure. Then, in Section 4, we conduct an extensive out-of-
sample forecasting experiment and compare the proposed hybrid quantile averaging method with six, non-
hybrid, alternative models/methods. Finally, Section 5 concludes.

2 Methodology

We consider the set of observations {𝑌𝑡}𝑁
𝑡=1 obtained from a strictly stationary time series process {𝑌𝑡, 𝑡 ∈ ℤ}

that depends on qy ≥ 1 past values of Yt, and on a qz-dimensional vector Z𝑡 = (𝑍1,𝑡, … , 𝑍𝑞𝑧,𝑡)′ that consists of
exogenous, possibly lagged, stationary time series. Let X𝑡 = (Y′

𝑡−1,Z′
𝑡)′ ∈ ℝ𝑞 where Y′

𝑡−1 = (𝑌𝑡−1, … , 𝑌𝑡−𝑞𝑦
)′,

and 𝑞 = 𝑞𝑦+𝑞𝑧. Given the observed data set {(X𝑡, 𝑌𝑡)}𝑁
𝑡=1, our goal is to obtain the h-step (h ≥ 1) out-of-sample τth

(0 < τ < 1) conditional quantile of YN + h given X𝑡 = X𝑁 which we denote by 𝑄𝑌𝑁+ℎ
(𝜏|X𝑁). To this end, we define

the associated process {(X𝑡, 𝑌∗
𝑡 )} ∈ ℝ𝑞 × ℝ where the components of the predictor vector X𝑡 = (𝑋1,𝑡, … , 𝑋𝑞,𝑡)′

are given by

𝑋𝑗,𝑡 =
⎧{
⎨{⎩

𝑍𝑗,𝑡, 𝑗 = 1, … , 𝑞𝑧
𝑌𝑡+(𝑗−𝑞𝑧−1), 𝑗 = 𝑞𝑧 + 1, … , 𝑞

�

and

𝑌∗
𝑡 = 𝑌𝑡+ℎ+𝑞𝑦−1, 𝑡 = 1, … , 𝑛, (𝑛 = 𝑁 − ℎ − 𝑞𝑦 + 1).

With this re-formulation, we obtain 𝑄𝑌𝑁+ℎ
(𝜏|X𝑁) directly via

𝑄𝑌∗
𝑡
(𝜏|X𝑁−𝑞𝑦+1) = inf{𝑦 ∶ 𝐹𝑌∗

𝑡
(𝑦|X𝑁−𝑞𝑦+1) ≥ 𝜏}, (1)

where 𝐹𝑌∗
𝑡
(⋅|x) is the conditional distribution of 𝑌∗

𝑡 given X𝑡 = x.
However, even for moderate dimension q, non-parametrically estimating 𝑄𝑌∗

𝑡
(𝜏|X𝑁−𝑞𝑦+1) is very challeng-

ing due to the curse of dimensionality. Therefore, extending Chen et al. (2018) into the conditional quantile
context, De Gooijer and Zerom (2019) suggested approximating 𝑄𝑌∗

𝑡
(𝜏|x) by a linear combination (averaging)

of marginal conditional quantiles 𝜃𝑗(𝜏|𝑥𝑗) = inf{𝑤∶ 𝐹𝑌∗
𝑡
(𝑤|𝑋𝑗,𝑡 = 𝑥𝑗) ≥ 𝜏}, i. e.

𝑄𝑌∗
𝑡
(𝜏|x) = 𝛾0(𝜏) +

𝑞
∑
𝑗=1

𝛾0,𝑗(𝜏) ̂𝜃0,𝑗(𝜏|𝑥𝑗), (2)
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where ̂𝜃0,𝑗(𝜏|𝑥𝑗) is some nonparametric estimate of 𝜃𝑗(𝜏|𝑥𝑗) and γ0, j(τ) are the weights depending on the quantile
level τ. The key idea of this approach is that the non-parametrically estimated marginal conditional quantile
functions carry information about the target 𝑄𝑌∗

𝑡
(𝜏|x). At the same time, all marginal functions are unlikely to be

equally informative. The averaging will assign higher weights to better (more informative) candidate functions.
The conditional quantile approximation (2) is non-parametric because we do not impose a parametric structure
about the candidate marginal quantile functions 𝜃𝑗(𝜏|𝑥𝑗).

2.1 A Hybrid Approach

We assume that m candidate parametric models are available with the corresponding estimated marginal quan-
tile functions { ̂𝜃𝑖,1(𝜏|𝑥1,𝑡), … , ̂𝜃𝑖,𝑞(𝜏|𝑥𝑞,𝑡)} (i = 1, …, m). For each parametric model i, we define a hybrid extension
of 𝑄𝑌∗

𝑡
(𝜏|x) by

𝑄(H)
𝑌∗

𝑡,𝑖
(𝜏|x) = 𝛾0(𝜏) +

𝑞
∑
𝑗=1

𝛾0,𝑗(𝜏) ̂𝜃0,𝑗(𝜏|𝑥𝑗)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

non-parametric

+
𝑞∗

∑
𝑗=1

𝛾𝑖,𝑗(𝜏) ̂𝜃𝑖,𝑗(𝜏|𝑥𝑗)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

parametric

, (𝑖 = 1, … , 𝑚), (3)

where {𝛾0,𝑗(𝜏)}𝑞
𝑗=1 and {𝛾𝑖,𝑗(𝜏)}𝑞∗

𝑗=1 are sets of weights depending on the quantile level τ, which we summarize
by the set {𝛾(H)

𝑖,𝑢(𝜏)}𝑞+𝑞∗

𝑢=1 (i = 1, …, m). In the equity premium quantile forecasting application (see Section 3),
𝑞∗ = 𝑞𝑧. Let the ith design matrix X𝑡 consists of the set of q + q* potential predictors:

{ ̂𝜃0,1(𝜏|𝑋1,𝑡), … , ̂𝜃0,𝑞(𝜏|𝑋𝑞,𝑡), ̂𝜃𝑖,1(𝜏|𝑋1,𝑡), … , ̂𝜃𝑖,𝑞∗(𝜏|𝑋𝑞∗,𝑡)};

its uth component will be denoted by ̂𝜃(H)
𝑖,𝑢(𝜏|𝑋𝑢,𝑡)(𝑢 = 1, … , 𝑞+𝑞∗). So for the ith model the h-step ahead hybrid

quantile forecast of YN + h is given by

̂̃𝑄
(H)

𝑌∗
𝑡,𝑖

(𝜏|X𝑁−𝑞𝑦+1) = 𝛾̂0(𝜏) + ∑
𝑢∈ ̂̃ℳ(H)

𝑖,𝜏(ℎ)

𝛾̂(H)
𝑖,𝑢(𝜏) ̂𝜃(H)

𝑖,𝑢(𝜏|𝑋𝑢,𝑁−𝑞𝑦+1), (4)

where ̂̃ℳ (H)

𝑖,𝜏 (ℎ) is an estimate of the set of selected nonzero quantile predictors ℳ̃ (H)

𝑖,𝜏(ℎ) = {𝑢∶ 𝜃𝑖,𝑢(𝜏) ≠ 0}
associated with 𝑄(H)

𝑌∗
𝑡,𝑖

(𝜏|X𝑁−𝑞𝑦+1), and 𝛾̂(H)
𝑖,𝑢(𝜏) are the corresponding hybrid quantile regression estimates, or

weights. The key idea is to use a set of marginal conditional quantiles as “pilot” forecasts of Yt + h and later
discard irrelevant predictors via appropriate penalization.

2.2 Obtaining ̂̃ℳ (H)

𝑖,𝜏(ℎ)

Let ̂𝜃𝜃𝜃(H)

𝑖 (𝜏|X𝑡) = ( � ̂𝜃(H)
𝑖,1(𝜏|𝑋1,𝑡), … , ̂𝜃(H)

𝑖,𝑞+𝑞∗(𝜏|𝑋𝑞+𝑞∗,𝑡)) �′ denote a (q + q*) × 1 vector of estimates of the combined
marginal quantiles at quantile level τ using the ith parametric model. These estimates and the approxima-
tion 𝑄𝑌∗

𝑡,𝑖
(𝜏|x) jointly serve as a basis to obtain sparse penalized quantile regression estimators of the (q + q*)-

dimensional vector of hybrid prediction weights 𝛾𝛾𝛾(H)
𝑖 (𝜏) = (𝛾(H)

𝑖,1(𝜏), … , 𝛾(H)
𝑖,𝑞+𝑞∗(𝜏))′ (i = 1, …, m). To this end, we

consider the following weighted L1-penalized quantile estimator

𝛾𝛾𝛾(H)
𝑖 (𝜏) = arg min

𝛾𝛾𝛾(H)
𝑖 (𝜏)

{�𝑛−1
𝑛

∑
𝑡=1

(�𝜌𝜏(𝑌∗
𝑡 − 𝛾(H)

0 (𝜏) − ( � ̂𝜃𝜃𝜃(H)

𝑖 (𝜏|X𝑡))�′𝛾𝛾𝛾(H)
𝑖 (𝜏))� + 𝜆𝑛‖w𝑖 ⊙ 𝛾𝛾𝛾(H)

𝑖 (𝜏)‖1} �, (5)

where ρτ(z) = {τ – I(z < 0)}z is the quantile check function, I(·) the indicator function, λn > 0 is a tuning param-
eter, depending on n, w𝑖 = (𝑤𝑖,1, … , 𝑤𝑖,𝑞+𝑞∗)′ is a vector of nonnegative weights, and ‖w𝑖 ⊙ 𝛾𝛾𝛾𝑖(𝜏)‖1 with ⊙
the Hadamard (or direct) product of two vectors. Given the minimizer of eq. (5), we define the set of relevant
predictors at quantile level τ, forecast horizon h, and using parametric model i, by

̂̃ℳ (H)

𝑖,𝜏 (ℎ) = {𝑢∶ 𝛾̂(H)
𝑖,𝑢(𝜏) ≠ 0}, (6)

where 𝛾̂(H)
𝑖,𝑢(𝜏)(𝑢 = 1, … , 𝑞 + 𝑞∗) is an estimate of the uth component of 𝛾𝛾𝛾(H)

𝑖 (𝜏).
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2.3 Choice of Penalty

When w = 1𝑞+𝑞∗ , a vector of ones, the last term of eq. (5) becomes the LASSO (least absolute shrinkage and
selection operator) penalty function 𝑝𝜆𝑛

(|𝛾(H)
𝑖,𝑢(𝜏)|) = 𝜆𝑛|𝛾(H)

𝑖,𝑢(𝜏)|(𝑢 = 1, … , 𝑞 + 𝑞∗; 𝑖 = 1, … , 𝑚). Note that LASSO
assigns the same penalty to each coefficient 𝛾(H)

𝑖,𝑢(𝜏), regardless of whether predictor effects are relevant or ir-
relevant. This may result in estimation inefficiency and model selection inconsistency (Wang and Leng 2008).
ada-LASSO, on the other hand, uses different weights for penalizing irrelevant predictors. In the empirical part
of this study, we adopt ada-LASSO with 𝛾̂(ini)

𝑖,𝑢(𝜏) = 𝛾̂(LASSO)
𝑖,𝑢 (𝜏).1 In order to optimize eq. (5) with ada-LASSO, we

use a proximal alternating direction method of multipliers algorithm contained in the R-FHDQR package.2 As
shown by Gu et al. (2018), this algorithm drastically reduces the computational burden as compared to other
algorithms for penalized quantile regression in high-dimensions.

2.4 Numerical Issues and Choice ofλn

Medeiros and Mendes (2014, 2016) studied the asymptotic properties of ada-LASSO when the errors of a linear
regression model are non-Gaussian and may be conditionally heteroskedastic. These authors derived asymp-
totic properties of sign consistency for ada-LASSO. Moreover, the ada-LASSO estimator has oracle properties;
see also Audrino and Camponovo (2017). Recently, Han and Tsay (2019) investigated the properties of the
LASSO estimators of a linear regression model in the presence of serial dependence (AR models) in both the
covariate vector and the errors. In particular, these authors provide model selection consistency of LASSO
estimators under certain conditions on the tuning parameter λn.

To select the tuning parameter λn, we consider the following prediction-based criterion. For a given λn, let
𝛾𝛾𝛾(H)

𝜆𝑛
(𝜏) be the (q + q*)-dimensional vector of penalized estimates, and | ̂̃ℳ (H)

𝜆,𝜏(ℎ)| be the corresponding number
of non-zero estimates. Then, we choose λn as the value that minimizes the following high-dimensional BIC
criterion

QBIC𝜏(𝜆𝑛) = log (� ∑𝑛
𝑡=1 𝜌𝜏(�𝑌∗

𝑡 − 𝛾̂(H)
𝜆𝑛,0(𝜏) − ( � ̂𝜃𝜃𝜃(H)(𝜏|X𝑡))�′𝛾𝛾𝛾(H)

𝜆𝑛
(𝜏))�) �

+∣ � ̂̃ℳ (H)

𝜆𝑛,𝜏(ℎ)∣ � log(𝑞+𝑞∗) log(log(𝑛))
2𝑛 . (7)

Using simulations, Sherwood and Wang (2016) report that QBICτ can be effective in terms of finite-sample
prediction accuracy and predictor selection. De Gooijer and Zerom (2019, Sec. 3.4) show results of a robustness
check on λn for the LASSO penalty in a time series penalized averaging framework.

3 Models, Data, and Forecasting Procedure

3.1 Parametric Models

In Section 4, we evaluate the ability of the hybrid conditional quantile approach in forecasting the one-step
ahead (h = 1) risk premium of the monthly S&P 500 index, denoted by Rt, using a large set of potential predictors
Zj, t. In particular, we adopt the following parametric (m = 4) DGPs.

1. Time-varying mean (TVM) model with constant volatility:

𝑅𝑡+1 = 𝛽0,𝑗 + 𝛽1,𝑗𝑍𝑗,𝑡 + 𝜀𝑗,𝑡+1, 𝜀𝑗,𝑡+1
i.i.d.∼ 𝒩 (0, 𝜎2). (8)

2. Constant, or prevailing mean (PM) model with EGARCHZ volatility (PM-EGARCHZ):

⎧{
⎨{⎩

𝑅𝑡+1 = 𝛽0,𝑗 + 𝜀𝑗,𝑡+1, 𝜀𝑗,𝑡+1
i.i.d.∼ 𝒩 (0, 𝜎2

𝑗,𝑡+1),
log(𝜎2

𝑗,𝑡+1) = 𝛿0,𝑗 + 𝛿1,𝑗𝑍𝑗,𝑡 + 𝛿2,𝑗 log(𝜎2
𝑗,𝑡) + 𝛿3,𝑗∣ �

𝜀𝑗,𝑡
𝜎𝑗,𝑡

∣ � + 𝛿4,𝑗
𝜀𝑗,𝑡
𝜎𝑗,𝑡

.
� (9)

3. Time-varying mean model with EGARCH volatility (TVM-EGARCH):

⎧{
⎨{⎩

𝑅𝑡+1 = 𝛽0,𝑗 + 𝛽1,𝑗𝑍𝑗,𝑡 + 𝜀𝑗,𝑡+1, 𝜀𝑗,𝑡+1
i.i.d.∼ 𝒩 (0, 𝜎2

𝑗,𝑡+1),
log(𝜎2

𝑗,𝑡+1) = 𝛿0,𝑗 + 𝛿2,𝑗 log(𝜎2
𝑗,𝑡) + 𝛿3,𝑗∣ �

𝜀𝑗,𝑡
𝜎𝑗,𝑡

∣ � + 𝛿4,𝑗
𝜀𝑗,𝑡
𝜎𝑗,𝑡

.
� (10)
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4. Time varying mean model with EGARCHZ volatility (TVM-EGARCHZ):

⎧{
⎨{⎩

𝑅𝑡+1 = 𝛽0,𝑗 + 𝛽1,𝑗𝑍𝑗,𝑡 + 𝜀𝑗,𝑡+1, 𝜀𝑗,𝑡+1
i.i.d.∼ 𝒩 (0, 𝜎2

𝑗,𝑡+1),
log(𝜎2

𝑗,𝑡+1) = 𝛿0,𝑗 + 𝛿1,𝑗𝑍𝑗,𝑡 + 𝛿2,𝑗 log(𝜎2
𝑗,𝑡) + 𝛿3,𝑗∣ �

𝜀𝑗,𝑡
𝜎𝑗,𝑡

∣ � + 𝛿4,𝑗
𝜀𝑗,𝑡
𝜎𝑗,𝑡

.
� (11)

Models (8)–(11) were analyzed by Cenesizoglu and Timmermann (2012) in the context of conditional mean
prediction. Clearly, models (8)–(10) are all nested within model (11). However, too many model parameters can
lead to efficiency losses in the out-of-sample forecasting performance due to estimation uncertainty and model
misspecification. So, we gain flexibility by considering a wider set of models than just using model (11). There
is a large literature in finance exploring the predictability of the conditional mean and/or variance of stock
returns; see, e. g. Rapach and Zhou (2013) for a review.

3.2 Data

To help obtain the one-step-ahead quantile forecasts for Rt, we consider a total of 28 exogenous predictors Zj, t
(𝑗 = 1, … , 28) consisting of 14 macroeconomic predictors and 14 technical indicators covering the time period
1951:01 – 2016:12 (792 observations). The macroeconomic predictors are summarized as follows: dividend-price
ratio (DP); dividend yield (DY); earnings-price ratio (EP); dividend-payout ratio (DE); equity risk premium
volatility (RVOL); book-to-market ratio (BM); net equity expansion (NTIS); treasury bill rate (TBL); long-term
yield (LTY); long-term return (LTR); term spread (TMS); default yield spread (DFY); default return spread
(DFR); and inflation (INFL). These predictors have been the subject of conditional mean forecasting studies by
Welch and Goyal (2008), Cenesizoglu and Timmermann (2012), and Pedersen (2015), among others. Neely et al.
(2014) apply single-variable mean regressions to predict Rt using the above data set. Lima and Meng (2017)
and Meligkotsidou et al. (2014, 2019) consider the 14 macroeconomic predictors within the context of quantile
prediction.3

The 14 technical indicators fall into three categories:

– A moving average (MA) rule that generates a buy (sell) signal Si, t with Si, t = 1 if MA 𝑠,𝑡 ≥ MAℓ,𝑡; 0 otherwise.
Here MA 𝑗,𝑡 = (1/𝑗) ∑𝑗−1

𝑖=0 𝑃𝑡−𝑖 for 𝑗 = 𝑠, ℓ with Pt the level of the stock price index, and 𝑠(ℓ) the length of the
short (long) MA (𝑠 < ℓ). The resulting MA indicator is denoted by MA (𝑠, ℓ) with s = 1, 2, 3 and ℓ = 9, 12.

– A momentum (MOM) rule where Si, t = 1 if 𝑃𝑡 ≥ 𝑃𝑡−𝑚; 0 otherwise. The momentum indicator is denoted by
MOM(m) with m = 9, 12.

– A trading volume rule using MAs of “on-balance” volumes (OBVs) defined as OBV𝑡 = ∑𝑡
𝑘=1 VOL𝑘𝐷𝑘

where VOLk is a measure of the trading volume during period k and Dk is a binary variable that takes
a value of 1 if 𝑃𝑘 − 𝑃𝑘−1 ≤ 0 and –1 otherwise. Then Si, t = 1 if MAOBV

𝑠,𝑡 ≥ MAOBV
ℓ,𝑡 ; 0 otherwise. Here

MAOBV
𝑗,𝑡 = (1/𝑗) ∑𝑗−1

𝑖=0 OBV𝑡−𝑖 for 𝑗 = 𝑠, ℓ. The corresponding indicator is denoted by VOL(𝑠, ℓ) with s = 1, 2, 3
and ℓ = 9, 12.

The monthly macroeconomic predictors are available from Amit Goyal’s website at
http://www.hec.unil.ch/agoyal/. The technical indicators can be constructed using Matlab code made
available with the paper of Neely et al. (2014). The S&P 500 volume data, used to compute the monthly VOL
indicators, can be downloaded from Yahoo Finance.

3.3 Forecasting Procedure

We generate one-step ahead quantile forecasts, i. e. Rn + 1, with a recursive window scheme. Our first forecast
origin/base is 1965:12 and hence the first sample covers the period t ∈ [1951:01, 1964:12] (n = 168). By recursive,
we mean that our combined conditional quantile procedure is repeated by extending the forecast origin, one
observation at a time, up to and including 2016:11. Thus, our last time series sample covers the period 1951:01–
2016:11 (n = 791). With such a recursive design, our forecasts cover the period 1966:01–2016:12 and a total of
F = 624 conditional quantile forecasts are generated.

In Section 4, we report recursive prediction results for the following seven models/methods. Note that
forecasts are for each quantile level τ ∈ {0.1, 0.5, 0.9}. Methods 1–5 are logically connected in the sense that they
are based on the concept of averaging or combining forecasts. For example, Method 1 allocates all the weight to
one predictor. Methods 2–5 assign weights (equal or varying) to all the predictors. Methods 6 and 7 are popular
approaches used in the quantile regression literature. Unlike Methods 6 and 7, penalized averaging does not
require additivity.
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1. Benchmark Model (BM). For each parametric model i ∈ {1, 2, 3, 4} (corresponding to (8)–(11)) and each time
period t ∈ {1951:01–2016:11}, we select the predictor from the set Zj, t (j ∈ {1, …, 28}) that produces the
lowest quantile forecast error. This results in F total forecast errors, and the average of these F values will
be reported as a measure of accuracy, see Section 3.4. In this way, we will have four forecast benchmarks,
denoted by BM-i (i = 1, …, 4).

2. Equal weighting (EW). For each parametric model i ∈ {1, 2, 3, 4} and each time period t ∈ {1951:01–2016:11},
we obtain quantile forecasts by equally averaging the quantile forecasts obtained from the 28 predictors.
In this way, we will have four forecast equally weighted methods, denoted by EW-i (i = 1, …, 4). Unlike the
benchmark model, all predictors contribute equally to quantile forecasts regardless their relative forecast
accuracy.

3. Penalized Averaging (PA). Forecasts are based on weighted averaging similar to the EW approach, but the
weights are data driven obtained by penalized quantile averaging. In terms of the proposed hybrid ap-
proach, see eq. (3), we only consider the second component (or the parametric part). Thus, PA is a special
case of the hybrid method. In this way, we will have four methods, denoted by PA-i (i = 1, …, 4).

4. Penalized Averaging of Nonparametric quantiles (PA-NP). This approach is also a special case of the hybrid
method, see eq. (3), where only the non-parametric component is considered. This approach was proposed
in De Gooijer and Zerom (2019).

5. Hybrid (H). This is the hybrid approach introduced in this paper (3) where parametric and non-parametric
approaches are combined. In this way, there are four hybrid methods, denoted by H-i (i = 1, …, 4), and 56
potential predictors.

6. Penalized Linear Quantile Regression (P-Lin-QR). This approach is well known in the literature. It does not
allow for nonlinearities in the predictors.

7. Additive QR (Ad-QR). This approach is a generalization of (6) where each additively entered predictor has
a non-parametric (possibly nonlinear) effect. Unlike the approaches (3), (4), (5) and (6), we do not conduct
predictor selection for the Ad-QR. Instead, we use the predictor selection results of approach (4) and imple-
ment a low dimensional additive models using the R-gamboost package. To by-pass predictor selection, we
set the hyper parameter (called mstop) at 5,000.

3.4 Evaluating Predicted Quantiles

Let 𝑒(⋅)
𝑡 = 𝑌𝑁+1 − 𝑄(⋅)

𝑌∗
𝑡
(𝜏|X𝑁−𝑞𝑦+1) (t = 1, …, n) be the one-step ahead out-of-sample quantile prediction error

(QPE) at quantile level τ, where the superscript (·) refers either to the one of the seven forecast approaches. In
this paper, we evaluate the accuracy of the quantile forecasts using an average of the check loss function of QPE
values, i. e.

𝐿̂(⋅)
𝜏 = 1

𝑛
𝑛

∑
𝑡=1

𝜌𝜏( �𝑒(⋅)
𝑡 ) �, (12)

which is an estimate of the expected loss 𝐿(⋅)
𝜏 = 𝔼[𝑌𝑁+1 − 𝑄(⋅)

𝑌∗
𝑡
(𝜏|X𝑁−𝑞𝑦+1)]. 𝐿̂(⋅)

𝜏 weights the difference between
the observed value YN + 1 and the forecasted quantile 𝑄(⋅)

𝑌∗
𝑡
(𝜏|X𝑁−𝑞𝑦+1) by (1 – τ) when YN + 1 is lower than the

τth quantile, and by τ when YN + 1 exceeds the quantile. Hence, eq. (12) is a natural way to evaluate quantile
forecasts; see, e. g. Giacomini and Komunjer (2005).

We also make pairwise comparisons between each of the four BM forecast errors 𝑒(BM)
𝑡,𝑖 = 𝑌𝑁+1 − 𝑄(BM)

𝜏,𝑖 (i = 1,
…, 4; N ≡ n = 168,…) and the quantile forecast errors obtained from the hybrid method. In particular, we assess
their differences via a Diebold–Mariano (DM) type test statistic. To this end, let 𝑒(𝐴)

𝑡 and 𝑒(𝐵)
𝑡 be the associated

one-step ahead QPEs for the pair (A, B) of methods. Then, for fixed τ, the null- and alternative hypotheses of
interest are, respectively,

ℍ0 ∶ 𝜇𝜏 ≡ 𝔼[𝜌𝜏(𝑒(𝐴)
𝑡 ) − 𝜌𝜏(𝑒(𝐵)

𝑡 )] = 0 and ℍ1 ∶ 𝔼[𝜌𝜏(𝑒(𝐴)
𝑡 ) − 𝜌𝜏(𝑒(𝐵)

𝑡 )] < 0. (13)

The corresponding loss differential is defined as

𝐷𝑡,𝜏(𝐴, 𝐵) = {𝜏 − 𝐼(𝑒(𝐴)
𝑡 < 0)}𝑒(𝐴)

𝑡 − {𝜏 − 𝐼(𝑒(𝐵)
𝑡 < 0)}𝑒(𝐵)

𝑡 .

6

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER DeGooijer and Zerom

The null hypothesis that method A produces as accurate forecasts as method B can be tested using the test
statistic

𝐷𝜏(𝐴, 𝐵)/√Var( �𝐷𝜏(𝐴, 𝐵)) � ∼ 𝒩 (0, 1), (14)

where 𝐷𝜏(𝐴, 𝐵) is the average over t of Dt, τ(A, B). Under the alternative hypothesis, we specify a one-sided test
(right tail), so that rejection of the null indicates that method A is more accurate than method B. For h = 1, a
consistent estimator of Var( �𝐷𝜏(𝐴, 𝐵)) � is given by the sample variance of Dt, τ(A, B). For h > 1, one may use the
Newey–West estimator for the variance.4

4 Forecast Results

Throughout this section, we present predictor selection and forecasting results for the full sample and for peri-
ods of contraction and expansion of the U.S. business cycle, as dated by the U.S. National Bureau of Economic
Research. This provides insight in the relative strength of the proposed combined method in forecasting con-
ditional quantiles of Rt during each time period. For the full sample period F = 624, and F = 534 (90) for the
expansion (contraction) time periods.

4.1 Results

4.1.1 Predictor Selection

Table 1 shows predictor selection frequencies of five models/methods for the full sample period. To ease inter-
pretation, we only report those predictors which are selected in at least 5 % of the times for the three quantile
levels τ.
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Five important observations follow from Table 1. First, it is clear that only a small subset of the total number
of macroeconomic predictors plays a role in the selection of the final set of predictors at all quantile levels.
In particular this applies to the set of predictors {RVOL, NTIS, TBL, LTR, TMS}. Second, only a few technical
indicators are selected as a part of the overall set of predictors. Overall, MA(3,9), MOM(12), VOL(1,12), and
VOL(3,9) contribute to the forecasting performance of the hybrid quantile averaging approach. But as can be
seen from the selection frequencies, their contribution is relatively low. These results differ from the study by
Neely et al. (2014), who showed that technical indicators provide complementary information to conditional
mean forecasting. Third, we find considerable differences in the selection of predictors at the three quantile
levels. For instance, INFL contributes to the forecasting performance of all models/methods at τ = 0.1 while at
τ = 0.9 the selection frequency of this variable is below 5 %. Also the macroeconomic predictor DP is selected
frequently at τ = 0.9 by the hybrid approach and hardly anywhere else by other models/methods. Fourth, very
few macroeconomic predictors have more than 10 % selection scores. Some exceptions are DE (44.0 %) with
method PA-3, RVOL (44.7 %) with method PA-4, and TBL (34.8 %) with method BM-2. Lastly, nonparametric
marginal predictors are frequently selected by the hybrid approach, as denoted by the superscript *. Contrib-
utory predictors obtained from parametric conditional quantiles are RVOL, DFY and DFR at τ = 0.1, LTR and
DFR at τ = 0.5, and RVOL, TBL, LTY, and DFR at τ = 0.9.

4.1.2 Forecasting Performance

Table 2 presents ratios of thick loss functions, 𝜌𝜏(𝑒(Method)
𝑡 )/𝜌𝜏(𝑒(BM-i)

𝑡 )(𝑖 = 1, … , 4), averaged over F = 624 predic-
tions, i. e. the full prediction sample. Values less (greater) than one indicate that a particular method is more
(less) accurate than a particular benchmark model (BM).

Table 2: Comparing conditional quantile averaging methods. The entries are ratios of thick loss functions,
𝜌𝜏(𝑒(Method)

𝑡 )/𝜌𝜏(𝑒(BM-i)
𝑡 ), averaged over F = 624 predictions (i = 1, …, 4). Embolded entries show the lowest ratios for each τ

value and each BM model.

Method τ = 0.1 τ = 0.5 τ = 0.9

BM–1 BM–2 BM–3 BM–4 BM–1 BM–2 BM–3 BM–4 BM–1 BM–2 BM–3 BM–4

EW–1 0.968 1.022 1.018 1.013 0.981 0.990 0.974 0.976 0.970 0.983 0.979 0.954
EW–2 0.927 0.979 0.975 0.970 0.992 1.001 0.985 0.987 0.919 0.931 0.927 0.903
EW–3 0.927 0.978 0.974 0.969 0.983 0.992 0.976 0.978 0.909 0.920 0.917 0.893
EW–4 0.920 0.971 0.967 0.962 0.983 0.991 0.976 0.978 0.911 0.923 0.919 0.896

PA-1 0.865 0.913 0.909 0.905 0.934 0.942 0.928 0.929 0.903 0.914 0.911 0.888
PA-2 0.861 0.909 0.905 0.900 0.945 0.954 0.939 0.941 0.882 0.893 0.890 0.867
PA-3 0.877 0.925 0.921 0.917 0.941 0.949 0.934 0.936 0.874 0.885 0.882 0.859
PA-4 0.867 0.915 0.911 0.906 0.940 0.948 0.933 0.935 0.888 0.900 0.896 0.873

PA-
NP

0.873 0.921 0.918 0.913 0.913 0.921 0.906 0.908 0.906 0.918 0.914 0.891

P-Lin-
QR

1.185 1.251 1.246 1.239 0.959 0.968 0.952 0.954 0.936 0.948 0.945 0.920

Ad–
QR

0.836 0.883 0.879 0.875 0.909 0.917 0.903 0.905 0.940 0.952 0.948 0.924

H-1 0.790 0.833 0.830 0.826 0.896 0.904 0.890 0.892 0.834 0.844 0.841 0.820
H-2 0.775 0.818 0.815 0.811 0.898 0.906 0.892 0.893 0.818 0.828 0.825 0.804
H-3 0.792 0.836 0.832 0.828 0.897 0.905 0.890 0.892 0.825 0.836 0.832 0.811
H-4 0.775 0.818 0.815 0.810 0.896 0.904 0.890 0.891 0.824 0.834 0.831 0.810

Notes: (i) EW = Equal Weighting, BM = Benchmark Model, PA = Penalized Averaging; PA-NP = Penalized Averaging with NP marginal
quantiles, P-Lin-QR = Penalized linear model with quantile regression and Ad-QR = Additive quantile regression; (ii) For the purpose of
this table, the entries are measured up to three decimal figures such that more than one ratio of thick loss functions may have the lowest
value.

The hybrid approach has the best forecasting results relative to the BM models and across all values of τ. In-
deed, without any exception, the gains are considerable. Also these gains are present over all (semi-)parametric
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models and methods. The ability of the hybrid approach to capture nonlinear effects (e. g. volatility) in a simple
way is a likely reason for this success.

Two other results in Table 2 are noteworthy. First, the EW-2–EW-4 quantile forecasts are better than the
forecasts obtained from BM-1 to BM-4 at all quantile levels. This is interesting, since the EW combination ap-
proach uses fixed (non-random) weights of conditional quantile forecasts across all time periods while the BM
approach uses random weights obtained by choosing the best predictor at each time period. Second, the Ad-QR
approach has lower thick loss function values than the P-Lin-QR approach across almost all BM models and τ
values. This is another indication that allowing for nonlinearities in a quantile forecasting approach can lead to
systematic improvements.

The use of the test statistic 𝐷𝜏 to the pair (H-i, BM-i) (i = 1, …, 4) resulted in very small p-values at all quantile
levels τ. Thus, indicating that there are no benefits in using the BM approach. We also computed 𝐷𝜏 for pairwise
comparisons between the hybrid approach and all other models/methods.5 In all cases, the p-values do not
exceed the 5 % nominal significance level. Hence, in summary, we conclude that the hybrid averaging approach
yields statistically more accurate quantile forecasts than the (semi-)parametric models/methods.

4.2 Expansion and Contraction

Table 3, presents model selection frequencies of the hybrid approach for the expansion (Panel A) and contraction
(Panel B) period. As expected from the results presented in Table 1, the list of selected predictors no longer
includes the predictors EP, BM, LTY, MOM(9), and VOL(2,12). Panel A indicates that the set of macroeconomic
predictors {DY, DE, RVOL, NTIS, TBL, LTR, TMS} have considerable forecasting power at all quantile levels.
On the other hand, Panel B indicates that during periods of recession (contraction), the set of macroeconomic
predictors {LTR, TMS, DFY, INFL} contribute to the forecasting performance of the hybrid quantile averaging
approach. So, except for LTR, there is no overlap between both sets, given the 5 % selection threshold. Further,
we see from Table 3 that only a few technical indicators contribute to the prediction performance of the hybrid
approach. Overall, the list of selected predictors in Table 3 is not markedly different from the one given in Table
1, and the selection frequencies are about the same. It is also evident from Table 3 that the conditional parametric
quantile estimates of the predictors RVOL, LTR, DFR, and INFL all contribute to the forecasting power of the
hybrid approach.

Table 4 presents averaged ratios of the thick loss functions 𝜌𝜏(𝑒(Method)
𝑡 )/𝜌𝜏(𝑒(BM-i)

𝑡 )(𝑖 = 1, … , 4) for the periods of
expansion and contraction. For the expansion period (Panel A), the embolded entries indicate that the hybrid
quantile approach has higher predictive power than all other methods/models irrespective of the quantile
level τ. These findings are in line with the earlier evidence for the full sample period. Turning to the contraction
period (Panel B), we see similar improvements of the hybrid quantile approach in the case of τ = 0.1 and τ = 0.9.
For τ = 0.5, it appears that the prediction performance of Ad-QR is slightly “better” than the four HW methods.
So the hybrid forecasting results are quite robust in the above two sub-sample periods.
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Table 4: Comparing conditional quantile averaging methods for the expansion and contraction period. The entries are
ratios of thick loss functions, 𝜌𝜏(𝑒(Method)

𝑡 )/𝜌𝜏(𝑒(BM-i)
𝑡 ), averaged over F = 534 (expansion) and F = 90 (contraction) predictions

(i = 1, …, 4). Embolded entries show the lowest ratios for each τ value, each BM model, and each time period.

Method τ = 0.1 τ = 0.5 τ = 0.9

BM-1 BM-2 BM-3 BM-4 BM-1 BM-2 BM-3 BM-4 BM-1 BM-2 BM-3 BM-4

Panel A: Expansion

EW-1 0.999 1.005 1.000 1.000 0.985 0.995 0.983 0.982 0.955 0.973 0.962 0.942
EW-2 0.988 0.993 0.988 0.986 0.992 1.002 0.990 0.989 0.910 0.928 0.917 0.898
EW-3 0.987 0.993 0.988 0.986 0.986 0.996 0.984 0.983 0.901 0.919 0.907 0.889
EW-4 0.986 0.991 0.986 0.985 0.986 0.996 0.984 0.983 0.905 0.923 0.912 0.893

PA-1 0.945 0.950 0.945 0.943 0.936 0.945 0.934 0.934 0.880 0.897 0.886 0.867
PA-2 0.925 0.930 0.925 0.923 0.946 0.955 0.944 0.943 0.874 0.891 0.880 0.862
PA-3 0.931 0.936 0.930 0.929 0.942 0.951 0.940 0.940 0.868 0.885 0.874 0.855
PA-4 0.939 0.944 0.939 0.937 0.941 0.950 0.939 0.938 0.869 0.886 0.875 0.857

PA-
NP

0.955 0.961 0.956 0.954 0.929 0.938 0.927 0.926 0.907 0.924 0.913 0.894

P-Lin-
QR

1.375 1.382 1.375 1.373 0.958 0.968 0.956 0.955 0.926 0.944 0.932 0.913

Ad-
QR

0.948 0.953 0.948 0.946 0.945 0.954 0.943 0.942 0.965 0.984 0.972 0.952

H-1 0.885 0.890 0.885 0.884 0.917 0.926 0.915 0.914 0.838 0.854 0.844 0.826
H-2 0.874 0.878 0.874 0.872 0.918 0.927 0.916 0.916 0.819 0.835 0.824 0.807
H-3 0.892 0.896 0.892 0.890 0.917 0.926 0.915 0.914 0.826 0.842 0.832 0.814
H-4 0.877 0.881 0.877 0.875 0.917 0.926 0.915 0.914 0.825 0.841 0.830 0.813

Panel B: Contraction

EW-1 0.887 1.076 1.075 1.059 0.969 0.974 0.946 0.956 1.030 1.018 1.048 1.002
EW-2 0.770 0.935 0.934 0.920 0.992 0.997 0.968 0.979 0.951 0.940 0.967 0.925
EW-3 0.766 0.930 0.929 0.915 0.974 0.979 0.951 0.962 0.937 0.926 0.953 0.911
EW-4 0.747 0.907 0.907 0.892 0.970 0.975 0.947 0.958 0.933 0.923 0.950 0.908

PA-1 0.656 0.797 0.796 0.784 0.927 0.932 0.906 0.915 0.991 0.980 1.009 0.965
PA-2 0.694 0.842 0.842 0.828 0.944 0.949 0.922 0.932 0.913 0.903 0.929 0.888
PA-3 0.734 0.891 0.890 0.876 0.938 0.943 0.916 0.926 0.897 0.887 0.913 0.873
PA-4 0.678 0.823 0.822 0.810 0.938 0.942 0.915 0.925 0.962 0.951 0.979 0.936

PA-
NP

0.656 0.797 0.796 0.784 0.858 0.863 0.838 0.847 0.902 0.892 0.918 0.878

P-Lin-
QR

0.685 0.832 0.831 0.818 0.963 0.968 0.940 0.951 0.975 0.964 0.992 0.948

Ad-
QR

0.538 0.653 0.652 0.642 0.817 0.821 0.797 0.806 0.835 0.826 0.850 0.813

H-1 0.539 0.654 0.653 0.643 0.829 0.832 0.809 0.818 0.818 0.808 0.832 0.800
H-2 0.517 0.627 0.627 0.617 0.829 0.834 0.810 0.819 0.815 0.805 0.829 0.793
H-3 0.529 0.643 0.642 0.632 0.830 0.834 0.810 0.819 0.821 0.812 0.836 0.799
H-4 0.508 0.616 0.616 0.606 0.826 0.830 0.806 0.815 0.820 0.810 0.834 0.800

Notes: (i) EW = Equal Weighting, BM = Benchmark Model, PA = Penalized Averaging; PA-NP = Penalized Averaging with NP marginal
quantiles, P-Lin-QR = Penalized linear model with quantile regression regression and Ad-QR = Additive quantile regression; (ii) For the
purpose of this table, the entries are measured up to three decimal figures such that more than one ratio of thick loss functions may have
the lowest value.
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5 Conclusions

We proposed a hybrid approach to combine relevant information from parametric and semiparametric quantile
forecasts in high dimensions. It rests on the idea of combining, or averaging misspecified candidate parametric
and nonparametric quantile forecasts, which in this study are the marginal quantiles, to form an approxima-
tion of the true combined conditional quantile. One advantage of the approach is that the weights of the com-
bined quantile forecasts are unknown as opposed to methods with known, fixed, combinations of predictors.
Indeed, we find overwhelming empirical evidence that in terms of quantile forecasting performance our hy-
brid approach works well in identifying relevant predictors from a large set of macroeconomic predictors and
technical indicators and, more importantly, results in improved combined out-of-sample forecasts over (semi-
)parametric models/methods. We also provided some insights as to where the gain of the hybrid method comes
from. Further, we have seen that very different forecast results emerge in the right tail of the conditional quan-
tile distribution. These results are mainly based on the prediction performance of the set of 14 macroeconomic
variables, while there is hardly any evidence supporting the quantile predictive performance of the 14 technical
indicators.

These empirical results raise questions for further research. In particular, it may be of interest to gain fur-
ther insight in the forecasting performance of the hybrid approach via a controlled Monte Carlo experiment.
One may also explore the possibility of making economic gains from utilizing information in the tails of the
return distribution via application of the hybrid approach. Extending the paper to multi-step ahead conditional
quantile forecasting within the current hybrid framework is another topic worth investigating.
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Notes
1 Konzen and Ziegelmann (2016) study some alternative forms of LASSO-type penalties for predictor selection and conditional mean
forecasting.
2 Available at: http://users.stat.umn.edu/ zouxx019/ftpdir/code/fhdqr/. The computer code is running on R-3.4.4.
3 These authors approximate the conditional mean via composite quantiles which is a topic well studied in statistics; see, e. g. Kong and
Xia (2014). This naive approach of obtaining predictions is by construction restricted to linear specifications as quantile regressions do not
capture nonlinearities in the DGP. For this reason, and many differences in forecast design, a comparison between our forecasting results
in Section 4.1 and the empirical results obtained by these authors is not possible.
4 Note, we consider a non-nested pairwise forecast comparison. By allocating only a relatively small fraction of our observations to the
forecast period, we are able to side-step issues related to the effects of in-sample parameter estimation uncertainty on the distribution of
the DM test statistic; see West (2006) for a discussion.
5 Results are available upon request.
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