UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Scalability of Container Overlays for Policy Enforcement in Digital Marketplaces

Shakeri, S.; van Noort, N.; Grosso, P.

DOI
10.1109/CloudNet47604.2019.9064090

Publication date
2019

Document Version
Final published version

Published in
2019 IEEE 8th International Conference on Cloud Networking (CloudNet 2019)

License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):

Shakeri, S., van Noort, N., & Grosso, P. (2019). Scalability of Container Overlays for Policy
Enforcement in Digital Marketplaces. In 2019 IEEE 8th International Conference on Cloud
Networking (CloudNet 2019): Coimbra, Portugal, 4-6 November 2019 (pp. 182-185). IEEE.
https://doi.org/10.1109/CloudNet47604.2019.9064090

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Download date:10 Mar 2023

https://doi.org/10.1109/CloudNet47604.2019.9064090
https://dare.uva.nl/personal/pure/en/publications/scalability-of-container-overlays-for-policy-enforcement-in-digital-marketplaces(ef78c1e7-36e0-40ac-8de9-59ae56607696).html
https://doi.org/10.1109/CloudNet47604.2019.9064090

Scalability of Container Overlays for Policy
Enforcement in Digital Marketplaces

Sara Shakeri
Systems and Networking Lab
University of Amsterdam
Amsterdam, The Netherlands
s.shakeri@uva.nl

Abstract—Digital marketplaces (DMPs) are emerging as a
framework for organizations to share their data. Security and
support for multi-tenancy are the key features of DMPs. DMPs
infrastructure can be built upon container-based networks in the
cloud environments. However, there is not at the moment an in-
depth analysis of the capability of container networks to support
this mode of operation. In this paper, we evaluate the capability
of Cilium and Calico, the two most popular container network
techniques, in providing security (policy scalability) and handling
the multi-tenancy requirements (pod scalability) of DMPs. We first
measured the policy scalability in the network, and both Calico
and Cilium scale well. However, by studying the pod scalability
we determine there is around 50% throughput degradation in
both technologies by increasing the number of pods from one to
forty.

Keywords—Digital Marketplace, Data Sharing, Containers,
Docker, Container Overlay Networks, Cloud Environment.

I. INTRODUCTION

Digital marketplaces [1] (DMPs) constitute a novel frame-
work for secure data sharing and they are governed by rules
and agreements among participating parties. In fact, different
organizations are willing to share their data with each other
only if the data exchanges follow predefined rules. DMPs
guarantee exactly this: that the digital collaboration between
multiple tenants is efficient and secure. Therefore, providing
security and handling multi-tenancy are of the most important
requirements which should be provided in a secure DMP.

The participating organizations in a DMP want to use both
shared information and shared computational applications [2].
Therefore, two kinds of digital resources can be shared among
organizations in a DMP: algorithm and data. Fig. 1 depicts
the general architecture of a secure DMP. All of the digital
collaborations in a DMP are based on the access rights and
agreements among participating organizations, i.e. algorithm
suppliers and data suppliers [3]. The agreements can be
presented in different description models [4]. They will be
translated into the network policies which filter the allowed
traffic flow. Enforcing these network policies in the network
plays an important role in providing security in a DMP.
Agreements between DMP parties need to be converted in
deployment models and deployment specifications. Concretely,
cloud systems can be used for setting up the DMP as they

978-1-7281-4832-8/19/$31.00 (© 2019 IEEE

Niek van Noort
University of Amsterdam
Amsterdam, The Netherlands
niek.vannoort @student.uva.nl

Paola Grosso
Systems and Networking Lab
University of Amsterdam
Amsterdam, The Netherlands
p-grosso@uva.nl

National Law &
Regulations

Secure Digital Marketplace
Membership
Organization

Agreement

Registry —l

Dispute

Market rules

Member
Admission

Resolution

Deployment
Models

Marketplace technical
infrastructure Parameterization &
Deployment authorizations

Algorithm supplier(s) Specification

Customer(s)

Accounting

& Auditing

Data supplier(s) Future Internet Capabilities

Fig. 1. Secure Digital Marketplace Framework [5]

can provide the sharing platform for different organizations
with much less time and cost. A container-based solution,
e.g. Docker [6], can be deployed in the cloud to construct
the sharing application platform. Docker containers can act
as participating parties in a DMP and perform data sharing.
To put the containers in connection with each other and
enforce the network policies, one of the container overlay
network technologies can be deployed [7]. There are different
implementation methods of container overlay technologies
and selecting the proper one is highly dependent on the
application’s workload and its requirements.

In this paper, we specifically focus on the sharing appli-
cation in a DMP and consider enforcing the network policies
and supporting the multi-tenancy as its requirements. Our goal
is evaluating how container overlay network technologies can
fulfill these requirements. A lot of works have been done
for analyzing different characteristics of container overlay
networks [7]. However, to the best of our knowledge, there
is no study which investigates the capability of container
overlay technologies in sharing applications. To this end, we
set up a container-based sharing platform for emulating a DMP
and deployed Cilium [8] and Calico [9] as overlay network
technologies, as they have the best support for enforcing
network policies [10]. The network is set up as a Kubernetes
cluster and containers are running inside the pods [11]. To
evaluate Cilium and Calico performance in policy enforcement
and handling the multi-tenancy, we observe how well these
two overlay technologies scale with an increasing number of

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on March 11,2021 at 16:22:22 UTC from IEEE Xplore. Restrictions apply.

policies and pods in the network.

II. POLICY AND POD SCALABILITY IN DMPS

According to the agreements established in a DMP, various
scenarios can be defined for sharing the data and algorithm.
Four of them are depicted in Fig. 2. Each scenario determines
the permitted and prohibited traffic flow among the organi-
zations which can be translated to network policy and then
implemented in the container-based infrastructure.

A
output @ Algorithm

IT data

B Scenario 1

A
@ Algorithm

o @ o
. @
output

\jda(a
B Scenario 3

B Scenario 4

Algorithm

Fig. 2. Examples of sharing scenarios in a DMP

Let’s consider Scenario 1 in Fig. 2 as the target scenario
which should be implemented in the infrastructure. It shows
the algorithm of organization A will be executed on data of
organization B at the location belonging to organization A,
and then organization A will use the output of the operation.
To implement this, it is necessary to define a policy in the
network which permits all of the connection from organization
B to organization A and prohibits any other connection from
other parties. Listing. 1 shows the Kubernetes network policy
that accomplishes the desired behavior.

Listing 1
A CONTAINER NETWORK POLICY, SPECIFYING CONNECTION
RULES BETWEEN ORGANIZATION A AND ORGANIZATION B

kind: NetworkPolicy
metadata:
name: Network_Policy_Example
spec:
podSelector:
matchLabels :
id.pod : OrganizationA
policyTypes:
— Ingress
— Egress
ingress:
— from:
— podSelector:
matchLabels :
id.pod : OrganizationB

However, running the policy imposes an overhead in the
network and may affect the network performance, especially
when the number of policies increases. It becomes therefore
very important to quantify the policy scalability (the through-
put of the network when the number of policies increases) of
each container networking technology.

A second other important factor is the network performance
when the number of pods increases. In many cases in a
Kubernetes multi-tenant cluster, it is necessary to run multiple

numbers of pods at the same time to handle the applica-
tions’ requests. Therefore, it is worth it to investigate the
performance in handling concurrent communications between
multiple pods, e.g. pod scalability.

III. CONTAINER NETWORKING: OVERLAY TECHNOLOGY

The method of bringing the connectivity among containers
across multiple machines can be provided by overlay networks.
The overlay network can handle the access rules of the
traffic flows by enforcing the policies. There exist various
implementations of overlay networks for Docker containers
which are also integrated with Kubernetes, like Weave [12],
Flannel [13], Cilium, and Calico. The network policies can be
defined and implemented by container overlay technologies.
In this work, we investigate two of the most popular overlay
networks technologies as Cilium and Calico.

Cilium - Cilium is an open source technology that is
developed for securing the network connectivity of the Linux
containers which are managing by Docker and Kubernetes. It
leverages eBPF [14] as a technology for filtering and security
policy enforcement. In the Cilium architecture, the Cilium
agent will set up the connectivity and networking among
containers in a cluster and also is responsible for deploying
the network security policies. Linux kernel eBPF runs the
bytecodes which are compiled by Cilium in order to enforce
the security and policies over the traffic among containers
from within the kernel. In Cilium, all the packets which are
sent by a container to an endpoint in the overlay network, are
encapsulated by VXLAN.

Calico — Calico is used to create overlay networks and
establish connections between containers across the nodes. The
Calico node agent consists of three main components: felix,
bird, and confd. felix is responsible for providing the connec-
tivity and policy enforcement by programming the routes and
iptable on the host. bird distributes the routing information
which is programmed by felix between hosts as a Linux BGP
agent. In case of any changes to the BGP configuration in
the etcd datastore confd triggers bird to reload the changes on
each host. There are two methods for bringing the connectivity
between multiple hosts in Calico: BGP and IPIP. In IPIP
the original packet with the container IP addresses will be
encapsulated at the network layer with the host IP address. In
Calico, the policy will be translated to the host iptable rules.

IV. EXPERIMENT SETUP

We have set up the sharing platform as a Kubernetes cluster,
utilizing three VMs running on separate physical machines.
The VMs are connected via 10Gbps Ethernet link and each
VM is running Ubuntu 18.04 and Linux kernel 4.15 as the
operating system and has access to one CPU core. One of the
VMs is functioning as a master node. The other two VMs are
joined to the cluster as worker nodes and run Kubernetes pods.
We use Cilium version 1.6 and Calico version 3.5 as overlay
network in the experiments. Fig. 3 depicts the network setup.

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on March 11,2021 at 16:22:22 UTC from IEEE Xplore. Restrictions apply.

VM1

Kubernetes
Master Node

| Overlay Network |

Worker#1 Worker#2

-

Fig. 3. Network experiment setup, emulating a DMP

V. RESULTS

Policy scalability — We evaluate the network policy scalability
by measuring the throughput of the network when the number
of policies increases. The results are the mean throughput
of three times experiment and each time for 300 seconds,
measured by iperf3. Fig. 4 depicts the result of measuring
the throughput of the network from a running pod in a worker
node to another one, when the number of policies increases.
The difference between the policies is the port number. The
policies are set in the way that the incoming traffic will be
matched with the last policy. As the results in Fig. 4 show,
although there is little throughput degradation, overall both
Calico and Cilium perform well in policy scalability.

_ TCP - UDP

o
o

—I— Calico

~I- Cilium

3

it/s)
©

HTEFEETE 3

Throughput (Gbi
Throughput (Gbit/s)

|2 calieo
~I- Cilium

Rt s e

0 1000 2000 3000 1000 0 1000 2000 3000 1000
Number of Policies Number of Policies

Fig. 4. The mean throughput as a function of the number of network policies

Pod scalability — The pod scalability will be tested by
increasing the number of pods and measuring the throughput in
the network. The results are the average of three runs and each
time for 300 seconds using iperf3. In every single experiment
carried out in our setup (see Fig. 3), we run a specific number
of pods in one VM functioning as a client and in the other one
as a server. Each time, we have calculated the total throughput
that is achieved in the network and compared it to the expected
throughput. Expected throughput is the maximum throughput
that can be gained in the network running one client-server
stream.

The result of pod scalability is depicted in Fig. 5. As it
shows Calico throughput is more than Cilium. However, there
is throughput degradation in TCP and UDP traffic for both
Cilium and Calico. For TCP, Calico has 1.2 Gbps throughput
loss, and Cilium has 1 Gbps drop for 40 pods. Also, in UDP
the throughput drop is 0.3 Gbps for Calico and 0.1 Gbps for
Cilium. As a result, both Calico and Cilium do not scale well
with increasing the number of pods. This behavior is caused

by increasing the number of connections to the master node
and making a bottleneck in the network. In addition, as the
observations show, TCP scales worse than UDP in both Cilium
and Calico. TCP has the Ack handling process which UDP
does not have, and this causes more interrupts in the CPU
and network interface so that we observe more throughput
reduction in TCP.

TCP UDP
25 25 T
— el . Calico Expected
220 { {3y Ty 220 —— Cilium Expected
4 et s -F- Calico
RN RS T 15 I Cilum
S ~i
— O e i
210 Calico Expected S [T R R e deeiee 1
= ‘ = =
= —— Cilium Expected =
= = T =
3054 -1~ Calico 205
i ~- Cilum =
0.0 0.0

0 10 20 30 1
Number of Pods per Node

10 20 30 10
Number of Pods per Node

Fig. 5. The cumulative throughput as a function of the number of pods

VI. COMPARISON

There are two major implementation differences between
Cilium and Calico:

Encapsulation method — To provide an overlay network
Cilium uses VXLAN technology, Calico uses IPIP. VXLAN
has more overhead for packets’s generation compared to IPIP.
On the other hand, IPIP is not supported in all infrastructures
and cloud environments.

Policy translation method — Cilium uses BPF program run-
ning inside the host kernel for policy enforcement. It defines
the identity for each pod based on its label and then uses a
hash table for storing the policies. Calico will translate the
policies to the iptable rules of the host.

As we saw, Calico has always better throughput than Cilium.
This is mainly because of the different encapsulation method.
Calico uses IPIP which imposes less overhead than VXLAN.
In fact, VXLAN will increase the packet size more than IPIP
and consequently, because of the limited MTU in the network
interface, the packet will be fragmented. This increases the
CPU usage in the host and creates additional interrupts in
the network interface. Moreover, both Calico and Cilium
lose some throughput when the number of policies increases
(see Fig. 4). The throughput drop in Calico is higher than
Cilium as we increase the number of policies. The reason
is the difference in the policy translation method. In Cilium
increasing the number of policies does not affect the filtering
process due to the fact that Cilium checks the policies for every
packet with a hashtable lookup of complexity O(1). However,
in Calico as the rules are translated to the host iptable rules,
more rules should be checked with increasing the number of
the policies and this will negatively affect the throughput.
Therefore, the throughput reduction will be more in Calico
than that in Cilium.

VII. DISCUSSION

Investigating more on the reasons for the lower performance
of Cilium, we have offloaded the etcd pods running in Cilium

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on March 11,2021 at 16:22:22 UTC from IEEE Xplore. Restrictions apply.

to another VM and repeated the experiments. Fig. 6 shows the
experiment results. It shows Cilium’s throughput is closer to
the throughput of Calico by etcd offloading, but keep in mind
that Cilium needs an extra node to accomplish etcd offloading.
In addition, Cilium doesn’t reassemble fragmented UDP
datagrams before making a decision about accepting or drop-
ping them. As the first packet is the only one which has
the UDP header information, the fragmented packets will be
dropped by Cilium. To compare Cilium and Calico with equal
datagram size, we measure Calico’s throughput with a 1422
bytes datagram size. As the results in Fig. 6 show we verify
throughput degradation in Calico with 1422 bytes datagram
size, however, its performance is still better than Cilium.

ubpP

T T
«J++ Calico, Datagram Size: 8 kB
20 —]- Cilium

-J-- Cilium Etcd Offload

P —
2

% oy
2 | BT : % 1| 3
Mk 3 . [Calico, Datagram Size: 1422 Bytes
5" g
2 £ |
: & | e 1
g 5
ST calico g
= - Cilium - ——
051 _J-- Cilium Etcd Offload 5 HHHEE

I
0 1000 2000 3000 1000 0 1000 2000 3000 1000
Number of Policies Number of Policies

Fig. 6. The mean throughput as a function of the number of network policies
deploying etcd offloading and UDP datagram size

VIII. RELATED WORK

There are multiple works that investigate container network
technologies and evaluate their performance. For example,
in [7] authors presented an empirical study about different
methods of container networks. They conducted a qualitative
comparison of available methods regarding their different
levels of isolation and overhead. Then, they have done lots of
experiments for evaluating the performance of different con-
tainer networks. [15] evaluated three technologies that support
addressing and filtering in container overlays: EVPN, ILA, and
Cilium. In addition, the authors presented the performance
analysis of Cilium/eBPF in network filtering, specifically in
multi-tenant environments.

Above studies have considered different implementations of
container networking and evaluate each of them. However, to
the best of our knowledge, there is no study which considers
the capability of container overlay networks in sharing plat-
forms.

IX. CONCLUSION

In this paper, we present an in-depth analysis of the
capability of deploying the container networks specifically
in DMPs for achieving secure and high-performance data
sharing platform. We use the metrics policy scalability and
pod scalability to evaluate if Cilium and Calico are suitable for
deployment in a sharing platform. Calico and Cilium are built
upon different architectures and their method in encapsulation,
deploying the network policies and packet filtering is different.
Both Cilium and Calico scale well in policy scalability as a

function of the number of policies in the network. In fact, the
number of policies applied to a cluster has little effect on the
throughput, especially when Cilium is used. However, there
is a substantial throughput degradation in both technologies
in pod scalability. This introduces a challenge for deploying
these technologies when there is a requirement for running
a large number of pods. Thus, it depends on the application
of the data sharing platform whether the throughput losses
are acceptable. Overall, Calico has better throughput in all
experiments. Therefore, on the scale experimented within this
research, Calico would be the better choice for a secure data
sharing platform.

As future work, we intend to continue the evaluation of
other important container overlay network technologies like
Weave and Flannel. We will also investigate the possible
vulnerabilities of container-based networks in providing the
security in sharing platforms. Then, we set up a container-
based sharing environment deploying the best matched overlay
network technology.

X. ACKNOWLEDGMENT

This work is supported by the Netherlands eScience Center
and NWO under the project SecConNet.

REFERENCES

[1] S. van den Braak, S. Choenni, R. Meijer, and A. Zuiderwijk, “Trusted
third parties for secure and privacy-preserving data integration and shar-
ing in the public sector,” in Proceedings of the 13th Annual International
Conference on Digital Government Research. New York, NY, USA:
ACM, 2012, pp. 135-144.

[2] D. Thilakanathan, S. Chen, S. Nepal, R. Calvo, and L. Alem, “A
platform for secure monitoring and sharing of generic health data in the
cloud,” Future Generation Computer Systems, vol. 35, pp. 102 — 113,
2014, special Section: Integration of Cloud Computing and Body Sensor
Networks; Guest Editors: Giancarlo Fortino and Mukaddim Pathan.

[3] D. Harris, L. Khan, R. Paul, and B. Thuraisingham, “Standards for
secure data sharing across organizations,” Comput. Stand. Interfaces,
vol. 29, no. 1, pp. 86-96, Jan. 2007.

[4] S. Shakeri, V. Maccatrozzo, L. Veen, C. de Laat, and P. Grosso,
“Modeling and matching digital marketplace policies,” accepted to
eScience 2019 workshop.

[5] L. Zhang, R. Cushing, L. Gommans, C. De Laat, and P. Grosso,

“Modeling of collaboration archetypes in digital market places,” IEEE

Access, vol. 7, pp. 102 689-102 700, 2019.

“Docker,” https://www.docker.com/, 2019, [Online; accessed June-

2019].

[7]1 K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study
of container networks,” in /[EEE INFOCOM 2018 - IEEE Conference
on Computer Communications, April 2018, pp. 189-197.

[6

—

[8] “Cilium,” https://docs.cilium.io/en/v1.5/, 2019, [Online; accessed June-
2019].
[9] “Calico,” https://docs.projectcalico.org/v2.0/introduction/, 2019, [On-
line; accessed June-2019].
[10] “Tigera,” https://www.tigera.io/media/pr-best-product-container-security/,
2019, [Online; accessed June-2019].
[11] “Kubernetes,” https://kubernetes.io/docs/tutorials/kubernetes-basics/,
2019, [Online; accessed June-2019].
[12] “Weave Net,” https://www.weave.works/oss/net/, 2019, [Online; ac-
cessed May-2019].
[13] “Flannel,” https://github.com/coreos/flannel#flannel, 2019, [Online; ac-
cessed June-2019].
[14] “The Berkely Packet Filter,” https://www.kernel.org/doc/html/latest/bpf/

index.html, 2019, [Online; accessed June-2019].

[15] L. Makowski and P. Grosso, “Evaluation of virtualization and traffic
filtering methods for container networks,” Future Generation Computer
Systems, vol. 93, pp. 345 — 357, 2019.

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on March 11,2021 at 16:22:22 UTC from IEEE Xplore. Restrictions apply.

