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Abstract
We investigated online electrophysiological components of

distributional learning, specifically of tones by listeners of a non-
tonal language. German listeners were presented with a bimodal
distribution of syllables with lexical tones from a synthesized
continuum based on Cantonese level tones. Tones were presented
in sets of four standards (within-category tokens) followed by a
deviant (across-category token). Mismatch negativity (MMN)
was measured. Earlier behavioral data showed that exposure to
this bimodal distribution improved both categorical perception
and perceptual acuity for level tones [1]. In the present study we
present analyses of the electrophysiological response recorded
during this exposure, i.e., the development of the MMN response
during distributional learning. This development over time is
analyzed using Generalized Additive Mixed Models and results
showed that the MMN amplitude increased for both within-
and across-category tokens, reflecting higher perceptual acuity
accompanying category formation. This is evidence that learners
zooming in on phonological categories undergo neural changes
associated with more accurate phonetic perception.
Index Terms: lexical tone, distributional learning, mismatch
negativity, Generalized additive mixed-effects modeling

1. Introduction
If specific sounds (e.g., phonemes, lexical tones) are used con-
trastively in a language, then typically sounds with acoustic
properties close to their prototypes have a higher likelihood of
occurrence than sounds that are further away from the prototypes.
Listeners have been found to be sensitive to these distributions,
i.e., they have an intuition about which instances of a sound are
a more prototypical exemplar of a category, in the language they
speak. There is abundant evidence that phonemes are processed
this way (since [2]). Evidence is also accumulating that similar
procedures determine the perception of lexical tone [3]. The
present study investigates the perception of non-native phonetic
contrasts cued by acoustic information that is irrelevant in the
native language: we explore the formation of sensitivity to tonal
contrasts by native speakers of a language without lexical tone.

Generally, listeners have difficulties perceiving, identifying
and learning non-native contrasts [4, 5]. However, adults’ per-
ception and categorization of speech sounds can be modulated
based on brief exposure with novel distributional information
[e.g., 6, 7].

The present study is the first to investigate the effect of

distributional learning on listeners’ perception of a non-native
phonetic contrast during exposure in real time, using neuro-
physiological measures. Prior distributional learning studies
have used variants of the same classical two-phase procedure:
first, participants are familiarized with sound tokens sampled
from an acoustic continuum, and the frequency of occurrence
of these tokens will be organized in a uni- or bimodal distri-
bution. After this, it is tested whether listeners are now more
likely to perceive two sounds as belonging to one or two dif-
ferent categories [6, 8]. Here, rather than assessing effects of
distributional learning in such a test phase, we apply Generalized
Additive Mixed-Modeling (GAMM) to explore how perceptual
sensitivity to tonal contrasts changes over the time course of
the experiment. In [9] we used GAMM models to show that
not only the number of Gaussians (uni- vs. bimodal), but even
the distribution shape (statistical variance) can affect perceptual
uncertainty. The present study extends this work by investigating
online perceptual adaptations by listeners exposed to non-native
acoustic cues presented in a bimodal distribution, to test the
online development of non-native phonetic category acquisition.

Earlier distributional learning studies have largely focused
on whether listeners’ intuitions about category boundaries can
be altered [e.g., 6]. However, we [1] recently demonstrated that
distributional learning is broader: in addition to the learning of
new categories, listeners showed enhanced sensitivity to small
acoustic differences within these novel categories. We exposed
German listeners to bimodally distributed tokens from a non-
native lexical tone continuum and examined effects of exposure
in two offline tasks that followed the exposure phase. Results
suggested increased discrimination of both small acoustic pitch
differences and lexical tone after exposure, compared to a no
exposure control group. First, only the group that received
exposure demonstrated effects of categorical perception in AX
discrimination. Second, their sensitivity to fine-grained acoustic
detail was enhanced along the continuum, as revealed by their
performance in a pitch height estimation task. This finding is
consistent with studies that demonstrated listeners’ sensitivity
to fine-grained within-category acoustic detail in their native
language [e.g., 10].

While in [1] we focused on effects of distributional learning
on behavior after exposure, for the present paper, we analyzed
EEG data collected in the same study, during the exposure to
the bimodally distributed stimuli. We explore changes in the
auditory mismatch negativity (MMN) response over the time
course of the experiment. The MMN [11; for a review see 12] is
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Table 1: Top row: Pitch continuum with pitch < 7 labeled as
a and pitch > 7 labeled as b. Second row: number of tokens
per block of type Ab (a-a-a-a-b). Third row: number of tokens
per block of type Ba (b-b-b-b-a). Each block consisted of 42
sequences.

mid tone (a) high tone (b)

1 2 3 4 5 6 7 8 9 10 11 12 13

1 5 15 15 5 1 0 4 20 60 60 20 4
4 20 60 60 20 4 0 1 5 15 15 5 1

a relative negativity obtained by subtracting the neural response
to a perceived deviant in a series of repeated standards from that
to those standards. The MMN occurs between 150 and 250 ms
after change onset, in frontal and central regions. Prior studies
have suggested that MMNs do not only reflect acoustic-phonetic
sensitivity: if differences between sounds are contrastive for
listeners, then their mismatch response shows a larger peak and
lasts longer than their mismatch response to a purely acoustic-
phonetic change [13, 14]. Hence, the MMN is a good measure
for our current purposes.

We hypothesized that the difference in MMN response to
standards and deviants would increase over the course of the
experiment as a result of learning. Additionally, we expected an
increase in MMN over the course of the experiment in response
to a within-category change indicative of an increased sensitivity
to pitch. In this case larger amplitude reflects a more precise
neural representation of the memory trace of each pitch token.

2. Methods
2.1. Participants

Twenty right handed, native speakers of German (mean age: 26.5
years, sd=6.9, range: 19–45) were recruited for the experiment
and received monetary compensation. After exclusion of data
due to excessive noise in the recordings (mainly ocular drift),
sixteen participants remained (mean age 26 years, range 21–42,
sd=5.6, four male).

2.2. Stimuli

A female speaker with phonetics training produced the nonword
/li:/ (duration = 285 ms),with neutral pitch (F0 = 258 Hz). The
CV syllable /li/ was selected because its segments are good
carriers of pitch information. Pitch was manipulated with Praat
[15] to be level on the vowel. From this syllable, a 13-step pitch
continuum was created ranging from 260 Hz to 287 Hz. The
steps were spaced 0.14 semitones from each other, that is, the
tones were relatively close: Adults usually cannot perceive a
difference of 0.14 semitones, but it gets easier with growing
distance.

2.3. Experiment design and procedure

Participants sat at a computer in a sound-attenuated booth. Stim-
uli were presented over Sennheiser HD 280 pro, 64Ω headphones.
EEG was recorded from 32 electrodes as participants were ex-
posed to the training stimuli. Eye movements were recorded
with an Eyelink 1000 eye tracker in order to record and later re-
move ocular artefacts in the EEG data. Stimulus presentation and
participant responses were conducted with SR Research Experi-
ment Builder software. The exposure phase lasted approximately
25–30 minutes.

Figure 1: Grand averages of the data for Fz, with ribbons repre-
senting the variation in participant averages (±1SE).

The presentation frequency of the 13 continuum steps fol-
lowed a bimodal distribution (Table 1). Each trial consisted of
a series of five stimuli. An oddball design was used, in which
a series of four standards (tokens selected from the same tone
category) was presented (randomly sampled from one of the two
distributions, e.g., mid tone tokens 1–6), followed by one deviant
(randomly selected from the other distribution, e.g., high tone
tokens 8–13). The inter-stimulus interval was jittered (between
600–800 ms) to reduce expectancy waves in the EEG. Note that
unlike traditional oddball experiments, the standard tokens are
not identical, but only sampled from the same distribution (i.e., a
trial presents e.g, steps 1-4-2-3-12 or 9-12-11-10-2). Participants
were asked to focus on the screen. A progress bar showed the
progression through the experiment.

The experiment consisted of eight blocks of 42 trials (336 in
total). Within a block, a standard was either always a mid tone
or always a high tone. The tone used for the standard alternated
between blocks and the order (starting high or mid) was counter-
balanced between participants. To make sure participants were
alert, they were presented with one tone from the continuum at
the end of each block and had to decide whether or not they had
heard this token during the previous block. Following training,
participants performed two behavioral tasks; results of these are
reported in [1].

2.4. Preprocessing

After EEG recording, the data was preprocessed using the Field-
Trip toolbox [16]. Trials were first visually inspected to exclude
trials and/or channels with too much noise or movement arte-
facts. 1183 trial-channel combinations were excluded (4.4% of
the total). Next, an Independent Component Analysis (ICA) was
used to isolate components of the signal that are of interest from
artefact-related components (for a detailed overview, see [17]),
allowing deletion of e.g., blinks or eye movement components.
The ICA was performed on unaveraged data; the components
that had scalp distributions consistent with eye movements or
blinks were excluded. The signal was then recompiled without
the excluded components.

3. Results
Due to space limitations we present results for electrode Fz
(where MMN effects are usually expected to occur) and a topo-
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Figure 2: Visualizing the estimates of the single electrode model for Fz. Left: The difference between deviant and standard trials over
time, with the horizontal thick line on the x-axis indicating where the difference is significant, based on the pointwise 95% confidence
intervals (random effects set to zero). The difference is not modulated by Trial. Center: Interaction between Time and Trial for standard
trials (summed effects, random effects set to zero); the peak around 100 ms gets more positive over the course of the experiment, and the
modulations between 150–300 ms more negative. The white horizontal lines indicate trials 68 (25% of the experiment) and 269 (75%).
Right: The time course of standard (black lines) and deviant (red lines) trials for trials 68 (solid lines) and 269 (dashed lines).

graphic analysis only. Figure 1 shows the grand averages of the
data for electrode Fz. The plot compares the last three stimuli of
each trial sequence (two standards, one deviant). Visual inspec-
tion suggests an increased negative amplitude between 100–300
ms for the deviant stimuli in comparison with the two standards,
and a more positive amplitude after 500ms.

The data were analyzed using GAMMs [18, 19] as imple-
mented in the R package mgcv version 1.8-23 [19]. The package
itsadug version 2.3 [20] was used for evaluation and visualiza-
tion of the statistical models. GAMM is a nonlinear regression
method that allows for nonlinear trends and interactions, which
makes it particularly well suited for analyzing EEG data. In our
analyses, we compared the last standard (stimulus 4) with the
deviant (stimulus 5). Two types of analyses were performed:
a) a time course analysis on single electrodes to determine the
time window of the differences between the standard and deviant
stimuli, and b) an analysis investigating the scalp distribution of
the effect within the determined time period.

3.1. Single electrode analysis

We modeled the change in amplitude over Time (100 ms be-
fore until 600 ms after onset of stimulus) and Trial (position of
stimulus sequence in experiment, ranging from 1–336), and the
potentially nonlinear interaction between these two covariates.
In addition, the interaction between Time, Trial, and IsDeviant
(binary predictor capturing the difference between the standard
and deviant stimuli) was added. We included a nonlinear random
effect (factor smooth) for Event (interaction between Participant,
Block, and IsDeviant) over Time, to capture the general pattern
per participant per block for the two types of stimuli In addition,
a nonlinear random effect was included for Trial by Participant
to capture differences between participants in the general change
in amplitude over the course of the experiment. Finally, an AR1
model was included to account for autocorrelation in the resid-
uals that arises with time course analysis (see [21]). The same
model was run for a number of electrodes, with comparable
results in the region of interest. The analysis described here
exemplifies a model of Fz. The scalp distribution of the effects
will be addressed in the following section.

The model summary indicated that the amplitude change
over time was significantly different for the two types of stimuli

(F (15.434, 634373.967) = 2.48; p < .001), but the difference
was not modulated by Trial: The interaction between Time
and Trial significantly contributed to the model (F (21.006,
634373.967) = 1.87; p < .01), but this interaction was the same
for the standard and deviant stimuli (F (1.018, 634373.967) =
0.03; p > .1). Figure 2 visualizes the model estimates. The left
panel (a) plots the difference between standard and deviant stim-
uli, which was significant in the time window 100–300 ms, with
more negative amplitudes for the deviant stimuli. The center
panel (b) shows the interaction between Time and Trial, suggest-
ing that the strongest effect of training exposure is found in the
time window 50–300 ms, namely a positivity increase at 50–150
ms and a negativity increase at 150–300 ms. The right panel (c)
illustrates the exposure effect by plotting the model estimates for
the trials 68 (25% through experiment) and 269 (75%), suggest-
ing more negativity around 150–300 ms at trial 269 than at trial
68. Interestingly, the difference between deviant and standard
stimuli (as illustrated in the left panel) is not modulated by trial,
but stays the same over the course of the exposure.

3.2. Topography analysis

To investigate the scalp distribution of the training effect, we
calculated the mean amplitude per participant per trial in the
time window 150–250 ms. A topographic GAMM analysis was
run on the mean amplitudes in this time window, to investigate
the training effect in more detail and to inspect the scalp distribu-
tion of the difference between the standard and deviant stimuli.
The GAMM model included a nonlinear three-way interaction
(and underlying main effects and interactions) between the X
and Y coordinates of the electrodes and Trial. In addition, the
interaction between X, Y, Trial and IsDeviant was added, and a
random nonlinear smooth over Trial for each Electrode nested
within Participants.

The topographic analysis revealed a difference in to-
pographic distribution between the standard and deviant
stimuli (F (10.273, 303767.298) = 3.61; p < .001), and dif-
ferent effects of Trial for the standards and deviants
(F (9.562, 303767.298) = 18.00; p < .001). In addition, the
interaction between Trial and the topographic distribution of
the electrodes was found significant (F (8.948, 303767.298) =
3.31; p < .001). However, this additional interaction ef-
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Figure 3: Topography analysis of time window 150–250 ms. The
graph visualizes the amplitude change in Fz over the course
of the experiment for standard (black solid line) and deviant
(red dashed line) stimuli with pointwise 95% confidence inter-
vals (random effects set to zero). For comparison, the single
electrode model’s estimate of the training effect in time window
150–250 ms is added (dotted thin line). Topright the difference
in amplitude at Trial 200 between standard and deviant stimuli
in all electrodes is visualized.

fect was the same for standard and deviant stimuli
(F (4.856, 303767.298) = 0.66; p > .1). The training effect is
visualized in Figure 3. In this time window, the amplitudes get
more negative over the course of the experiment, in line with
the single electrode analysis (represented by the thin dotted line).
The standard and deviant stimuli differ significantly in amplitude
most of the experiment, only after Trial 250 the difference disap-
pears. The topographical distribution of the difference between
deviant and standard is localized fronto-centrally and centrally
as expected for an MMN [12].

To summarize, the difference between deviant and standard
stimuli was significant between 100–300 ms after stimulus onset,
with more negative amplitudes for the deviant stimuli. Although
the single electrode analysis did not detect an effect of training on
the difference in amplitude, our topographic distribution analysis
found a significant effect of training: we found that the difference
disappears at the end of the experiment, and that the difference
is found in the fronto-central electrodes, pointing to an MMN
effect.

4. Discussion and conclusion
The present study investigated the effects of distributional learn-
ing on the MMN response to a non-native cue dimension, namely
pitch height in lexical tone. Stimuli were sampled from a bi-
modal distribution, where the peaks corresponded to Cantonese
high and mid level tones. On each trial, a series of four stimuli
(the standards) were sampled from one of the Gaussian distri-
butions (e.g., mid tone), followed by a single stimulus sampled
from the other Gaussian (the deviant; e.g., high tone). We were
interested in the development of the MMN response to the stan-
dards and deviants over the course of the experiment.

Results showed a significantly greater amplitude in the
negative-going waveform at 200 ms following the deviant, com-
pared to the standard stimulus, consistent with previous studies

investigating the MMN component (see [12]). The difference
in MMN between standards and deviants was present in the
first block and remained until near the end of the experiment.
This training effect on the MMN was found in the topographic
analysis, but was smoothed out in the single electrode analysis.

Most interestingly, there was a significant effect of ongoing
exposure for both the standard and the deviant stimuli. Because
there was acoustic variation within the standard stimuli as well
as between standards and deviants, this suggests an increased
sensitivity to the acoustic pitch cue differences over the course
of the experiment. The present results thus suggest that neural
measures also reveal the increased acuity to within-category
acoustic pitch differences following exposure, convergent with
our [1] behavioral data.

Our exploration of changes in neural responses over the time
course of the experiment revealed fluctuations that we were not
expecting, such as the N1 positivity increase and the MMN neg-
ativity increase. Currently we hesitate to interpret these results,
as we are not aware of observations of similar results in previ-
ous studies. In any case, it is interesting that voltage changes
at the N1 versus MMN component go in opposite directions,
highlighting that they are separate components. Moreover, while
we found a constant MMN effect in the deviant compared to the
last standard during most part of the exposure phase, i.e., until
trial 250 of 336, but the effect disappeared afterwards (Figure 3).
Currently we do not understand this result, and we are not aware
of observations of similar results in previous studies. It might
simply be a result of fatigue or habituation to the paradigm, but
further investigation is required to explain this result.

In sum, we showed that GAMMs allow to test the neural
processing of level tones during the distributional learning that
ends up in category formation. Our results indicate that an MMN
associated with a perceived change between a stimulus and the
previous four standards can be elicited between categories even
with standards that are not identical but fall within one category.
The MMNs of participants that learned a category during ex-
posure do not necessarily increase as the perceptual difference
between the emerging categories increases [cf. 22]. However,
the increasing perceptual acuity also made all stimuli appear
more different from each other, not just the ones of the different
freshly acquired categories. This effect may be enhanced by the
fact that learners with a native non-tonal language started out not
perceiving pitch as contrastive at the lexical level.

In conclusion, our study shows that, within a short period of
time, learners zooming in on phonological categories undergo
neural changes associated with more accurate phonetic percep-
tion. Moreover, our study shows that it is important to investigate
the development of neural responses during speech perception
experiments, as they are not constant over time. This study
shows that EEG data gathered during phonological category ac-
quisition is an important addition to behavioral studies as they
help us gain insights into the dynamics of perceptual adaptation.
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