

UvA-DARE (Digital Academic Repository)

Low-Valent Iron(I) Amido Olefin Complexes as Promotors for Dehydrogenation Reactions

Lichtenberg, C.; Viciu, L.; Adelhardt, M.; Sutter, J.; Meyer, K.; de Bruin, B.; Grützmacher, H.

DOI 10.1002/ange.201411365 10.1002/anie.201411365

Publication date 2015 Document Version

Final published version

Published in Angewandte Chemie

License Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):

Lichtenberg, C., Viciu, L., Adelhardt, M., Sutter, J., Meyer, K., de Bruin, B., & Grützmacher, H. (2015). Low-Valent Iron(I) Amido Olefin Complexes as Promotors for Dehydrogenation Reactions. *Angewandte Chemie*, *127*(19), 5858-5863. https://doi.org/10.1002/ange.201411365, https://doi.org/10.1002/anie.201411365

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will bake the material of the University of the University of Amsterdam (https://dare.uva.nl/en/contact).

Niedervalente Eisenchemie

Niedervalente Eisen(I)-Amido-Olefinkomplexe als Promotoren von Dehydrierungsreaktionen**

Crispin Lichtenberg,* Liliana Viciu, Mario Adelhardt, Jörg Sutter, Karsten Meyer, Bas de Bruin* und Hansjörg Grützmacher*

Abstract: Fe¹-Verbindungen einschließlich Hydrogenasen^[1a] zeigen bemerkenswerte Stoffeigenschaften und Reaktivitäten.^[2-6] Das Anion $[Fe(C(SiMe_3)_3)_2]^-$ ist ein Einzelmolekülmagnet mit hoher Anisotropiebarriere.^[2a] In stöchiometrischen wurden Eisen(I)-Diketiminate, Reaktionen Eisen(I)-Tris(phosphino)borate und verwandte Spezies als Modellverbindungen für die N_2 -Aktivierung^[4a-c,l, 5a,f] sowie die Spaltung und Kupplung von CO_2 etabliert.^[4d,e] Die Entwicklung wohldefinierter Eisen(I)-Komplexe für katalytische Umsetzungen bleibt jedoch eine Herausforderung. Die wenigen Beispiele umfassen Kreuzkupplungen,^[2b,3] Hydrierungen terminaler Olefine^[4f] und Azidfunktionalisierungen.^[4h, 5i] Hier berichten wir über die Herstellung und Eigenschaften bimetallischer Komplexe [MFe¹(trop₂dae)(solv)] mit einer d^{7} -Fe-low-spin-Valenzelektronenkonfiguration (M = Na, solv = 3 thf (1); M =*Li*, solv = 2 $Et_2O(2)$; trop = 5*H*-Dibenzo[a,d]cyclo-hepten-5yl, $dae = (N-CH_2-CH_2-N)$). Verbindungen **1** und **2** induzieren die Dehydrierung von N,N-Dimethylaminboran, und 1 ist ein Präkatalysator für die dehydrierende Alkoholyse von Silanen. Es wurden keine Hinweise auf heterogene Katalyse gefunden. Vor allem mit [NaFe¹(trop₂dae)(thf)₃] (1) wurden hohe Aktivitäten und vollständige Umsätze erzielt.

Die Olefinfunktionalitäten von Trop-basierten Liganden stabilisieren ungewöhnliche, niedrige Oxidationsstufen von Übergangsmetallen (trop = 5H-Dibenzo[a,d]cyclo-hepten-5-yl).^[7] Kürzlich berichteten wir über eine niedervalente Rutheniumverbindung mit einem Bis(trop)diamino-Ligan-

[*] Dr. C. Lichtenberg, Dr. L. Viciu, Prof. Dr. H. Grützmacher Department Chemie und Angewandte Biowissenschaften ETH Zürich Vladimir-Prelog-Weg 1, 8093 Zürich (Schweiz) E-Mail: lichtenberg@inorg.chem.ethz.ch hgruetzmacher@ethz.ch Prof. Dr. B. de Bruin Universiteit van Amsterdam, Faculty of Science, van 't Hoff Institute for Molecular Sciences, Department of Homogeneous Catalysis Postbus 94720, 1090 GS Amsterdam (Niederlande) E-Mail: B.deBruin@uva.nl M. Adelhardt, Dr. J. Sutter, Prof. Dr. K. Meyer Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1, 91058 Erlangen (Deutschland) [**] Wir danken Dr. Frank Krumeich für wissenschaftliche Unterstützung bei den REM-Analysen und Dr. Eckard Bill für hilfreiche Diskussio-

- nen. C.L. dankt für ein Feodor Lynen-Stipendium, das Prof. François Diederich dankenswerterweise als Zweitgastgeber betreut.
- Hintergrundinformationen zu diesem Beitrag sind im WWW unter http://dx.doi.org/10.1002/ange.201411365 zu finden.

den, [Ru(H₂trop₂dae)], die ein Homogenkatalysator für die Umsetzung von Methanol mit Wasser zu Wasserstoff und Kohlendioxid ist (dae = N-CH₂-CH₂-N).^[8] Dies veranlasste uns, das Potential des H₂trop₂dae-Liganden (Schema 1) zur Herstellung neuer, niedervalenter Eisenkomplexe zu untersuchen.

Schema 1. Synthese der Komplexe 1 und 2 ausgehend von $[FeCl_{2}-(thf)_{n}]$; 1: n = 1.5; 2: n = 0.

Die Reaktion des Amins H_2 trop₂dae mit 1 Äquiv. [FeCl₂-(thf)_{1.5}] und 3 Äquiv. [Na(CH₂SiMe₃)] als Base und Reduktionsmittel in THF bei -30 °C führte zu dem Bis(amido)-Diolefinkomplex [NaFe(trop₂dae)(thf)₃] (1) (Schema 1). Verbindung 1 wurde in Form tiefroter Einkristalle isoliert. 1 ist löslich in polaren Lösungsmitteln wie THF und in aromatischen Kohlenwasserstoffen. Um den Einfluss des Gegenions zu untersuchen,^[9] wurde [LiFe(trop₂dae)(Et₂O)₂] (2) in einem vergleichbaren Protokoll synthetisiert, wobei ein leichter Überschuss [Li(CH₂SiMe₃)] eingesetzt wurde.

Verbindung 2 wurde in Form tiefroter Einkristalle isoliert und zeigt ein Löslichkeitsverhalten ähnlich wie 1. Die Reaktionen, die zu Verbindungen 1 und 2 führen, sind komplex und enthalten als Einzelschritte Ligandkoordination, Deprotonierungen, Salzmetathese und Redoxreaktionen. In dieser Hinsicht ist es bemerkenswert, dass in der Anwesenheit von Tetramethylethylendiamin (TMEDA) als Chelatligand ein mögliches Intermediat auf dem Weg zur Bildung von Spezies analog zu 1 und 2 isoliert und vollständig charakterisiert werden konnte (Hintergrundinformationen, Verbindung 3).

Die Molekülstrukturen von 1 und 2 im Festkörper wurden mittels Einkristallstrukturanalyse bestimmt (Abbildung 1). Das Eisenatom in 1 wird durch die zwei Amido- und die zwei Olefingruppen des $(trop_2 dae)^{2-}$ -Liganden koordiniert.

Abbildung 1. Molekülstruktur von [NaFe(trop₂dae(thf)₃] (1) (a, links) und [LiFe(trop₂dae(OEt₂)₂] (2) (b, rechts) im Festkörper.^[35] Auslen-kungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit. Anellierte Benzogruppen, C-Atome der THF-Liganden und H-Atome sind der Übersicht halber nicht gezeigt. Ausgewählte Bindungslängen [Å] und -winkel [°]: 1: Fe1–N1 1.900(4), Fe1–N2 1.860(3), Fe1–(C4-C5) 1.931(4), Fe1-(C19–C20) 1.924(4), C4–C5 1.435(6), C19–C20 1.438(5), Na1–N1 2.469(4); (N/(C=C)-Fe1-N/(C=C) 84.77(14)–97.88(15); Winkelsumme um Fe1 369. 2: Fe1–N1 1.899(3), Fe1–N2 1.950(4), Fe1-(C4-C5) 1.928(6), Fe1-(C19-C20) 1.939(6), Li1–N1 2.160(11), Li1–N2 2.095(11), C4–C5 1.416(8), C19–C20 1.415(10), Fe1–Li1 2.756(8); (N/(C=C)-Fe1-N/(C=C) 79.37(18)–97.08(10); Winkelsumme um Fe1 362.

Werden die Zentroide der C=Ctrop-Einheiten als Koordinationspunkte betrachtet, resultiert eine verzerrt quadratisch planare Koordinationsgeometrie für Fe1 ($\Sigma^{\circ} = 369^{\circ}$). Planare Koordinationssphären wurden in einigen Fällen für vierfach koordinierte Eisen(II)-Verbindungen berichtet, sind jedoch für Eisen(I)-Verbindungen rar.^[11] Der Fünfring (Fe1-N1-C31-C32-N2) nimmt eine verdrehte Konformation ein, wobei die C-Atome sich über und unter der N1-Fe1-N2-Ebene befinden. Aufgrund der zusätzlichen Wechselwirkung von N1 mit dem Natriumkation Na1 ist der Fe1-N1-Abstand (1.900(4) Å) etwas länger als der Fe1-N2-Abstand (1.860(3) Å), und die Winkelsummen um N1/2 zeigen eine stärkere Pyramidalisierung als um N1 an $(\Sigma(C/Fe-N1-C) = 343^\circ; \Sigma(C/Fe-N2-C) =$ 350°).^[12] Die Fe1-N1/2-Bindungen sind 0.02–0.05 Å kürzer als jene in den pseudotetraedrischen Nitrosylamidkomplexen $[Fe(NtBuAr_F)_2(NO)(L)]$ (Ar_F = 2,5-C₆H₃FMe, L = NC₅D₅, PEt₃) und ca. 0.09 Å kürzer als jene in planaren Komplexen des Typs [Fe(β -Diketiminat)L₂] (L = CO, CNtBu).^[5a,h,6a] Die C=Ctrop-Abstände, C4=C5 und C19=C20, sind relativ lang (1.415–1.438 Å) und indizieren eine signifikante d(Fe) $\rightarrow \pi^*$ -(C=C)-Rückbindung (für kürzere C=C-Bindungen in der Koordinationssphäre von Fe siehe Lit. [2b,5e]). Auch Verbindung 2 zeigt eine verzerrt quadratisch planare Koordinationsgeometrie um Fe1, aber beide Stickstoffatome des (trop₂dae)²⁻-Liganden sind in Kontakt mit dem Li-Gegenion (Abbildung 1b).^[13] Verglichen mit **1** führt dies zu leicht verlängerten Fe1-N1/2-Bindungen (im Durchschnitt 0.04 Å), verkürzten C=C_{olefin}-Bindungen (im Durchschnitt 0.02 Å), einer kleineren Winkelsumme C/Fe-N2-C um N2 ($\Delta =$ -15.1(3)°) und zu einem verkleinerten N1-Fe1-N2-Winkel $(\Delta = -5.40(2)^{\circ})$. Der Fünfring (Fe1-N1-C31-C32-N2) in 2 nimmt eine Briefumschlagkonformation ein, wobei Fe1 1.09 Å von der N1-C31-C32-N2-Ebene entfernt ist.

Die subtilen Strukturunterschiede zwischen 1 und 2 und die resultierenden Elektronenstrukturen im Festkörper

wurden mittels 57Fe-Mößbauerspektroskopie bei 77 K weiter untersucht (Hintergrundinformationen). Die Isomerieverschiebung von Verbindung 1 ($\delta = 0.20(1) \text{ mm s}^{-1}$) ist signifikant kleiner als jene von 2 ($\delta = 0.28(1) \text{ mm s}^{-1}$), was eine höhere Elektronendichte in den Fe-s-Orbitalen anzeigt und in Übereinstimmung mit den durchschnittlich kürzeren Fe-L-Bindungen in 1 ist.^[14] Die niedrigere Symmetrie der Ligandensphäre um 1 führt zu einer höheren Quadrupolaufspaltung ($|\Delta E_{\rm Q}| = 2.87(1) \,\mathrm{mm\,s^{-1}}$) verglichen mit 2 ($|\Delta E_{\rm Q}| =$ 2.01(1) mm s⁻¹). Diese Quadrupolaufspaltungen fallen in den für literaturbekannte Fe^I-Komplexe üblichen Bereich ($|\Delta E_{0}|$ $= 0.89-3.48 \text{ mm s}^{-1})$.^[4c, 6e] Dagegen sind die Isomerieverschiebungen anderer Fe^I-Komplexe generell höher (von $\delta =$ 0.28 mm s⁻¹ bis 1.09 mm s⁻¹, was einer geringeren Elektronendichte in Fe-s-Orbitalen entspricht).[1b,2a,15] Bemerkenswerterweise sind die Isomerieverschiebungen von Fe^{II}- und Fe^{III}-Verbindungen mit quadratisch planarer Koordinationsgeometrie jenen von 1 und 2 ähnlich (Fe^{II}: 0.14–0.59; Fe^{III}: 0.23–0.37 mm s⁻¹, aber einhergehend mit deutlich größeren $|\Delta E_{\rm Q}|$: Fe^{II}: 1.16–4.63; Fe^{III}: 3.02–5.16 mm s⁻¹).^[10,16,17] Die niedrigen, Fe^{II}/Fe^{III}-ähnlichen Isomerieverschiebungen von 1 und 2 sind möglicherweise eine Konsequenz der Metall-Ligand-Rückbindung. DFT-Rechnungen zu 1 und 2 ergaben optimierte Strukturen in guter Übereinstimmung mit den Einkristallstrukturanalysen (Hintergrundinformationen). Zudem wurden die Derivate $[MFe(trop_2 dae)(L)_n]$ (M = Li,Na; L = Neutralligand gebunden an M; n = 0-3) und das freie [Fe(trop₂dae)]⁻-Anion untersucht. Alle Spezies sind überwiegend metallzentrierte Radikale mit signifikanter Spinpolarisation zu den Stickstoffatomen und den olefinischen Kohlenstoffatomen des (trop₂dae)²⁻-Liganden (Abbildung 2a). Sie werden also am besten als low-spin-d⁷-Fe^I-

Abbildung 2. a) Darstellung der Spindichte für $[Fe(trop_2dae)]^-$ (Farbabbildung in den Hintergrundinformationen). b) Experimentelles und simuliertes X-Band-EPR-Spektrum von **2** in THF mit 0.1 M $[N(nBu)_4]$ - $[PF_6]$.

Spezies umgeben von einem dianionischen $(trop_2 dae)^{2-}$ -Liganden beschrieben. Signifikante Unterschiede zwischen den Elektronenstrukturen von 1 und 2 ergeben sich aus einer größeren g-Anisotropie, einer höheren Fe-Spindichte und einer höheren NBO-Ladung an Fe für 2 (Tabelle S2; Hintergrundinformationen). Diese Unterschiede sind hauptsächlich auf den Koordinationsmodus des Alkalimetallkations zurückzuführen (terminal wie in 1 vs. verbrückend wie in 2), der durch die Wahl der Neutralliganden L gesteuert werden kann (siehe Derivate **2b–d**, Hintergrundinformationen). Die Art des Alkalimetalls selbst hat einen geringeren Einfluss.

Die Elektronenstrukturen von 1 und 2 wurden mittels EPR-Spektroskopie bei 20 K weiter untersucht. Unverdünnte Feststoffproben von 1 und 2 ergaben X-Band-EPR-Spektren von akzeptabler Qualität, die sich klar voneinander unterscheiden (Abbildung S10). X-Band-EPR-Spektren von 1 und 2 in gefrorenem THF mit 0.1m $[N(nBu)_4][PF_6]$ unterscheiden sich nicht nennenswert, was die Bildung des freien Anions $[Fe(trop_2 dae)]^-$ in beiden Fällen anzeigt. Die Spektren zeigen rhombische Signale ohne (aufgelöste) Hyperfeinkopplungen, die charakteristisch für low-spin-d⁷-Fe¹-Spezies sind (Abbildung 2b).

Die experimentell ermittelten g-Werte ($g_x = 2.009$; $g_y = 2.060$; $g_z = 2.160$) stimmen weitestgehend mit den über DFT-Rechnungen bestimmten Werten überein (Tabelle S2). Überraschenderweise zeigten EPR spektroskopische Untersuchungen von **1** und **2** in Toluolglas bei 20 K breite und komplexe Signale, was auf Aggregationsverhalten zurückgeführt wurde (Abbildung S13). Zudem werden schwache "Halbfeldsignale" beobachtet, die auftreten können, wenn S = 1/2-Systeme schwach miteinander in der Matrix wechselwirken (Abbildung S14).^[18] Die Spektren von **1** und **2** in Toluol unterscheiden sich eindeutig voneinander, was vermutlich auf unterschiedliche Aggregate zurückzuführen ist.

Die low-spin- d^7 -Elektronenkonfiguration von **1** wurde durch SQUID-Magnetisierungsexperimente bestätigt. In einem Magnetfeld von 1 T bei 300 K beträgt das effektive magnetische Moment $\mu_{eff} = 1.96 \ \mu_B$ und ist in einer Temperaturspanne von 10-300 K nahezu konstant (Hintergrundinformationen).^[19] Dieser Wert ist nah an dem spin-only-Wert von 1.80 μ_B für ein ungepaartes Elektron (für g = 2.076). In guter Übereinstimmung mit diesen Ergebnissen wurden für 1 und 2 mit der Evans-Methode effektive magnetische Momente von $\mu_{\text{eff}} = 2.0(1) \,\mu_{\text{B}}$ in benzolischer Lösung bestimmt. Ein Cyclovoltammogramm von 1 in THF bei 23 °C mit einer Vorschubgeschwindigkeit von 0.2 V s⁻¹ zeigt ein quasi-reversibles Redoxereignis mit $E_{1/2} = -2.24$ V vs. Fc/Fc⁺ (Hintergrundinformationen), was wahrscheinlich einer Transformation von Fe^I zu Fe⁰ zuzuschreiben ist. Irreversible Oxidationen treten bei -0.56 V und 0.05 V vs. Fc/Fc⁺ auf. Die große Separierung der Oxidations- und Reduktionswellen von ca. 1.7 V belegt die hohe Stabilität der Fe^I-Komplexe 1 und 2 bezüglich Disproportionierung.

Verbindung **1** reagiert in unpolaren Medien nicht mit H₂ (1.5 bar, T=25 °C).^[20] Dagegen werden Substrate mit "krypto"-Wasserstoff, also Wasserstoff in Form von H^{δ+}, H^{δ-,[21]} wie z. B. *N*,*N*-Dimethylaminboran (DMAB; Me₂HN-BH₃), effizient dehydriert.^[22] Es sind erst wenige eisenbasierte Katalysatoren für die Dehydrierung von DMAB bekannt.^[23] Kürzliche Studien von Manners et al. zeigen, dass oftmals in situ generierte Fe-Nanopartikel katalytisch aktiv sind und lediglich [Fe(C₃H₅)I(CO)₂] als homogener Katalysator wirkt.^[23a,b,24] **1** und **2** wurden in einem offenen System bei Raumtemperatur als Katalysatoren (5 Mol-%) für die Dehydrierung von DMAB in Toluol getestet (Tabelle 1 und Hintergrundinformationen). Unter diesen Bedingungen zeigte die LiFe^I-Spezies **2** nur eine moderate Aktivität (4 h, 35%, EinTabelle 1: Dehydrierung von DMAB mit Fe-Katalysatoren 1, 2 und 2d.^[a]

Eintrag	Kat.	Additiv/Gift (Äquiv.)	<i>t</i> [h]	Umsatz [%]
1	2	_	4.0	35
2	2 d	_	4.0	< 5
3	1	_	4.0	> 99 ^[b]
4 ^[c]	1	_	1.3	>99
5	1	15-Krone-5 (1)	10	59
6	1	[(<i>n</i> Bu)₄N]Br (1)	5.1	>99
7 ^[c,d]	1	_	10	>99
8 ^[e]	1	_	3×4	3×>99
9	1	THF als Lösungsmittel	2.5	6
10	1	PPh ₃ (0.2)	5.4	>99
11	1	P(OMe) ₃ (0.1)	5.9	>99

[a] Bedingungen: 0.048 M DMAB in Toluol, 5 Mol-% Katalysator. [b] **4** wurde mittels ¹¹B-NMR-Spektroskopie nach Beendigung der Reaktion identifiziert. [c] Gesamtkonzentration um Faktor 2 erhöht. [d] Me₂DN-BH₃ als Substrat eingesetzt. [e] 3×20 Äquiv. DMAB in aufeinanderfolgenden Zugaben.

trag 1), und $[LiFe(trop_2dae)(thf)_2]$ (2d) war nahezu inaktiv (Eintrag 2). Im Gegensatz dazu führte die NaFe^I-Verbindung 1 zu vollständigem Umsatz nach 4 h (Eintrag 3) mit dem 1,3-Diaza-2,4-diboretan 4 als einzigem Produkt (siehe Tabelle 1). Die Geschwindigkeitskonstante k_{obs} in einem frühen Stadium der Reaktion steigt um einen Faktor von 2.1(2), wenn die Gesamtkonzentration um einen Faktor von 2.0 erhöht wird, und vollständiger Umsatz wird nach 1.3 h erreicht (Eintrag 4 und Hintergrundinformationen). Dagegen führen Additive wie 15-Krone-5 oder $[(nBu)_4N]$ Br zu geringeren Reaktionsgeschwindigkeiten, was nahelegt, dass ein solvenssepariertes Ionenpaar mit dem [Fe(trop₂dae)]⁻-Anion nicht die aktivste Spezies ist (Einträge 5 und 6). Die Verwendung von deuteriertem Me₂NDBH₃ als Substrat mit 1 als Katalysator zeigte einen kinetischen Isotopeneffekt von 2.0(2), was die Deprotonierung der Aminogruppe als einen der geschwindigkeitsbestimmenden Schritte anzeigt (Eintrag 7 und Hintergrundinformationen). In Reaktionen von 1 mit stöchiometrischen Mengen Me₃NBH₃ wurde keine H-Abstraktion beobachtet. Eine Änderung der B-H-Streckschwingungsfrequenz im Festkörper-IR-Spektrum des nach Aufarbeitung erhaltenen Feststoffs deutet aber auf schwache Wechselwirkungen von 1 mit der BH₃-Gruppe hin. Nach ¹¹B-NMR-Studien sind solche Wechselwirkungen in toluolischer Lösung für 1 möglicherweise präsent, nicht aber für 2 (Hintergrundinformationen). Katalysator 1 bleibt nach der Dehydrierung von 20 Äquiv. DMAB aktiv, was durch die nachfolgende Zugabe von neuem Substrat nachgewiesen wurde. Insgesamt werden mindestens 3×20 Äquiv. DMAB ohne Verringerung der Katalysatoraktivität dehydriert (Eintrag 8). Im geschlossenen System wurde die lineare Spezies 5 (siehe Tabelle 1) mittels ¹¹B-NMR-Spektroskopie als hauptsächliches Zwischenprodukt identifiziert.^[25-27] Nur Spuren des monomeren Intermediats $Me_2N=BH_2$ wurden detektiert.

Wird die Reaktion in THF durchgeführt, sinkt die Reaktionsgeschwindigkeit stark ab (Eintrag 9). In selektiven Vergiftungsexperimenten (mit 0.2 Äquiv. PPh₃ oder 0.1 Äquiv. P(OMe)₃ pro Fe)^[23a] mit **1** als Katalysator verlaufen die Reaktionen zu vollständigem Umsatz, jedoch bei geringeren Reaktionsgeschwindigkeiten (Einträge 10 und 11). Zeit-Umsatz-Kurven der DMAB-Dehydrierung mit 1 als Katalysator zeigen keine Induktionsphase. Kleine Aliquote der Reaktionslösungen wurden per Rasterelektronenmikroskopie (REM) untersucht und gaben keine Hinweise auf die Bildung von Fe-Nanopartikeln. Obwohl der Reaktionsmechanismus unklar bleibt, deuten diese Resultate an, dass 1 ein Homogenkatalysator für die Dehydrierung von DMAB ist. Katalysator 1 hat eine deutlich höhere Aktivität als [Fe-(C₅H₅)I(CO)₂], mit dem 9 h Reaktionszeit und kontinuierliche UV-Bestrahlung nötig sind, um vollständigen Umsatz zu erreichen.^[23a] Der Gegenioneneffekt, Na⁺ > Li⁺, gibt Hinweise auf katalytisch aktivere aggregierte Spezies, die mit Verbindung 1 gebildet werden,^[28,29] und/oder auf effektivere Koordination des Substrats durch die [Na(thf)₃]⁺ enthaltende Spezies.

Komplex 1 katalysiert auch die Reaktion von Silanen mit Alkoholen als intermolekulare Variante der Freisetzung von "krypto"-Wasserstoff.^[30] Wir sind vor allem interessiert an der dehydrierenden Alkoholyse von Silanen mit Diolen. Dieser mögliche Zugang zu Oligo- oder Poly(alkylsilylethern) wurde bislang kaum genutzt.^[31-33] Die Verwendung von eisenbasierten Katalysatoren für diese Reaktion ist beispiellos. Die einfache Methanolyse von PhSiH₃^[34] wird mit 3 Mol-% 1 effektiv katalysiert (1 Mol-% pro Si-H-Bindung), und nach 5 min in Toluol (T=25 °C) wird vollständiger Umsatz erreicht. Die Reaktion verläuft homogen, und wenigstens drei aufeinanderfolgende Katalyseläufe können ohne merklichen Aktivitätsverlust durchgeführt werden (Hintergrundinformationen). In Reaktionen von 1,4-Benzoldimethanol als Diol mit Phenylsilan bzw. Diphenylsilan wurden 3 bzw. 2 Äquivalente H₂ freigesetzt, und vollständiger Umsatz wird nach 15 min bzw. 54 min erreicht (Schema 2). Die Produkte 6 und 7 wurden als beige Feststoffe isoliert und zeigen mindestens neun (im Fall von 6) oder neunzehn (im Fall von 7) Wiederholungseinheiten bezogen auf Si, wie massenspektrometrische Analysen ergaben.

Der trop-Amin-Ligand $(trop_2 dae)^{2-}$ stabilisiert niedervalente Eisenspezies und erlaubt die Synthese seltener Beispiele

Schema 2. Dehydrierende Kupplung von Alkoholen mit Silanen katalysiert durch 1.

heterobimetallischer d⁷-Eisen(I)-Amido-Komplexe sowie deren Anwendung als Homogenkatalysatoren. Die Strukturen, elektronischen Eigenschaften, das Aggregationsverhalten in Lösung und besonders die Reaktivitäten dieser Verbindungen hängen stark vom Gegenion ab $([Na(thf)_3)^+ vs.$ $(Li(Et_2O)_2)^+]$). Obwohl die Aktivitäten von $[Ni^I(O_2CCF_3)-$ (NHtrop₂)]^[7a] – einem weiteren 3d-metalloradikalischen Komplex mit einem niedervalenten d⁹-Nickel(I)-Zentrum nicht erreicht werden, ist $[NaFe(trop_2 dae)(thf)_3]$ (1) ein bemerkenswerter Homogenkatalysator für Dehydrierungsreaktionen, besonders für die Synthese von Oligo- und Polysilylethern aus Polyolen und Silanen. Diese Reaktion hat das Potential, sich als Synthesemethode für oligomere und polymere Alkylsilylether unter milden Bedingungen zu etablieren, wobei keine unerwünschten Beiprodukte, sondern synthetisch wertvolles H₂ generiert wird.

Stichwörter: Aminborane · Dehydrierungen · Heterometallische Komplexe · Kondensationsreaktionen · Niedervalentes Eisen

Zitierweise: Angew. Chem. Int. Ed. 2015, 54, 5766–5771 Angew. Chem. 2015, 127, 5858–5863

- [1] a) C. Tard, C. J. Pickett, *Chem. Rev.* 2009, 109, 2245-2274;
 b) R. M. Davydov, M. P. McLaughlin, E. Bill, B. M. Hoffman, P. L. Holland, *Inorg. Chem.* 2013, 52, 7323-7325.
- [2] a) J. M. Zadrozny, D. J. Xiao, M. Atanasov, G. J. Long, F. Grandjean, F. Neese, J. R. Long, *Nat. Chem.* 2013, *5*, 577–581;
 b) A. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C. W. Lehmann, *J. Am. Chem. Soc.* 2008, *130*, 8773–8787; c) K. Jonas, P. Klusmann, R. Goddard, *Z. Naturforsch. B* 1995, *50*, 394–404; d) C. G. Werncke, P. C. Bunting, C. Duhayon, J. R. Long, S. Bontemps, S. Sabo-Etienne, *Angew. Chem. Int. Ed.* 2015, *54*, 245–248; *Angew. Chem.* 2015, *127*, 247–250; .
- [3] a) C. J. Adams, R. B. Bedford, E. Carter, N. J. Gower, M. F. Haddow, J. N. Harvey, M. Huwe, M. A. Cartes, S. M. Mansell, C. Mendoza, D. M. Murphy, E. C. Neeve, J. Nunn, J. Am. Chem. Soc. 2012, 134, 10333–10336; b) R. B. Bedford, E. Carter, P. M. Cogswell, N. J. Wower, M. F. Haddow, J. N. Harvey, D. M. Murphy, E. C. Neeve, J. Nunn, Angew. Chem. Int. Ed. 2013, 52, 1285–1288; Angew. Chem. 2013, 125, 1323–1326; c) R. B. Bedford, P. B. Brenner, E. Carter, T. Gallagher, D. M. Murphy, D. R. Pye, Organometallics 2014, 33, 5940–5943; d) R. B. Bedford, P. B. Brenner, E. Carter, J. Clifton, P. M. Cogswell, N. J. Gower, M. F. Haddow, J. N. Harvey, J. A. Kehl, D. M. Murphy, E. C. Neeve, M. L. Neidig, J. Nunn, B. E. R. Snyder, J. Taylor, Organometallics 2014, 33, 5767–5780.
- [4] a) T. A. Betley, J. C. Peters, J. Am. Chem. Soc. 2003, 125, 10782-10783; b) S. D. Brown, T. A. Betley, J. C. Peters, J. Am. Chem. Soc. 2003, 125, 322-323; c) M. P. Hendrich, W. Gunderson, R. K. Behan, M. T. Green, M. P. Mehn, T. A. Betley, C. C. Lu, J. C. Peters, Proc. Natl. Acad. Sci. USA 2006, 103, 17107-17112; d) C. C. Lu, C. T. Saouma, M. W. Day, J. C. Peters, J. Am. Chem. Soc. 2007, 129, 4-5; e) C. T. Saouma, C. C. Lu, M. W. Day, J. C. Peters, Chem. Sci. 2013, 4, 4042-4051; f) H. Fong, M.-E. Moret, Y. Lee, J. C. Peters, Organometallics 2013, 32, 3053-3062; g) J. L. Kisko, T. Hascall, G. Parkin, J. Am. Chem. Soc. 1998, 120, 10561-10562; h) N. P. Mankad, P. Müller, J. C. Peters, J. Am. Chem. Soc. 2010, 132, 4083-4085; i) M. T. Mock, C. V. Popescu, G. P. A. Yap, W. G. Dougherty, C. G. Riordan, Inorg. Chem. 2008, 47, 1889-1891; j) Y. Lee, J. C. Peters, J. Am. Chem. Soc. 2011, 133, 4438-4446; k) M.-E. Moret, J. C. Peters, Angew. Chem. Int. Ed. 2011, 50, 2063-2067; Angew. Chem. 2011, 123,

Angew. Chem. 2015, 127, 5858-5863

Angewandte

2111–2115; l) S. E. Creutz, J. C. Peters, J. Am. Chem. Soc. 2014, 136, 1105–1115; m) Y. Lee, R. A. Kinney, B. M. Hoffman, J. C. Peters, J. Am. Chem. Soc. 2011, 133, 16366–16369; n) J. S. Anderson, J. C. Peters, Angew. Chem. Int. Ed. 2014, 53, 5978–5981; Angew. Chem. 2014, 126, 6088–6091.

- [5] a) J. M. Smith, A. R. Sadique, T. R. Cundari, K. R. Rodgers, G. Lukat-Rodgers, R. J. Lachicotte, C. J. Flaschenriem, J. Vela, P. L. Holland, J. Am. Chem. Soc. 2006, 128, 756-769; b) K. P. Chiang, C. C. Scarborough, M. Horitani, N. S. Lees, K. Ding, T. R. Dugan, W. W. Brennessel, E. Bill, B. M. Hoffman, P. L. Holland, Angew. Chem. Int. Ed. 2012, 51, 3658-3662; Angew. Chem. 2012, 124, 3718-3722; c) M. M. Rodriguez, B. D. Stubbert, C. C. Scarborough, W. W. Brennessel, E. Bill, P. L. Holland, Angew. Chem. Int. Ed. 2012, 51, 8247-8250; Angew. Chem. 2012, 124, 8372-8375; d) S. A. Stoian, Y. Yu, J. M. Smith, P. L. Holland, E. L. Bominaar, E. Münck, Inorg. Chem. 2005, 44, 4915-4922; e) G. Bai, P. Wie, A. K. Das, D. W. Stephan, Dalton Trans. 2006, 1141-1146; f) K. P. Chiang, S. M. Bellows, W. W. Brennessel, P. L. Holland, Chem. Sci. 2014, 5, 267-274; g) Y. Yu, M. Smith, C. J. Flaschenriem, P. L. Holland, Inorg. Chem. 2006, 45, 5742-5751; h) Y. Yu, A. R. Sadique, J. M. Smith, T. R. Dugan, R. E. Cowley, W. W. Brennessel, C. J. Flaschenriem, E. Bill, T. R. Cundari, P. L. Holland, J. Am. Chem. Soc. 2008, 130, 6624-6638; i) R. E. Cowley, M. R. Golder, N. A. Eckert, M. H. Al-Afyouni, P. L. Holland, Organometallics 2013, 32, 5289-5298; j) J. M. Smith, R. J. Lachicotte, K. A. Pittard, T. R. Cundari, G. Lukat-Rodgers, K. R. Rodgers, P. L. Holland, J. Am. Chem. Soc. 2001, 123, 9222-9223.
- [6] a) S. L. Stokes, W. M. Davis, A. L. Odom, C. C. Cummins, Organometallics 1996, 15, 4521-4530; b) Y. Nakajima, Y. Nakao, S. Sakaki, Y. Tamada, T. Ono, F. Ozawa, J. Am. Chem. Soc. 2010, 132, 9934-9936; c) Y.-F. Lin, Y. Nakajima, F. Ozawa, Dalton Trans. 2014, 43, 9032-9037; d) C. Vogel, F. W. Heinemann, J. Sutter, C. Anthon, K. Meyer, Angew. Chem. Int. Ed. 2008, 47, 2681-2684; Angew. Chem. 2008, 120, 2721-2724; e) G. Ung, J. Rittle, M. Soleilhavoup, G. Bertrand, J. C. Peters, Angew. Chem. Int. Ed. 2014, 53, 8427-8431; Angew. Chem. 2014, 126, 8567-8571; f) C.-Y. Lin, J. C. Fettinger, F. Grandjean, G. Long, P. P. Power, Inorg. Chem. 2014, 53, 9400-9406.
- [7] a) M. Vogt, B. de Bruin, H. Berke, M. Trincado, H. Grützmacher, *Chem. Sci.* 2011, 2, 723–727; b) H. Schönberg, S. Boulmaâz, M. Wörle, L. Liesum, A. Schweiger, H. Grützmacher, *Angew. Chem. Int. Ed.* 1998, *37*, 1423–1426; *Angew. Chem.* 1998, *110*, 1492–1494.
- [8] R. E. Rodríguez-Lugo, M. Trincado, M. Vogt, F. Tewes, G. Santiso-Quinones, H. Grützmacher, *Nat. Chem.* 2013, 5, 342–347.
- [9] Z.B.: a) B. Conway, A. R. Kennedy, R. E. Mulvey, S. D. Robertson, J. G. Álvarez, *Angew. Chem. Int. Ed.* 2010, *49*, 3182–3184; *Angew. Chem.* 2010, *122*, 3250–3252; b) C. Lichtenberg, T. P. Spaniol, J. Okuda, *Inorg. Chem.* 2012, *51*, 2254–2262; c) D. R. Armstrong, E. Brammer, T. Cadenbach, E. Hevia, A. R. Kennedy, *Organometallics* 2013, *32*, 480–489.
- [10] Quadratisch planare Koordinationsgeometrien wurden für einige Fe^{II}-Spezies berichtet, z. B.: a) E. J. Hawrelak, W. H. Bernskoetter, E. Lobkovsky, G. T. Yee, E. Bill, P. J. Chirik, *Inorg. Chem.* 2005, 44, 3103-3111; b) S. C. Bart, K. Chłopek, E. Bill, M. W. Bouwkamp, E. Lobkovsky, F. Neese, K. Wieghardt, P. J. Chirik, *J. Am. Chem. Soc.* 2006, *128*, 13901-13912; c) G. Muller, J. Sales, J. Vinaixa, J. Tejada, *Inorg. Chim. Acta* 1982, *60*, 227-230.
- [11] Zwei Fe¹-β-Diketiminatkomplexe mit quadratisch planarer Koordinationsgeometrie sind bekannt, wurden aber mit einer pentakoordinierten Fe-Spezies kokristallisiert oder waren so instabil in Lösung, dass detailliertere experimentelle Untersuchungen nicht vorgenommen wurden.^[5a,h] Es sind quadratisch planare niedervalente Fe-Verbindungen bekannt, für die eine eindeutige Zuweisung einer Oxidationsstufe für das Metallzen-

trum wegen der Redoxaktivität des Liganden nicht möglich war: J. Scott, I. Vidyaratne, I. Korobkov, S. Gambarotta, P. H. M. Budzelaar, *Inorg. Chem.* **2008**, *47*, 896–911.

- [12] Na1 liegt in einer verzerrt trigonal bipyramidalen Koordinationsgeometrie vor, wobei zwei thf-Moleküle und N1 in den äquatorialen und ein thf-Molekül sowie die aromatische C2-C3-Bindung der trop-Einheit in den apikalen Positionen sind.
- [13] Die Art der Neutralliganden L ist entscheidend für die Koordinationschemie von Verbindungen der Art [LiFe(trop₂dae)(L)₂]. [LiFe(trop₂dae)(Et₂O)(thf)] (2b) zeigt Bindungsparameter ähnlich zu 2, wohingegen [LiFe(trop₂dae)(2-Me-THF)₂] (2c) und [LiFe(trop₂dae)(thf)₂] (2d) Bindungsparameter ähnlich zu 1 zeigen (Hintergrundinformationen).
- [14] Die experimentell bestimmten Isomerieverschiebungen wurden durch DFT-Rechnungen gut reproduziert. Die experimentell bestimmten Quadrupolaufspaltungen weichen von den berechneten Werten ab (Hintergrundinformationen).
- [15] Diese Verbindungen liegen in high-spin-Elektronenkonfigurationen vor, was auch zu deren höheren Isomerieverschiebungen beiträgt.
- [16] P. Gütlich, E. Bill, A. X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry, Springer, Heidelberg, 2011.
- [17] N. Roy, S. Sproules, E. Bill, T. Weyhermüller, K. Wieghardt, *Inorg. Chem.* 2008, 47, 10911–10920.
- [18] Zum Beispiel: D. Bravo-Zhivotovskii, I. Ruderfer, S. Melamed, M. Boroshansky, B. Tumanskii, Y. Apeloig, *Angew. Chem. Int. Ed.* 2005, 44, 739–743; *Angew. Chem.* 2005, 117, 749–753.
- [19] In einem niedrigeren Feld von 0.01 T wurde ein höheres effektives magnetisches Moment von μ_{eff} =3.25 μ_B bei 300 K bestimmt, was auf nicht kompensierte, interfaciale, ferromagnetisch ausgerichtete, durch niedrige Felder orientierte Spins zurückzuführen sein könnte (für Details und Diskussion siehe Hintergrundinformationen).
- [20] In polaren Medien wie THF und unter ansonsten ähnlichen Bedingungen wurde die Zersetzung von 1 beobachtet. Olefine wie 1-Octen (10 Äquiv.) wurden nicht hydriert (Hintergrundinformationen).
- [21] H. Berke, ChemPhysChem 2010, 11, 1837-1849.
- [22] a) A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, *Chem. Rev.* 2010, 110, 4023-4078; b) A. Staubitz, A. P. M. Ro- bertson, I. Manners, *Chem. Rev.* 2010, 110, 4079-4124; c) G. Alcaraz, S. Sabo-Etienne, *Angew. Chem. Int. Ed.* 2010, 49, 7170-7179; *Angew. Chem.* 2010, 122, 7326-7335.
- [23] a) J. R. Vance, A. Schäfer, A. P. M. Robertson, K. Lee, J. Turner, G. R. Whittell, I. Manners, *J. Am. Chem. Soc.* 2014, *136*, 3048–3064; b) J. F. Sonnenberg, R. H. Morris, *ACS Catal.* 2013, *3*, 1092–1102; c) R. T. Baker, J. C. Gordon, C. W. Hamilton, N. J. Henson, P.-H. Lin, S. Maguire, M. Murugesu, B. L. Scott, N. C. Smythe, *J. Am. Chem. Soc.* 2012, *134*, 5598–5609; d) J. R. Vance, A. P. M. Robertson, K. Lee, I. Manners, *Chem. Eur. J.* 2011, *17*, 4099–4103; e) T. Miyazaki, Y. Tanabe, M. Yuki, Y. Miyake, Y. Nishibayashi, *Organometallics* 2011, *30*, 2394–2404.
- [24] Dasselbe Verhalten wurde für $[Fe(C_5H_5)Cl(CO)_2]$, $[Fe(C_5H_5)-(OSO_2CF_3)(CO)_2]$ und $[Fe(C_5H_5)(CO)_2(THF)]X$ (X = BF₄, SbF₆) angenommen, aber nicht detailliert untersucht.^[23a]
- [25] Nach 52 min: 18% DMAB, 21% 4, 56% 5, 2% Me₂NBH₂, 3% BH enthaltende Spezies (möglicherweise Me₂NBH); Bedingungen: C₆D₆, RT, 9 Mol-% 1. Ähnliches Resultat mit 5 Mol-% 1.
- [26] Dasselbe wurde unter Verwendung von 2 oder 3 als Katalysator beobachtet.
- [27] Die Bildung von H₂ wurde in diesen Reaktionen mittels ¹H-NMR-Spektroskopie detektiert.
- [28] Verbindungen 1 oder 2c konnten aus toluolischer Lösung reisoliert werden; d.h. vollständige Zersetzung kann ausgeschlossen werden.

5862 www.angewandte.de

- [29] Na₂(trop₂dae)], in situ generiert aus H₂tropdae und 2 Äquiv. [NaN(SiMe₃)₂], war inaktiv als Katalysator für die Dehydrierung von DMAB unter identischen Bedingungen.
- [30] a) W. Sattler, G. Parkin, J. Am. Chem. Soc. 2012, 134, 17462–17465; b) A. Rit, T. Spaniol, L. Maron, J. Okuda, Angew. Chem. Int. Ed. 2013, 52, 4664–4667; Angew. Chem. 2013, 125, 4762–4765; c) D. Mukherjee, R. R. Thompson, A. Ellern, A. D. Sadow, ACS Catal. 2011, 1, 698–702.
- [31] Y. Kawakami, Y. Li, Des. Monomers Polym. 2000, 3, 399-419.
- [32] a) Y. Li, Y. Kawakami, *Macromolecules* 1999, 32, 8768-8773;
 b) Y. Li, Y. Kawakami, *Macromolecules* 1999, 32, 6871-6873;
 c) Y. Li, M. Seino, Y. Kawakami, *Macromolecules* 2000, 33, 5311-5314;
 d) J. Cella, S. Rubinsztajn, *Macromolecules* 2008, 41, 6965-6971.
- [33] Katalysatoren für diesen Reaktionstypus sind Edelmetallkatalysatoren (Pd, Rh), die mehrheitlich lange Reaktionszeiten oder leicht erhöhte Temperaturen benötigen (Lit. [32a-c]); eine

nennenswerte Ausnahme für die Synthese von Poly(arylsilylethern) ist $[B(C_6F_5)_3]$ (Lit. [32d]).

- [34] Einfache Alkoholysereaktionen $R_{(4-n)}SiH_n + x ROH$ $(x \ge n)$ wurden beschrieben: a) S. Chang, E. Scharrer, M. Brookhart, J. *Mol. Catal. A* **1998**, *130*, 107–119; b) S. Rommel, L. Hettmanczyk, J. E. M. N. Klein, B. Plietker, *Chem. Asian J.* **2014**, *9*, 2140–2147.
- [35] CCDC 999856 (1), 999857 (2), 999858 (3), 1033680 (2b), 1033681 (2c) und 1033682 (2d) enthalten die ausführlichen kristallographischen Daten zu dieser Veröffentlichung. Die Daten sind kostenlos beim Cambridge Crystallographic Data Centre über www.ccdc.cam.ac.uk/data_request/cif erhältlich.

Eingegangen am 24. November 2014 Online veröffentlicht am 12. März 2015