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Sleep disturbances represent a core symptom in affective

disorders. While healthy sleep patterns help to regulate

emotions and consolidate memories, disturbed sleep

participates in the genesis and maintenance of mental

illnesses. As the electrophysiological mechanisms underlying

restorative sleep start to be uncovered, exciting opportunities

for direct applications arise. Here we discuss the first evidence

on manipulation of emotional processing and memories during

sleep. In particular, we examine the advantage of targeted

memory reactivation procedures, especially when phase-

locked to slow oscillations dynamics, in achieving such

manipulations. Extrapolating from this knowledge, we propose

sleep-based interventions that could provide new therapeutic

avenues for the treatment of maladaptive emotional memories,

as in phobias, addictions or PTSD.
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Sleep is important for emotional
housekeeping
Sleep hosts a myriad of processes that are essential for

physical and mental functions [1]. In particular, sleep

plays a crucial role in emotion regulation [2��]. Sleep

quality is highly correlated with next day mood [3]

(Figure 1a), while sleep loss consistently results in more

negative appraisals [4] (Figure 1b), stronger subjective

and physiological responses to threatening stimuli

(Figure 1c), attentional bias toward negative stimuli

and diminished ability to understand other people’s

feelings and to show empathy [2��]. This relationship is

bidirectional since emotional events can also influence

subsequent sleep patterns, leading to more or less adap-

tive emotion regulation [5] (Figure 2).
www.sciencedirect.com 
Given the major role of sleep in emotional appraisal and

regulation, it is not surprising to find that virtually all

affective disorders are accompanied by sleep disturbances

[6,7]. In fact, insomnia has been recently highlighted as a

significant predictor for a wide range of psychopatholo-

gies, including depression, anxiety, and psychosis [8].

With an approximate 25–30% life-time prevalence, men-

tal disorders represent one of the most prevailing and

global health issues [9], and this incidence can be

expected to increase in the near future [10]. Furthermore,

current treatments are typically expensive in time, energy

and resources, resulting in a low mental health facilities

use rate [11,12].

In this context, it is urgent to understand the unique role

of sleep in affective disorders, to uncover new avenues for

mental health care.

Physiological underpinnings of sleep’s role in
emotional regulation
Many sleep-related processes could explain the impact

of sleep on emotional state. At the systems level,

coordinated endocrine and autonomic changes, occur-

ring particularly during deep NREM sleep [13], favor

molecular biosynthesis and other basic processes that

support host defense responses [14,15], glucose metab-

olism and other cell metabolism functions [16,17].

Such processes are crucial for general health and for

handling stress – including emotional stress – on the

system.

Some of these maintenance processes specifically

regard the nervous system. For instance, findings in

rodents suggest that sleep supports global synaptic

downscaling [18] and the clearance of neurotoxic waste

substances from intercellular space [19]. Such processes

may influence mood and emotional regulation through

global effects on neural processing. Accordingly,

extended wakefulness and sleep deprivation have been

shown to lead to adverse changes in neural function,

including loss of long-range functional connectivity

[20], excessive neural excitability [21] and loss of

inhibitory control from cortical onto subcortical emo-

tional centers, associated to enhanced emotional

reactivity [22–24] (Figure 1c–d).

Another way in which sleep may contribute to emotional

housekeeping is through reprocessing of emotional mem-

ories. Indeed, a large body of evidence supports a role of

sleep in memory reactivation and consolidation [25,26].

While the exact neural underpinnings of these off-line

processes need to be confirmed, substantial evidence
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Figure 1
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Effects of sleep on emotional processing. (a) Effect sizes of subjective sleep quality (as reported on awakening) on average positive affect during

the day (reproduced with permission from Ref. [3]). (b) Sleep decreases emotional rating of stimuli: after sleep (in black) the rating of the most

Intense emotional stimuli (4s, 5s) significantly decreases, which is not the case after a wake period of the same duration (in grey) (reproduced with

permission from Ref. [24]). (c) Amygdala reactivity is decreased by sleep and increased by wake (left graph), while amygdala-ventromedial

prefrontal cortex (vmPFC) connectivity is increased by sleep and decreased by wake (right graph) (reproduced with permission from Ref. [24]),

(d) suggesting that sleep restores fronto-cortical inhibition on lower order emotional centers (reproduced with permission from Ref. [23]).
points to reactivation of neural memory traces during

NREM sleep. Reactivation over distributed areas is coor-

dinated by slow oscillations (SO; 0.5–1.5 Hz) [27�,28�,29],
in which thalamic spindles (12�15 Hz) and hippocampal

sharp-wave ripples [30] appear hierarchically nested

(Figure 3a). Besides the hippocampus and (neo)cortex,

memory reactivations can involve amygdala and ventral

striatum, for memories with aversive and rewarding com-

ponents, respectively [31�].

In contrast, the replay of previously encoded information

could not convincingly be demonstrated in rodent’s REM

sleep (at least not using pairwise firing-rate correlation

methods [31�]). It should herein be noted that the tran-

sient nature and limited amount of REM sleep in rodents

complicate such investigations. Even if REM sleep is not

associated to high-fidelity memory reactivations, this does

not preclude a role of REM sleep in memory processing.

A recent study showed that attenuating REM sleep

theta rhythm by optogenetically silencing medial

septum g-aminobutyric acid–releasing neurons, erased

subsequent novel object place recognition and impaired
Current Opinion in Behavioral Sciences 2020, 33:99–108 
fear-conditioned contextual memory [35��]. Interestingly,

stress during encoding, as indexed by cortisol levels,

seems to modulate REM sleep theta and in turn emo-

tional memory consolidation in humans [40�]. As such,

convincing evidence ties REM sleep-related (emotional)

memory processes to theta activity [32,33], possibly in

association with ponto-geniculo-occipital (PGO) waves

[34].

Although the research literature on memory consolidation

is extensive, not much is known about the mechanisms

participating specifically in emotional memory consolida-

tion. Acute emotional stressors seem to cause both an

increase in slow wave sleep, and a flattening of the REM

sleep distribution across the night (Figure 2c,d) [5]. The

slow wave sleep increase is associated to a decrease in

memories’ emotional tone across sleep (Figure 2e) and

thus appears to constitute an adaptive response. Investi-

gations focusing on the role of REM sleep in emotional

memory consolidation have provided mixed results so far

[2��]. Using split-night paradigms to distinguish the

effects of NREM versus REM sleep, some studies
www.sciencedirect.com
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Figure 2
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Effects of emotional distress on sleep. (a) Sleep quality scores after an emotionally distressing experience show a bimodal distribution. (b) After an

emotional event, adaptive sleep responders report better sleep, while maladaptive sleep responders report worse sleep; there is no difference

between the groups after a neutral event. (c) Adaptive sleep responders increase SWS% after an emotional experience. (d) Maladaptive sleep

responders show a flattened distribution of REM sleep across the night after an emotional event. (e) Depression induced by the emotional

experience strongly correlates with SWS activity in the second part of the night in adaptive sleep responders. *p < 0.05. Adapted and reproduced

under the Creative Commons Licence Agreement from Ref. [5].
highlight the role of REM sleep in emotional memory

consolidation [36,37], while other studies cannot replicate

this advantage [38,39]. Circumstantial evidence suggests

that NREM and REM sleep might play interactive and

complementary roles in the processing of emotional

memories [41,42], but few studies thus far have directly

addressed this hypothesis.

TMR to bias memory consolidation
Causal support for sleep-related processing of individual

memories comes from experiments in which such proces-

sing was influenced by presenting sensory memory cues

during sleep, a procedure referred to as Targeted Memory

Reactivation (TMR) [43,44��]. A seminal study in rats
www.sciencedirect.com 
showed that TMR biases sleep-related information pro-

cessing toward the cued memory representation [45].

Several studies in humans have now shown that TMR

during sleep can elicit neural responses related to learning

content [46,47�]. The effects of TMR on memory perfor-

mance have, however, been somewhat variable, with

some studies reporting enhanced post-sleep recall of cued

items [48–51], some reporting no behavioral effect of

cueing [52–56], and some negative findings remaining

unpublished (including two studies from our lab). These

discrepancies might be explained by the substantial var-

iations in paradigms, memory types and sensory cues [57].

However, given the limited sample sizes in many of these

studies, type I and II errors could also play a role.
Current Opinion in Behavioral Sciences 2020, 33:99–108
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Figure 3
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(a) Coupling of sleep oscillatory dynamics across hippocampus, thalamus and cortex. Spindles (in blue) are nested in the SO depolarizing

upphase (in red) while sharp-wave ripples events (in green) occur in the troughs of spindles. Adapted and reproduced with permission from Ref.

[25]. (b) Slow oscillation phase-dependent stimulus processing. Differential stimulus-evoked waveforms for up (blue) and down (red) state-

presented sound stimuli for frontal channel Fz. (c) Early stimulus-evoked theta power did not differ reliably between up- and down-targeted

stimuli. (d) Late spindle/beta power was higher for uptargeted sounds than for downtargeted stimuli across the entire scalp, reaching significance

in a right fronto-temporal area (electrodes Fp2, F8, FC6, T8, AF8, F6 and FT8), and a left parietal region (P7 and PO7). Reliable differences are

indicated with: *p < 0.025; **p < 0.01; ***p < 0.001. Reproduced under the Creative Commons Licence Agreement from Ref. [52].

Current Opinion in Behavioral Sciences 2020, 33:99–108 www.sciencedirect.com
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Of note, most TMR studies thus far target reactivation of

neutral memories during NREM sleep; a few studies on

TMR of neutral memories during REM sleep report it to

be ineffective [58–60]. Similarly, evidence for a benefit of

TMR on emotional memories is limited: TMR of declar-

ative memories during NREM sleep led to a post-sleep

memory retrieval benefit of emotional items but not

neutral ones [60], a benefit for emotional and neutral

items alike [61], or no effect [54,62,63]. In one of these

studies, TMR during N2 or REM sleep did alter stimuli’s

emotional tone, as reflected in reduction post-sleep

arousal ratings for both aversive and neutral stimuli, in

the absence of a memory performance benefit [62].

Cueing emotional memories during REM sleep has only

been done in three studies in humans so far, which failed

to show specific retrieval benefits for emotional items

[60,62,64]. One of these studies did, however, report

increased response bias (i.e. increase of both correct

and false recognition) for cued items as compared to

not cued ones, irrespective of emotional valence [64].

Another study found decreased arousal ratings for both

emotional and neutral stimuli, without effects on memory

performance, similar to cueing in NREM sleep [62]. The

last study did not find any benefit after cueing emotional

nor neutral items [60].

In the specific context of fear conditioning, TMR has also

produced inconsistent findings. An elegant study in

rodents used artificial patterns of olfactory bulb stimula-

tion as conditioned stimuli in a fear conditioning proce-

dure [65]. Imposed post-training replay during NREM

sleep enhanced subsequent memory strength, whereas

the identical replay during wake induced extinction. Two

other rodent studies assessed fear conditioning using

sensory stimuli. In one of these, cueing with the condi-

tioned stimulus during NREM, but not REM sleep,

impaired subsequent fear memory [66], while in the other

cueing during REM sleep led to increased fear memory,

with a marginal increase for cueing during wake ([67]; of

note, this study used mild ear shock as conditioned

stimulus, which might by itself be aversive). In humans,

re-presenting conditioned stimuli during NREM sleep

was reported to favor extinction of fear memory, as

compared to no cueing [68], but to a similar extent as

during wake [69].

Phase-targeted TMR
A possible reason why TMR interventions lack stronger

results might reside in the fact that memory cues are

randomly presented throughout the sleep period. Indeed,

it has been shown that cues evoke different responses

depending on their temporal association with NREM

sleep’s prevailing oscillatory population dynamics

[44��], and especially relatively to the phase of SOs

[52,70��,71]. This may be understood considering that

SOs in the EEG reflect fluctuations in underlying cortico-
www.sciencedirect.com 
thalamic networks between periods of enhanced activity,

plasticity and connectivity (during SO positive half-

waves) and periods of synchronized neuronal hyperpolar-

ization (during SO negative half-waves) [52,70��,71]
(Figure 4e).

As introduced earlier, the reprocessing of memories dur-

ing sleep, leading to memory consolidation, is believed to

be driven by SOs orchestrating hippocampo-cortical

interactions [29] (Figure 3a). In particular, the SO upslope

constitutes a sensitive window during which sharp-wave

ripples and spindles are starting to develop, and the

instantiation of a full blown pattern might be most suc-

cessfully amplified [28�] or modified by external inputs

[72]. Auditory stimuli presented during NREM sleep can

evoke high-amplitude K-complex- or slow oscillation-like

responses, with increased spindle and higher frequency

activity grouped in the positive deflection [52,73,74].

Importantly, this effect is maximal when sound onset is

targeted to the positive going zero-crossing of ongoing

SOs (‘stimulus-related up’ condition), as compared to the

negative going SO zero-crossing (‘stimulus-related down’

condition) [52] (Figure 3b–d; see Figure 4d for schematic

illustration of the terminology). Accordingly, externally

boosting SO and spindles, using the aforementioned

auditory stimulation procedures, improves memory per-

formance for material studied before sleep, as compared

to sham stimulation, confirming their role in memory

consolidation [75].

Given the aforementioned evidence, combining phase-

locked stimulation with TMR paradigms seems to be the

next step toward optimizing memory consolidation inter-

ventions. Indeed, if the sound stimulus evoking the SO

upslope response is a memory cue, or otherwise mean-

ingful, the evoked processing capacity might be geared to

the pertaining stimulus, activating related content. Stud-

ies assessing this notion are only now starting to emerge.

In one of these, participants were re-exposed to previ-

ously studied foreign vocabulary. Studied items were

presented during SO up-slopes, down-slopes or not at

all, in a within subject design. While a benefit of TMR

was observed for upcued items compared to not cued

ones, there was no significant effect of the crucial up-

versus down-cueing manipulation [76]. Using a similar

foreign vocabulary task, another study applied a more

accurate SO phase targeting procedure, based on EEG

signal modeling (Figure 4a–d): sleep-reactivation stimuli

were targeted either to the positive or negative going SO

zero-crossing (0� or 180�), with also a sham-up and a sham-

down condition, in a between subjects design [44��,70��].
Results showed significant memory enhancement for

upcued items and significant forgetting for downcued

items, as compared to no cueing. Moreover, auditory

stimuli locked to positive SO zero-crossings (0�) boosted

SO dynamics beyond evoked K-complexes, inducing long

SO trains that effectively increase the amount of deep
Current Opinion in Behavioral Sciences 2020, 33:99–108
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Figure 4
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Details of the closed-loop neurostimulation method used in our lab. (a) Slow oscillations from the incoming EEG signal for channel Fz (in orange)

are modelled in real-time using sine fitting (in green) and used to make predictions about the phase of future oscillations (between the two blue

lines). (b) Phase targeting accuracy (targeting 0�) in young healthy subjects, for a total of 4281 predictions. Mean phase error was 5.71� � 50.74�

(SD). (c) Auditory stimuli targeted at phase 0� of SO tend to evoke long trains of SO (in red), relatively to no stimulation (in grey). (d) Schematic

illustration on terminology regarding features of EEG slow oscillations. In particular, the 0� phase corresponds to the positive SO zero-crossing

(half-way up slope), and down slope refers to the negative going slope (in green) with 180� phase at the negative SO zero-crossing. (e)

Representative ERP data (channel Fz) for a single PTSD patient from our ongoing study [89]. Auditory cueing during sleep was done using EMDR

clicks (red trace; n = 100), which is contrasted to a sham condition (i.e. silence; green trace, n = 36). Cues were presented at 0 ms, phase-locked

to the positive SO zero-crossing (0�). Presenting EMDR clicks elicited a boosting of slow oscillations, as compared to the sham condition. (f)

Accuracy of SO targeting in the same PTSD patient, combined for EMDR and sham cues during N2 and N3 (136 predictions). Mean phase error

was 5.23� � 56.0� (SD), suggesting that similar phase targeting accuracy and SO boosting performance can be reached in a population with

disturbed sleep as in young healthy subjects (cf. panel (b)). Panels (e) and (f) courtesy of van der Heijden and van Marle [89].

Current Opinion in Behavioral Sciences 2020, 33:99–108 www.sciencedirect.com
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sleep across the night. This global sleep deepening was

confirmed in a second, independent study (paper in

preparation).

These clear results contrast with previous studies and

underline the importance of high precision in SO phase

targeting. Since cueing can either provoke consolidation

or forgetting depending on the targeted SO phase, any

phase inaccuracy can dilute the effects. Therefore, the

precision and general performance of automated oscil-

latory phase targeting procedures have to be excellent to

be effective. A few methods have thus far been proposed

to model human SO dynamics, with variable precision

[52,70��,77], and more advanced closed-loop neural

manipulations are being developed [78]. Crucial factors

to achieving high performance are signal modeling –

allowing adaptation to the high temporal variance of

electrophysiological signals (introduced in Ref. [52]) –

and minimizing lag in the closed hardware-software loop

— during which the physiological signal can deviate from

the model. Another point that could explain these better

results regards the use of single sound stimuli rather than

repeated, rhythmic ones. A single, precisely timed stim-

ulus induces a train of SOs and spindles with their own

intrinsic dynamics (Figure 3b–d, Figure 4c) that may be

disturbed by subsequent stimulations [79]. Accordingly,

silent periods after cueing seem necessary for efficient

memory consolidation [56,80,81�].

Given the instrumental role of SOs in orchestrating

memory reprocessing, future TMR studies should

consider carefully how their cues align with on-going

oscillatory activity. In addition, while phase-locked stim-

ulation has mostly been performed on SOs during NREM

sleep periods, it is in theory possible to apply the same

technique to other types of oscillations. For instance, the

rhythmic slow activity or slow theta dynamic of �3 Hz,

which occurs in the human hippocampus during REM

sleep and waking, has been shown to synchronize across

brain regions and may serve similar activity coordinating

functions to SOs in NREM sleep [33]. Closed-loop neuro-

manipulations could play a unique role in uncovering the

fundamental role of these oscillations in information

processing, and in exploring new avenues for sleep and

memory interventions.

Toward new treatment strategies for sleep
and affective disorders
Besides their scientific relevance, findings on sleep and

memory manipulation have instigated exciting potential

applications, especially with regard to affective disorders.

It might be for instance possible to modify derailed

trauma memories in PTSD, extinguish maladaptive stim-

ulus reward association in addiction, or alter fear associa-

tions in phobias. Moreover, acting on sleep quality to

relieve sleep impairments could by itself be effective, by
www.sciencedirect.com 
re-engaging the normal functions of sleep in emotional

housekeeping.

Indeed, treating co-morbid insomnia seems to improve

affective symptoms in depressive patients [82]. However,

so far non-pharmacological treatment options for insomnia

are limited, moderately effective and resource intensive,

while pharmacological treatments have not demonstrated

long-term efficacy and are accompanied by side effects

including disturbed sleeparchitectureandriskofaddiction.

A new, low-cost, non-invasive treatment that could safely

be used by patients in the home environment would,

therefore, be of considerable societal interest. Current

efforts regarding sleep enhancement include vestibular

stimulation through gentle rocking [83,84], transcranial

electrical stimulation or transcranial magnetic stimulation

(TMS) [85], but closed-loop neurostimulation of the SO

dynamic seems the most promising approach, given its

portability and ease of use [86].

With regard to the possibility of modifying maladaptive

memories, evidence is still scarce. A first study in rodents,

applying intracranial rewarding stimulation anytime a

specific place cell fired during sleep, was able to ascribe

an emotional valence to the corresponding spatial location

and thus influence the animal’s goal-directed behavior

during subsequent wake [87]. In humans, using aversive

conditioning to reduce addictive smoking gave encourag-

ing results: pairing a highly aversive odor with cigarette

smoke smell during NREM 2 reduced cigarette smoking

by approximately 30% in the following week [88]. Using

closed-loop neurostimulation, our group is currently con-

ducting a study aimed at modifying trauma memories in

PTSD [89]. Despite limited efficacy, the first choice

treatment of PTSD is eye movement desensitization

and reprocessing (EMDR) therapy, during which trau-

matic memories get reactivated and subsequently re-

encoded with lower fear. Hoping to improve its efficacy,

we present auditory cues from the EMDR session during

the following night, time-locked to SOs’ positive zero-

crossing. This should facilitate the consolidation of the

newly acquired EMDR memories, while stabilizing and

deepening sleep. Preliminary findings show that SO

modeling and oscillatory phase targeting is accurate

despite the reduced SO power in these patients [90��]
and result in similar stimulus-evoked responses as in

healthy subjects (Figure 4e–f).

While evidence is as yet limited, it can be envisaged that

the sleep state might present with possibilities for thera-

peutic intervention that are not available during wake.

For instance, during sleep the prefrontal cortex is less

active and information processing less goal-directed than

during wake. This is reflected in sleep mentation

(dreams), which can feature inconsistencies and bizarre

components without generating a notable conflict

response. These conditions might favor acceptance of
Current Opinion in Behavioral Sciences 2020, 33:99–108
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external influences and facilitate associations and insights

[91], creating ideal circumstances to modify existing

memories.

To conclude, auditory closed-loop sleep manipulations

offer unique possibilities to investigate the function of

neural activity components, but also new avenues toward

non-invasive, low-cost approaches to the treatment of

sleep, affective and memory disorders [43,44��]. Devel-

opments in the field are progressing fast, in particular with

regard to emotional memory research. These develop-

ments will likely contribute to fundamental knowledge

on the nature of sleep-emotional memory interactions and

pave the way to new sleep-based approaches to diagnose,

treat and even prevent affective disorders.
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