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S U M M A R Y

In this thesis, Deep Learning with Graph-Structured Representations, we propose
novel approaches to machine learning with structured data. Our proposed
methods are largely based on the theme of structuring the representations and
computations of neural network-based models in the form of a graph, which
allows for improved generalization when learning from data with both explicit
and implicit modular structure.

Our contributions are as follows:

• We propose graph convolutional networks (GCNs) (Kipf and Welling,
2017; Chapter 3) for semi-supervised classification of nodes in graph-
structured data. GCNs are a form of graph neural network that per-
form parameterized message-passing operations in a graph, modeled as a
first-order approximation to spectral graph convolutions. GCNs achieved
state-of-the-art performance in node-level classification tasks in a number
of undirected graph datasets at the time of publication.

• We propose graph auto-encoders (GAEs) (Kipf and Welling, 2016; Chap-
ter 4) for unsupervised learning and link prediction in graph-structured
data. GAEs utilize an encoder based on graph neural networks and a
decoder that reconstructs links in a graph based on a pairwise scoring
function. We further propose a model variant framed as a probabilistic
generative model that is trained using variational inference, which we
name variational GAE. GAEs and variational GAEs are particularly suited
for representation learning on graphs in the absence of node labels.

• We propose relational GCNs (Schlichtkrull and Kipf et al., 2018; Chapter
5) that extend the GCN model to directed, relational graphs with multi-
ple edge types. Relational GCNs are well-suited for modeling relational
data and we demonstrate an application to semi-supervised entity classi-
fication in knowledge bases.
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iv summary

• We propose neural relational inference (NRI) (Kipf and Fetaya et al., 2018;
Chapter 6) for discovery of latent relational structure in interacting sys-
tems. NRI combines graph neural networks with a probabilistic latent
variable model over edge types in a graph. We apply NRI to model inter-
acting dynamical systems, such as multi-particle systems in physics.

• We propose compositional imitation learning and execution (CompILE)
(Kipf et al., 2019; Chapter 7), a model for structure discovery in sequential
behavioral data. CompILE uses a novel differentiable sequence segmenta-
tion mechanism to discover and auto-encode meaningful sub-sequences
or sub-programs of behavior in the context of imitation learning. Latent
codes can be executed and re-composed to produce novel behavior.

• We propose contrastively-trained structured world models (C-SWMs)
(Kipf et al., 2020; Chapter 8) for learning object-factorized models of en-
vironments from raw pixel observations without supervision. C-SWMs
use graph neural networks to structure the representation of an environ-
ment in the form of a graph, where nodes represent objects and edges
represent pairwise relations or interactions under the influence of an ac-
tion. C-SWMs are trained using contrastive learning without pixel-based
losses and are well-suited for learning models of environments with com-
positional structure.
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1

I N T R O D U C T I O N

1.1 structure and human cognition

Structure is all around us: from fundamental physical interactions to emer-
gent structure such as atoms, molecules, living organisms, societal networks,
ecosystems, planetary systems, and many more examples across a wide range
of scales in the universe.

Millions1 of years of evolution in this structured and complex environment
have shaped what has become the human mind: a highly optimized system
that is adept at navigating this world, at achieving goals in it, and at adapting
to the most unforeseeable changes this environment has to offer — in other
words, humans are intelligent agents.

Not only is the world around us rich in structure, but also our own under-
standing of the world — our world model — is highly structured: we often think,
reason, and communicate in terms of concepts, abstractions, and relations. We
can identify objects from raw perceptual input and understand visual scenes in
terms of their composition as objects and relations. We can take two concepts
and relate them to each other. Take the example of an elephant with wings: we
can easily imagine this combined concept, even though we have likely never
encountered such a creature.

How can we formalize this structure? A natural way to represent informa-
tion in structured form is as a graph. A graph is a data structure describing
a collection of entities, represented as nodes, and their pairwise relationships,
represented as edges.

1 Or billions, when considering the earliest forms of life on Earth.
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2 introduction

With modern technology and the rise of the internet, graphs are everywhere:
social networks, the world wide web, street maps, knowledge bases used in
search engines, and even chemical molecules are frequently represented as
a set of entities and relations between them. The ubiquity of such a graph-
structured description of our world calls for the development of effective meth-
ods that make use of and learn to understand information represented in this
structural form — and while we get there, the lessons learned along the way
might help us develop better intelligent agents that share a similar structured
understanding of the world as we humans do.

1.2 artificial intelligence and deep learning

The desire to understand human cognition has spawned a variety of scien-
tific disciplines. Cognitive science, neuroscience, and the study of machine
learning and artificial intelligence (AI) are the most prominent examples of sci-
entific fields that study the human mind (cognitive science), its physical neural
substrate (neuroscience), and the replication of some of its behavior and core
algorithms in artificial machines (machine learning and AI).

The work in this thesis is situated in the field of machine learning, which
is one of the most widely pursued branches in AI research. Machine learning
deals with the question of how we can build systems and design algorithms
that learn from data and experience (e.g., by interacting with an environment),
which is in contrast to the traditional approach in computer science where
systems are explicitly programmed to follow a precisely outlined sequence of
instructions. The problem of learning is commonly approached by fitting a
model to data with the goal that this learned model will generalize to new data
or experiences.

Traditionally, many machine learning models are built on top of sets of fea-
tures, extracted using a pre-defined procedure from the raw data format. For
example, such features could be word occurrence statistics in natural language
sentences or pixel statistics in image data. The process of developing sophisti-
cated feature extractors is often referred to as feature engineering, culminating in
the development of popular feature detection algorithms such as SIFT (Lowe,
1999).



1.2 artificial intelligence and deep learning 3

Deep learning, an approach that has enjoyed immense popularity in the
past decade and in recent years, instead addresses the learning problem by
jointly learning representations of the raw input data and a predictive model
for the task at hand. This is usually achieved by stacking multiple ‘layers’ of
differentiable non-linear transformations and by training such a model in an
end-to-end fashion using gradient descent techniques. The resulting class of
models is often referred to as deep neural networks.

Despite recent successes of deep learning in many areas such as computer
vision (e.g., LeCun et al., 1998; Krizhevsky et al., 2012), natural language pro-
cessing (e.g., Bengio et al., 2003; Vaswani et al., 2017), game playing (e.g., Mnih
et al., 2013; Silver et al., 2016), and in the natural sciences (e.g., Dahl et al., 2014;
Louppe et al., 2019), deep neural networks still fall short of a general ability
for relational and causal reasoning, for conceptual abstraction, and for many
other human abilities.

A core problem in machine learning is that of inductive bias (Mitchell, 1980):
how can we build models that learn the right representations, abstractions, and
skills that allow them to generalize to novel and unforeseeable circumstances?
Inductive bias in deep neural networks can come in many forms: the choice
of model architecture, the training objective, the optimization procedure and
even the way in which training data is presented to the model (e.g., using so-
called data augmentation) can have a profound impact on generalization to
unseen data. The rise in popularity of deep learning was partially enabled by
the design of a particular architectural inductive bias: that of convolutional
neural networks (CNNs) (LeCun et al., 1998; Krizhevsky et al., 2012).

CNNs utilize a specialized neural network architecture in which model pa-
rameters are tied or shared across image locations, thereby exploiting the fact
that image feature statistics are often translation invariant. This form of param-
eter sharing equips the model with a useful inductive bias: ‘filters’ in the CNN
model only have to learn about local features and will therefore generalize well
across locations in the image. A related inductive bias can be found in recur-
rent neural networks (RNNs), which share parameters over time steps, and
hence generalize more favorably on stationary time series and other sequential
data.
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In this thesis, we argue for the introduction and design of further structural
and compositional2 inductive biases in deep learning models, to reflect the
rich structure in the data and environments that these models often face. One
way to achieve this is by structuring the representations and computations in
a deep neural network in the form of a graph, leading to a class of models
named graph neural networks (Gori et al., 2005; Scarselli et al., 2009; Li et al.,
2016; Kipf and Welling, 2017; Gilmer et al., 2017; Battaglia et al., 2018), which
will be of central importance in this thesis.

1.3 scope and research questions

This thesis is structured in two parts: Part 1 will introduce deep neural network
models for a variety of learning tasks with explicitly graph-structured data, i.e.,
datasets that are given to us in the form of entities and their relations. Part 2

will explore the topic of learning with implicit structure in the form of struc-
tural and compositional inductive biases, applied to tasks such as sequence
modeling, imitation learning, scene understanding, world model learning, and
intuitive physics. In this part, we are usually not given an explicitly structured
dataset, but we develop models that infer or make use of hidden structure in
the data with the goal of achieving improved generalization compared to using
unstructured deep models.

The contributions of this thesis are guided by the following research questions:

Research Question 1: Can we develop and efficiently implement deep neural network-
based models for large-scale node classification tasks in graph-structured datasets?

Our main contribution to address this question is a novel graph neural network
model that we call the graph convolutional network (GCN). GCNs are introduced
in Chapter 3 and in Kipf and Welling (2017). They improve upon earlier work
in the community on so-called spectral graph convolutions. We introduce a sim-
ple yet effective semi-supervised training scheme for GCNs and demonstrate

2 Compositionality here describes that certain data examples can be composed of multiple parts
or modules that can be sensibly combined and re-arranged in a number of ways, such as visual
scenes containing multiple objects.
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significant advantages over earlier state-of-the-art methods both in terms of ef-
ficiency and predictive accuracy. We present a relational extension to the GCN
model, termed relational GCN (R-GCN), in Chapter 5 and in Schlichtkrull and
Kipf et al. (2018) to support graphs with different edge types. We demonstrate
an application of this model on a knowledge graph with millions of nodes and
edges.

Research Question 2: Can graph neural networks be utilized for link prediction and
unsupervised node representation learning?

We introduce two extensions to the GCN model to address this question in
Chapter 4 and in Kipf and Welling (2016): the graph auto-encoder (GAE) and a
model variant termed the variational GAE (VGAE). Both models can be trained
on graphs in the absence of node labels, a setting often referred to as unsuper-
vised node representation learning. We demonstrate applications of this model
class to the task of link prediction in Chapter 4.

Having introduced neural network architectures for explicitly graph-structured
data in Part 1 of this thesis (Chapters 3–5), Part 2 will investigate how mod-
els with structural and compositional inductive biases — such as graph neural
networks — can be developed and applied to problems with implicit or hidden
structure.

Research Question 3: Can deep neural networks infer hidden relations and interac-
tions between entities, such as forces in physical systems?

We introduce the neural relational inference (NRI) model in Chapter 6 and in Kipf
and Fetaya et al. (2018). NRI is a latent variable model based on a graph neural
network with multiple interaction functions. Each pair of nodes is assigned
a latent variable which determines the type of interaction between them, and
hence the model can be trained to identify hidden interactions or relations. We
demonstrate this capability on interacting physical systems and on motion cap-
ture data, where NRI can identify hidden interactions and accurately predict
future dynamics of the system.
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Research Question 4: How can we improve upon neural network-based models that
infer event structure and latent program descriptions in sequential data?

To address this question, we introduce the CompILE model in Chapter 7 and
in Kipf et al. (2019). CompILE stands for compositional imitation learning and
execution and describes an unsupervised model for discovering task segmenta-
tions and hidden task representations in program execution data. CompILE is
a latent variable model with a sequence of latent variables, each describing one
segment of the input sequence. Latent variables are coupled to their respective
segments using a learned ‘soft’ segmentation mechanism.

Research Question 5: Can deep neural networks learn to discover and build effective
representations of objects, their relations, and effects of actions by interacting with an
environment?

This question aims at the core of what it means to learn a structured model of
the world by interacting with it. In Chapter 8 and in Kipf et al. (2020) we in-
troduce the contrastively-trained structured world model (C-SWM), a deep neural
network utilizing a graph neural network component that is capable of discov-
ering object representations and learning about physical interactions between
objects in an unsupervised way. The training algorithm is based on contrastive
learning, which relates to the way we train GAE models for unsupervised node
representation learning, but adapted to the case of learning from a dataset of
experiences from environment interactions. We show that the inductive bias
enabled by a graph neural network greatly improves generalization to unseen
environment configurations.

Aside from the above listed main contributions of this dissertation, we include
an introduction to several background topics in Chapter 2, which will serve as
a basis for the material presented in the rest of this thesis. After presenting
the main body of our work in Parts 1 and 2, we will conclude and outline
interesting directions for future work in Chapter 9.



2

B A C KG R O U N D

In this chapter, we will provide a brief introduction to several background
topics and notation that will be extensively used throughout this thesis. Ad-
ditional background will be introduced where necessary in later chapters. In
what follows, we will give an introduction to deep neural networks in Section 2.2,
to graph neural networks in Section 2.3, to latent variable models in the context of
deep learning in Section 2.4, and lastly to contrastive learning in Section 2.5.

2.1 notation

This section provides a reference for the most commonly used notation across
this thesis. Individual chapters introduce additional notation where necessary.

Example Explanation

x, y, z
A lowercase italic letter typically denotes a scalar or scalar-
valued random variable.

x, y, z
A lowercase bold letter typically denotes a vector or vector-
valued random variable.

X, Y, Z
An uppercase bold letter typically denotes a matrix or matrix-
valued random variable.

X ,Y ,Z Calligraphic letters typically denote sets. An exception is L,
which we use to denote scalar-valued objective functions.

7
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Example Explanation

IN The N × N identity matrix.

diag(x)
A diagonal square matrix with entries on the diagonal popu-
lated by the elements of the vector x.

RN The N-dimensional real space.

xi The i-th element of vector x.

Xi,j The i, j-th element of matrix X.

fθ(.),
f (. ; θ)

Parameter dependency of functions is typically made explicit
(unless clear from context) with a greek letter θ or φ.

f (x), f (X)
If f (.) is a function defined on scalars, then f (x) and f (X)
are to be understood as an element-wise application of f (.)
on the elements of the vector x or matrix X.

p(.), q(.)

Probability density functions (PDFs) or in other words dis-
tributions are denoted by the lower-case letters p(.) and q(.),
where q(.) is typically reserved for variational distributions.
We use the same notation for probability mass functions
(PMFs) of discrete random variables. The same letter will
be used for marginals, joint distributions, and conditionals
of the same probabilistic model.

N (. ; µ, Σ)
A multivariate normal (or Gaussian) distribution with a vec-
tor of means µ and a covariance matrix Σ.

2.2 deep neural networks

For our purposes, we can think of a deep neural network (NN) in the simplest
case as a composition of parameterized (affine) linear functions f l(.), indexed
by l ∈ {1, . . . , L}, each followed by an element-wise non-linear function σ(.):

NNθ = f L ◦ σ ◦ f L−1 ◦ · · · ◦ σ ◦ f 2 ◦ σ ◦ f 1 , (2.1)
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where ◦ denotes function composition. We will use NNs as function approxi-
mators with typically a large number of learnable parameters θ. Deep learning
is a vast field and many NN variants have been proposed, differing mostly in
the architecture of how certain elementary building blocks are combined in a
computational graph and how these building blocks are defined in the first
place.

Throughout this thesis, we will often make use of the multi-layer perceptron
(MLP) (Rosenblatt, 1961), where we will use L to refer to the number of layers.
In an MLP, we define f l(.) as follows:

f l(h) = Wlh + bl , (2.2)

where Wl is the so-called weight matrix of the l-th layer and bl is the bias vector.
Both constitute the set of learnable parameters for a layer. We use h to denote
feature vectors (or hidden representations or embeddings) in a NN. For σ(h),
we will typically make use of the ReLU(h) = max(0, h) activation function in
MLPs.

To train NNs, we will make use of backpropagation (Werbos, 1982) and vari-
ants of the stochastic gradient descent algorithm such as the Adam optimizer
(Kingma and Ba, 2014) to minimize an objective function L.

For details on other common NN variants and building blocks, especially
recurrent neural networks and convolutional neural networks, we recommend
the ‘Deep Learning‘ book by Goodfellow et al. (2016).

2.3 graph neural networks

Graph neural networks (GNNs) are a class of NN models suitable for process-
ing graph-structured data, and are of central importance to the topics covered
in this thesis. Modern GNNs, as we will introduce them in this section, have
been developed after (or concurrently to) our works on which Part 1 of this
thesis is based on. They can be seen as a generalization of the model architec-
tures proposed in Part 1, and much of Part 2 will make use of the definition of
GNNs that we introduce in this section.

The architecture of a GNN is structured according to a graph G = (V , E)
with a set of nodes V and a set of edges E . In our notation, nodes are identified
by a unique index i ∈ V ranging from 1 to |V|, and directed edges i → j are
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(b) Message passing step.

Figure 2.1: Illustration of the message passing update in a graph neural network

(GNN) on a fully-connected graph with four nodes. Each node is assigned a node

representation hi (left). In the message passing step (right), intermediate edge rep-

resentations h(i,j) are obtained from neighboring node representations hi, their initial

node features xi and edge features (if present) x(i,j). Edge representations for incoming

edges are aggregated to obtain updated node representations h′i.

represented by an ordered pair of nodes (i, j) ∈ V × V . For undirected graphs,
we assume that both (i, j) and (j, i) are in E if nodes i and j are connected.

A GNN takes as input an instance of a graph G (e.g., a sample from a dataset
of many graphs), where nodes are associated with feature vectors xi and edges
can, too, be associated with feature vectors x(i,j). We denote hidden representa-
tions in the neural network for nodes and edges with hi and h(i,j), respectively.
We can set hi = xi as an initial node representation. The structure of the graph
G then determines the following message passing updates, which are executed
in sequence to obtain updated node representations h′i and edge representa-
tions h(i,j):

h(i,j) = fedge(hi, hj, x(i,j)) , (2.3)

h′i = fnode(hi, ∑j∈Ni
h(j,i), xi) . (2.4)

Ni is the set of neighbors with an incoming edge to node i. fedge and fnode

typically are small MLPs with two or three layers which take a concatenation
of the function arguments as input, but other choices are possible. Multiple
message passing updates can be chained by setting hi ← h′i after each node
update given by Eq. 2.4. The parameters of fedge and fnode need not be shared
between message passing updates. See Figure 2.1 for an illustration of this
message passing update.

This form of GNN was introduced by Gilmer et al. (2017) under the name
message passing neural network, in an effort to generalize and unify earlier mod-
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els, such as the graph convolutional network (GCN) (Kipf and Welling, 2017) or
the interaction network (Battaglia et al., 2016). We can utilize this GNN as a func-
tion approximator on graph-based tasks trained with backpropagation, e.g., in
the context of graph classification by aggregating the final outputs of the GNN
into a global representation hg = ∑i∈V hi. For a recent study of the expressive
power of this class of models in the context of function approximation, see
Chen et al. (2019).

The first GNN model is typically attributed to Gori et al. (2005), who coined
the term graph neural network. Their model contains many of the core ideas
found in the GNN definition above, but was formulated as a recurrent neu-
ral network, trained by a version of backpropagation through time (Werbos,
1990) that demanded that message passing updates of the GNN model are a
contraction mapping. This form of GNN further did not learn an explicit edge
representation h(i,j) and the update function for a node i was conditioned on
neighboring states hj with j ∈ Ni only (in addition to initial node feature
vectors xi). Scarselli et al. (2009) extended this formulation by additionally
conditioning the message passing update on initial edge features x(i,j).

The GNN definition in Eqs. 2.3–2.4 is not all-encompassing, but covers the
models considered in this thesis. Recent extensions include graph networks
(Battaglia et al., 2018), which include a global state and update function, and
graph G-invariant networks (Maron et al., 2019; Chen et al., 2019). Other recent
related models and GNN variants can be cast as a special case of the message
passing definition above, such as the transformer architecture (Vaswani et al.,
2017) — see Battaglia et al. (2018) for details — and the graph attention network
(Veličković et al., 2018b). Lastly, there exists a class of spectral methods for
learning on graphs (Bruna et al., 2014; Henaff et al., 2015; Defferrard et al.,
2016), which we will review in Chapter 3.

We will review additional prior and concurrent work on GNNs related to
our model contributions in Part 1 of this thesis. For an overview of recent
model variants and applications of GNNs, we recommend the review articles
on geometric deep learning by Bronstein et al. (2017) and on graph representation
learning by Hamilton et al. (2017b), and the position paper on relational inductive
biases and graph networks by Battaglia et al. (2018).
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2.4 latent variable models

Several chapters in this thesis will utilize NNs in the context of latent variable
models, for which we will provide a brief introduction here. We can understand
a latent variable model as a probabilistic model that explains a set of observed
variables x with a set of latent variables z:

pθ(x) =
∫

pθ(x|z)p(z) dz , (2.5)

where pθ(x) is a model of the data distribution.
For our purposes, the goal of learning is to estimate the parameters of the

conditional model pθ(x|z) (typically called the generative model), such that pθ(x)
is maximized for observed data x ∈ D in a dataset D, given a particular choice
of prior p(z).

We would often like to use NN-based generative models, e.g., by using a
Gaussian output distribution pθ(x|z) = N (x ; fθ(z), σ2 ∗ I) with means pro-
vided by a NN fθ(.) and a fixed diagonal covariance with some scalar σ. This
choice, however, typically renders the integral in Eq. 2.5 intractable. Varia-
tional inference, and in particular the variational auto-encoder (VAE) (Kingma
and Welling, 2013; Rezende et al., 2014), addresses this issue by finding a lower
bound to Eq. 2.5 (or equivalently, to the natural logarithm of this expression)
and thus replacing the integration problem with an optimization problem.

We can obtain this evidence lower bound (ELBO) objective by introducing an
approximate posterior distribution qφ(z|x) and by using Jensen’s inequality as
follows:

log pθ(x) = log
∫

pθ(x|z)p(z) dz (2.6)

= log
∫ qφ(z|x)

qφ(z|x)
pθ(x|z)p(z) dz ≥

∫
qφ(z|x) log

pθ(x|z)p(z)
qφ(z|x)

dz .

The terms in the RHS of Eq. 2.6 can be re-arranged to arrive at a more
commonly used expression for the ELBO:

ELBO = Eqφ(z|x)[log pθ(x|z)]− DKL[qφ(z|x) ‖ p(z)] , (2.7)

where Eq(.)[ . ] denotes the expectation under a distribution q(.) and DKL[ . ‖ . ]
denotes the Kullback-Leibler divergence.

Similar to pθ(x|z), the VAE model uses a NN-based inference model qφ(z|x)
with parameters φ. The prior p(z) is often chosen to be a Gaussian distribution
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with zero mean and unit covariance. Both the generative model and the infer-
ence model can jointly be optimized by stochastic gradient ascent with respect
to the ELBO objective, using mini-batches of samples x ∈ D from a dataset D.
Gradients of the term Eqφ(z|x)[log pθ(x|z)] with respect to the inference model
parameters φ can be obtained with the help of a Monte Carlo approximation of
the expectation and by using the reparameterization trick (Kingma and Welling,
2013) for supported distributions qφ(z|x). Samples z ∼ N (z ; fφ(x), σ2 ∗ I)
from a Gaussian distribution can be ‘reparameterized’ as follows:

z = fφ(x) + σε , with ε ∼ N (ε ; 0, I) . (2.8)

After training, the inference model qφ(z|x) can be used to infer latent variables
z of unseen test data x. The trained generative model pθ(x|z) can be used to
generate data given a latent variable z, for example obtained from the prior
distribution p(z).

We will use VAE-based latent variable models in conjunction with GNNs in
Chapters 4 and 6, and in connection with sequential data in Chapter 7.

2.5 contrastive learning

Contrastive learning describes a class of methods for learning representations
by contrasting pairs of related data examples against pairs of unrelated data
examples. This approach naturally fits graph-structured data, as relations are
given by the edges in the graph. We can cast this problem in the context of
energy-based learning (LeCun et al., 2006), where we associate a scalar energy
E( fθ(x), fθ(y)) for pairs of data points (x, y) ∈ D×D from a dataset D, where
fθ(.) is an encoder function that maps an observed data point x to its hidden
representation hx. We will use NNs for fθ(.) in practice. Training is carried out
by optimizing an objective that encourages low energies for positive (related)
pairs and higher energies for negative (unrelated) pairs.

Variants of this approach include noise contrastive estimation (NCE) (Gutmann
and Hyvärinen, 2010; Mnih and Teh, 2012), negative sampling (Mikolov et al.,
2013), and deep metric learning (Chopra et al., 2005; Hadsell et al., 2006). In
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NCE and negative sampling, the objective is a binary cross-entropy loss, which
specifically for negative sampling takes the following form:

L = − 1
|T | ∑

(x,y,c)∈T
c log l

(
s(x, y)

)
+ (1− c) log

(
1− l

(
s(x, y)

))
, (2.9)

where we define the score for a pair as s(x, y) = −E( fθ(x), fθ(y)). T is a
set that contains all positive pairs and a number of negative pairs — usually
k negative samples per positive pair, where k is a hyperparameter. l(x) =

1/(1 + e−x) is the logistic sigmoid function and c is an indicator variable that
is 1 for positive pairs and 0 for negative samples. A common technique for
obtaining negative samples is by corrupting a positive pair, e.g., by replacing
one data example in the pair with a random other data example. In this context,
the energy function is often chosen to be the negative inner product between
hidden representations E(hx, hy) = −h>x hy, but other choices are possible.

The related NCE objective differs slightly from Eq. 2.9, and can be used to
learn an (asymptotically) unbiased model of the underlying data distribution
— see Dyer (2014) for details.

In deep metric learning, the goal is to learn representations hx of data examples
x ∈ D such that similar or positive pairs are assigned a small distance and
dissimilar or negative pairs are assigned a larger distance in the representation
space. The distance function d(hx, hy) can itself have parameters which are to
be learned. A typical objective used in this setting is the following hinge loss:

L =
1
|T | ∑

(x,y,c)∈T
c d2(hx, hy) + (1− c)max

(
0, γ− d2(hx, hy)

)
, (2.10)

with hx = fθ(x) and hy = fθ(y). γ is a hyperparameter. In this context, we
can define the energy function to be the squared distance E( fθ(x), fθ(y)) =

d2( fθ(x), fθ(y)). A common choice for d(., .) is the Euclidean distance.
We will make use of contrastive learning for unsupervised representation

learning on graphs and link prediction in Chapter 4 using an objective based
on Eq. 2.9. We will further use an objective similar to the hinge loss in Eq. 2.10

for state representation learning in Chapter 8.



Part I

Learning with Explicit Structure





M OT I VAT I O N A N D S U M M A R Y

A plethora of structured data comes in the form of graphs or networks: from
social networks, the World Wide Web, and knowledge bases that serve as a
foundation of most of our ‘online’ experience today, over street networks and
power grids for infrastructure and city planning, to biological networks such
as protein-interaction networks or even molecules and drugs, which can be
represented as graphs themselves. Modeling this type of data using machine
learning algorithms is an important and active area of research.

This part of the thesis explores how we can build neural network-based
models for graph-structured data, i.e., data that is given to us in the explicit
form of a graph or network.

In Chapter 3, we introduce the graph convolutional network (GCN), a simple
yet effective architecture for representation learning on graphs. We demon-
strate how GCNs can be used for the task of node classification in academic
citation networks.

Chapter 4 extends the GCN model for unsupervised learning on graphs and
link prediction, resulting in two model architectures that we call the graph auto-
encoder (GAE) and the variational GAE.

The final chapter in this part of the thesis, Chapter 5, introduces the relational
GCN, which extends the GCN and GAE models to work on multi-relational
graph data. We apply relational GCNs to the task of entity classification in
knowledge graphs.
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3

G R A P H C O N V O L U T I O N A L N E T W O R K S
F O R S E M I -S U P E R V I S E D
C L A S S I F I C AT I O N

3.1 introduction

Graphs are ubiquitous and used across many domains to represent structured
and relational data, such as social networks, biological networks or knowledge
bases. Accurate predictive models for graph-structured data thus have a wide
range of applications which can be found across scientific disciplines and in
industry.

Graphs come in many forms, sometimes allowing for multiple edge types
and different types of nodes. Some graphs are directed, others are undirected,
and there exist many other special cases depending on the particular applica-
tion and use case. In this chapter, we focus on undirected graphs without edge
attributes, which one could consider as the simplest type of graph representa-
tion used in practice. Social networks or academic co-authorship and citation
networks can be represented in this way, among many other examples.

In this chapter and in Kipf and Welling (2017) we introduce the graph con-
volutional network (GCN), a specialized neural network architecture for graph-
structured data1. We apply the GCN model for node classification in undi-
rected graphs where nodes are allowed to have attributes, such as a featurized
description of a document.

Our contributions are two-fold. Firstly, we simplify prior work on spectral
graph convolutions (Hammond et al., 2011; Bruna et al., 2014; Defferrard et al.,

1 This chapter is based on our ICLR 2017 publication (Kipf and Welling, 2017). An earlier version
of this paper appeared as arXiv preprint arXiv:1609.02907.
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2016) by means of a first-order approximation. The resulting model, which we
term GCN, can be understood as a neural network with integrated message
passing operations, wherein messages are passed among direct neighbors in
the graph. Secondly, we demonstrate how this form of a graph-based neu-
ral network model can be used for semi-supervised classification of nodes in
a graph. Experiments on a number of datasets demonstrate that our model
compares favorably both in classification accuracy and efficiency (measured
in wall-clock time) against earlier state-of-the-art methods for semi-supervised
learning.

3.2 background

3.2.1 Graph-Based Semi-Supervised Learning

We consider a setting in which labels are only available for a small subset of
nodes. This problem can be framed as graph-based semi-supervised learning.

In graph-based semi-supervised learning, the graph structure is utilized in
addition to both unlabeled and labeled data points, which take the role of
nodes in the graph. A typical method to address this setting is to place a
regularization loss Lreg on the model during training that takes into account
the graph structure (Zhu et al., 2003; Zhou et al., 2004; Belkin et al., 2006;
Weston et al., 2012), while the original supervised loss Lsup only considers
individual labeled nodes in isolation:

L = Lsup + λLreg . (3.1)

A weighing factor λ (a hyperparameter) is used to weigh the contribution of
the regularizer.

A common choice for the graph-based regularizer is based on a soft similar-
ity constraint that encourages similar representations or predictions for neigh-
boring nodes:

Lreg = ∑
i,j

Ai,j‖ f (xi)− f (xj)‖2 ∝ f (X)>∆ f (X) , (3.2)

where ∆ = D−A denotes the unnormalized graph Laplacian of an undirected
graph G = (V , E) with N nodes i ∈ V , edges (i, j) ∈ E , a binary adjacency
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matrix A ∈ {0, 1}N×N and a diagonal degree matrix Di,i = ∑j Ai,j. f (·) is a
classifier (for our purposes a differentiable neural network) and X ∈ RN×din is
a matrix of din-dimensional node feature vectors xi. f (X) in this context is to
be understood as applying the classifier on all rows xi of X. The formulation
of Eq. 3.2 relies on the assumption that connected nodes in the graph are likely
to share the same label.

In this chapter, we will see that we can train an effective semi-supervised
classifier without relying on an explicit regularization term. We will achieve
this by informing the classifier itself with the structure of the graph, by con-
ditioning it on the adjacency matrix: f (X, A). The resulting neural network
model will perform message passing operations informed by the structure of
the graph to distribute encoded feature information among connected nodes.
At the same time, this will allow the model to distribute gradient information
from the supervised loss Lsup and will enable it to learn representations of
nodes both with and without labels.

3.2.2 Spectral Graph Convolutions

Our starting point for building a graph-based neural network classifier is the
notion of a spectral graph convolution. A spectral convolution on a graph can be
understood as a parameterized filtering operation that takes into account both
node features (in this setting often described as signal) and the structure of a
graph.

We consider spectral convolutions on graphs defined as the multiplication
of a signal x ∈ RN (a scalar for every node) with a filter gθ = diag(θ) parame-
terized by θ ∈ RN in the Fourier domain, i.e.:

gθ ? x = UgθU>x , (3.3)

where U is the matrix of eigenvectors of the normalized graph Laplacian
L = IN −D−

1
2 AD−

1
2 = UΛU>, with a diagonal matrix of its eigenvalues Λ

and U>x being the graph Fourier transform of x. We can understand gθ as a
function of the eigenvalues of L, i.e., gθ(Λ). Evaluating Eq. 3.3 is computa-
tionally expensive, as multiplication with the eigenvector matrix U is O(N2).
Furthermore, computing the eigendecomposition of L in the first place might
be prohibitively expensive for large graphs.
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To circumvent this problem one can approximate gθ(Λ) by a truncated poly-
nomial expansion, e.g., using a monomial basis or, as proposed in Hammond
et al. (2011), in terms of Chebyshev polynomials Tk(x) up to K-th order:

gθ′(Λ) ≈
K

∑
k=0

θ′kTk(Λ̃) , (3.4)

with a rescaled Λ̃ = 2
λmax

Λ − IN. λmax denotes the largest eigenvalue of L.
θ′ ∈ RK is now a vector of Chebyshev coefficients. The Chebyshev polynomials
are recursively defined as Tk(x) = 2xTk−1(x) − Tk−2(x), with T0(x) = 1 and
T1(x) = x. The reader is referred to Hammond et al. (2011) and Defferrard
et al. (2016) for an in-depth discussion of this approximation.

Going back to our definition of a convolution of a signal x with a filter gθ′ ,
we now have:

gθ′ ? x ≈
K

∑
k=0

θ′kTk(L̃)x , (3.5)

with L̃ = 2
λmax

L − IN; as can easily be verified by noticing that (UΛU>)k =

UΛkU>. Note that this expression is now K-localized since it is a K-th order
polynomial in the Laplacian, i.e., it depends only on nodes that are at max-
imum K steps away from the central node (K-th order neighborhood), and
hence it can be seen as a spatial graph filter. The complexity of evaluating
Eq. 3.5 is O(|E |), i.e., linear in the number of edges. Defferrard et al. (2016)
use this K-localized convolution to define a convolutional neural network on
graphs.

3.3 methods

3.3.1 Graph Convolutional Networks

In this section, we introduce the graph convolutional network (GCN). The GCN is
a graph-based neural network model f (X, A) with message passing operations
that can be motivated as a first-order (i.e., linear) approximation to spectral
graph convolutions, followed by a non-linear activation function.
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Let h(l)
i ∈ Rdl be the hidden representation vector of node i ∈ V with di-

mensionality dl after the l-th message passing step (or ‘layer’), then a single
message passing step in the GCN model takes the following form:

h(l+1)
i = σ

(
W(l)>

0 h(l)
i + ∑

j∈Ni

ci,jW
(l)>
1 h(l)

j

)
, (3.6)

where σ is a pointwise non-linearity such as the ReLU activation function. W(l)
0

and W(l)
1 are learnable dl × dl+1 parameter matrices and Ni is the set of neigh-

bors of node i. ci,j = 1/
√

Di,iDj,j is a normalization constant, where Di,i is
the degree of node i. We will later see that this constant originates from the
symmetric normalization of the adjacency matrix used in the definition of the
spectral graph convolution in Eq. 3.3. It is further possible to include a learn-
able, additive bias vector b in the update of Eq. 3.6, which we will omit for
simplicity.

First-Order Model

We can write the GCN message passing update more compactly in matrix
form:

H(l+1) = σ
(

H(l)W(l)
0 + D−

1
2 AD−

1
2 H(l)W(l)

1

)
, (3.7)

where the normalized sum over neighboring nodes is replaced by a multipli-
cation with the normalized adjacency matrix D−

1
2 AD−

1
2 . H(l) ∈ RN×dl is the

matrix of activations in the l-th layer with H(0) = X, i.e., the matrix of input
node features.

The connection between the GCN message passing step and the definition of
an approximate spectral graph convolution in Eq. 3.5 becomes evident if we set
K = 1, i.e., if we take a first-order approximation to the spectral convolution,
and further approximate λmax ≈ 2:

gθ′ ? x ≈ θ′0x + θ′1 (L− IN) x = θ′0x− θ′1D−
1
2 AD−

1
2 x . (3.8)

Restricting the (linear) filtering operation to the first-order neighborhood in
this way can reduce overfitting by using fewer free parameters per filtering
operation, and hence might prove useful in contexts where only few labels are
available or where a model is required to generalize in an inductive setting to
unseen parts of a graph.
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This definition can be generalized to a signal X ∈ RN×din with din input
channels (i.e., a din-dimensional feature vector for every node) and dout filters
or feature maps as follows:

Z = XΘ0 −D−
1
2 AD−

1
2 XΘ1 , (3.9)

where Θ0 and Θ1 ∈ Rdin×dout are now matrices of filter parameters and Z ∈
RN×dout is the convolved signal matrix2. We obtain the GCN message passing
update in Eq. 3.7 by identifying W0 with Θ0 and W1 with −Θ1.

Single Parameter Model

In semi-supervised learning, overfitting to a small set of labeled nodes can
often be an issue. This can be addressed by only using a single parameter
matrix W(l) per layer:

H(l+1) = σ
(
(IN + D−

1
2 AD−

1
2 )H(l)W(l)

)
. (3.10)

The operator IN + D−
1
2 AD−

1
2 has eigenvalues in the range [0, 2], which can

affect training stability when training deep neural network models with re-
peated application of this operator (e.g., by stacking multiple layers). While the
model parameters could in principle adapt to this change in scaling, we find
that it can have positive impact on training performance to renormalize the ad-
jacency matrix with added self-connections as IN + D−

1
2 AD−

1
2 → D̃−

1
2 ÃD̃−

1
2 ,

with Ã = A + IN and D̃i,i = ∑j Ãi,j. This results in the following single-
parameter variant of the GCN model:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
. (3.11)

3.3.2 Semi-Supervised Node Classification

We consider a two-layer GCN for semi-supervised node classification on a
graph with a symmetric binary adjacency matrix A. We utilize the renormal-
ized single-parameter model as outlined in Section 3.3.1. The renormalized

2 One could similarly arrive at this approximation by noting that the graph Laplacian L and the
normalized adjacency matrix D−

1
2 AD−

1
2 have the same eigenvectors (but different eigenval-

ues) and hence they can be exchanged in the definition of the graph Fourier transform. Using
a polynomial filter up to first order recovers Eq. 3.8 up to a sign.
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Figure 3.1: Schematic depiction of a multi-layer GCN for semi-supervised classification

with din input channels and dout feature maps in the output layer. The graph structure

(edges are shown as black lines) is shared over layers. xi are input features, zi are

node-wise predictions, and node labels are denoted by yi.

adjacency matrix Â = D̃−
1
2 ÃD̃−

1
2 is calculated in a pre-processing step. Our

forward model then takes the simple form:

Z = f (X, A) = softmax
(

Â ReLU
(

ÂXW(0)
)

W(1)
)

. (3.12)

Here, W(0) ∈ Rdin×dhid is a input-to-hidden weight matrix for a hidden layer
with H feature maps. W(1) ∈ Rdhid×dout is a hidden-to-output weight matrix.
The softmax activation function, defined as softmax(xi) =

1
Z exp(xi) with Z =

∑i exp(xi), is applied row-wise.
We optimize the GCN for the task of semi-supervised node classification

using the following cross-entropy loss on all labeled nodes:

Lsup = − ∑
l∈YL

dout

∑
f=1

Yl, f ln Zl, f , (3.13)

where YL is the set of node indices that have labels and Yl, f is an indicator
variable that is 1 if node l has label f and 0 otherwise.

The neural network weights W(0) and W(1) are trained using gradient de-
scent. We perform batch gradient descent using the full dataset for every train-
ing iteration, which is a viable option as long as datasets fit in memory. An
application of mini-batch gradient descent is non-trivial as individual data ex-
amples (nodes) depend on their neighborhoods, and is left for future work. We
use a sparse representation for A, hence space complexity is O(|E |), i.e., linear
in the number of edges. Stochasticity in the training process is introduced via
dropout (Srivastava et al., 2014).
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In the experiments of this chapter, we make use of TensorFlow (Abadi et
al., 2016) for an efficient GPU-based implementation of Eq. 3.12 using sparse-
dense matrix multiplications. Our implementation is available under https:

//github.com/tkipf/gcn.

3.4 related prior work

In this section, we discuss related work that was published prior to our work
from this chapter. Our model draws inspiration both from the field of graph-
based semi-supervised learning and from work on neural networks that oper-
ate on graphs. In what follows, we provide a brief overview on prior related
work in both fields.

Graph-Based Semi-Supervised Learning

A large number of approaches for semi-supervised learning using graph rep-
resentations have been proposed in the recent years, most of which fall into
two broad categories: methods that use some form of explicit graph Laplacian
regularization and graph embedding-based approaches.

Prominent examples for graph Laplacian regularization include label propa-
gation (Zhu et al., 2003), manifold regularization (Belkin et al., 2006) and deep
semi-supervised embedding (Weston et al., 2012). These approaches have been
extended with ideas from spectral graph theory (Shuman et al., 2011; Ekam-
baram et al., 2013).

A separate branch of related models is based on graph embeddings with
methods inspired by the skip-gram model (Mikolov et al., 2013). DeepWalk
(Perozzi et al., 2014) and node2vec (Grover and Leskovec, 2016) learn embed-
dings via the prediction of the local neighborhood of nodes, sampled from
random walks on the graph. LINE (Tang et al., 2015) similarly learns embed-
dings via neighborhood prediction, but without using random walks. For all
these methods, however, a multi-step pipeline including embedding learning
and semi-supervised training is required where each step has to be optimized
separately. Planetoid (Yang et al., 2016) alleviates this shortcoming by inject-
ing label information in the process of learning embeddings, but still relies on
random walk generation.

https://github.com/tkipf/gcn
https://github.com/tkipf/gcn
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Neural Networks on Graphs

Neural networks that operate on graphs had prior to our work been introduced
in Gori et al. (2005) and Scarselli et al. (2009) as a form of recurrent neural
network. Their framework requires the repeated application of contraction
maps as propagation functions until node representations reach a stable fixed
point. This restriction was later alleviated in Li et al. (2016) by introducing
modern practices for recurrent neural network training to the original graph
neural network framework.

Duvenaud et al. (2015) introduce a convolution-like propagation rule on
graphs and methods for graph-level classification. Their approach requires
to learn node degree-specific weight matrices which does not scale to large
graphs with wide node degree distributions.

A related approach to semi-supervised node classification with a graph-
based neural network is introduced in Atwood and Towsley (2016). Their
model differs in that they integrate local graph information (up to a pre-chosen
neighborhood size) in a single graph convolution-like layer, followed by fully-
connected neural network layers.

A related framework for convolutional neural networks on graphs is intro-
duced in Niepert et al. (2016). Their approach converts graphs locally into
sequences that are fed into a conventional 1D convolutional neural network,
which requires defining a canonical node ordering in a pre-processing step.

Our method is related to spectral graph convolutional neural networks, in-
troduced in Bruna et al. (2014) and later extended by Defferrard et al. (2016)
with fast localized convolutions. The latter of which can also be interpreted as
a spatial method that performs message passing on local neighborhoods in the
graph.

3.5 experiments

We test the proposed GCN model on semi-supervised document classification
in three different citation networks. We further perform an evaluation of vari-
ous graph propagation models and a run-time analysis on random graphs.
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3.5.1 Datasets

We closely follow the experimental setup in Yang et al. (2016). Dataset statistics
are summarized in Table 3.1. In the citation network datasets — Citeseer, Cora
and Pubmed (Sen et al., 2008) — nodes are documents and edges are citation
links. Label rate denotes the number of labeled nodes that are used for training
divided by the total number of nodes in each dataset.

Table 3.1: Dataset statistics, as reported in Yang et al. (2016).

Dataset Nodes Edges Classes Features Label rate

Citeseer 3,327 4,732 6 3,703 0.036
Cora 2,708 5,429 7 1,433 0.052
Pubmed 19,717 44,338 3 500 0.003

Citation Networks

We consider three citation network datasets: Citeseer, Cora, and Pubmed (Sen
et al., 2008). The datasets contain sparse bag-of-words feature vectors for each
document and a list of citation links between documents. We treat the citation
links as (symmetric) edges and construct a binary, symmetric adjacency matrix
A. Each document has a class label. For training, we only use 20 labels per
class, but all feature vectors.

Random Graphs

We simulate random graph datasets of various sizes for experiments where
we measure training time per epoch. For a dataset with N nodes we create
a random graph assigning 2N edges uniformly at random. We take the iden-
tity matrix IN as input feature matrix X, thereby implicitly taking a featureless
approach where the model is only informed about the identity of each node,
specified by a unique one-hot vector. In these experiments, we omit regular-
ization (i.e., no dropout and no L2 regularization on the weights) and create
dummy labels Yi = 1 for each node. In each training epoch, we perform a
forward pass on the full dataset, evaluate the cross-entropy error between the
model prediction and the label for every node and update weights using Adam
(Kingma and Ba, 2014). We measure and report the average wall-clock time in
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seconds per epoch for 100 training epochs. We compare results on a GPU and
on a CPU-only implementation in TensorFlow (Abadi et al., 2016)3.

3.5.2 Experimental Setup

Unless otherwise noted, we train a two-layer GCN as described in Section 3.3.2
and evaluate prediction accuracy on a test set of 1000 labeled examples. We
choose the same dataset splits as in Yang et al. (2016) with an additional vali-
dation set of 500 labeled examples for hyperparameter optimization (dropout
rate for all layers, L2 regularization factor for the first GCN layer, and number
of hidden units). We do not use the validation set labels for training.

We optimize hyperparameters on Cora only and use the same set of param-
eters for Citeseer and Pubmed. We train all models for a maximum of 200

epochs (training iterations) using Adam (Kingma and Ba, 2014) with a learn-
ing rate of 0.01 and early stopping with a window size of 10, i.e., we stop
training if the validation loss does not decrease for 10 consecutive epochs. We
initialize weights using the initialization described in Glorot and Bengio (2010)
and accordingly (row-)normalize input feature vectors.

3.5.3 Baselines

We compare against the same baseline methods as in Yang et al. (2016): label
propagation (LP) (Zhu et al., 2003), semi-supervised embedding (SemiEmb)
(Weston et al., 2012), manifold regularization (ManiReg) (Belkin et al., 2006)
and skip-gram based graph embeddings (DeepWalk) (Perozzi et al., 2014). We
further compare against Planetoid (Yang et al., 2016), where we always choose
their best-performing model variant (transductive vs. inductive) as a baseline.

3 Hardware used in experiments: 16-core Intel R© Xeon R© CPU E5-2640 v3 @ 2.60GHz,
GeForce R© GTX TITAN X
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3.6 results

3.6.1 Semi-Supervised Node Classification

Results are summarized in Table 3.2.

Table 3.2: Summary of results in terms of classification accuracy in percent. See text

for details.

Method Citeseer Cora Pubmed

ManiReg (Belkin et al., 2006) 60.1 59.5 70.7
SemiEmb (Weston et al., 2012) 59.6 59.0 71.1
LP (Zhu et al., 2003) 45.3 68.0 63.0
DeepWalk (Perozzi et al., 2014) 43.2 67.2 65.3
Planetoid (Yang et al., 2016) 64.7 (26s) 75.7 (13s) 77.2 (25s)
GCN (Our method) 70.3 (7s) 81.5 (4s) 79.0 (38s)

GCN (Random splits) 67.9± 0.5 80.1± 0.5 78.9± 0.7

Reported numbers denote mean classification accuracy in percent. Results
for baseline methods are taken from the Planetoid paper (Yang et al., 2016).
Planetoid denotes the best model for the respective dataset out of the variants
presented in their paper.

We further report wall-clock training time in seconds (s) until convergence
for our method (incl. evaluation of validation error) and for Planetoid. For
the latter, we used an implementation provided by the authors4 and trained
on the same hardware (with GPU) as our GCN model. We trained and tested
our model on the same dataset splits as in (Yang et al., 2016) and report mean
accuracy of 100 runs with random weight initializations. We used the following
set of hyperparameters: 0.5 (dropout rate), 5 · 10−4 (L2 regularization) and 16
(number of hidden units).

In addition, we report performance of our model on 10 randomly drawn
dataset splits of the same size as in Yang et al. (2016), denoted by GCN (rand. splits).
Here, we report mean and standard error of prediction accuracy on the test set
split in percent.

4 https://github.com/kimiyoung/planetoid

https://github.com/kimiyoung/planetoid
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3.6.2 Evaluation of Propagation Model

We compare different variants of our proposed per-layer propagation model
on the citation network datasets. We follow the experimental set-up described
in the previous section. Results are summarized in Table 3.3. The propagation
model of the GCN model used in the experiments in Table 3.2 is denoted by
renormalized (in bold). In all other cases, the propagation model of both neural
network layers is replaced with the model specified under propagation model.

Table 3.3: Propagation model evaluation. See text for details.

Description Propagation model Citeseer Cora Pubmed

Chebyshev (K = 3)
∑K

k=0 Tk(L̃)XWk
69.8 79.5 74.4

Chebyshev (K = 2) 69.6 81.2 73.8

1st-order XW0 + D−
1
2 AD−

1
2 XW1 68.3 80.0 77.5

Single parameter (IN + D−
1
2 AD−

1
2 )XW 69.3 79.2 77.4

Renormalized D̃−
1
2 ÃD̃−

1
2 XW 70.3 81.5 79.0

1st-order term only D−
1
2 AD−

1
2 XW 68.7 80.5 77.8

MLP XW 46.5 55.1 71.4

Reported numbers denote mean classification accuracy for 100 repeated runs
with random weight matrix initializations. In case of multiple variables Wi per
layer, we impose L2 regularization on all weight matrices of the first layer.
The models denoted as 1st-order term only and multi-layer perceptron (MLP) are
included for comparison; they represent the 1st- and 0th-order terms in the
original 1st-order model, respectively.

3.6.3 Training Time per Epoch

Here, we report results for the mean training time per epoch (forward pass,
cross-entropy calculation, backward pass) on simulated random graphs, mea-
sured in seconds wall-clock time. The experimental set-up follows the descrip-
tion from Section 3.5.1. Figure 3.2 summarizes the results.
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Figure 3.2: Experimental measurements of wall-clock time per epoch for simulated

random graphs for a GPU and a CPU-only implementation. The GPU ran out of

memory for the graph with 10 million edges.

3.7 discussion

3.7.1 Semi-Supervised Model

In the experiments demonstrated here, our proposed GCN model for semi-
supervised node classification outperforms prior related methods by a signif-
icant margin. Methods based on graph-Laplacian regularization (Zhu et al.,
2003; Belkin et al., 2006; Weston et al., 2012) are likely limited due to their as-
sumption that edges solely encode similarity of class labels. Skip-gram based
methods on the other hand are limited by the fact that they are based on a
multi-step pipeline which is more difficult to optimize. Our proposed model
can overcome both limitations, while still comparing favorably in terms of effi-
ciency (measured in wall-clock time) to related methods.

We should emphasize that we used a single set of hyperparameters for all
datasets. Other methods, such as Planetoid (Yang et al., 2016), typically do not
generalize in such a way and require separate fine-tuning of hyperparameters.

We have further demonstrated that the proposed renormalized propagation
model (Eq. 3.9) offers both improved efficiency (fewer parameters and oper-
ations, such as multiplication or addition) and better predictive performance
compared to the naïve 1st-order graph convolutional model (Eq. 3.8).

3.7.2 Limitations and Future Work

Here, we describe several limitations of our current model and outline how
these might be overcome in future work.
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Memory Requirement

In the current setup with full-batch gradient descent, memory requirement
grows linearly in the size of the dataset. We have shown that for large graphs
that do not fit in GPU memory, training on CPU can still be a viable option.
Mini-batch stochastic gradient descent can alleviate this issue. The procedure
of generating mini-batches, however, should take into account the number of
layers in the GCN model, as the K-th order neighborhood for a GCN with
K layers has to be stored in memory for an exact procedure. For very large
and densely connected graph datasets, further approximations or sampling
techniques might be necessary.

Fixed Weighing of Neighboring Nodes

The GCN propagation model resembles a center-surround filter, i.e., all neigh-
boring node features are transformed using the same weight matrix followed
by a weighted aggregation with fixed weights ci,j. In many real-world scenar-
ios, it might be beneficial to adaptively assign different weights to neighbors
depending on their importance for a particular update. This could be achieved,
for example, by making ci,j a learned function of neighboring node features,
which is left for future work.

Directed Edges and Edge Features

The framework proposed in this chapter does not naturally support edge fea-
tures and is limited to undirected graphs. This limitation will be addressed in
Chapter 5 with the introduction of the relational GCN model.

3.8 conclusion

We have introduced an approach for semi-supervised node classification using
a neural network model for graph-structure data. Our model, termed GCN,
uses an efficient layer-wise propagation rule that is based on a first-order ap-
proximation of spectral convolutions on graphs. Experiments on a number of
network datasets suggest that the proposed GCN model is capable of encoding
both graph structure and node features in a way useful for semi-supervised
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classification. In this setting, our model outperforms several previously pro-
posed methods by a significant margin, while being computationally efficient.

Since our original publication (Kipf and Welling, 2017), GCNs have been ex-
tended and applied in various settings and domains outside of semi-supervised
document classification. Notable model extensions include attention-based
propagation models such as in MoNet (Monti et al., 2017) or graph attention net-
works (Veličković et al., 2018b), and model variants that utilize node sampling
for efficient and scalable mini-batch training (Hamilton et al., 2017a; Chen et al.,
2018). Recent work by Wu et al. (2019) has found that our propagation-based
approach to semi-supervised node classification can perform competitively on
some tasks even in the absence of non-linear activation functions, i.e., using
purely linear feature propagation.

GCNs and their model variants have since found application in, e.g., traf-
fic prediction (Yu et al., 2018), object instance segmentation (Ling et al., 2019),
large-scale recommender systems (Ying et al., 2018), machine translation (Bast-
ings et al., 2017), and drug discovery (You et al., 2018), among many others. We
will explore further extensions to the GCN model for unsupervised learning
and link prediction, and for modeling relational data in the following chap-
ters.
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L I N K P R E D I C T I O N W I T H G R A P H
A U TO - E N C O D E R S

4.1 introduction

Having explored the problem of node classification in graph-structured datasets
in the previous chapter, we now turn to a similarly important task in graph
representation learning: the task of link prediction, i.e., the task of predicting
whether two nodes should be connected by an edge. Link prediction has im-
portant applications in, e.g., knowledge base completion (Nickel et al., 2015),
recommender systems (Chen et al., 2005), and in biological networks (such as
protein-protein interaction networks).

With only a slight modification, we can turn the GCN model (Kipf and
Welling, 2017) into an effective model for predicting missing edges in a graph1.
This model, which we term graph auto-encoder (GAE), is based on an encoder-
decoder architecture. The encoder module is a graph-based neural network
which takes in a set of node features and outputs an updated set of node rep-
resentations. We will use the GCN-based encoder introduced in Chapter 3

for this module. The decoder will reconstruct the connectivity structure of the
graph, i.e., its adjacency matrix from node representations only. In practice, we
will use a pairwise scoring function, such as an inner product, for the decoder
module to determine whether two nodes should be connected or not.

We will further provide two alternative perspectives on the GAE framework:
1) a probabilistic version framed as a latent variable model, which we term the

1 This chapter is based on our NeurIPS 2016 workshop paper (Kipf and Welling, 2016). An
earlier version of this paper appeared as arXiv preprint arXiv:1611.07308.

35

https://arxiv.org/abs/1611.07308


36 link prediction with graph auto-encoders

variational GAE (VGAE), and 2) a contrastive training procedure using negative
sampling (Mikolov et al., 2013) for improved efficiency and scalability.

On a number of citation network datasets, we demonstrate that the proposed
GAE framework achieves competitive results in the task of link prediction. In
contrast to most earlier models for unsupervised learning on graph-structured
data and link prediction (Tang and Liu, 2011; Perozzi et al., 2014; Tang et al.,
2015; Grover and Leskovec, 2016), our model can naturally incorporate node
features, which significantly improves predictive performance on a number of
benchmark datasets.

4.2 methods

4.2.1 Graph Auto-Encoder

We are given an undirected, unweighted graph G = (V , E) with N = |V| nodes.
We further introduce a binary N×N adjacency matrix A of G (with added self-
connections, i.e., ones on the diagonal) and its diagonal degree matrix D with
Di,i = ∑j Ai,j.

We address the task of link prediction by introducing a scoring function
s(zi, zj) that is tasked to assign high scores for pairs of nodes i and j ∈ V
that are or should be connected and a low score otherwise. zi and zj ∈ Rdemb

are embedding vectors or hidden representations for nodes i and j, respectively.
The GAE follows an encoder-decoder architecture. The scoring function acts

as a decoder s(zi, zj), which is tasked to reconstruct the adjacency matrix of the
graph from hidden representations zi. The encoder, on the other hand, takes
as input the adjacency matrix of the graph A and a set of node feature vectors
{xi}i∈V , and produces hidden node representations zi.

Encoder

The GAE encoder model uses a GNN to process an initial set of node features
xi ∈ Rdin jointly with the structure of the graph to produce a set of hidden
representations zi. Using a GNN-based encoder model is appealing as it can
jointly capture feature descriptions of nodes and the structure of the graph,
which allows the model to be used in inductive settings where predictions
are to be made on unseen parts of the graph for which embeddings zi are
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not available. This is in contrast to embedding-based approaches, such as
DeepWalk (Perozzi et al., 2014) or node2vec (Grover and Leskovec, 2016), that
directly optimize embeddings zi using a scoring function, without utilizing an
encoder module, and hence cannot be applied inductively without re-training.

For simplicity, we use the GCN architecture introduced in Chapter 3 as the
GNN component, but other choices are possible. Specifically, we use a two-
layer GCN of the following form as encoder model:

Z = GCN(X, A) = Â ReLU
(
ÂXW0

)
W1 , (4.1)

where we have summarized node features in a N × din matrix X and hidden
representations in a N × demb matrix Z. W0 ∈ Rdin×dhid and W1 ∈ Rdhid×demb

are trainable parameter matrices, initialized to small random values. Â =

D−
1
2 AD−

1
2 is the symmetrically normalized adjacency matrix (with added self-

connections). Alternatively, one could normalize the adjacency matrix via
D−1A, which we do not consider here to stay in line with the notation in
Chapter 3.

Decoder

The task of the decoder is to reconstruct the adjacency matrix A (with added
self-connections) from Z. We obtain a soft reconstruction A′ representing a
weighted graph with edge weights in the interval (0, 1) using the following
decoder:

A′ = l
(
ZZ>

)
, (4.2)

where l(.) is the logistic sigmoid function. In other words, elements of the
reconstructed adjacency matrix are obtained via A′i,j = l

(
s(zi, zj)

)
with an

inner-product scoring function s(zi, zj) = z>i zj.

Training Objective

As A is binary, we can train the GAE model with a cross-entropy loss of the
following form:

L = − 1
N2

N

∑
i=1

N

∑
j=1

Ai,j log l
(
s(zi, zj)

)
+ (1− Ai,j) log

(
1− l

(
s(zi, zj)

))
. (4.3)

For very sparse graphs it can be beneficial to use a weighted cross-entropy loss:

L = − 1
N2

N

∑
i=1

N

∑
j=1

wposAi,j log A′i,j + wneg(1− Ai,j) log(1− A′i,j) , (4.4)
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with class weights wpos and wneg to account for class imbalance. We found
the following heuristic choice to be effective for balancing the contribution
of postive and negative terms in the loss function: wpos = N2/(2Npos) and
wneg = N2/(2Nneg), where Npos = |E | is the number of edges in the graph and
Nneg = N2 − Npos is the number of zeros in A.

4.2.2 Variational GAE

In this section, we introduce a probabilistic perspective on the GAE framework
in the context of latent variable models, resulting in a model that we term the
variational GAE (VGAE). See Chapter 2 for an introduction to latent variable
models.

We start by modeling the conditional distribution pθ(A|X), i.e., the likelihood
of the graph G with adjacency matrix A conditioned on a matrix of node feature
vectors X, via the following latent variable model:

pθ(A|X) =
∫

pθ(A|Z, X)p(Z|X) dZ , (4.5)

with a fixed prior over the latent variables p(Z|X) = ∏N
i=1 p(zi), independent

of X and factorized over nodes i ∈ V . In practice, we use a zero-mean, unit-
covariance Gaussian prior p(zi) = N (zi; 0, I). The goal of learning is to find
parameters θ such that pθ(A|X) is maximized for a single observed graph G
with adjacency matrix A and node features X, or for a dataset of multiple
graphs.

Inference Model

We follow the VAE framework (Kingma and Welling, 2013; Rezende et al.,
2014) and introduce an inference model qφ(Z|X, A) for which we assume the
following factorization (mean field approximation):

qφ(Z|X, A) = ∏N
i=1 qφ(zi|X, A) , with qφ(zi|X, A) = N (zi; µi, diag(σ2

i )) .
(4.6)

The inference model is parameterized by two-layer GCNs as follows: µi =

[GCN(1)(X, A)]i and log σi = [GCN(2)(X, A)]i. The two GCN models are de-
fined as in Eq. 4.1 with shared parameters W0 in the first layer and separate
parameters W(1)

1 and W(2)
1 in the second (last) layer. Here, [M]i denotes extrac-

tion the i-th row of a matrix M into a column vector.
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Generative Model

We assume the following generative model, which factorizes over edges and is
independent of the initial node feature matrix X for simplicity:

pθ(A|Z, X) =
N

∏
i=1

N

∏
j=1

pθ(Ai,j|zi, zj) . (4.7)

We model pθ(Ai,j|zi, zj) as a Bernoulli distribution with probabilities

pθ(Ai,j = 1|zi, zj) = l
(
s(zi, zj)

)
, (4.8)

where l(.) is the logistic sigmoid function and s(., .) is a scoring function for
which we will use the inner product: s(zi, zj) = z>i zj. Note that one could also
use a parameterized scoring function, such as a bilinear product z>i Wzj with
parameters W.

Learning

We optimize the variational lower bound ELBO with respect to the parameters
φ of the inference model and, when using parameterized scoring functions,
the parameters of the generative model θ:

ELBO = Eqφ(Z|X,A)

[
log pθ(A|Z, X)

]
−KL

[
qφ(Z|X, A) || p(Z)

]
, (4.9)

where KL[q(.)||p(.)] is the Kullback-Leibler divergence between q(.) and p(.).
We optimize via full-batch gradient ascent (i.e., using all data points at once)
and make use of the reparameterization trick (Kingma and Welling, 2013) for
training.

4.2.3 Contrastive Training

We can view the reconstruction objective of both the GAE and the Variational
GAE models in the lens of contrastive learning, as introduced in Chapter 2. We
can utilize negative sampling (Mikolov et al., 2013) to address the problem of
class imbalance in the reconstruction loss, as an alternative to the re-weighing
heuristic proposed in Eq. 4.4. Negative sampling will further avoid the ex-
pensive evaluation of O(N2) negative terms (Ai,j = 0) in the loss for every
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training iteration, and hence can speed up training. Using negative sampling,
the reconstruction objective2 takes the following form:

L = − 1
|T | ∑

(i,j,c)∈T
c log l

(
s(zi, zj)

)
+ (1− c) log

(
1− l

(
s(zi, zj)

))
, (4.10)

where T is a set that contains tuples (i, j, c): i and j indicate edge indices
(i, j) ∈ V × V and c ∈ {0, 1} indicates whether (i, j) is a positive example (c = 1),
i.e., whenever the edge (i, j) exists in the graph (Ai,j = 1), or a negative ex-
ample (c = 0) otherwise. Negative sampling of this form is used for learning
graph embeddings, e.g., in node2vec (Grover and Leskovec, 2016) for undi-
rected graphs and DistMult (Yang et al., 2014) for directed, relational graphs.
A common choice is to use the same number of positive and negative examples
and to sample negatives uniformly at random from the set of negative terms
with Ai,j = 0.

Under this perspective, we can view learning under an energy-based frame-
work (LeCun et al., 2006) as outlined in Chapter 2. This suggests extensions
of the GAE model with different decoder variants, e.g., with the energy of a
pair of nodes defined as the Euclidean distance between their embeddings, and
other training objectives such as the hinge loss in Eq. 2.10.

4.3 related prior work

Graph Embeddings

Our approach is closely related to embedding-based approaches for link pre-
diction and node classification (Tang and Liu, 2011; Perozzi et al., 2014; Tang
et al., 2015; Grover and Leskovec, 2016; Cao et al., 2016; Wang et al., 2016).
For earlier approaches based on feature engineering, see Liben-Nowell and
Kleinberg (2007) for an overview. In Tang and Liu (2011), node embeddings
are obtained via spectral decomposition of the normalized graph Laplacian,
using the first demb eigenvectors with the smallest eigenvalues. This is related
to Laplacian eigenmaps (Belkin and Niyogi, 2003), with the difference that the
adjacency matrix is provided externally and not obtained from the node fea-
tures. In DeepWalk (Perozzi et al., 2014), node embeddings are obtained in

2 This corresponds to the first term in the ELBO (Eq. 4.9) for VGAE, up to a constant.
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a two-stage procedure: first, the graph is serialized into a number of short
random walks, and secondly, the SkipGram model (Mikolov et al., 2013) is ap-
plied to the random walk-based node sequences. An extension of DeepWalk
that includes node features was proposed by Yang et al. (2015). Grover and
Leskovec (2016) propose a variant of DeepWalk with biased random walks,
termed node2vec. LINE (Tang et al., 2015) directly optimizes a score function
similar to ours with negative sampling for first-order neighbors (and option-
ally also for second-order neighbors), but does not use an encoder. Lastly, Cao
et al. (2016) and Wang et al. (2016) use auto-encoders applied on node features
to obtain node embeddings. Cao et al. (2016) use the adjacency vector of a
node (a row in the adjacency matrix) as initial node features, whereas Wang
et al. (2016) use rows of a node-node co-occurrence matrix in short random
walk sequences as node features.

Generative Models of Graphs

The VGAE is a probabilistic model of graph generation, a class of models
which dates back to the random graph model by Erdös and Rényi (1959), in
which edges are modeled by a fixed probability. The stochastic block model
(Holland et al., 1983) generalizes this notion to a graph with two (or multi-
ple) communities, where edges within communities and between communities
are modeled with different probabilities. Other well-known fixed-probability
generative models for graphs include the preferential attachment model by
Barabási and Albert (1999) and the small-world model by Watts and Strogatz
(1998). In our approach, edge probabilities are instead provided by a neural
network-based model. Concurrent to our work, two other generative models
for graphs based on deep neural networks have been proposed: Johnson (2017)
proposes a generative model for graphs that utilizes GNNs to obtain inter-
mediate node representations and predicts one or multiple nodes and edges
to be added to the graph per generation step, in a recurrent generative pro-
cess. Gómez-Bombarelli et al. (2016) introduce a VAE-based generative model
for molecular graphs, which operate on a sequence-based representation for
molecules using recurrent neural networks.
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4.4 experiments

We demonstrate the ability of the VGAE and GAE models to learn representa-
tions useful for a link prediction task on undirected graphs.

4.4.1 Datasets

As in the previous chapter, we consider three citation network datasets: Cite-
seer, Cora, and Pubmed (Sen et al., 2008). Nodes are documents described by
sparse bag-of-words feature vectors, and edges are (undirected) citation links
between documents. Dataset statistics are summarized in Table 4.1.

Table 4.1: Datasets used for link prediction.

Dataset Nodes Edges Features

Citeseer 3,327 4,732 3,703

Cora 2,708 5,429 1,433

Pubmed 19,717 44,338 500

4.4.2 Experimental Setup

The models are trained on an incomplete version of these datasets where parts
of the citation links (edges) have been removed, while all nodes (and their fea-
ture descriptions) are kept. We form validation and test sets from previously
removed edges and the same number of randomly sampled pairs of uncon-
nected nodes (non-edges).

We compare models based on their ability to correctly classify edges and
non-edges. The validation and test sets contain 5% and 10% of citation links,
respectively. The validation set is used for optimization of hyperparameters.
We compare against two popular baselines: spectral embedding (SE) (Tang and
Liu, 2011) and DeepWalk (DW) (Perozzi et al., 2014). Both SE and DW provide
node embeddings Z. We use Eq. 4.2, i.e., an inner product followed by a sig-
moid activation function, to calculate scores for elements of the reconstructed
adjacency matrix. Both SE and DW do not support node features.
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For VGAE and GAE, we initialize weights as described in Glorot and Bengio
(2010). We train for 200 iterations using Adam (Kingma and Ba, 2014) with
a learning rate of 0.01. We use a hidden layer of dimensionality dhid = 32
and latent variables of dimensionality demb = 16 in all experiments. We uti-
lize the weighted cross entropy from Eq. 4.4 for the reconstruction loss in
VGAE and GAE. In initial experiments we found that the contrastive loss from
Eq. 4.10 resulted in comparable predictive performance, but required more
training epochs for convergence due to negative sampling. For SE, we use
the SpectralEmbedding implementation from Pedregosa et al. (2011) with an
embedding dimension of 128. For DW, we use the implementation provided
by Grover and Leskovec (2016) with standard settings used in their paper, i.e.,
embedding dimension of 128, 10 random walks of length 80 per node and a
context size of 10, trained for a single epoch.

For a model variant of VGAE/GAE without feature conditioning, we sim-
ply drop the dependence on X in the inference model (in case of VGAE) and
replace X with the identity matrix in the GCN. Our implementation in Tensor-
Flow (Abadi et al., 2016) is available under https://github.com/tkipf/gae.

4.4.3 Results

Results for the link prediction task in citation networks are summarized in
Table 4.2. GAE* and VGAE* denote experiments with using node features,
all other models do not use node features. We report area under the ROC curve
(AUC) and average precision (AP) scores for each model on the test set. Numbers
show mean results and standard error for 10 runs with random initializations
on fixed dataset splits.

Both VGAE and GAE achieve competitive results on the featureless task.
Adding input features significantly improves predictive performance across
datasets. We did not perform an explicit comparison to baselines with support
for node features in our original experimental study in Kipf and Welling (2016),
on which this chapter is based. Such a comparison, however, was carried out
in later work by Bojchevski and Günnemann (2017), where GAE was found to
significantly outperform earlier representatives of this model class — TADW
(Yang et al., 2015) and TRIDNR (Pan et al., 2016) — on similar datasets as
considered here.

https://github.com/tkipf/gae
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Table 4.2: Average precision (AP) and area under the ROC curve (AUC) scores for link

prediction. * denotes models that make use of node features. Highest mean scores

highlighted in bold.

Method
Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

SE 86.8± 0.02 90.3± 0.01 78.5± 0.04 82.8± 0.02 84.7± 0.02 88.2± 0.01
DW 84.7± 0.01 86.7± 0.01 80.6± 0.02 82.9± 0.02 84.3± 0.00 84.3± 0.00
GAE 86.1± 0.02 89.2± 0.01 78.4± 0.02 83.6± 0.02 81.8± 0.01 87.3± 0.00
VGAE 86.3± 0.01 89.2± 0.01 78.1± 0.01 83.3± 0.01 82.6± 0.01 87.5± 0.01

GAE* 92.3± 0.02 92.6± 0.02 89.1± 0.04 89.3± 0.05 95.9± 0.00 96.1± 0.00
VGAE* 92.8± 0.01 93.2± 0.01 90.3± 0.02 91.8± 0.02 94.4± 0.01 94.7± 0.01

4.5 limitations

Feature Conditioning and Decoding

Our GAE model is framed as a conditional auto-encoder (or VAE), where both
the encoder and the decoder are conditioned on the node feature matrix X, i.e.,
we are modeling pθ(A|Z, X). Note that we drop the conditioning on X in the
decoder in practice to make for a simpler model: this typically does not affect
link prediction performance since the hidden representation Z provided by the
encoder can capture information stored in X. If the GAE model is to be used
in a purely generative way without an encoder, then it might be beneficial to
introduce an explicit dependency on X in the decoder. Lastly, one could frame
the GAE model as a non-conditional generative model pθ(A, X|Z) where both
A and X are reconstructed. This would only require a minor change in the
GAE decoder, for example by adding a separate output head (a small MLP)
that produces X from Z.

Graph Generation

The GAE model does not learn a global latent representation for an instance of
a graph, but rather assigns one latent variable per node in a graph. It further
does not model the number of nodes in a graph, but assumes that this is provided
to the model externally via the size of the provided adjacency matrix. The GAE
model is hence less suited for modeling a distribution of many small graphs
of different size, e.g., in the context of drug discovery. Better-suited models
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for such a task typically assign a global latent variable per graph and allow
for generation of graphs of different size, such as GraphRNN (You et al., 2018),
GraphVAE (Simonovsky and Komodakis, 2018), and MolGAN (De Cao and
Kipf, 2018).

Scalability of Encoder

The scalability of the GAE model is mainly limited by its encoder: using a
GNN requires processing of not only the nodes in a mini-batch itself, but also
their respective neighbors and potentially higher-order neighbors (when using
multiple message passing steps). Hence, even when using negative sampling
and a sparse implementation of the message passing operations to reduce the
overall complexity from O(N2) to O(|E |), training the GAE model on very
large graphs can still be challenging. To overcome this limitation, neighbor-
hood sampling techniques such as in Hamilton et al. (2017a) and Ying et al.
(2018) can be employed in the GAE encoder.

4.6 conclusion

Motivated by our research question, whether GNNs can be utilized for link pre-
diction and unsupervised learning, we have proposed the graph auto-encoder
(GAE) and variational GAE (VGAE) models. These models serve as a first
demonstration that GNNs are promising candidates for link prediction prob-
lems. GAEs and VGAEs learn node representations in an unsupervised way,
which could prove useful for other downstream tasks. Using representations
learned by GAE for node classification is studied in Bojchevski and Günne-
mann (2017), who demonstrate strong performance gains over earlier related
methods. An extension of GAE for semi-supervised classification and with an
iterative decoding scheme was later proposed in Graphite (Grover et al., 2018).
Follow-up work by Davidson et al. (2018) explores utilizing a hyperspherical
latent space in the VGAE model which improves link prediction performance
on some datasets.

One major challenge in utilizing GNNs for link prediction lies in scalability.
Negative sampling can alleviate this issue in terms of evaluation of the decoder
module in GAE/VGAE. The GNN-based encoder, however, requires keeping
large parts of the graph in memory for message passing. One approach to
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overcome this limitation is based on subsampling neighborhoods, which is
utilized in PinSAGE (Ying et al., 2018) and allows the authors to train a GAE-
based model on a recommendation task with 18 billion edges.

GAEs, as proposed in this chapter, are limited to undirected graphs without
edge features. We will address this limitation in the following chapter with the
introduction of the relational GCN (R-GCN) model.
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M O D E L I N G R E L AT I O N A L DATA W I T H
G R A P H C O N V O L U T I O N A L N E T W O R K S

5.1 introduction

In Chapters 3 and 4 we have introduced the graph convolutional network (GCN)
and explored applications in node classification and link prediction on undi-
rected graphs with node attributes. In this chapter and in Schlichtkrull and
Kipf et al. (2018), we introduce an extension to the GCN model that extends its
modeling capabilities to multi-relational data. We call this model the relational
GCN (R-GCN)1. Multi-relational data can be represented as a graph with mul-
tiple edge types (i.e., labeled edges), and potentially multiple edges between two
nodes (also called a multi-graph).

An important example of multi-relational data is a knowledge base. Knowl-
edge bases organize and store factual knowledge, enabling a range of appli-
cations including question answering (Yao and Van Durme, 2014; Bao et al.,
2014; Seyler et al., 2015; Hixon et al., 2015; Bordes et al., 2015; Dong et al., 2015)
and information retrieval (Kotov and Zhai, 2012; Dalton et al., 2014; Xiong and
Callan, 2015b; Xiong and Callan, 2015a).

Developing machine learning models for knowledge bases, and for multi-
relational data in general, is important, as even the largest knowledge bases
(e.g., DBPedia, Wikidata or Yago) are incomplete and potentially noisy, despite
enormous efforts spent in populating and maintaining them. The resulting

1 This chapter is based on our ESWC 2018 publication (Schlichtkrull and Kipf et al., 2018). The
first two authors contributed equally to this publication. An earlier version of this paper
appeared as arXiv preprint arXiv:1703.06103. Permission was given by the co-authors for
reproduction in this thesis.
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Mikhail Baryshnikov Vaganova Academy

U.S.A.

Vilcek prize

awarded

educated_at
citizen_of

:country

:university

:award
:ballet_dancer

Figure 5.1: A knowledge base fragment: The nodes are entities, the edges are relations

labeled with their types, the nodes are labeled with entity types (e.g., university). The

edge and the node label shown in red are the missing information to be inferred.

gaps in coverage can significantly harm downstream applications. Predicting
missing information in knowledge bases via machine learning techniques is a
typical task in statistical relational learning (SRL), a subfield of machine learning
that addresses learning with relational structure.

As commonly done in SRL, we represent a knowledge base as a collection
of triples of the form (subject, predicate, object). Consider, for example, the
triple (Mikhail Baryshnikov, educated_at, Vaganova Academy), where we will refer
to Baryshnikov and Vaganova Academy as entities and to educated_at as a relation.
Additionally, we assume that entities are labeled with types (e.g., Vaganova
Academy is marked as a university). This collection of triples can be under-
stood as describing a directed labeled multi-graph with entities corresponding
to nodes (subjects and objects) and triples encoded by labeled edges (see Fig-
ure 5.1).

In this chapter, we focus on the SRL task of entity classification (assigning
types or categorical properties to entities). Many missing pieces of information
can be expected to reside within the graph encoded through the neighborhood
structure and hence we utilize a GNN-based encoder model for entities in the
relational graph. In the example in Figure 5.1, we can see that knowing that
Mikhail Baryshnikov was educated at the Vaganova Academy implies both that
Mikhail Baryshnikov should have the label person, and that the triple (Mikhail
Baryshnikov, lived_in, Russia) must belong to the knowledge graph. The latter
is an example of relational link prediction, which is another important SRL task,
and we refer the reader to Schlichtkrull and Kipf et al. (2018) for specific details
on how our proposed R-GCN model can be adapted for this task.
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Our entity classification model uses softmax classifiers at each node in the
graph, similarly to Kipf and Welling (2017) as described in Chapter 3. The
classifiers take node representations supplied by an R-GCN graph encoder
and predict the labels. The model, including R-GCN parameters, is trained by
optimizing the cross-entropy loss.

Our main contributions in this chapter are as follows: we extend the GCN
framework to support multi-relational data, specifically for entity classification
tasks, and we introduce regularization techniques utilizing parameter sharing,
that allow us to effectively apply R-GCNs to graphs with a large number of
relations. We validate the proposed model on semi-supervised entity classifi-
cation tasks in multi-relational data with sizes up to approx. 6M triples.

5.2 methods

We introduce the following notation: we denote directed and labeled multi-
graphs as G = (V , E ,R) with nodes (entities) i ∈ V and labeled edges (rela-
tions) (i, r, j) ∈ E , where r ∈ R is a relation type2 and i and j ∈ V are nodes.

5.2.1 Relational GCN

Our model is primarily motivated as an extension of the GCN model, intro-
duced in Chapter 3 and in Kipf and Welling (2017), to large-scale relational
data. Recall that we defined the message-passing step in the GCN model as
follows:

h(l+1)
i = σ

(
∑

j∈Ni

1
ci,j

W(l)h(l)
j + W(l)

0 h(l)
i

)
, (5.1)

where h(l)
i ∈ Rd(l) is the hidden state of node i ∈ V in the l-th layer of the neu-

ral network, with d(l) being the dimensionality of this layer’s representations.
Incoming messages of the form W(l)h(l)

j are accumulated, normalized using
a normalization constant ci,j, and passed through an element-wise activation
function σ(·), such as the ReLU(·) = max(0, ·).

2 We assume that R contains relations both in canonical direction (e.g., born_in) and in inverse
direction (e.g., born_in_inv).
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We can extend this update rule to support multiple edge types by using a
set of relation-specific weight matrices W(l)

r , where r ∈ R denotes the relation
type, as opposed to a single weight matrix W(l) that is used across all edges
irrespective of their type:

h(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1
ci,r

W(l)
r h(l)

j + W(l)
0 h(l)

i

 , (5.2)

where N r
i denotes the set of neighbor node indices that are connected to node

i with an incoming edge of relation type r ∈ R. ci,r is a normalization constant.
We can recover two interesting special cases for this update rule. Firstly, the

R-GCN update rule is identical to that of a CNN with grid-structured filters
(e.g., 3× 3 filters for image processing), where nodes are locations in a regular
2D grid and relation types are spatial relations such as upper-right neighbor, and
when setting the normalization constant ci,r to 1 and |N r

i | = 1, i.e., only one
neighbor per relation type. Secondly, by setting ci,r = 1, dropping the self-
connection W(l)

0 h(l)
i and by coupling weight matrices over layers, we recover

a variant of the Gated Graph Neural Network (Li et al., 2016) model without
gated updates, which similarly uses a relation-specific update function.

A neural network layer update consists of evaluating the message passing
update (Eq. 5.2) in parallel for every node i ∈ V in the graph. Multiple layers
can be stacked to allow for dependencies across several relational steps. We re-
fer to this graph encoder model as a relational GCN (R-GCN). The computation
graph for a single node update in the R-GCN model is depicted in Figure 5.2.

5.2.2 Regularization

A central issue with applying the message passing update in Eq. 5.2 to highly
multi-relational data is the rapid growth in number of parameters with the
number of relations in the graph. In practice this can easily lead to overfitting
on rare relations and to models of very large size. An intuitive strategy to
address such issues is to share parameters between weight matrices to limit
the total number of parameters.

Corresponding to this strategy, we introduce a basis decomposition, where we
decompose W(l)

r as follows:

W(l)
r =

B

∑
b=1

a(l)r,b V(l)
b , (5.3)
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Figure 5.2: Diagram for computing the update of a single graph node/entity (red)

in the R-GCN model. Activations from neighboring nodes (dark blue) are gathered

and then transformed for each relation type individually (for both in- and outgoing

edges). The resulting representation (green) is accumulated in a (normalized) sum and

passed through an activation function (such as the ReLU). This per-node update can

be computed in parallel with shared parameters across the whole graph. (b) Depiction

of an R-GCN model for entity classification with a per-node loss function. (c) The

R-GCN model can also be used in an encoder-decoder framework for link prediction

tasks, similar to the GAE model (Kipf and Welling, 2016) presented in Chapter 4, here

shown using a DistMult (Yang et al., 2014) decoder. We refer to Schlichtkrull and Kipf

et al. (2018) for details on this link prediction setting.

i.e., as a linear combination of basis transformations V(l)
b ∈ Rd(l+1)×d(l) with

learnable coefficients a(l)r,b such that only the coefficients depend on r.

The basis decomposition (Eq. 5.3) can be seen as a form of effective weight
sharing between different relation types, which reduces the number of param-
eters needed to be learned for highly multi-relational data (such as realistic
knowledge bases).

The overall R-GCN model then takes the following form: We stack L layers
as defined in Eq. 5.2 — the output of the previous layer being the input to the
next layer. The input to the first layer can be chosen as a unique one-hot vector
for each node in the graph if no other features are present. While in this work
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we only consider the featureless approach, we note that GCN-type models can
incorporate predefined feature vectors (Kipf and Welling, 2017).

5.2.3 Entity Classification

For (semi-)supervised classification of nodes (entities), we simply stack R-GCN
layers as defined in Eq. 5.2, with a softmax(·) activation (per node) on the
output of the last layer. We minimize the following cross-entropy loss on all
labeled nodes (while ignoring unlabeled nodes):

L = − ∑
i∈Y

K

∑
k=1

ti,k ln h(L)
i,k , (5.4)

where Y is the set of node indices that have labels and h(L)
i,k is the k-th entry of

the network output for the i-th labeled node. ti,k denotes its respective ground
truth label. In practice, we train the model using (full-batch) gradient descent
techniques, similar to the way we trained the GCN model in Chapter 3. A
schematic depiction of the model is given in Figure 5.2b.

5.3 related prior work

A wide range of techniques in SRL learn representations of entities and rela-
tions via direct optimization of a scoring function (Nickel et al., 2011; Bordes
et al., 2013; Socher et al., 2013; Yang et al., 2014; Chang et al., 2014; Nickel et al.,
2016; Trouillon et al., 2016; Dettmers et al., 2018). Many of these approaches
can be regarded as modifications or special cases of classic tensor decomposi-
tion methods such as CP or Tucker; for an overview of tensor decomposition
literature we refer to Kolda and Bader (2009). For an overview of the field
of SRL for knowledge base completion, we recommend the review article by
Nickel et al. (2015).

Incorporation of paths between entities in knowledge bases has recently re-
ceived considerable attention. We can roughly classify previous work into 1)
methods creating auxiliary triples, which are then added to the learning ob-
jective of a factorization model (Guu et al., 2015; García-Durán et al., 2015); 2)
approaches using paths (or walks) as features when predicting edges (Lin et al.,
2015); or 3) doing both at the same time (Neelakantan et al., 2015; Toutanova et
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al., 2016). The first direction is largely orthogonal to ours, as we would also ex-
pect improvements from adding auxiliary edges or triples to our graphs. The
second research line is more comparable to our approach with the main dif-
ference being that R-GCNs incorporate information from neighborhoods via
message passing steps, integrated into the model architecture, as opposed to
sampling walks or paths in a graph on which a machine learning model is
applied.

A similar GNN architecture with support for different edge types was pro-
posed in Li et al. (2016) in the form of a recurrent neural network. Their
model does not normalize messages after aggregation and does not regularize
or decompose message weights in the presence of a large number of relation
types, both of which we found to be helpful additions for modeling large-scale
knowledge bases.

5.4 experiments

Here, we consider the task of classifying entities in a knowledge base. In
order to infer, for example, the type of an entity (e.g., person or company), a
successful model needs to reason about the relations with other entities that
this entity is involved in.

5.4.1 Datasets

We evaluate our model on four benchmark datasets introduced by Ristoski et al.
(2016) in resource description framework (RDF) format: AIFB, MUTAG, BGS, and
AM. Relations in these datasets need not necessarily encode directed subject-
object relations, but are also used to encode the presence, or absence, of a
specific feature for a given entity. In each dataset, the targets to be classified
are properties of a group of entities represented as nodes. The exact statistics
of the datasets can be found in Table 5.1. For a more detailed description of the
datasets the reader is referred to Ristoski et al. (2016). We remove relations that
were used to create entity labels: employs and affiliation for AIFB, isMutagenic
for MUTAG, hasLithogenesis for BGS, and objectCategory and material for AM.

For the entity classification benchmarks described in this chapter, the evalua-
tion process differs subtly between publications. To eliminate these differences,
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we repeated the baseline experiments in a uniform manner, using the canoni-
cal test/train split from Ristoski et al. (2016). We performed hyperparameter
optimization on only the training set, running a single evaluation on the test
set after hyperparameters were chosen for each baseline. This explains why
the numbers we report differ slightly from those in the original publications
(where cross-validation accuracy was reported).

Table 5.1: Number of entities, relations, edges, and classes along with the number of

labeled entities for each of the datasets. Labeled denotes the subset of entities that have

labels and that are to be classified.

Dataset AIFB MUTAG BGS AM

Entities 8,285 23,644 333,845 1,666,764

Relations 45 23 103 133

Edges 29,043 74,227 916,199 5,988,321

Labeled 176 340 146 1,000

Classes 4 2 2 11

5.4.2 Baselines

As a baseline for our experiments, we compare against prior state-of-the-art
classification results from RDF2Vec embeddings (Ristoski and Paulheim, 2016),
Weisfeiler-Lehman kernels (WL) (Shervashidze et al., 2011; Vries and Rooij,
2015), and hand-designed feature extractors (Feat) (Paulheim and Fümkranz,
2012). Feat assembles a feature vector from the in- and out-degree (per rela-
tion) of every labeled entity. RDF2Vec extracts walks on labeled graphs which
are then processed using the Skipgram (Mikolov et al., 2013) model to gen-
erate entity embeddings, used for subsequent classification. See Ristoski and
Paulheim (2016) for an in-depth description and discussion of these baseline
approaches. All entity classification experiments were run on CPU nodes with
64GB of memory.

For WL, we use the tree variant of the Weisfeiler-Lehman subtree kernel
from the Mustard library.3 For RDF2Vec, we use an implementation provided
by Ristoski and Paulheim (2016) which builds on Mustard. In both cases, we
extract explicit feature vectors for the instance nodes, which are classified by

3 https://github.com/Data2Semantics/mustard

https://github.com/Data2Semantics/mustard
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a linear SVM. For the MUTAG task, our preprocessing differs from that used
in Vries and Rooij (2015) and Ristoski and Paulheim (2016) where for a given
target relation (s, r, o) all triples connecting s to o are removed. Since o is a
boolean value in the MUTAG data, one can infer the label after processing
from other boolean relations that are still present. This issue is now mentioned
in the Mustard documentation. In our preprocessing, we remove only the
specific triples encoding the target relation.

5.4.3 Results

All results in Table 5.2 are reported on the train/test benchmark splits from
Ristoski et al. (2016). We further set aside 20% of the training set as a vali-
dation set for hyperparameter tuning. For R-GCN, we report performance of
a 2-layer model with 16 hidden units (10 for AM to reduce the memory foot-
print), basis function decomposition (Eq. 5.3), and trained with Adam (Kingma
and Ba, 2014) for 50 epochs using a learning rate of 0.01. The normalization
constant is chosen as ci,r = |N r

i |, i.e., we average all incoming messages from a
particular relation type. We found this setting to perform better than averaging
all messages across relation types or not normalizing at all.

Table 5.2: Entity classification results in accuracy (average and standard error over 10

runs) for a feature-based baseline (see main text for details), WL (Shervashidze et al.,

2011; Vries and Rooij, 2015), RDF2Vec (Ristoski and Paulheim, 2016), and R-GCN (this

work). Test performance is reported on the train/test set splits provided by Ristoski

et al. (2016).

Model AIFB MUTAG BGS AM

Feat 55.55± 0.00 77.94± 0.00 72.41± 0.00 66.66± 0.00
WL 80.55± 0.00 80.88± 0.00 86.20± 0.00 87.37± 0.00
RDF2Vec 88.88± 0.00 67.20± 1.24 87.24± 0.89 88.33± 0.61
R-GCN (Ours) 95.83± 0.62 73.23± 0.48 83.10± 0.80 89.29± 0.35

Hyperparameters for baselines are chosen according to the best model per-
formance in Ristoski and Paulheim (2016), i.e., WL: 2 (tree depth), 3 (number
of iterations); RDF2Vec: 2 (WL tree depth), 4 (WL iterations), 500 (embedding
size), 5 (window size), 10 (SkipGram iterations), 25 (number of negative sam-
ples). We choose the regularization constant C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}
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of the SVM classifier used in the baselines based on performance on a 80/20

train/validation split (of the original training set).

For R-GCN, we choose an l2 penalty on first layer weights Cl2 ∈ {0, 5 · 10−4}
and the number of basis functions B ∈ {0, 10, 20, 30, 40} based on validation set
performance, where B = 0 refers to no basis decomposition. We summarize the
final hyperparameter choices used in our experiments for the R-GCN model in
Table 5.3. Our implementation is available under https://github.com/tkipf/
relational-gcn.

Table 5.3: Hyperparameter choices based on validation set performance for 2-layer

R-GCN model.

R-GCN setting AIFB MUTAG BGS AM

l2 penalty 0 5 · 10−4 5 · 10−4 5 · 10−4

# basis functions 0 30 40 40
# hidden units 16 16 16 10

The R-GCN model performs comparable to or better than the baselines on
AIFB and AM. We further find that our proposed basis function decomposition
improves predictive performance for all but the smallest dataset (AIFB) — see
Table 5.3. We find that there is a gap in performance on MUTAG and BGS,
which could be related to the nature of these datasets. MUTAG is a dataset of
molecular graphs, where relations either indicate atomic bonds or the presence
of a certain feature. BGS is a dataset of rock types with hierarchical feature
descriptions, where relations encode the presence of a certain feature or feature
hierarchy. These feature-encoding nodes are typically of very high degree as
they connect to all nodes in the graph that are associated with this particular
feature. Hence they will serve as a high-degree ‘hub’, where many incoming
messages in the R-GCN model are averaged, which can potentially negatively
affect model performance. A promising way to overcome this limitation is to
introduce a self-attention mechanism (Vaswani et al., 2017), i.e., to replace the
normalization constant 1/ci,r with data-dependent attention weights ai,j,r.

https://github.com/tkipf/relational-gcn
https://github.com/tkipf/relational-gcn
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5.5 conclusion

We have introduced relational graph convolutional networks (R-GCNs) and
we have demonstrated their effectiveness at the example of entity classification
in multi-relational data. Variants of R-GCNs have since found application in
a wide range of domains, such as 1) in recommender systems (Berg et al.,
2017), where an encoder based on an R-GCN is coupled to a decoder based
on a bilinear scoring function (similar to the relational link prediction model
in Schlichtkrull and Kipf et al., 2018), 2) in machine translation (Bastings et
al., 2017), where the graph is given by syntactic relations, and 3) in molecular
synthesis (De Cao and Kipf, 2018; You et al., 2018), where relations are given
by the bond types between atoms in a molecule.

Given the promising performance of graph-based models of this class on
tasks where the graph structure is explicitly provided by the data, a natural
question to ask is whether the structural inductive bias of graph neural net-
works can also be utilized for tasks where graph structure is not provided by
the data, but has to be inferred. We will explore this setting — and related
questions — in the second part of this thesis.





Part II

Learning with Implicit Structure





M OT I VAT I O N A N D S U M M A R Y

The world around us and our understanding of it is rich in structure: we
perceive everyday scenes in terms of objects and their relations, much of our
understanding of physics relies on structuring the world into sub-components
and their interactions, and we often find it useful to structure the flow of time
in terms of events and episodes. These are examples of implicit structure, where
the sensory observation or data (e.g., an image) might not contain an explicit
description of the underlying structure (e.g., objects in a scene), but where this
structure has to be inferred.

This part of the thesis explores how we can develop models that are capable
of inferring hidden structure in the form of interactions between components,
events in a sequence, or objects and their relations in a scene and how they are
affected by actions. For problems involving interactions or relations between
components, we will see that graph-structured neural architectures (i.e., GNNs)
allow us to effectively model hidden structure, even in the absence of any
explicit graph structure provided by the data. We will use similar insights
to develop an effective architecture for inferring hidden temporal structure in
sequential data.

In Chapter 6, we introduce the neural relational inference (NRI) model for infer-
ence of hidden relations in interacting systems, such as multi-particle physical
systems.

Chapter 7 introduces the compositional imitation learning and execution (Com-
pILE) model that is capable of inferring hidden structure in sequential data. We
explore this model at the example of latent program inference in the context of
imitation learning.

In the final chapter in this part of the thesis, Chapter 8, we introduce the
contrastively-trained structured world model (C-SWM), a model for discovering
objects and for modeling the effect of actions in multi-object environments
from raw pixel observations.
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N E U R A L R E L AT I O N A L I N F E R E N C E F O R
I N T E R A C T I N G S Y S T E M S

6.1 introduction

Interacting systems are prevalent in nature and in society, from dynamical
systems in physics and biology, to multi-agent systems such as city traffic or
sports games, to complex societal dynamics. The dynamics of such systems are
governed by individual components and their interactions, which can give rise
to complex behavior in the overall system. Modeling these type of dynamics
is challenging: often, we only have access to individual trajectories, without
knowledge of the underlying interactions or dynamical model.

To address this problem, we introduce the neural relational inference (NRI)
model in this chapter1 and in Kipf and Fetaya et al. (2018). The NRI model
addresses the problem of inferring hidden interaction structure (see Figure 6.1)
while simultaneously learning the dynamical model of the interacting system
in an unsupervised way.

NRI uses a graph neural network (GNN) (Scarselli et al., 2009; Li et al., 2016;
Kipf and Welling, 2017; Gilmer et al., 2017; Battaglia et al., 2018) over a discrete
latent graph with multiple edge types to model the dynamics of an interacting
system. The goal of learning in NRI is to perform inference over these discrete
latent variables, while learning a predictive model for the dynamical evolution
of the system. Using a probabilistic latent variable model allows us to incor-

1 This chapter is based on our ICML 2018 publication (Kipf and Fetaya et al., 2018). The first
two authors contributed equally to this publication. An earlier version of this paper appeared
as arXiv preprint arXiv:1802.04687. Permission was given by the co-authors for reproduction
in this thesis.
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Observed dynamics Interaction graph

Figure 6.1: Physical simulation of 2D particles coupled by invisible springs (left) ac-

cording to a latent interaction graph (right). In this example, solid lines between two

particle nodes denote connections via springs whereas dashed lines denote the ab-

sence of a coupling. In general, multiple, directed edge types – each with a different

associated relation – are possible.

porate prior beliefs about the graph structure, such as sparsity, in a principled
manner.

In a range of experiments on physical simulations, we show that our NRI
model possesses a favorable inductive bias that allows it to discover ground-
truth physical interactions with high accuracy in a completely unsupervised
way. We further show on real motion capture data that our model can learn
a very small number of edge types that enable it to accurately predict the
dynamics many time steps into the future.

6.2 methods

Our NRI model consists of two parts trained jointly: an encoder that predicts
the interactions given the trajectories, and a decoder that learns the dynamical
model given the interaction graph.

More formally, our input consists of trajectories of N objects. We denote by
xt

i the feature vector of object i at time t, e.g., location and velocity. We denote
by xt = (xt

1, ..., xt
N) the features of all N objects at time t, and we denote by

xi = (x1
i , ..., xT

i ) the trajectory of object i, where T is the total number of time
steps. Lastly, we mark the whole trajectories by x = (x1, ..., xT). We assume
that the dynamics can be modeled by a GNN given an unknown graph z where
z(i,j) represents the discrete edge type between objects i and j. The task is to
simultaneously learn to predict the edge types and learn the dynamical model
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Figure 6.2: The NRI model consists of two jointly trained parts: An encoder that

predicts a probability distribution qφ(z|x) over the latent interactions given input tra-

jectories; and a decoder that generates trajectory predictions pθ(x|z) conditioned on

both the latent code of the encoder and the previous time step of the trajectory. The

encoder takes the form of a GNN with multiple rounds of node-to-edge (v→e) and

edge-to-node (e→v) message passing, whereas the decoder runs multiple GNNs in

parallel, one for each edge type supplied by the latent code of the encoder qφ(z|x).

in an unsupervised way. Note that we use lower-case symbols for both node
features xi and edge types z(i,j) in this chapter to simplify notation, even when
they refer to collections x and z for all objects and interactions, respectively.

We formalize our model as a variational autoencoder (VAE) (Kingma and
Welling, 2013; Rezende et al., 2014) that maximizes the ELBO:

L = Eqφ(z|x)[log pθ(x|z)]− DKL[qφ(z|x)||pθ(z)] (6.1)

The encoder qφ(z|x) returns a factorized distribution of z(i,j), where z(i,j) is a
discrete categorical variable representing the edge type between objects i and
j. We use a one-hot representation of the K edge types for z(i,j).

The decoder

pθ(x|z) = ∏T
t=1 pθ(xt+1|xt, ..., x1, z) (6.2)

models pθ(xt+1|xt, ..., x1, z) with a GNN given the latent graph structure z.
The prior pθ(z) = ∏i 6=j pθ(z(i,j)) is a factorized uniform distribution over

edge types. If one edge type is ‘hard coded’ to represent ‘non-edge’ (no mes-
sages being passed along this edge type), we can use an alternative prior with
higher probability on the ‘non-edge’ label. This will encourage sparser graphs.

There are some notable differences between our model and the original for-
mulation of the VAE (Kingma and Welling, 2013). First, in order to avoid the
common issue in VAEs of the decoder ignoring the latent code z (Chen et al.,
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2016), we train the decoder to predict multiple time steps and not a single step
as the VAE formulation requires. This is necessary since interactions often only
have a small effect in the time scale of a single time step. Second, the latent
distribution is discrete, so we use a continuous relaxation (Jang et al., 2017;
Maddison et al., 2017) in order to use the reparameterization trick (Kingma
and Welling, 2013). Lastly, we note that we do not learn p(x1|z) (i.e., for t = 1)
as we are interested in the dynamics and interactions, and this does not have
any effect on either (but would be easy to include if there was a need).

The overall model is schematically depicted in Figure 6.2. In the following,
we describe the encoder and decoder components of the model in detail.

6.2.1 Encoder

At a high level, the goal of the encoder is to infer pairwise interaction types
z(i,j) given observed trajectories x = (x1, ..., xT). Since we do not know the
underlying graph, we can use a GNN on the fully-connected graph to predict
the latent graph structure. For an introduction to GNNs, see Chapter 2.

More formally, we model the encoder as qφ(z(i,j)|x) = softmax( fenc,φ(x)i,j,1:K),
where fenc,φ(x) is a GNN acting on the fully-connected graph (without self-
loops). Given input trajectories x1, ..., xN our encoder computes the following
message passing operations:

h1
j = femb(xj) (6.3)

v→e : h1
(i,j) = f 1

e ([h
1
i , h1

j ]) (6.4)

e→v : h2
j = f 1

v (∑i 6=j h1
(i,j)) (6.5)

v→e : h2
(i,j) = f 2

e ([h
2
i , h2

j ]) (6.6)

Finally, we model the edge type posterior as qφ(z(i,j)|x) = softmax(h2
(i,j))

where φ summarizes the parameters of the neural networks in Eqs. 6.3–6.6.
Note that in a single pass, Eqs. 6.3–6.4, the embedding h1

(i,j) only depends on
xi and xj, ignoring interactions with other nodes, while h2

j uses information
from the whole graph.

The functions f(...) are neural networks that map between the respective
representations. In our experiments we use either fully-connected networks
(MLPs) or 1D convolutional networks (CNNs) with attentive pooling similar to
Lin et al. (2017).
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6.2.2 Sampling

It is straightforward to sample from qφ(z(i,j)|x), however we cannot use the
reparametrization trick to backpropagate though the sampling as our latent
variables are discrete. A recently popular approach to handle this difficulty is
to sample from a continuous approximation of the discrete distribution (Jang
et al., 2017; Maddison et al., 2017) and use the repramatrization trick to get
(biased) gradients from this approximation. We used the concrete distribution
(Maddison et al., 2017) where samples are drawn as:

z(i,j) = softmax((h2
(i,j) + g)/τ) (6.7)

where g ∈ RK is a vector of i.i.d. samples drawn from a Gumbel(0, 1) distribu-
tion and τ (softmax temperature) is a parameter that controls the ‘smoothness’
of the samples. This distribution converges to one-hot samples from our cate-
gorical distribution when τ → 0.

6.2.3 Decoder

The task of the decoder is to predict the future continuation of the interacting
system’s dynamics pθ(xt+1|xt, ..., x1, z). Since the decoder is conditioned on the
graph z we can in general use any GNN model as our decoder.

For physics simulations the dynamics are Markovian pθ(xt+1|xt, ..., x1, z) =

pθ(xt+1|xt, z), if the state is location and velocity, and z is the ground-truth
graph. For this reason we use a GNN similar to interaction networks (Battaglia
et al., 2016); unlike interaction networks we have a separate neural network for
each edge type. More formally:

v→e : h̃t
(i,j) = ∑

k
zi,j,k f̃ k

e ([x
t
i , xt

j]) (6.8)

e→v : µt+1
j = xt

j + f̃v(∑i 6=j h̃t
(i,j)) (6.9)

p(xt+1
j |xt, z) = N (xt+1

j ; µt+1
j , σ2I) (6.10)

Note that zi,j,k denotes the k-th element of the vector z(i,j) and σ2 is a fixed
variance. When zi,j,k is a discrete one-hot sample, the messages h̃t

(i,j) are
f̃ k
e ([xt

i , xt
j]) for the selected edge type k, and for the continuous relaxation we

get a weighted sum. Also note that since in Eq. 6.9 we add the present state xt
j,

our model only learns the change in state ∆xt
j.
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6.2.4 Avoiding Degenerate Decoders

If we look at the ELBO, Eq. 6.1, the reconstruction loss term has the form

∑T
t=1 log[pθ(xt|xt−1, z)], which involves only single step predictions. One issue

with optimizing this objective is that the interactions can have only a small
effect on short-term dynamics. For example, in physics simulations a fixed
velocity assumption can be a good approximation for a short time period. This
leads to a sub-optimal decoder that ignores the latent edges completely and
achieves only a marginally worse reconstruction loss.

We address this issue in two ways: First, we predict multiple steps into the
future, where a ‘degenerate’ decoder (which ignores the latent edges) would
perform much worse. Second, instead of having one neural network that com-
putes the messages given [xt

i , xt
j , z(i,j)], as was done in Battaglia et al. (2016), we

have a separate MLP for each edge type. This makes the dependence on the
edge type more explicit and harder to be ignored by the model.

Predicting multiple steps is implemented by replacing the correct input xt,
with the predicted mean µt for M steps (we used M = 10 in our experiments),
then feed in the correct previous step and reiterate. More formally, if we denote
our decoder as µt+1

j = fdec(xt
j) then we have:

µ2
j = fdec(x1

j )

µt+1
j = fdec(µ

t
j) t = 2, . . . , M

µM+2
j = fdec(xM+1

j )

µt+1
j = fdec(µ

t
j) t = M + 2, . . . , 2M

· · ·

We are backpropagating through this whole process, and since the errors accu-
mulate for M steps the degenerate decoder is now highly suboptimal.

6.2.5 Recurrent Decoder

In many applications the Markovian assumption used in Section 6.2.3 does not
hold. To handle such applications we use a recurrent decoder that can model
pθ(xt+1|xt, ..., x1, z). Our recurrent decoder adds a GRU (Cho et al., 2014) unit
to the GNN message passing operation. The GRU is a common architecture
choice for implementing recurrent neural networks with gating operations that
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alleviate the vanishing gradient problem (Hochreiter, 1991). With the GRU, our
recurrent decoder takes the following form:

v→e : h̃t
(i,j) = ∑

k
zi,j,k f̃ k

e ([h̃
t
i , h̃t

j]) (6.11)

e→v : MSGt
j = ∑i 6=j h̃t

(i,j) (6.12)

h̃t+1
j = GRU([MSGt

j , xt
j], h̃t

j) (6.13)

µt+1
j = xt

j + fout(h̃t+1
j ) (6.14)

p(xt+1|xt, z) = N (xt+1; µt+1, σ2I) (6.15)

The input to the message passing operation is the recurrent hidden state at the
previous time step. fout denotes an output transformation, modeled by a small
MLP. For each node i, the input to the GRU update is the concatenation of the
aggregated messages MSGt+1

j , the current input xt+1
j , and the previous hidden

state h̃t
j.

If we wish to predict multiple time steps in the recurrent setting, the method
suggested in Section 6.2.4 will be problematic. Feeding in the predicted (po-
tentially incorrect) path and then periodically jumping back to the true path
will generate artifacts in the learned trajectories. In order to avoid this issue
we provide the correct input xt

j in the first (T −M) steps, and only utilize our
predicted mean µt

j as input at the last M time steps.

6.2.6 Training

Now that we have described all the elements, the training goes as follows:
given training example x, we first run the encoder and compute qφ(z(i,j)|x),
then we sample z(i,j) from the concrete reparameterizable approximation of
qφ(z(i,j)|x). We then run the decoder to compute µ2, ..., µT. The ELBO objective,
Eq. 6.1, has two terms: the reconstruction error Eqφ(z|x)[log pθ(x|z)] and KL
divergence DKL[qφ(z|x)||pθ(z)]. The reconstruction error is estimated by:

−∑
j

T

∑
t=2

||xt
j − µt

j||2
2σ2 + const , (6.16)

while the KL term for a uniform prior is just the sum of entropies (plus a
constant):

∑
i 6=j

H(qφ(z(i,j)|x)) + const . (6.17)
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As we use a reparameterizable approximation, we can compute gradients by
backpropagation and optimize.

6.3 related prior work

Several prior works have studied the problem of learning the dynamics of a
physical system from simulated trajectories (Battaglia et al., 2016; Guttenberg
et al., 2016; Chang et al., 2017) and from generated video data (Watters et al.,
2017; Steenkiste et al., 2018) with a GNN. Unlike our work they either assume
a known graph structure or infer interactions implicitly.

Related approaches using graph-based methods for human motion predic-
tion include work by Alahi et al. (2016), where the graph is not learned but is
based on proximity, and Le et al. (2017) tries to cluster agents into roles.

A number of related works (Monti et al., 2017; Duan et al., 2017; Hoshen,
2017; Veličković et al., 2018b; Garcia and Bruna, 2018; Steenkiste et al., 2018)
parameterize messages in GNNs with a soft attention mechanism (Luong et al.,
2015; Bahdanau et al., 2014). This equips these models with the ability to fo-
cus on specific interactions with neighbors when aggregating messages. Our
work is different from this line of research, as we explicitly perform inference
over the latent graph structure. This allows for the incorporation of prior be-
liefs (such as sparsity) and for an interpretable discrete structure with multiple
relation types.

The problem of inferring interactions or latent graph structure has been in-
vestigated in other settings in different fields. For example, in causal reasoning
Granger causality (Granger, 1969) infers causal relations. Another example
from computational neuroscience is Linderman et al. (2016) and Linderman
and Adams (2014) where they infer interactions between neural spike trains.

6.4 experiments

In this section, we evaluate our proposed NRI model on two simulated phys-
ical multi-particle systems and on a motion capture dataset. See Figure 6.3
for example observations in all datasets. Our encoder implementation uses
two-layer fully-connected networks (MLPs) with 256 hidden units as our mes-
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(a) Springs (2D) (b) Kuramoto (1D) (c) Motion capture data

Figure 6.3: Examples of trajectories used in our experiments from simulations of (a)

particles connected by invisible springs and (b) phase-coupled oscillators according to

the Kuramoto model (Kuramoto, 1975), and (c) example of a motion capture trajectory

(human walking motion) from the CMU Motion Capture Database (CMU, 2003).

sage passing function. For our decoder we used fully-connected networks or
alternatively a recurrent decoder. See Appendix 6.A for further implementa-
tion details on encoders and decoders. Optimization was performed using the
Adam algorithm (Kingma and Ba, 2014). Our implementation uses PyTorch
(Paszke et al., 2017) and is available under https://github.com/tkipf/nri.
Additional experimental details are provided in Appendix 6.B.

6.4.1 Physics Simulations

We experimented with two simulated systems: particles connected by springs
and phase-coupled oscillators (Kuramoto model; Kuramoto, 1975). The springs
are modeled via Hooke’s law Fi,j = −k(ri − rj) where Fi,j is the force applied
to particle i by particle j, k ∈ {0, 0.1} is the spring constant and ri is the 2D
location vector of particle i. All masses are mi = 1. The initial location is
sampled from a Gaussian N (ri; 0, σI) with σ = 0.5, and the initial velocity is
a random vector of norm 0.5. Given the initial locations and velocity we can
simulate the trajectories by solving Newton’s equations of motion. We do this
by leapfrog integration using a step size of 0.001 and then subsample each 100

steps to get our training and testing trajectories.
To test whether our model can also learn interactions in non-linear settings,

we simulate the Kuramoto model which is governed by the following differen-
tial equation:

dφi

dt
= ωi + ∑

j 6=i
ki,j sin(φi − φj) (6.18)

https://github.com/tkipf/nri
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Table 6.1: Accuracy (in %) of unsupervised interaction recovery.

Springs Kuramoto

Number of objects 5 10 5 10

Correlation (path) 52.4±0.0 50.4±0.0 62.8±0.0 59.3±0.0

Correlation (LSTM) 52.7±0.9 54.9±1.0 54.4±0.5 56.2±0.7

NRI (simulation decoder) 99.8±0.0 98.2±0.0 – –
NRI (learned decoder) 99.9±0.0 98.4±0.0 96.0±0.1 75.7±0.3

Supervised 99.9±0.0 98.8±0.0 99.7±0.0 97.1±0.1

with phases φi, coupling constants ki,j ∈ {0, 1}, and intrinsic frequencies ωi.
We simulate 1D trajectories by solving Eq. 6.18 with a fourth-order Runge-
Kutta integrator with step size 0.01. We simulate phase-coupled oscillators
in 1D with intrinsic frequencies ωi and initial phases φt=1

i sampled uniformly
from [1, 10) and [0, 2π), respectively. We obtain 1D trajectories by solving
Eq. 6.18 with a fourth-order Runge-Kutta integrator. We create trajectories xi

by concatenating dφi
dt , sin φi, and the intrinsic frequencies ωi (copied for every

time step as ωi are static).

These settings allow us to attempt to learn the dynamics and interactions
when the ground-truth interactions are known. These systems, controlled by
simple rules, can exhibit complex dynamics. The objects do or do not interact
with equal probability. We generate 50k training examples, and 10k validation
and test examples for all tasks.

We note that the simulations are differentiable and so we can use it as a
ground-truth decoder to train the encoder. We used an external code base
(Laszuk, 2017) for stable integration of the differential equation governing the
Kuramoto model and therefore do not have access to gradient information in
this particular simulation.

Results

We evaluated our NRI model on both simulated physical systems and com-
pared our performance, both in terms of future state prediction and in terms
of accuracy of estimating the edge types in an unsupervised manner.

For edge prediction, we compare to the ‘gold standard’, i.e., training our
encoder in a supervised way given the ground-truth labels. We also com-
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Kuramoto (1D)Springs (2D)

Prediction PredictionTruth Truth

Figure 6.4: Trajectory predictions from a trained NRI model (unsupervised). Semi-

transparent paths denote the first 49 time steps of ground-truth input to the model,

from which the interaction graph is estimated. Solid paths denote self-conditioned

model predictions.

Table 6.2: Mean squared error (MSE) in predicting future states for simulations with 5

interacting objects.

Springs Kuramoto

Prediction steps 1 10 20 1 10 20

Static 7.93e-5 7.59e-3 2.82e-2 5.75e-2 3.79e-1 3.39e-1
LSTM (single) 2.27e-6 4.69e-4 4.90e-3 7.81e-4 3.80e-2 8.08e-2
LSTM (joint) 4.13e-8 2.19e-5 7.02e-4 3.44e-4 1.29e-2 4.74e-2
NRI (full graph) 1.66e-5 1.64e-3 6.31e-3 2.15e-2 5.19e-2 8.96e-2
NRI (learned) 3.12e-8 3.29e-6 2.13e-5 1.40e-2 2.01e-2 3.26e-2

NRI (true graph) 1.69e-11 1.32e-9 7.06e-6 1.35e-2 1.54e-2 2.19e-2

pare to the following baselines: our NRI model with the ground-truth sim-
ulation decoder, NRI (sim.), and two correlation-based baselines, Corr. (path)
and Corr. (LSTM). Corr. (path) estimates the interaction graph by threshold-
ing the matrix of correlations between trajectory feature vectors. Corr. (LSTM)
trains an LSTM (Hochreiter and Schmidhuber, 1997) with shared parameters
to model each trajectory individually and calculates correlations between the
final hidden states to arrive at an interaction matrix after thresholding.
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Results for the unsupervised interaction recovery task are summarized in
Table 6.1 (average over 5 runs and standard error). As can be seen, the unsu-
pervised NRI model, NRI (learned), greatly surpasses the baselines and recov-
ers the ground-truth interaction graph with high accuracy on most tasks. For
the springs model our unsupervised method is comparable to the supervised
‘gold standard’ benchmark. We note that our supervised baseline is similar to
the work by Santoro et al. (2017), with the difference that we perform multiple
rounds of message passing in the graph.

For future state prediction we compare to the static baseline, i.e., xt+1 = xt,
two LSTM baselines, and a full graph baseline. One LSTM baseline, marked
as ‘single’, runs a separate LSTM (with shared weights) for each object. The
second, marked as ‘joint’ concatenates all state vectors and feeds it into one
LSTM that is trained to predict all future states simultaneously. Note that the
latter will only be able to operate on a fixed number of objects (in contrast to
the other models).

In the full graph baseline, we use our message passing decoder on the fully-
connected graph without edge types, i.e., without inferring edges. This is
similar to the model used in Watters et al. (2017). We also compare to the ‘gold
standard’ model, denoted as NRI (true graph), which is training only a decoder
using the ground-truth graph as input. The latter baseline is comparable to
previous works such as interaction networks (Battaglia et al., 2016).

In order to have a fair comparison, we generate longer test trajectories and
only evaluate on the last part unseen by the encoder. Specifically, we run the
encoder on the first 49 time steps (same as in training and validation), then
predict with our decoder the following 20 unseen time steps. For the LSTM
baselines, we first have a ‘burn-in’ phase where we feed the LSTM the first 49

time steps, and then predict the next 20 time steps. This way both algorithms
have access to the first 49 steps when predicting the next 20 steps. We show
mean squared error (MSE) results in Table 6.2, and note that our results are bet-
ter than using LSTM for long-term prediction. Example trajectories predicted
by our NRI (learned) model for up to 50 time steps are shown in Figure 6.4.

For the Kuramoto model, we observe that the LSTM baselines excel at smoothly
continuing the shape of the waveform for short time frames, but fail to model
the long-term dynamics of the interacting system.
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6.4.2 Motion Capture

The CMU Motion Capture Database (CMU, 2003) is a large collection of mo-
tion capture recordings for various tasks (such as walking, running, and danc-
ing) performed by human subjects. We use recorded walking motion data of
a single subject (subject #35). The data is in the form of 31 3D trajectories,
each tracking a single joint. We split the different walking trials into non-
overlapping training (11 trials), validation (4 trials) and test sets (7 trials). We
provide both position and velocity data. We train our NRI model with an MLP
encoder and RNN decoder on this data using 2 or 4 edge types where one edge
type is ‘hard-coded’ as non-edge, i.e., messages are only passed on the other
edge types. We found that experiments with 2 and 4 edge types give almost
identical results, with two edge types being comparable in capacity to the fully
connected graph baseline while four edge types (with sparsity prior) are more
interpretable and allow for easier visualization.

Dynamic Graph Re-Evaluation

We find that the learned graph depends on the particular phase of the motion
(Figure 6.5), which indicates that the ideal underlying graph is dynamic. To ac-
count for this, we dynamically re-evaluate the NRI encoder for every time step
during testing, effectively resulting in a dynamically changing latent graph
that the decoder can utilize for more accurate predictions.

Results

The quantitative results for our method and the same baselines used in Sec-
tion 6.4.1 can be seen in Figure 6.5. As one can see, we outperform the fully-
connected graph setting in long-term predictions, and both models outperform
the LSTM baselines. Dynamic graph re-evaluation significantly improves pre-
dictive performance for this dataset compared to a static baseline. One in-
teresting observation is that the skeleton graph is quite suboptimal, which is
surprising as the skeleton is the ‘natural’ graph. When examining the edges
found by our model (trained with 4 edge types and a sparsity prior) we see
an edge type that mostly connects a hand to other extremities, especially the
opposite hand, as seen in Figure 6.5. This can seem counter-intuitive as one
might assume that the important connections are local, however we note that
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(a) Test MSE comparison (b) Latent graph (left step) (c) Latent graph (right step)

Figure 6.5: (a) Test mean squared error (MSE) comparison on motion capture data.

(b-c) Learned latent graphs (trained with 4 edge types, showing the second edge type).

Trained with sparsity prior for easier visualization. We visualize test data not seen

during training. Skeleton shown for reference. Red arrowheads denote directionality

of a learned edge. The edge type shown favors a specific hand depending on the state

of the movement and gathers information mostly from other extremities.

some leading approaches for modeling motion capture data (Jain et al., 2016)
do indeed include hand to hand interactions.

6.5 conclusion

In this chapter, we have introduced NRI, a method to simultaneously infer re-
lational structure while learning the dynamical model of an interacting system.
In a range of experiments with physical simulations we have demonstrated
that our NRI model is highly effective at unsupervised recovery of ground-
truth interaction graphs. We further found that it can model the dynamics of
interacting physical systems and of real motion tracking data while learning
reasonably interpretable edge types.

Many real-world examples, in particular multi-agent systems such as traf-
fic, can be understood as an interacting system where the interactions are dy-
namic. While our model is trained to discover static interaction graphs, we
have demonstrated that it is possible to apply a trained NRI model to this evolv-
ing case by dynamically re-estimating the latent graph. Nonetheless, our solu-
tion is limited to static graphs during training and extending the NRI model
so that it can explicitly account for dynamic latent interactions even at training
time is an interesting avenue for future work.
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6.A implementation details

We will describe here the details of our encoder and decoder implementations.

6.a.1 Encoders

MLP Encoder

The basic building block of our MLP encoder is a 2-layer MLP with hidden and
output dimension of 256, with batch normalization (Ioffe and Szegedy, 2015)
and ELU activations (Clevert et al., 2015), used for both the node and the edge
update functions, fv and fe respectively. We use a total of two rounds of mes-
sage passing, i.e., two node update functions and two edge update functions.
Before feeding the trajectory to the first node MLP, we flatten the trajectory
into a single feature vector (i.e., we concatenate the feature vectors for all time
steps). We utilize a skip connection between the first and the second edge up-
date function, i.e., we concatenate the output of the first edge update function
with the input to the second edge update function, which we found to improve
performance.

CNN Encoder

The CNN encoder uses the identity function for the first node update fv and
replaces the first edge update function fe with a two-layer 1D convolutional
network with filter width of 5 and 256 feature maps per layer, each followed
by batch normalization. We further found it helpful to use a pooling layer
with kernel size 2 after the first CNN layer. The CNN is followed by a self-
attentive pooling layer (Lin et al., 2017) that summarizes the trajectory into a
single feature vector. Lastly, we use a two-layer MLP as in the MLP encoder
on this feature vector. The rest of the architecture follows the MLP encoder.

77



78 neural relational inference for interacting systems

Using a CNN with attention mechanism allows for encoding with changing
trajectory size, and is also appropriate for tasks where the interaction can be
strong for a small fraction of time.

6.a.2 Decoders

MLP Decoder

The MLP decoder uses a single round of message passing only and uses two-
layer MLPs (three layers for the node update function) with ReLU activations,
256 hidden units and no batch normalization. We utilize K edge update func-
tions, where K is the number of edge types.

RNN Decocder

The RNN decoder uses the same architecture as the MLP decoder, but adds a
gated recurrent unit (GRU) module (Chung et al., 2014) with 256 hidden units
prior to the final edge update function.

6.B experiment details

All experiments were run using the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 0.0005, decayed by a factor of 0.5 every 200 epochs.
Unless otherwise noted, we train with a batch size of 128. The concrete distri-
bution (Maddison et al., 2017) is used with τ = 0.5. During testing, we replace
the concrete distribution with a categorical distribution to obtain discrete latent
edge types. Physical simulation experiments were run for 500 training epochs.
For motion capture data we used 200 training epochs, as models tended to
converge earlier. We saved model checkpoints after every epoch whenever the
validation set performance (measured by path prediction MSE) improved and
loaded the best performing model for test set evaluation. We observed that us-
ing significantly higher learning rates than 0.0005 often produced suboptimal
decoders that ignored the latent graph structure.
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6.b.1 Physics Simulations

The springs and Kuramoto datasets both contain 50k training instances and
10k validation and test instances. Training and validation trajectories were
of length 49 while test trajectories continue for another 20 time steps (50 for
visualization). We train an MLP encoder for the springs experiment, and CNN
encoder for the Kuramoto experiments. All experiments used MLP decoders
and two edge types. For the Kuramoto model experiments, we explicitly hard-
coded the first edge type as a ‘non-edge’, i.e., no messages are passed along
edges of this type.

The overall input/output dimension of our model is 4 for the springs exper-
iments (2D position and velocity) and 3 for the Kuramoto model experiments
(phase-difference, amplitude and intrinsic frequency). During training, we use
teacher forcing in every 10-th time step (i.e., every 10-th time step, the model
receives ground truth input, otherwise it receives its previous prediction as
input). As we always have two edge types in these experiments and their or-
dering is arbitrary (apart from the Kuramoto model where we assign a special
role to edge type 1), we choose the ordering for which the accuracy is highest.

Baselines

In edge recovery experiments, we report the following baselines along with the
performance of our NRI (learned) model:

• Corr. (path): We calculate a correlation matrix R, where Ri,j =
Ci,j√
Ci,iCj,j

with Ci,j being the covariance between all trajectories xi and xj (for ob-
jects i and j) in the training and validation sets. We determine an ideal
threshold θ so that Ai,j = 1 if Ri,j > θ and Ai,j = 0 otherwise, based on
predictive accuracy on the combined training and validation set. Ai,j de-
notes the presence of an interaction edge (arbitrary type) between object
i and j. We repeat the same procedure for the absolute value of Ri,j, i.e.,
Ai,j = 1 if |Ri,j| > θ′ and Ai,j = 0 otherwise. Lastly, we pick whichever
of the two (θ or θ′) produced the best match with the ground truth graph
(i.e., highest accuracy score) and report test set accuracy with this setting.

• Corr. (LSTM): Here, we train a two-layer LSTM (Hochreiter and Schmid-
huber, 1997) with shared parameters and 256 hidden units that models
each trajectory individually. It is trained to predict the position and veloc-



80 neural relational inference for interacting systems

ity for every time step directly and is conditioned on the previous time
steps. The input to the model is passed through a two-layer MLP (256

hidden units and ReLU activations) before it is passed to the LSTM, sim-
ilarly we pass the LSTM output (last time step) through a two-layer MLP
(256 hidden units and ReLU activation on the hidden layer). We provide
ground truth trajectory information as input at every time step. We train
to minimize MSE between model prediction and ground truth path. We
train this model for 10 epochs and finally apply the same correlation ma-
trix procedure as in Corr. (path), but this time calculating correlations
between the output of the second LSTM layer at the last time step (in-
stead of using the raw trajectory features). The LSTM is only trained on
the training set. The optimal correlation threshold is estimated using the
combined training and validation set.

• NRI (sim.): In this setting, we replace the decoder of the NRI model with
the ground-truth simulator (i.e., the integrator of the Newtonian equa-
tions of motion). We implement the springs simulator in PyTorch which
gives us access to gradient information. We train the overall model with
the same settings as the original NRI (learned) model by backpropagating
directly through the simulator. We find that for the springs simulation,
a single leap-frog integration step is sufficient to closely approximate the
trajectory of the original simulation, which was generated with 100 leap-
frog steps per time step.

• Supervised: For this baseline, we train the encoder in isolation and pro-
vide ground-truth interaction graphs as labels. We train using a cross-
entropy error and monitor the validation accuracy (edge prediction) for
model checkpointing. We train with dropout (Srivastava et al., 2014) of
p = 0.5 on the hidden layer representation of every MLP in the encoder
model, in order to avoid overfitting.

In the path prediction experiments, we use the following baselines along
with our NRI (learned) model:

• Static: This baseline simply copies the previous state vector xt+1 = xt.

• LSTM (single): Same as the LSTM model in Corr. (LSTM), but trained to
predict the state vector difference at every time step (as in the NRI model).
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Instead of providing ground truth input at every time step, we use the
same training protocol as for an NRI model with recurrent decoder.

• LSTM (joint): This baseline differs from LSTM (single) in that it con-
catenates the input representations from all objects after passing them
through the input MLP. This concatenated representation is fed into a
single LSTM where the hidden unit number is multiplied by the number
of objects — otherwise same setting as LSTM (single). The output of the
second LSTM layer at the last time step is then divided into vectors of
same size, one for each object, and fed through the output MLP to pre-
dict the state difference for each object separately. LSTM (joint) is trained
with same training protocol as the LSTM (single) model.

• NRI (full graph): For this model, we keep the latent graph fixed (fully-
connected on edge type 2; note that edge types are exclusive, i.e., edges
of type 1 are not present in this case) and train the decoder in isolation
in the otherwise same setting as the NRI (learned) model.

• NRI (true graph): Here, we train the decoder in isolation and provide
the ground truth interaction graph as latent graph representation.

6.b.2 Motion Capture

Our extracted motion capture dataset has a total size of 8,063 frames for 31

tracked points each. We normalize all features (position/velocity) to maxi-
mum absolute value of 1. Training and validation set samples are 49 frames
long (non-overlapping segments extracted from the respective trials). Test set
samples are 99 frames long. We report results on the last 50 frames of this test
set data.

We choose the same hyperparameter settings as in the physical simulation
experiments, with the exception that we train models for 200 epochs and with a
batch size of 8. Our model here uses an MLP encoder and an RNN decoder (as
the dynamics are not Markovian). We further take samples from the discrete
distribution during the forward pass in training and calculate gradients via
the concrete relaxation. The baselines are identical to before (path prediction
experiments for physical simulations) with the following exception: for LSTM
(joint) we choose a smaller hidden layer size of 128 units and train with a batch
size of 1, as the model did otherwise not fit in GPU memory.
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C O M P O S I T I O N A L I M I TAT I O N
L E A R N I N G A N D E X E C U T I O N

In the previous chapter, we have explored the problem of discovering relational
structure in sequential data at the example of interacting (physical) systems.
Structure in dynamical systems or in sequential data more generally can also
come in the form of events or temporal segments of special interest, which we
will be the main focus of this chapter1.

Discovering compositional structure in sequential data, without supervision,
is an important ability in human and machine learning. For example, when a
cook prepares a meal, they re-use similar behavioral sub-sequences (e.g., slic-
ing, dicing, chopping) and compose the components hierarchically (e.g., stir-
ring together eggs and milk, pouring the mixture into a hot pan and stirring it
to form scrambled eggs). Humans are adept at inferring event structure by hi-
erarchically segmenting continuous sensory experience (Zacks et al., 2001; Bal-
dassano et al., 2017; Radvansky and Zacks, 2017), which may support building
efficient event representations in episodic memory (Ezzyat and Davachi, 2011)
and constructing abstract plans (Richmond and Zacks, 2017).

An important benefit of compositional sub-sequence representations is com-
binatorial generalization to never-before-seen conjunctions (Davidson, 1984;
Denil et al., 2017). Behavioral sub-components can also be used as high-level
actions in hierarchical decision-making, offering improved credit assignment
and efficient planning. To reap these benefits in machines, however, the event

1 This chapter is based on our ICML 2019 publication (Kipf et al., 2019). An earlier version of this
paper appeared as arXiv preprint arXiv:1812.01483. Permission was given by the co-authors
for reproduction in this thesis. The work described in this chapter was carried out during an
internship at DeepMind Technologies Ltd, London, UK.
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Task 1 Task 2 Task 3Differentiable
segmentation

Latent code
(per segment)

Figure 7.1: Joint unsupervised learning of task segmentation and encoding in Com-

pILE. CompILE auto-encodes sequential demonstration data by 1) softly breaking an

input sequence into segments of variable length, and 2) mapping each such segment

into a latent code, which can be executed to reconstruct the input sequence. At test

time, the latent code can be re-composed to produce novel behavior.

structure and composable representations must be discovered in an unsuper-
vised manner, as sub-sequence labels are rarely available.

In this chapter and in Kipf et al. (2019), we focus on the problem of jointly
learning to segment, explain, and imitate programmatic agent behavior via an
unsupervised auto-encoding objective. The encoder learns to jointly infer event
(or task) boundaries and high-level abstractions (latent encodings) of activity
within each event segment, while the task of the decoder is to reconstruct or
imitate the original behavior by executing the inferred sequence of latent codes.
The latent code is structured as a sequence of latent variables that serves as a
compact hierarchical abstraction of the original input sequence.

We introduce a fully differentiable, unsupervised segmentation model that
we term CompILE (Compositional Imitation Learning and Execution) that ad-
dresses the segmentation problem by predicting soft segment masks. During
training, the model makes multiple passes over the input sequence, explaining
one segment of activity at a time. Segments explained by earlier passes are
softly masked out and thereby ignored by the model. Our approach to mask-
ing is related to soft self-attention (Parikh et al., 2016; Vaswani et al., 2017),
where each mask predicted by our model is localized in time (see Figure 7.1
for an example). At test time, these soft masks can be replaced with discrete,
consecutive masks that mark the beginning and end of a segment. This allows
us to process sequences of arbitrary length by 1) identifying the next segment,
2) explaining this segment with a latent variable, and 3) cutting/removing this
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segment from the sequence and continue the process on the remainder of the
input.

Formally, our model takes the form of a conditional variational auto-encoder
(VAE) (Kingma and Welling, 2013; Rezende et al., 2014; Sohn et al., 2015).
We introduce a method for modeling segment boundaries as softly relaxed
discrete latent variables (Jang et al., 2017; Maddison et al., 2017) which allows
for efficient, low-variance training.

We demonstrate the efficacy of our approach in a multi-task, instruction-
following domain. Our model can reliably discover event boundaries and find
effective event (sub-task) encodings. In a number of experiments, we found
that CompILE possesses an inductive bias that allows it to generalize to unseen
environment configurations and to task sequences which were longer than
those seen during training.

7.1 methods

We consider the task of auto-encoding sequential data by 1) breaking an input
sequence into disjoint segments of variable length, and 2) mapping each seg-
ment individually into some higher-level code, from which the input sequence
can be reconstructed.

More specifically, we focus on modeling state-action trajectories of the form
ρ = ((s1, a1), (s2, a2), ..., (sT , aT)) with states st ∈ S and actions at ∈ A for time
steps t = 1, ..., T, e.g. obtained from a dataset D = {ρ1, ρ2, ..., ρN} of N expert
demonstrations of variable length for a set of tasks.

7.1.1 Behavioral Cloning

Our basic setup follows that of behavioral cloning (BC), i.e., we want to find an
imitation policy πθ, parameterized by θ, by solving the following optimization
problem:

θ∗ = arg max
θ

Eρ∈D [pθ(a1:T|s1:T)] . (7.1)

In BC we have pθ(a1:T|s1:T) = ∏t=1:T πθ(at|st), where πθ(a|s) denotes the prob-
ability of taking action a in state s under the imitation policy πθ.
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7.1.2 Sub-Task Identification and Imitation

Differently from the default BC setup, our model breaks trajectories ρ into M
disjoint segments (c1, c2, ..., cM):

ci = ((sbi′ , abi′ ), (sbi′+1, abi′+1), ..., (sbi−1, abi−1)), (7.2)

where M is a hyperparameter, and i′ = i− 1. Here, bi ∈ [1, T + 1] are discrete
(latent) boundary indicator variables with b0 = 1, bM = T + 1, and bi ≥ bi′ . We
allow segments ci to be empty if bi = bi′ . We model each part independently
with a sub-task policy πθ(a|s, z), where z is a latent variable summarizing
the segment. Framing BC as a joint segmentation and auto-encoding problem
allows us to obtain imitation policies that are specific to different inferred sub-
tasks, and which can be re-combined for easier generalization to new settings.
Each sub-task policy is responsible for explaining a variable-length segment of
the demonstration trajectory.

We take the segment (sub-task) encoding z to be discrete in the following, but
we note that other choices are possible and require only minor modifications
to our framework. The probability of an action sequence a1:T given a sequence
of states s1:T then takes the following form2:

pθ(a1:T|s1:T) = ∑
b1:M

∑
z1:M

pθ(a1:T|s1:T , b1:M, z1:M)p(b1:M, z1:M)

= ∑
b1:Mz1:M

∏
i=1:M

pθ(abi′ :bi−1|sbi′ :bi−1, zi)p(bi|bi′)p(zi)

= ∑
b1:Mz1:M

∏
i=1:M

 ∏
j=bi′ :bi−1

πθ(aj|sj, zi)

 p(bi|bi′)p(zi), (7.3)

where the double summation marginalizes over all allowed configurations of
the discrete latent variables z1:M and b1:M. We omit p(b0) since we set b0 = 1.
Note that our framework supports both discrete and continuous latent vari-
ables z1:M — for the latter case, the summation sign in Eq. 7.3 is replaced with
an integral. Our (conditional) generative model pθ(a1:T|s1:T , b1:M, z1:M) factor-
izes across time steps if we choose a non-recurrent policy πθ(a|s, z). Using
recurrent policies is necessary, e.g., for partially observable environments and
is left for future work.

For simplicity, we assume independent priors over b and z in the following
form: p(bi, zi|b1:i′ , z1:i′) := p(bi|bi′)p(zi). We choose a uniform categorical prior

2 We again use the shorthand notation i′ = i− 1 for clarity.
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p(zi) and the following empirical categorical prior for the boundary latent
variables:

p(bi|bi′) ∝ Poisson(bi − bi′ , λ) = e−λ λbi−bi′

(bi − bi′)!
, (7.4)

proportional to a Poisson distribution with rate λ, but truncated to the (dis-
crete) interval [bi′ , T + 1] and renormalized, as we are dealing with sequences
of finite length. This prior encourages segments to be close to λ in length and
helps avoid two failure modes: 1) collapse of segments to unit length, and 2) a
single segment covering the full sequence length.

7.1.3 Recognition Model

Following the standard VAE (Kingma and Welling, 2013; Rezende et al., 2014)
framework, we introduce a recognition model qφ(b1:M, z1:M|a1:T , s1:T) that al-
lows us to infer a task decomposition via boundary variables b1:M and task
encodings z1:M for a given trajectory ρ. We would like our recognition model
to be able to generalize to new compositions of the underlying latent code. We
can encourage this by dropping the dependence of qφ on any time steps before
the previous boundary position. In practice, this means that once a segment
(sub-task) has been identified and explained by a latent variable z, the corre-
sponding part of the input trajectory will be masked out and the recognition
model proceeds on the remainder of the trajectory, until the end is reached.
This will facilitate generalization to sequences of longer length (and with more
segments) than those seen during training.

Formally, we structure the recognition model as follows:

qφ(b1:M,z1:M|a1:T , s1:T) = ∏
i=1:M

qφz
(zi|abi′ :bi−1, sbi′ :bi−1)qφb

(bi|abi′ :T , sbi′ :T), (7.5)

i.e., we re-use the same recognition model with shared parameters for each seg-
ment while masking out already explained segments. The core modules are
the encoding network qφz

(z|a, s) and the boundary prediction network qφb
(b|a, s),

both are modeled as categorical distributions. We use recurrent neural net-
works (RNN) — specifically, a uni-directional LSTM (Hochreiter and Schmid-
huber, 1997) — with shared parameters, but with different output heads: one
head for predicting unnormalized log-probabilities hbi ,t for the boundary latent
variable bi at every time step t, and one head for predicting a unnormalized
log-probabilities hzi for the sub-task encoding zi at the last time step in the
current segment Ci.



88 compositional imitation learning and execution

We use multi-layer perceptrons (MLPs) to implement the output heads:

hzi = MLPz(LSTMbi−1(henc,bi′ :bi−1)), (7.6)

hbi ,t = MLPb(LSTMt(henc,bi′ :T)), (7.7)

where the MLPs have parameters specific to b or z (i.e., not shared between the
output heads). The subscript t on LSTMt denotes the time step at which the
output is read. Note that hzi is a K-dimensional vector where K is the number
of latent categories, whereas hbi ,t is a scalar specific to time step t. henc,t =

ENC(at, st) denotes a learned encoding of the input (at, st) at time step t using
a neural network-based encoder ENC. In practice, we encode the state st (in the
form of a 2D image) using a convolutional neural network (CNN) with layer
normalization (Ba et al., 2016) and we learn an embedding of the discrete action
at. Both the state encoding and the action embedding are concatenated to form
henc,t. We summarize hbi ,t into a vector hbi for all time steps t = [1, T]. We then
have qφz

(zi = k|a, s) = [softmax(hzi)]k and qφb
(bi = t|a, s) = [softmax(hbi)]t,

where [.]k denotes selection of the k-th element of a vector.

7.1.4 Continuous Relaxation

We jointly optimize for both the parameters of the sub-task policy πθ(a|s, z)
and the recognition model qφ(b, z|a, s) by using the ELBO as an objective for
learning:

ELBO = Eqφ(b,z|a,s)[log pθ(a|s, b, z) + log p(b, z)− log qφ(b, z|a, s)], (7.8)

where we have dropped time step and sub-task indices for ease of notation.
The first term can be understood as the (negative) reconstruction error of the ac-
tion sequence, given a sequence of states and inferred latent variables, whereas
the last two terms, in expectation, form the (negative) Kullback-Leibler (KL) di-
vergence between the prior p(b, z) and the posterior qφ(b, z|a, s). The ELBO
can be obtained from the original BC objective as follows, using Jensen’s in-
equality:

log pθ(a|s) = log ∑
b,z

pθ(a|s, b, z)p(b, z) = log Eqφ(b,z|a,s)

[
pθ(a|s, b, z)p(b, z)

qφ(b, z|a, s)

]
≥ Eqφ(b,z|a,s)

[
log

pθ(a|s, b, z)p(b, z)
qφ(b, z|a, s)

]
= ELBO (7.9)
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To obtain low-variance gradient estimates for learning, we can use the repa-
rameterization trick for VAEs (Kingma and Welling, 2013). Our current model
formulation, however, does not allow for reparameterization as both b and z
are discrete latent variables. To circumvent this issue, we make use of a (biased)
continuous relaxation, i.e., we replace the respective categorical distributions
with concrete (Maddison et al., 2017; Jang et al., 2017) distributions as similarly
done in Chapter 6. While this is straightforward for the sub-task latent vari-
ables z, some extra consideration is required to translate the constraint bi ≥ bi′

and the conditioning on trajectory segments of the form sbi′ :bi−1 and abi′ :bi−1 to
the continuous case. The continuous relaxation is only necessary at training
time, during testing we can fall back to the discrete version explained in the
previous section.

Soft Segment Masks

In the relaxed/continuous case at training time we cannot enforce a strict or-
dering bi ≥ bi′ on the boundaries directly as we are now dealing with ‘soft’
distributions and don’t have access to discrete samples at training time. It is
still possible, however, to evaluate segment probabilities of the form P(t ∈ Ci),
i.e., the probability that a certain time step t in the trajectory ρ belongs to the
i-th segment Ci = [max0≤j≤i−1 bj, bi). The lower boundary of the segment is
now given by the maximum value of all previous boundary variables, as the
ordering bi ≥ bi′ is no longer guaranteed to hold. Ci is assumed to be empty if
any bj ≥ bi with j < i. We can evaluate segment probabilities as follows:

P(t ∈ Ci) = P
(

max
0≤j≤i−1

bj ≤ t < bi

)
(7.10)

=
[
1− cumsum(qφb

(bi|a, s), t)
]

∏
j=0:i−1

cumsum(qφb
(bj|a, s), t),

where cumsum(qφb
(bj|a, s), t) = ∑k≤t qφb

(bj = k|a, s) is a shorthand for the
inclusive cumulative sum of the posterior qφb

(bj|a, s), evaluated at time step t.
We further have cumsum(qφb

(b0|a, s), t) = 1 and cumsum(qφb
(bM|a, s), t) = 0

for t ∈ [1, T]. One can verify that ∑i=1:M P(t ∈ Ci) = 1 for all t ∈ [1, T]. These
segment probabilities can be seen as soft segment masks. See Figure 7.2 for an
example.
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Boundary prediction

Figure 7.2: Differentiable segmentation of an input sequence x. The recognition model

(encoder, marked as inference) predicts relaxed categorical (concrete) boundary distri-

butions q(bi|x) from which we can obtain soft segment masks P(t ∈ Ci). Each segment

Ci is encoded via q(zi|x). The generative model p(x|zi) is executed once for every la-

tent variable zi. The reconstruction loss is masked with P(t ∈ Ci), so that only the

reconstructed part corresponding to the i-th segment receives a training signal. For

imitation learning, the generative model (decoder, marked as generation) takes the

form of a policy πθ(at|st, zi).
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RNN State Masking

We softly mask out parts of the input sequence explained by earlier segments.
Using a soft masking mechanism allows us to find suitable segment boundaries
via backpropagation, without the need to perform explicit and potentially ex-
pensive/intractable marginalization over latent variables. Specifically, we mask
out the hidden states3 of the encoder RNNs. Thus, inputs belonging to earlier
segments are effectively hidden from the model while still allowing gradients
to be passed through. The hidden state mask for the i-th segment takes the
following form:

maski(t) = P
(

t ≥ max
0≤j≤i−1

bj

)
(7.11)

= ∏
j=0:i−1

P(t ≥ bj) = ∏
j=0:i−1

cumsum(qφb
(bj|a, s), t),

where we set mask1 = 1. In other words, it is given by the probability for a
given time step to not belong to a previous segment. Masking is performed
by multiplying the RNN’s hidden state with maski (after the RNN update of
the current time step). For every segment i ∈ [1, M] we thus need to run the
RNN over the full input sequence, while multiplying the hidden states with
a segment-specific mask. Nonetheless, the parameters of the RNN are shared
over all segments.

Soft RNN Readout

In addition to softly masking the RNN hidden states in both qφb
(bi|a, s) and

qφz
(zi|a, s), we mask out illegal boundary positions by setting the respective

logits to a large negative value. Specifically, we mask out the first time step (as
any boundary placed on the first time step would result in an empty segment)
and any time steps corresponding to padding values when training on mini-
batches of sequences with different length. We allow boundaries (as they are
exclusive) to be placed at time step T + 1. Further, to obtain qφz

(zi|a, s) from
the z-specific output head hzi ,t — where t denotes the time step at which we
are reading from the RNN — we perform the following weighted average:

qφz
(zi|a, s) = concreteτ

(
∑

t=1:T
qφb

(bi = t + 1|a, s) hzi ,t

)
, (7.12)

3 Including the cell state in the LSTM architecture.
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which can be understood as the ‘soft’ equivalent of reading the output head
hzi ,t for the last time step within the corresponding segment. concreteτ is a
concrete distribution (Jang et al., 2017; Maddison et al., 2017) with temperature
τ. Note the necessary shift of the boundary distribution by 1 time step, as
qφb

(bi|a, s) points to the first time step of the following segment.

Loss Masking

The reconstruction loss part of the ELBO, L = −Eqφ(b,z|a,s)[log pθ(a|s, b, z)],
decomposes into independent loss terms for each segment, i.e., L = ∑i=1:M Li,
due to the structure of our generative model, Eq. 7.3. To retain this property in
the relaxed/continuous case, we softly mask out irrelevant parts of the action
trajectory when evaluating the loss term for a single segment:

Li = −Eqφ(b,z|a,s)[segi · log pθ(a|s, zi)], (7.13)

where the segment mask for time step t is given by segi(t) = P(t ∈ Ci), i.e., the
probability of time step t being explained by the i-th segment. The operator ‘·’
denotes element-wise multiplication. In practice, we use a single sample of the
(reparameterized) posterior to evaluate Eq. 7.13.

Number of Segments

At training time, we need to specify the maximum number of segments M
that the model is allowed to use when auto-encoding a particular sequence of
length T. For efficient mini-batch training, we choose a single, fixed M for all
training examples. Providing the correct number of segments can further be
utilized as a form of weak supervision.

Complexity

Evaluating the model components qφb
(bi|a, s), qφz

(zi|a, s), and pθ(a|s, zi) is
O(T) for a single i = 1, ..., M. The overall forward pass of the CompILE model
for a single demonstration trajectory in terms of its length T and the number
of segments M is therefore O(TM).
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7.2 related prior work

Our framework is closely related to option discovery (Niekum et al., 2013; Kroe-
mer et al., 2015; Fox et al., 2017; Hausman et al., 2017; Krishnan et al., 2017;
Fox et al., 2018), with the main difference being that our inference algorithm
is agnostic to what type of option (sub-task) encoding is used. Our framework
allows for inference of continuous, discrete, or mixed continuous-discrete la-
tent variables. Fox et al. (2017) introduce an EM-based inference algorithm
for option discovery in settings similar to ours, however limited to discrete la-
tent variables and to inference networks that are independent of the position
of task boundaries: in their case without recurrency and only dependent on
the current state/action pair. Their framework was later applied to continuous
control tasks (Krishnan et al., 2017) and neural program modeling (Fox et al.,
2018).

Option discovery has also been addressed in the context of inverse reinforce-
ment learning (IRL) using generative adversarial networks (GANs) (Goodfel-
low et al., 2014) to find structured policies that are close to demonstration
sequences (Hausman et al., 2017; Sharma et al., 2018). This approach requires
being able to interact with the environment for imitation learning, whereas our
model is based on BC and works on offline demonstration data.

Various solutions for supervised sequence segmentation or task decomposi-
tion exist which require varying degrees of supervision (Graves, 2012; Escorcia
et al., 2016; Krishna et al., 2017; Shiarlis et al., 2018). In terms of two recent
examples, Krishna et al. (2017) assume fully-annotated event boundaries and
event descriptions at training time whereas TACO (Shiarlis et al., 2018) only
requires task sketches (i.e., supervision on sub-task encodings but not on task
boundaries) and solves an alignment problem to find a suitable segmentation.
A related recent approach decomposes demonstration sequences into under-
lying programs (Sun et al., 2018b) in a fully-supervised setting, based on a
seq2seq (Sutskever et al., 2014; Vinyals et al., 2015) model without explicitly
modeling segmentation.

Outside of the area of learning from demonstration, hierarchical reinforcement
learning (Sutton et al., 1999; Kulkarni et al., 2016; Bacon et al., 2017; Florensa et
al., 2017; Vezhnevets et al., 2017; Riemer et al., 2018) and the options framework
(Sutton et al., 1999; Kulkarni et al., 2016; Bacon et al., 2017; Riemer et al., 2018)
similarly deal with learning segmentations and representations of behavior, but
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in a purely generative way. Learning with task sketches (Andreas et al., 2017)
and learning of transition policies (Lee et al., 2019) has also been addressed in
this context.

Unsupervised segmentation and encoding of sequential data has also re-
ceived considerable attention in natural language and speech processing (Blei
and Moreno, 2001; Goldwater et al., 2009; Chan et al., 2017; Wang et al., 2017;
Tang et al., 2018), and in the analysis of sequential activity data (Johnson et al.,
2016; Dai et al., 2017). In concurrent work, Pertsch et al. (2019) introduced a
differentiable model for keyframe discovery in sequence data, which is related
to our setting. Sequence prediction models with adaptive step size (Neitz et al.,
2018; Jayaraman et al., 2018) can provide segment boundaries as well, but do
not directly learn a policy or latent encodings.

7.3 experiments

The goals of this experimental section are as follows: we would like to inves-
tigate whether our model is effective at both learning to find task boundaries
and task encodings while being able to reconstruct and imitate unseen behav-
ior. We further test whether our modular approach to task decomposition
allows our model to generalize to longer sequences with more sub-tasks at test
time.

7.3.1 Multi-Task Environment

1.
2.
3.

Figure 7.3: Example instance of the multi-

task, instruction-following environment

used in our experiments. The environment

is a grid world with walls where an agent

has to pick up or visit certain objects ac-

cording to a list of instructions.

We evaluate our model in a fully-
observable 2D multi-task grid world,
similar to the one introduced in Oh
et al. (2017). An example instance
for the environment is shown in Fig-
ure 7.3. See Appendix 7.B for addi-
tional implementation and evaluation
details.

The environment is a 10x10 grid
world with a single agent, impassable
walls, and multiple objects scattered
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throughout the scene. We generate scenes with 6 objects selected uniformly at
random from 10 different object types (excl. walls and player) jointly with task
lists of 3-5 visit and pick up tasks. A single visit task can be solved by moving
the agent to the location of an object of the correct type. For example, if the
instruction is visit tree, the task is completed if any tree in the scene is visited.
Similarly, a pick up task can be solved by picking up an object of the correct
type (moving to a field adjacent to the object and executing a directional pick
up action, e.g., pick up north). We generate a demonstration trajectory for each
environment instance and task list by running a shortest path algorithm on the
2D environment grid (while marking walls as impassable).

7.3.2 Experimental Setup

In this set of experiments, we fit our CompILE model to demonstration trajec-
tories generated for random instances of the multi-task environments (incl. ran-
domly generated task lists). We train our model with discrete latent variables
(as the target types are discrete) on demonstration trajectories with three con-
secutive tasks, either 3x visit instructions or 3x pick up instructions. Training is
carried out on a single GPU with a fixed learning rate of 10−4 using the Adam
(Kingma and Ba, 2014) optimizer, with a batch size of 256 and for a total of 50k
training iterations. We further train a causal termination policy that shares the
same architecture as the encoder of CompILE to mimic the boundary predic-
tion module in an online setting, i.e., without seeing the future. See Appendix
7.A for details.

We evaluate our model on 1024 newly generated instances of the environ-
ment. We again generate demonstration trajectories with random task lists
of either 3 consecutive tasks (same number as during training) or 5 consecu-
tive tasks, to test for generalization to longer sequences, and we evaluate both
boundary prediction performance and accuracy of action sequence reconstruc-
tion from the inferred latent code. We provide weak supervision by setting the
number of segments to M = 3 and M = 5, respectively. We find that results
slightly degrade with non-optimal choice of M.

An example implementation of the CompILE model in PyTorch (Paszke et
al., 2017) for a simple sequence segmentation toy task is available under https:
//github.com/tkipf/compile.

https://github.com/tkipf/compile
https://github.com/tkipf/compile
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7.3.3 Baselines

We compare against two baselines that are based on behavioral cloning (BC):
an autoregressive baseline for evaluating segmentation performance, termed
LSTM surprisal, where we find segment boundaries by thresholding the state-
conditional likelihood of an action. We further compare against a VAE-based
BC baseline that corresponds to a variant of our model without inferred task
boundaries, i.e., with only a single segment. This baseline allows us to evaluate
task reconstruction performance from an expert trajectory that is encoded in a
single latent variable. We choose a 32-dim. Gaussian latent variable z (i.e., with
significantly higher capacity) and a unit-variance, zero-mean Gaussian prior
for this baseline. We further show results for two model variants: z- and b-
CompILE, where we provide supervision on the latent variables z or b during
training. z-CompILE is comparable to TACO (Shiarlis et al., 2018), where task
sketches (z in our case) are provided both during training and testing (we only
provide z during training), whereas b-CompILE is related to imitation learning
of annotated, individual tasks.

7.3.4 Results

Results for the grid world tasks are summarized in Figure 7.4. For the pick up
task, we see that our model reliably finds the correct boundary positions, i.e.,
it discovers the correct segments of behavior both in the 3-task setting (same
as training) and in the longer 5-task setting. Reconstructions from the latent
code sequence are almost perfect and only degrade slightly in the generaliza-
tion setting to longer sequences, whereas the BC baseline without segmenta-
tion mechanism completely fails to generalize to longer sequences (see exact
match score). In the visit task setting, ground truth boundary positions can be
ambiguous (the agent can walk over an object unintentionally on its way some-
where else) which is reflected in the sometimes lower online evaluation score,
as the termination policy can be sensitive to ambiguous termination conditions
(e.g., unintentionally walked-over objects). Nonetheless, CompILE is often able
to generalize to longer sequences whereas the baseline model without task seg-
mentation consistently fails. In both tasks, our model beats a surprisal-driven
segmentation baseline by a large margin.
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LSTM surprisal

Figure 7.4: Imitation learning results in grid world domain. We report accuracy of seg-

mentation boundary recovery, reconstruction accuracy (average over sequence vs. per-

centage of exact full-sequence matches) and online evaluation: average reward obtained

when deploying the generative model (with termination policy) using the inferred la-

tent code from the demonstration sequence in the environment, without re-training.

See main text for additional details.
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Figure 7.5: Example of sub-task policies discovered by the agent.

For qualitative analysis of the discovered sub-task policies, we run each sub-
task policy for the pick up task on a random environment instance until ter-
mination, see Figure 7.5. The red cross marks the picked up object. We mark
the policy in bold that the inference model of CompILE has inferred from a
demonstration sequence for the task pick up heart. We find that the model
learns latent codes that, when executed as a sub-task policy, result in the agent
finding a particular object in a specific location and picking it up.

7.4 limitations

As our training procedure is completely unsupervised, the model is free to
choose any type of semantics for its latent code. For example, we found that
the model can learn a location-specific latent code (with only a small degree of
object specificity), whereas the ground truth task list is specific to object type.
It remains to be seen to what degree the latent code can be grounded in a par-
ticular manner with only weak supervision, e.g., in a semi-supervised setting
or using pairs of demonstrations with the same underlying task list. Further-
more, we have currently only explored fully-observable, Markovian settings.
An extension to partially-observable environments will likely introduce fur-
ther challenges, as the generative model will require some form of recurrency
or memory.
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7.5 conclusion

In this chapter we have introduced CompILE, a model for discovering and im-
itating sub-components of behavior in sequential demonstration data. Our re-
sults show that CompILE can successfully discover sub-tasks and their bound-
aries in an imitation learning setting. While here we explored imitation learn-
ing, where inputs to the model are state-action sequences, in principle our
method can be applied to any sequential data, and an interesting future direc-
tion is to apply our differentiable segmentation and auto-encoding mechanism
to other data domains. Further promising directions for future work are ex-
tensions for partially-observable environments, using CompILE as an episodic
memory module, and a hierarchical extension with multiple levels of abstrac-
tions for hierarchical planning.
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7.A implementation details

7.a.1 Encoder

Both the recognition model and the generative model (i.e., the sub-task poli-
cies) use a two-layer CNN with 3× 3 filters and 64 feature maps in each layer,
followed by a ReLU activation each. We flatten the output representation into
a vector and pass it through another trainable linear layer, without activation
function. Only for the recognition model, we further concatenate a linear (train-
able) embedding of the action ID to this representation. In all cases, we pass
the output through a LayerNorm (Ba et al., 2016) layer before it is passed on
to other parts of the model, e.g., the RNN in the recognition model or the sub-
task policy MLP in the generative model. The LSTM state of the recognition
model is reset to 0 between trajectories (and after each pass over the trajectory,
i.e., for each segment).

7.a.2 Sub-Task Policies

The sub-task policies πθ(a|s, z) are composed of a CNN module to embed the
environment state st and a subsequent MLP head to predict the probability of
taking a particular action. This CNN shares the same architecture as the recog-
nition model CNN. In initial experiments, we found that training separate
policies πθz(a|s) for each sub-task z ∈ {1, ..., K} with shared CNN parameters
led to better generalization performance than embedding the sub-task latent
variable and providing it as input to just a single policy for all sub-tasks. For
continuously relaxed latent variables z, i.e. during training, we use a soft mix-
ture πθ(a|s, z) = ∑k=1:K qφz

(z = k|a, s, b)πθk(a|s) to obtain gradients, where we
have omitted time step and segment indices to simplify notation.

101
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7.a.3 Termination Policy

To allow for our model to be used in an online setting where the end of
an event segment has to be identified before ‘seeing the future’, we jointly
train a termination policy that shares the same model architecture (but with-
out shared parameters) as the boundary prediction network qφb

(bi|a, s), but
with a sigmoid(x) = 1/(1 + e−x) activation function on the log probabili-
ties instead of a (Gumbel) softmax. It similarly passes over the input se-
quence M times (with softly masked out RNN hidden states) and is trained
to predict an output of 1 (i.e., terminate) for the location of the i-th boundary
bi = argmaxt=1:Tqφb

(bi = t|a, s) and zero otherwise. At test time, we use a
threshold of 0.5 to determine termination.

7.a.4 Regularization

We use a scale hyperparameter β ∈ [0, 1] to scale the contribution of the KL
term in Eq. 7.8 similar to the β-VAE framework (Higgins et al., 2017), which
gives us control over the strength of the prior p(b, z). As is common in appli-
cations of relaxed categorical posteriors in a VAE (Jang et al., 2017), we choose
a simple (non-relaxed) categorical KL term for both the posterior distributions
qφb

(bi|a, s) and qφz
(zi|a, s).

Further, as we do not know the precise location of the boundary latent vari-
ables bi at training time, we cannot evaluate p(bi|bi−1) for i > 1 in the re-
laxed/continuous case. Under the assumption of independence between seg-
ments, behavior within each segment originating from the same distribution,
and with a shared recognition model for all latents, see Eq. 7.5, we can equiv-
alently evaluate the KL term related to b for the first boundary only, i.e. for
p(b1), and multiply this term by M, where M is the number of segments (we
use this setting in our experiments). Alternatively, one could place a prior on

∑t=1:T P(t ∈ Ci), which can be understood as a continuous relaxation of the
length of a segment. This would allow for an individual KL contribution for
every segment, which could be useful for other applications or environments,
where our assumptions are too restrictive.
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7.a.5 Hyperparameters

Number of Hidden Units and MLP Layers

We use 256 hidden units in all MLP layers and in the LSTM throughout all
experiments, unless otherwise mentioned. A smaller number of hidden units
mostly did not affect the boundary prediction accuracy, but slightly reduced
performance in terms of reconstruction accuracy. For the output heads for hzi ,t,
we use a single, trainable linear layer (we experimented with deeper MLPs but
didn’t find a difference in performance) and we use a single hidden layer MLP
with ReLU activation function for the output head hbi ,t (the output is a scalar
for every time step). The policy MLP is using a single hidden layer with ReLU
activation. The termination policy uses an MLP with two hidden layers with
ReLU activation functions on top of the RNN outputs.

Number of Segments

The hyperparameter M, i.e., the number of segments that the model is allowed
to use to explain a particular input sequence, can have an impact on reconstruc-
tion and segmentation quality. We generally find that we obtain best results
by providing the model with the true number of underlying segments (if this
number is known). When providing the model with more than necessary seg-
ments, it often learns to place unneeded segmentation boundary indicators at
the end of the sequence, while in some cases the model over-segments the
trajectory (i.e., it breaks a single segment into parts).

Poisson Prior Rate

We fix the Poisson rate to λ = 3 in all experiments. We found that our model
was not very sensitive to the precise value of λ.

Softmax Temperature

We experimented with annealing the Gumbel softmax temperature over the
course of training, starting from a temperature of 1 and found that it could
slightly improve results, depending on the precise choice of annealing sched-
ule and final temperature. To simplify the exposition and to allow for easier
reproduction, however, we report results with fixed temperature of 1 through-
out training.
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7.B experiment details

7.b.1 Grid World Environment

The grid world environment is implemented in pycolab4 with 8 different prim-
itive actions: move north, move east, move south, move west, pick up north,
pick up east, pick up south, pick up west. Each executed action corresponds
to one time step in the environment. Observations st are tensors of shape
10× 10× Nthings, where Nthings is the total number of things available in the
environment, in our case these are 10 object types that can be interacted with,
impassable walls and the player, i.e. Nthings = 12. We ensure that the task
is solvable and no walls make objects unreachable. Walls are placed using a
recursive backtracking algorithm for unbiased maze generation. We further
subsample walls using a sampling rate of 0.2 to simplify the task. The 2D grid
is enclosed by a single row/column of walls that are not subsampled. Demon-
stration sequences are generated using a breadth-first search on the graph de-
fined by all allowed movement transitions to find the shortest path to the goal
object (ties are broken in a consistent manner). For pick up instructions, we
replace the last move action in the demonstration sequence with a directional
pick up action. We cut demonstration sequences to a maximum length of 42 at
training time, and 200 at test time (as some of our tests involve more tasks).

7.b.2 Evalutation Metrics

In the following, we describe the evaluation metrics used in our experiments.

Boundaries

We measure the accuracy of predicted boundary position. For each boundary
latent variable bi, we check if it exactly matches the ground truth task boundary,
i.e., the point where a task ends and a new task begins. Let bi denote the
ground truth position for the i-th boundary, then the accuracy is defined as

1
M− 1

M−1

∑
i=1

I[arg max
bi

qφb
(bi|x) = bi], (7.14)

4 https://github.com/deepmind/pycolab

https://github.com/deepmind/pycolab
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where I[x = y] denotes the Iverson bracket that returns 1 if x = y and 0
otherwise.

Reconstruction

This measures the average reconstruction accuracy of the original action se-
quence, given the ground truth state sequence, i.e., in a setting similar to
teacher forcing:

1
T ∑

i=1:M

 ∑
j=bi′ :bi−1

I[arg max
aj

πθ(aj|sj, zi) = aj]

 , (7.15)

where i′ = i− 1 and bi = arg maxbi
qφb

(bi|x).

Exact Match

Here, we measure the percentage of exact matches of full reconstructed action
sequences (i.e., this score is 1 if all actions match for a single demonstration
sequence and 0 otherwise), given the ground truth state sequence (provided
one step at a time) as input.

Online Eval

Here, we first run our recognition model on a demonstration trajectory to ob-
tain a sequence of latent codes. Then, we run the sub-task policy corresponding
to the first latent code in the environment, until the termination policy predicts
termination, in which case we move on to the next latent code, run the respec-
tive sub-task policy, and so on. We terminate if the episode ends (more than
200 steps, wrong object picked up or all tasks completed) and measure the ob-
tained reward (either 0 or 1). For the baseline model, we infer a single latent
code and run the respective policy until the end of the episode (without termi-
nation policy). We report the average reward obtained (multiplied by a factor
of 100).

7.b.3 Segmentation Baseline

To compare segmentation performance, we implemented a baseline algorithm
based on auto-regressive behavioral cloning, termed LSTM surprisal. Given the
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state-action sequence ((s1, a1), (s2, a2), . . . , (sT , aT)), this model maximizes the
likelihood in the following form:

max
θ

Pθ(a1:T|s1:T) =
T

∏
i=1

P(ai|a1:i−1, s1:i) (7.16)

Then, a natural approach to decide the segment boundary is based on the
probability of each action. An action which is surprising (i.e., having low con-
ditional probability) to the model should be an action that marks the beginning
or end of a task segment.

Given the number of chunks M, we find the top M− 1 boundary indicator
variables b1, b2, . . . , bM−1 with minimum conditional likelihood, i.e.,

arg min
[b1,b2,...,bM−1],bi≤bi+1

M−1

∑
i=1

P(abi |a1:bi−1, s1:bi) (7.17)

In the experiments, we use the same CNN architecture for encoding the state
as in CompILE. An LSTM with same embedding size as our CompILE model
is used here to model the dependency on the history of states and actions. We
use the same training procedure as in the other models, i.e., we only train on
3x tasks, but report performance both on 5x. Interestingly, this model finds
boundaries more consistently in the generalization setting (5 tasks) for the pick
up task than in the setting it was trained on (3 tasks). We hypothesize that this
is due to the fact that it has never seen a 4-th and 5-th object being picked up
during training, and therefore assigns low probability to these events, which
corresponds to a large ‘surprise’ when these are observed in the generalization
setting.
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C O N T R A S T I V E L E A R N I N G O F
S T R U C T U R E D W O R L D M O D E L S

8.1 introduction

How can we build models that reason about sensory inputs in terms of objects,
abstractions, and relations, without being explicitly supervised or instructed to
do so (e.g., in the form of object-annotated data)? This question aims at the core
of what it means to learn a structured model of the world in an unsupervised
way, e.g., by merely interacting with the world, and it will serve as a motivation
for the types of models that we consider in this chapter1.

Compositional reasoning in terms of objects, relations, and actions is a core
ability in human cognition (Spelke and Kinzler, 2007). This ability serves as
a central motivation behind a range of recent works that aim at enriching ma-
chine learning models with the ability to disentangle scenes into objects, their
properties, and relations between them (Chang et al., 2017; Battaglia et al., 2016;
Watters et al., 2017; Steenkiste et al., 2018; Kipf et al., 2018; Sun et al., 2018a; Sun
et al., 2019b; Xu et al., 2019). These structured neural models greatly facilitate
predicting physical dynamics and the consequences of actions, and provide a
strong inductive bias for generalization to novel environment situations, allow-
ing models to answer counterfactual questions such as “What would happen if I
pushed this block instead of pulling it?”.

Arriving at a structured description of the world in terms of objects and rela-
tions in the first place, however, is a challenging problem. While most methods

1 This chapter is based on our ICLR 2020 publication (Kipf et al., 2020). An earlier version of this
paper appeared as arXiv preprint arXiv:1911.12247. Permission was given by the co-authors
for reproduction in this thesis.
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in this area require some form of human annotation for the extraction of ob-
jects or relations, several recent works study the problem of object discovery
from visual data in a completely unsupervised or self-supervised manner (Es-
lami et al., 2016; Greff et al., 2017; Nash et al., 2017; Steenkiste et al., 2018;
Kosiorek et al., 2018; Janner et al., 2019; Xu et al., 2019; Burgess et al., 2019;
Greff et al., 2019; Engelcke et al., 2019). These methods follow a generative ap-
proach, i.e., they learn to discover object-based representations by performing
visual predictions or reconstruction and by optimizing an objective in pixel
space. Placing a loss in pixel space requires carefully trading off structural con-
straints on latent variables vs. accuracy of pixel-based reconstruction. Typical
failure modes include ignoring visually small, but relevant features for predict-
ing the future, such as a bullet in an Atari game (Kaiser et al., 2019), or wasting
model capacity on visually rich, but otherwise potentially irrelevant features,
such as static backgrounds.

To avoid such failure modes, we propose to adopt a discriminative approach
using contrastive learning, which scores real against fake experiences in the
form of state-action-state triples from an experience buffer (Lin, 1992), in a
similar fashion as typical graph embedding approaches score true facts in the
form of entity-relation-entity triples against corrupted triples or fake facts.

In this chapter and in Kipf et al. (2020), we introduce contrastively-trained
structured world models (C-SWMs), a class of models for learning abstract state
representations from observations in an environment. C-SWMs learn a set of
abstract state variables, one for each object in a particular observation. Envi-
ronment transitions are modeled using a graph neural network (Scarselli et al.,
2009; Li et al., 2016; Kipf and Welling, 2017; Gilmer et al., 2017; Battaglia et al.,
2018) that operates on latent abstract representations.

We further introduce a novel object-level contrastive loss for unsupervised
learning of object-based representations. We arrive at this formulation by
adapting methods for learning translational graph embeddings (Bordes et al.,
2013; Wang et al., 2014) to our use case. By establishing a connection between
contrastive learning of state abstractions (François-Lavet et al., 2018; Thomas
et al., 2018) and relational graph embeddings (Nickel et al., 2015), we hope
to provide inspiration and guidance for future model improvements in both
fields.

In a set of experiments, where we use a novel ranking-based evaluation strat-
egy, we demonstrate that C-SWMs learn interpretable object-level state abstrac-
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tions, accurately learn to predict state transitions many steps into the future,
demonstrate combinatorial generalization to novel environment configurations,
and learn to identify objects from scenes without supervision.

8.2 methods

Our goal is to learn an object-oriented abstraction of a particular observation or
environment state. In addition, we would like to learn an action-conditioned
transition model of the environment that takes object representations and their
relations and interactions into account.

We start by introducing the general framework for contrastive learning of
state abstractions and transition models without object factorization in Sections
8.2.1–8.2.2, and in the following describe a variant that utilizes object-factorized
state representations, which we term a structured world model.

8.2.1 State Abstraction

We consider an off-policy setting, where we operate solely on a buffer of offline
experience, e.g., obtained from an exploration policy. Formally, this experience
buffer B = {(st, at, st+1)}T

t=1 contains T tuples of states st ∈ S , actions at ∈ A,
and follow-up states st+1 ∈ S , which are reached after taking action at. We do
not consider rewards as part of our framework for simplicity.

Our goal is to learn abstract or latent representations zt ∈ Z of environment
states st ∈ S that discard any information which is not necessary to predict
the abstract representation of the follow-up state zt+1 ∈ Z after taking action
at. Formally, we have an encoder E : S → Z which maps observed states to
abstract state representations and a transition model T : Z ×A → Z operating
solely on abstract state representations.

8.2.2 Contrastive Learning

Our starting point is the graph embedding method TransE (Bordes et al., 2013):
TransE embeds facts from a knowledge base K = {(et, rt, ot)}T

t=1, which con-
sists of entity-relation-entity triples (et, rt, ot), where et is the subject entity
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(analogous to the source state st in our case), rt is the relation (analogous to the
action at in our experience buffer), and ot is the object entity (analogous to the
target state st+1).

TransE defines the energy of a triple (et, rt, ot) as H = d(F(et) + G(rt), F(ot)),
where F (and G) are embedding functions that map discrete entities (and re-
lations) to RD, where D is the dimensionality of the embedding space, and
d(·, ·) denotes the squared Euclidean distance. Training is carried out with an
energy-based hinge loss (LeCun et al., 2006), with negative samples obtained
by replacing the entities in a fact with random entities from the knowledge
base.

We can port TransE to our setting with only minor modifications. As the
effect of an action is in general not independent of the source state, we re-
place G(rt) with T(zt, at), i.e., with the transition function, conditioned on
both the action and the (embedded) source state via zt = E(st). The over-
all energy of a state-action-state triple then can be defined as follows: H =

d(zt + T(zt, at), zt+1).

This additive form of the transition model provides a strong inductive bias
for modeling effects of actions in the environment as translations in the abstract
state space. Alternatively, one could model effects as linear transformations
or rotations in the abstract state space, which motivates the use of a graph
embedding method such as RESCAL (Nickel et al., 2011), CompleX (Trouillon
et al., 2016), or HolE (Nickel et al., 2016).

With the aforementioned modifications, we arrive at the following energy-
based hinge loss:

L = d(zt + T(zt, at), zt+1) + max(0, γ− d(z̃t, zt+1)) , (8.1)

defined for a single (st, at, st+1) with a corrupted abstract state z̃t = E(s̃t). s̃t is
sampled at random from the experience buffer. The margin γ is a hyperparam-
eter for which we found γ = 1 to be a good choice. Unlike Bordes et al. (2013),
we place the hinge only on the negative term instead of on the full loss and we
do not constrain the norm of the abstract states zt, which we found to work
better in our context. The overall loss is to be understood as an expectation of
the above over samples from the experience buffer B.
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8.2.3 Object-Oriented State Factorization

Our goal is to take into account the compositional nature of visual scenes,
and hence we would like to learn a relational and object-oriented model of the
environment that operates on a factored abstract state space Z = Z1× . . .×ZK,
where K is the number of available object slots. We further assume an object-
factorized action space A = A1 × . . . × AK. This factorization ensures that
each object is independently represented and it allows for efficient sharing
of model parameters across objects in the transition model. This serves as a
strong inductive bias for better generalization to novel scenes and facilitates
learning and object discovery. The overall C-SWM model architecture using
object-factorized representations is shown in Figure 8.1.
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Figure 8.1: The C-SWM model is composed of the following components: 1) a CNN-

based object extractor, 2) an MLP-based object encoder, 3) a GNN-based relational

transition model, and 4) an object-factorized contrastive loss. Colored blocks denote

abstract states for a particular object.

Encoder and Object Extractor

We split the encoder into two separate modules: 1) a CNN-based object extrac-
tor Eext, and 2) an MLP-based object encoder Eenc. The object extractor module
is a CNN operating directly on image-based observations from the environ-
ment with K feature maps in its last layer. Each feature map mk

t = [Eext(st)]k

can be interpreted as an object mask corresponding to one particular object slot,
where [. . .]k denotes selection of the k-th feature map. For simplicity, we only
assign a single feature map per object slot which sufficed for the experiments
considered in this work. To allow for encoding of more complex object features
(other than, e.g., position/velocity), the object extractor can be adapted to pro-
duce multiple feature maps per object slot. After the object extractor module,
we flatten each feature map mk

t (object mask) and feed it into the object encoder
Eenc. The object encoder shares weights across objects and returns an abstract
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state representation: zk
t = Eenc(mk

t ) with zk
t ∈ Zk. We set Zk = RD in the

following, where D is a hyperparameter.

Relational Transition Model

We implement the transition model as a graph neural network (Scarselli et al.,
2009; Li et al., 2016; Kipf and Welling, 2017; Battaglia et al., 2016; Gilmer et al.,
2017; Battaglia et al., 2018), which allows us to model pairwise interactions
between object states while being invariant to the order in which objects are
represented. After the encoder stage, we have an abstract state description
zk

t ∈ Zk and an action ak
t ∈ Ak for every object in the scene. We represent

actions as one-hot vectors (or a vector of zeros if no action is applied to a
particular object), but note that other choices are possible, e.g., for continuous
action spaces. The transition function then takes as input the tuple of object
representations zt = (z1

t , . . . , zK
t ) and actions at = (a1

t , . . . , aK
t ) at a particular

time step:

∆zt = T(zt, at) = GNN({(zk
t , ak

t )}K
k=1) . (8.2)

T(zt, at) is implemented as a graph neural network (GNN) that takes zk
t as

input node features. The model predicts updates ∆zt = (∆z1
t , . . . , ∆zK

t ). The
object representations for the next time step are obtained via zt+1 = (z1

t +

∆z1
t , . . . , zK

t + ∆zK
t ). The GNN consists of node update functions fnode and

edge update functions fedge with shared parameters across all nodes and edges.
These functions are implemented as MLPs and we choose the following form
of message passing updates:

h(i,j)
t = fedge([zi

t, zj
t]) (8.3)

∆zj
t = fnode([z

j
t, aj

t, ∑i 6=j h(i,j)
t ]) , (8.4)

where h(i,j)
t is an intermediate representation of the edge or interaction between

nodes i and j. This corresponds to a single round of node-to-edge and edge-
to-node message passing. Alternatively, one could apply multiple rounds of
message passing, but we did not find this to be necessary for the experiments
considered in this work. Note that this update rule corresponds to message
passing on a fully-connected scene graph, which is O(K2). This can be re-
duced to linear complexity by reducing connectivity to nearest neighbors in
the abstract state space, which we leave for future work. We denote the output
of the transition function for the k-th object as ∆zk

t = Tk(zt, at) in the following.
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Multi-Object Contrastive Loss

We only need to change the energy function to take the factorization of the ab-
stract state space into account, which yields the following energy H for positive
triples and H̃ for negative samples:

H =
1
K

K

∑
k=1

d(zk
t + Tk(zt, at), zk

t+1) , H̃ =
1
K

K

∑
k=1

d(z̃k
t , zk

t+1) , (8.5)

where z̃k
t is the k-th object representation of the negative state sample z̃t =

E(s̃t). The overall contrastive loss for a single state-action-state sample from
the experience buffer then takes the form:

L = H + max(0, γ− H̃) . (8.6)

8.3 related prior work

For coverage of related work in the area of object discovery with autoencoder-
based models, we refer the reader to the Introduction section. We further
discuss related work on relational graph embeddings in Section 8.2.2.

Structured Models of Environments

Recent work on modeling structured environments such as interacting multi-
object or multi-agent systems has made great strides in improving predictive
accuracy by explicitly taking into account the structured nature of such sys-
tems (Sukhbaatar et al., 2016; Chang et al., 2017; Battaglia et al., 2016; Watters
et al., 2017; Hoshen, 2017; Wang et al., 2018; Steenkiste et al., 2018; Kipf et
al., 2018; Sanchez-Gonzalez et al., 2018; Xu et al., 2019). These methods gen-
erally make use of some form of graph neural network, where node update
functions model the dynamics of individual objects, parts, or agents and edge
update functions model their interactions and relations. Several recent works
succeed in learning such structured models directly from pixels (Watters et al.,
2017; Steenkiste et al., 2018; Xu et al., 2019; Watters et al., 2019), but in con-
trast to our work rely on pixel-based loss functions. The latest example in this
line of research is the COBRA model (Watters et al., 2019), which learns an
action-conditioned transition policy on object representations obtained from
an unsupervised object discovery model (Burgess et al., 2019). Unlike C-SWM,
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COBRA does not model interactions between object slots and relies on a pixel-
based loss for training. Our object encoder, however, is more limited and utiliz-
ing an iterative object encoding process such as in MONet (Burgess et al., 2019)
would be interesting for future work.

Contrastive Learning

Contrastive learning methods are widely used in the field of graph represen-
tation learning (Bordes et al., 2013; Perozzi et al., 2014; Grover and Leskovec,
2016; Bordes et al., 2013; Schlichtkrull et al., 2018; Veličković et al., 2018a), and
for learning word representations (Mnih and Teh, 2012; Mikolov et al., 2013).
The main idea is to construct pairs of related data examples (positive exam-
ples, e.g., connected by an edge in a graph or co-occuring words in a sentence)
and pairs of unrelated or corrupted data examples (negative examples), and
use a loss function that scores positive and negative pairs in a different way.
Most energy-based losses (LeCun et al., 2006) are suitable for this task. Recent
works (Oord et al., 2018; Hjelm et al., 2018; Hénaff et al., 2019; Sun et al., 2019a;
Anand et al., 2019) connect objectives of this kind to the principle of learning
representations by maximizing mutual information between data and learned
representations, and successfully apply these methods to image, speech, and
video data.

State Representation Learning

State representation learning in environments is often approached by mod-
els based on autoencoders (Corneil et al., 2018; Watter et al., 2015; Ha and
Schmidhuber, 2018; Hafner et al., 2018; Laversanne-Finot et al., 2018) or via ad-
versarial learning (Kurutach et al., 2018; Wang et al., 2019). Some recent meth-
ods learn state representations without requiring a decoder back into pixel
space. Examples include the selectivity objective in Thomas et al. (2018), the
contrastive objective in François-Lavet et al. (2018), the mutual information ob-
jective in Anand et al. (2019), the distribution matching objective in Gelada et al.
(2019), or using causality-based losses and physical priors in latent space (Jon-
schkowski and Brock, 2015; Ehrhardt et al., 2018). Most notably, Ehrhardt et al.
(2018) propose a method to learn an object detection module and a physics
module jointly from raw video data without pixel-based losses. This approach,
however, can only track a single object at a time and requires careful balancing
of multiple loss functions.



8.4 experiments 115

8.4 experiments

Our goal of this experimental section is to verify whether C-SWMs can 1) learn
to discover object representations from environment interactions without su-
pervision, 2) learn an accurate transition model in latent space, and 3) general-
ize to novel, unseen scenes. Our implementation uses PyTorch (Paszke et al.,
2017) and is available under https://github.com/tkipf/c-swm.

8.4.1 Environments

We evaluate C-SWMs on two novel grid world environments (2D shapes and
3D blocks) involving multiple interacting objects that can be manipulated inde-
pendently by an agent, two Atari 2600 games (Atari Pong and Space Invaders),
and a multi-object physics simulation (3-body physics). See Figure 8.2 for ex-
ample observations.

For all environments, we use a random policy to collect experience for both
training and evaluation. Observations are provided as 50× 50× 3 color images
for the grid world environments and as 50× 50× 6 tensors (two concatenated
consecutive frames) for the Atari and 3-body physics environments. Addi-
tional details on environments and dataset creation can be found in Appendix
8.B.

Move left Move right 

(a) 2D Shapes

Move left Move right 

(b) 3D Blocks
(c) Atari

Pong
(d) Space
Invaders

(e) 3-Body
Physics

Figure 8.2: Example observations from block pushing environments (a–b), Atari 2600

games (c–d) and a 3-body gravitational physics simulation (e). In the grid worlds (a–

b), each block can be independently moved into the four cardinal directions unless the

target position is occupied by another block or outside of the scene.

8.4.2 Evaluation Metrics

In order to evaluate model performance directly in latent space, we make use of
ranking metrics, which are commonly used for the evaluation of link prediction

https://github.com/tkipf/c-swm
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models, as in, e.g., Bordes et al. (2013). This allows us to assess the quality of
learned representations directly without relying on auxiliary metrics such as
pixel-based reconstruction losses, or performance in downstream tasks such as
planning.

Given an observation encoded by the model and an action, we use the model
to predict the representation of the next state, reached after taking the action
in the environment. This predicted state representation is then compared to
the encoded true observation after taking the action in the environment and
a set of reference states (observations encoded by the model) obtained from
the experience buffer. We measure and report both Hits at Rank 1 (H@1) and
Mean Reciprocal Rank (MRR). Additional details on these evaluation metrics
can be found in Appendix 8.C.

8.4.3 Baselines

Autoencoder-based World Models

The predominant method for state representation learning is based on autoen-
coders, and often on the VAE (Kingma and Welling, 2013; Rezende et al., 2014)
model in particular. This World Model baseline is inspired by Ha and Schmid-
huber (2018) and uses either a deterministic autoencoder (AE) or a VAE to
learn state representations. Finally, an MLP is used to predict the next state
after taking an action.

Physics As Inverse Graphics (PAIG)

This model by Jaques et al. (2019) is based on an encoder-decoder architecture
and trained with pixel-based reconstruction losses, but uses a differentiable
physics engine in the latent space that operates on explicit position and velocity
representations for each object. Thus, this model is only applicable to the 3-
body physics environment.

8.4.4 Training and Evaluation Setting

We train C-SWMs on an experience buffer obtained by running a random pol-
icy on the respective environment. We choose 1000 episodes with 100 environ-
ment steps each for the grid world environments, 1000 episodes with 10 steps
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each for the Atari environments and 5000 episodes with 10 steps each for the
3-body physics environment.

For evaluation, we populate a separate experience buffer with 10 environ-
ment steps per episode and a total of 10.000 episodes for the grid world en-
vironments, 100 episodes for the Atari environments and 1000 episodes for
the physics environment. For the Atari environments, we minimize train/test
overlap by ‘warm-starting’ experience collection in these environments with
random actions before we start populating the experience buffer (see Appendix
8.B), and we ensure that not a single full test set episode coincides exactly with
an episode from the training set. The state spaces of the grid world environ-
ments are large (approx. 6.4M unique states) and hence train/test coincidence
of a full 10-step episode is unlikely. Overlap is similarly unlikely for the physics
environment which has a continuous state space. Hence, performing well on
these tasks will require some form of generalization to new environment con-
figurations or an unseen sequence of states and actions.

All models are trained for 100 epochs (200 for Atari games) using the Adam
(Kingma and Ba, 2014) optimizer with a learning rate of 5 · 10−4 and a batch
size of 1024 (512 for baselines with decoders due to higher memory demands,
and 100 for PAIG as suggested by the authors). Model architecture details are
provided in Appendix 8.A.

8.4.5 Qualitative Results

We present qualitative results for the grid world environments in Figure 8.3
and for the 3-body physics environment in Figure 8.4. All results are obtained
on hold-out test data.

In the grid world environments, we can observe that C-SWM reliably dis-
covers object-specific filters for a particular scene, without direct supervision.
Further, each object is represented by two coordinates which correspond (up
to a random linear transformation) to the true object position in the scene.
Although we choose a two-dimensional latent representation per object for
easier visualization, we find that results remain unchanged if we increase the
dimensionality of the latent representation. The edges in this learned abstract
transition graph correspond to the effect of a particular action applied to the
object. The structure of the learned latent representation accurately captures
the underlying grid structure of the environment. We further find that the
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(a) Discovered object masks in a scene from
the 3D cubes (top) and 2D shapes (bottom)
environments.

(b) Learned abstract state transition graph of
the yellow cube (left) and the green square
(right), while keeping all other object posi-
tions fixed at test time.

Figure 8.3: Discovered object masks (left) and direct visualization of the 2D abstract

state spaces and transition graphs for a single object (right) in the block pushing envi-

ronments. Nodes denote state embeddings obtained from a test set experience buffer

with random actions and edges are predicted transitions. The learned abstract state

graph clearly captures the underlying grid structure of the environment both in terms

of object-specific latent states and in terms of predicted transitions, but is randomly

rotated and/or mirrored. The model further correctly captures that certain actions

do not have an effect if a neighboring position is blocked by another object (shown

as colored spheres), even though the transition model does not have access to visual

inputs.

(a) Observations from 3-body gravitational physics sim-
ulation (bottom) and learned abstract state transition
graph for a single object slot (top).

2.5 0.0 2.5

1

0

1

2

(b) Abstract state transition
graph from 50 test episodes for
single object slot.

Figure 8.4: Qualitative results for 3-body physics environment for a single represen-

tative test set episode (left) and for a dataset of 50 test episodes (right). The model

learns to smoothly embed object trajectories, with the circular motion represented in

the latent space (projected from four to two dimensions via PCA). In the abstract state

transition graph, orange nodes denote starting states for a particular episode, green

links correspond to ground truth transitions and violet links correspond to transitions

predicted by the model. One trajectory (in the center) strongly deviates from typi-

cal trajectories seen during training, and the model struggles to predict the correct

transition.
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transition model, which only has access to latent representations, correctly cap-
tures whether an action has an effect or not, e.g., if a neighboring position is
blocked by another object.

Similarly, we find that the model can learn object-specific encoders in the 3-
body physics environment and can learn object-specific latent representations
that track location and velocity of a particular object, while learning an accurate
latent transition model that generalizes well to unseen environment instances.

8.4.6 Quantitative Results

We set up quantitative experiments for evaluating the quality of both object dis-
covery and the quality of the learned transition model. We compare against au-
toencoder baselines and model variants that do not represent the environment
in an object-factorized manner, do not use a GNN, or do not make use of con-
trastive learning. Performing well under this evaluation setting requires some
degree of (combinatorial) generalization to unseen environment instances.

We report ranking scores (in %) in latent space, after encoding source and tar-
get observations, and taking steps in the latent space using the learned model.
Reported results are mean and standard error of scores over 4 runs on hold-out
environment instances. Results are summarized in Table 8.1.

We find that baselines that make use of reconstruction losses in pixel space
(incl. the C-SWM model variant without contrastive loss) typically generalize
less well to unseen scenes and learn a latent space configuration that makes it
difficult for the transition model to learn the correct transition function. This ef-
fect appears to be even stronger when using a VAE-based World Model, where
the prior puts further constraints on the latent representations. C-SWM recov-
ers this structure well, see Figure 8.3.

On the grid-world environments (2D shapes and 3D blocks), C-SWM models
latent transitions almost perfectly, which requires taking interactions between
latent representations of objects into account. Removing the interaction compo-
nent, i.e., replacing the latent GNN with an object-wise MLP, makes the model
insensitive to pairwise interactions and hence the ability to predict future states
deteriorates. Similarly, if we remove the state factorization, the model has dif-
ficulties generalizing to unseen environment configurations.

For the Atari 2600 experiments, we find that results can have a high vari-
ance, and that the task is more difficult, as both the World Model baseline and
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Table 8.1: Ranking results for multi-step prediction in latent space. Highest (mean)

scores in bold.

1 Step 5 Steps 10 Steps

Model H@1 MRR H@1 MRR H@1 MRR

2
D

SH
A

PE
S

C-SWM 100±0.0 100±0.0 100±0.0 100±0.0 99.9±0.0 100±0.0

– latent GNN 99.9±0.0 100±0.0 97.4±0.1 98.4±0.0 89.7±0.3 93.1±0.2

– factored states 54.5±18.1 65.0±15.9 34.4±16.0 47.4±16.0 24.1±11.2 37.0±12.1

– contrastive loss 49.9±0.9 55.2±0.9 6.5±0.5 9.3±0.7 1.4±0.1 2.6±0.2

World Model (AE) 98.7±0.5 99.2±0.3 36.1±8.1 44.1±8.1 6.5±2.6 10.5±3.6

World Model (VAE) 94.2±1.0 96.4±0.6 14.1±1.1 21.4±1.4 1.4±0.2 3.5±0.4

3
D

BL
O

C
K

S

C-SWM 99.9±0.0 100±0.0 99.9±0.0 100±0.0 99.9±0.0 99.9±0.0

– latent GNN 99.9±0.0 99.9±0.0 96.3±0.4 97.7±0.3 86.0±1.8 90.2±1.5

– factored states 74.2±9.3 82.5±8.3 48.7±12.9 62.6±13.0 65.8±14.0 49.6±11.0

– contrastive loss 48.9±16.8 52.5±17.8 12.2±5.8 16.3±7.1 3.1±1.9 5.3±2.8

World Model (AE) 93.5±0.8 95.6±0.6 26.7±0.7 35.6±0.8 4.0±0.2 7.6±0.3

World Model (VAE) 90.9±0.7 94.2±0.6 31.3±2.3 41.8±2.3 7.2±0.9 12.9±1.3

A
TA

R
I

PO
N

G

C-SWM (K = 5) 20.5±3.5 41.8±2.9 9.5±2.2 22.2±3.3 5.3±1.6 15.8±2.8

C-SWM (K = 3) 34.8±5.3 54.3±5.2 12.8±3.4 28.1±4.2 9.5±1.7 21.1±2.8

C-SWM (K = 1) 36.5±5.6 56.2±6.2 18.3±1.9 35.7±2.3 11.5±1.0 26.0±1.2

World Model (AE) 23.8±3.3 44.7±2.4 1.7±0.5 8.0±0.5 1.2±0.8 5.3±0.8

World Model (VAE) 1.0±0.0 5.1±0.1 1.0±0.0 5.2±0.0 1.0±0.0 5.2±0.0

SP
A

C
E

IN
VA

D
ER

S

C-SWM (K = 5) 48.5±7.0 66.1±6.6 16.8±2.7 35.7±3.7 11.8±3.0 26.0±4.1

C-SWM (K = 3) 46.2±13.0 62.3±11.5 10.8±3.7 28.5±5.8 6.0±0.4 20.9±0.9

C-SWM (K = 1) 31.5±13.1 48.6±11.8 10.0±2.3 23.9±3.6 6.0±1.7 19.8±3.3

World Model (AE) 40.2±3.6 59.6±3.5 5.2±1.1 14.1±2.0 3.8±0.8 10.4±1.3

World Model (VAE) 1.0±0.0 5.3±0.1 0.8±0.2 5.2±0.0 1.0±0.0 5.2±0.0

3
-B

O
D

Y
PH

Y
SI

C
S C-SWM 100±0.0 100±0.0 97.2±0.9 98.5±0.5 75.5±4.7 85.2±3.1

World Model (AE) 100±0.0 100±0.0 97.7±0.3 98.8±0.2 67.9±2.4 78.4±1.8

World Model (VAE) 100±0.0 100±0.0 83.1±2.5 90.3±1.6 23.6±4.2 37.5±4.8

Physics WM (PAIG) 89.2±3.5 90.7±3.4 57.7±12.0 63.1±11.1 25.1±13.0 33.1±13.4
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C-SWM struggle to make perfect long-term predictions. While for Space In-
vaders, a large number of object slots (K = 5) appears to be beneficial, C-SWM
achieves best results with only a single object slot in Atari Pong. This suggests
that one should determine the optimal value of K based on performance on
a validation set if it is not known a-priori. Using an iterative object encoding
mechanism, such as in MONet (Burgess et al., 2019), would enable the model
to assign ‘empty’ slots which could improve robustness w.r.t. the choice of K,
which we leave for future work.

We find that both C-SWMs and the autoencoder-based World Model base-
line excel at short-term predictions in the 3-body physics environment, with
C-SWM having a slight edge in the 10 step prediction setting. Under our eval-
uation setting, the PAIG baseline (Jaques et al., 2019) underperforms using the
hyperparameter setting recommended by the authors. Note that we do not
tune hyperparameters of C-SWM separately for this task and use the same
settings as in other environments.

We further find that the decoder of the World Model baseline usually learns
to reconstruct blocks of certain color (blue for the 3D blocks dataset) or shape
(squares in the 2D shapes dataset) with better quality and much earlier in
the training process than other shapes or colors, likely owing to the use of
a channel-wise sigmoid activation function and to the different surface areas
of objects. This is an unwanted, if not harmful inductive bias: “If you want to
determine how an object drops, you don’t concern yourself with whether it is
new or old, is red or green, or has an odor or not” (Asimov, 1988). C-SWMs,
on the other hand, do not make use of a pixel-based reconstruction loss and
can find suitable representations driven only by the contrastive loss in latent
space.

8.4.7 Model Comparison in Pixel Space

To supplement our model comparison in latent space using ranking metrics, we
carried out a direct comparison in pixel space at the example of the 2D shapes
environment. This requires training a separate decoder model for C-SWM.
For fairness of this comparison, we use the same protocol to train a separate
decoder for the World Model (AE) baseline (discarding the one obtained from
the original end-to-end auto-encoding training procedure). This decoder has
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the same architecture as in the other baseline models and is trained for 100

epochs.

Ground truth

C-SWM

World Model (AE)

t = 0 1 2 3 4 5 6 7 8 9 10

Figure 8.5: Qualitative model comparison in pixel space on a hold-out test instance of

the 2D shapes environment. We train a separate decoder model for 100 epochs on both

the C-SWM and the World Model baseline using all training environment instances to

obtain pixel-based reconstructions for multiple prediction steps into the future.
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World Model (AE)

Figure 8.6: Quantitative model comparison in pixel space on a hold-out test set of the

2D shapes environment. The plot shows mean squared reconstruction error (MSE)

in pixel space for multiple transition model prediction steps into the future (lower is

better), averaged over 4 runs. Shaded area denotes standard error.

For a qualitative comparison, see Figure 8.5. The C-SWM model, as expected
from our ranking analysis in latent space, performs almost perfectly at this
task. Although the World Model (AE) baseline makes clear mistakes which
compound over time, it nonetheless often gets several object positions correct
after many time steps. The ranking loss in latent space captures this behaviour
well, and, for example, assigns an almost perfect score for 1-step prediction to
the World Model (AE) baseline. The typically used mean-squared error (MSE)
in pixel space (see Figure 8.6), however, differs by several orders of magnitude
between the two models and does not capture any of the nuanced differences
in qualitative predictive behavior.
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8.5 limitations

Instance Disambiguation

In our experiments, we chose a simple feed-forward CNN architecture for the
object extractor module. This type of architecture cannot disambiguate mul-
tiple instances of the same object present in one scene and relies on distinct
visual features or labels (e.g., the green square) for object extraction. To better
handle scenes which contain potentially multiple copies of the same object (e.g.,
in the Atari Space Invaders game), one would require some form of iterative
disambiguation procedure to break symmetries and dynamically bind individ-
ual objects to slots or object files (Kahneman and Treisman, 1984; Kahneman
et al., 1992), such as in the style of dynamic routing (Sabour et al., 2017), iter-
ative inference (Greff et al., 2019; Engelcke et al., 2019), or sequential masking
(Burgess et al., 2019; Kipf et al., 2019).

Stochasticity & Markov Assumption

Our formulation of C-SWMs does not take into account stochasticity in envi-
ronment transitions or observations, and hence is limited to fully deterministic
worlds. A probabilistic extension of C-SWMs is an interesting avenue for fu-
ture work. For simplicity, we make the Markov assumption: state and action
contain all the information necessary to predict the next state. This allows us
to look at single state-action-state triples in isolation. To go beyond this limi-
tation, one would require some form of memory mechanism, such as an RNN
as part of the model architecture, which we leave for future work.

8.6 conclusion

Structured world models offer compelling advantages over pure connection-
ist methods, by enabling stronger inductive biases for generalization, without
necessarily constraining the generality of the model: for example, the con-
trastively trained model on the 3-body physics environment is free to store
identical representations in each object slot and ignore pairwise interactions,
i.e., an unstructured world model still exists as a special case. Experimentally,
we find that C-SWMs make effective use of this additional structure, likely be-
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cause it allows for a transition model of significantly lower complexity, and
learn object-oriented models that generalize better to unseen situations.

We are excited about the prospect of using C-SWMs for model-based plan-
ning and reinforcement learning in future work, where object-oriented repre-
sentations will likely allow for more accurate counterfactual reasoning about
effects of actions and novel interactions in the environment. We further hope to
inspire future work to think beyond autoencoder-based approaches for object-
based, structured representation learning, and to address some of the limita-
tions outlined in this chapter.



C H A P T E R A P P E N D I X

8.A architecture and hyperparameters

Object Extractor

For the 3D cubes environment, the object extractor is a 4-layer CNN with
3 × 3 filters, zero-padding, and 16 feature maps per layer, with the excep-
tion of the last layer, which has K = 5 feature maps, i.e., one per object
slot. After each layer, we apply BatchNorm (Ioffe and Szegedy, 2015) and a
ReLU(x) = max(0, x) activation function. For the 2D shapes environment, we
choose a simpler CNN architecture with only a single convolutional layer with
10× 10 filters and a stride of 10, followed by BatchNorm and a ReLU activation
or LeakyReLU (Xu et al., 2015) for the Atari 2600 and physics environments.
This layer has 16 feature maps and is followed by a channel-wise linear trans-
formation (i.e., a 1× 1 convolution), with 5 feature maps as output. For both
models, we choose a sigmoid activation function after the last layer to obtain
object masks with values in (0, 1). We use the same two-layer architecture for
the Atari 2600 environments and the 3-body physics environment, but with
9× 9 filters (and zero-padding) in the first layer, and 5× 5 filters with a stride
of 5 in the second layer.

Object Encoder

After reshaping/flattening the output of the object extractor, we obtain a vector
representation per object (2500-dim for the 3D cubes environment, 25-dim for
the 2D shapes environment, and 1000-dim for Atari 2600 and physics environ-
ments). The object encoder is an MLP with two hidden layers of 512 units and
each, followed by ReLU activation functions. We further use LayerNorm (Ba
et al., 2016) before the activation function of the second hidden layer. The out-
put of the final output layer is 2-dimensional (4-dimensional for Atari 2600 and
physics environments), reflecting the ground truth object state, i.e., the object

125



126 contrastive learning of structured world models

coordinates in 2D (although this is not provided to the model), and velocity (if
applicable).

Transition Model

Both the node and the edge model in the GNN-based transition model are
MLPs with the same architecture / number of hidden units as the object en-
coder model, i.e., two hidden layers of 512 units each, LayerNorm, and ReLU
activations.

Loss Function

The margin in the hinge loss is chosen as γ = 1. We further multiply the
squared Euclidean distance d(x, y) in the loss function with a factor of 0.5/σ2

with σ = 0.5 to control the spread of the embeddings. We use the same setting
in all experiments.

8.B dataset details

8.b.1 Grid Worlds

To generate an experience buffer for training, we initialize the environment
with random object placements and uniformly sample an object and an object-
specific action at every time step.

We provide state observations as 50× 50× 3 tensors with RGB color channels,
normalized to [0, 1]. Actions are provided as a 4-dim one-hot vector (if an
action is applied) or a vector of zeros per object slot in the environment. The
action one-hot vector encodes the directional movement action applied to a
particular object, or is represented as a vector of zeros if no action is applied
to a particular object. Note that only a single object receives an action per time
step. For the Atari environments, we provide a copy of the one-hot encoded
action vector to every object slot, and for the 3-body physics environment,
which has no actions, we do not provide an action vector.
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2D Shapes

This environment is a 5× 5 grid world with 5 different objects placed at ran-
dom positions. Each location can only be occupied by at maximum one object.
Each object is represented by a unique shape/color combination, occupying
10× 10 pixels on the overall 50× 50 pixel grid. At each time step, one object
can be selected and moved by one position along the four cardinal directions.
See Figure 8.2a for an example. The action has no effect if the target location in
a particular direction is occupied by another object or outside of the 5× 5 grid.
Thus, a learned transition model needs to take pairwise interactions between
object properties (i.e., their locations) into account, as it would otherwise be
unable to predict the effect of an action correctly.

3D Blocks

To investigate to what degree our model is robust to partial occlusion and per-
spective changes, we implement a simple block pushing environment using
Matplotlib (Hunter, 2007) as a rendering tool. The underlying environment
dynamics are the same as in the 2D Shapes dataset, and we only change the
rendering component to make for a visually more challenging task that in-
volves a different perspective and partial occlusions.

8.b.2 Atari 2600 Games

Atari Pong

We make use of the Arcade Learning Environment (Bellemare et al., 2013) to
create a small environment based on the Atari 2600 game Pong which is re-
stricted to the first interaction between the ball and the player-controlled pad-
dle, i.e., we discard the first couple of frames from the experience buffer where
the opponent behaves completely independent of any player action. Specifi-
cally, we discard the first 58 (random) environment interactions. We use the
PongDeterministic-v4 variant of the environment in OpenAI Gym (Brock-
man et al., 2016). We use a random policy and populate an experience buffer
with 10 environment interactions per episode, i.e., T = 10. An observation
consists of two consecutive frames, cropped (to exclude the score) and resized
to 50× 50 pixels each.
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Space Invaders

This environment is based on the Atari 2600 game Space Invaders, using the
SpaceInvadersDeterministic-v4 variant of the environment in OpenAI Gym
(Brockman et al., 2016), and processed / restricted in a similar manner as the
Pong environment. We discard the first 50 (random) environment interactions
for each episode and only begin populating the experience buffer thereafter.

8.b.3 3-Body Physics

The 3-body physics simulation environment is an interacting system that evolves
according to classical gravitational dynamics. Different from the other environ-
ments considered here, there are no actions. This environment is adapted from
Jaques et al. (2019) using their publicly available implementation2, where we
set the step size (dt) to 2.0 and the initial maximum x and y velocities to 0.5.
We concatenate two consecutive frames of 50× 50 pixels each to provide the
model with (implicit) velocity information.

8.C evaluation metrics

Hits at Rank k (H@k)

This score is 1 for a particular example if the predicted state representation
is in the k-nearest neighbor set around the encoded true observation, where
we define the neighborhood of a node to include the node itself. Otherwise
this score is 0. In other words, this score measures whether the rank of the
predicted state representation is smaller than or equal to k, when ranking all
reference state representations by distance to the true state representation. We
report the average of this score over a particular evaluation dataset.

Mean Reciprocal Rank (MRR)

This score is defined as the average inverse rank, i.e., MRR = 1
N ∑N

n=1
1

rankn
,

where rankn is the rank of the n-th sample.

2 https://github.com/seuqaj114/paig

https://github.com/seuqaj114/paig
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8.D baselines

World Model Baseline

The World Model baseline is trained in two stages. First, we train an auto-
encoder or a VAE with a 32-dim latent space, where the encoder is a CNN
with the same architecture as the object extractor used in the C-SWM model,
followed by an MLP with the same architecture as the object encoder module in
C-SWM on the flattened representation of the output of the encoder CNN. The
decoder exactly mirrors this architecture where we replace convolutional layers
with deconvolutional layers. We verified that this architecture can successfully
build representations of single frames.

(a) 3D Cubes (b) 2D Shapes

Figure 8.D.1: Reconstructions

from the latent code of a trained

VAE-based World Model baseline.

Example reconstructions from the latent
code are shown in Figure 8.D.1. We exper-
imented both with mean squared error and
binary cross entropy (using the continuous
channel values in [0, 1] as targets) as recon-
struction loss in the (V)AE models, both of
which are typical choices in most practical
implementations. We generally found binary
cross entropy to be more stable to optimize
and to produce better results, which is why we opted for this loss in all the
baselines using decoders considered in the experimental section.

In the second stage, we freeze the model parameters of the auto-encoder and
train a transition model with mean-squared error on the latent representations.
For the VAE model, we use the predicted mean values of the latent repre-
sentations. This transition model takes the form of an MLP with the same
architecture and number of hidden units as the node model in C-SWM. We ex-
perimented both with a translational transition model (i.e., the transition model
only predicts the latent state difference, instead of the full next state) and direct
prediction of the next state. We generally found that the translational transition
model performed better and used it throughout all the reported results.

The World Model baselines are trained with a smaller batch size of 512,
which slightly improved performance and simplified memory management.
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Ablations

We perform the following ablations: 1) we replace the latent GNN with an MLP
(per object, i.e., we remove the edge update function) to investigate whether a
structured transition model is necessary, 2) we remove the state factorization
and embed the full scene into a single latent variable of higher dimensionality
(original dimensionality × number of original object slots) with an MLP as
transition model, and 3) we replace the contrastive loss with a pixel-based
reconstruction loss on both the current state and the predicted next state (we
add a decoder that mirrors the architecture of the encoder).

Physics-as-Inverse-Graphics (PAIG)

For this baseline, we train the PAIG model from Jaques et al. (2019) with the
code provided by the authors3 on our dataset with the standard settings rec-
ommended by the authors for this particular task, namely: model=PhysicsNet,
epochs=500, batch_size=100, base_lr=1e-3, autoencoder_loss=5.0, anneal_lr=true,
color=true, and cell_type=gravity_ode_cell. We use the same input size as in
C-SWM, i.e., frames are of shape 50× 50× 3. We further set input_steps=2,
pred_steps=10 and extrap_steps=0 to match our setting of predicting for a to-
tal of 10 frames while conditioning on a pair of 2 initial frames to obtain initial
position and velocity information. We train this model with four different ran-
dom seeds. For evaluation, we extract learned position representations for all
frames of the test set and further run the latent physics prediction module (con-
ditioned on the first two initial frames) to obtain model predictions. We further
augment position representations with velocity information by taking the dif-
ference between two consecutive position representations and concatenating
this representation with the 2-dim position representation, which we found to
slightly improve results. In total, we obtain a 12-dim (4-dim × 3 objects) rep-
resentation for each time step, i.e., the same as C-SWM. From this, we obtain
ranking metrics. We found that one of the training runs (seed=2) collapsed
all latent representations to a single point. We exclude this run in the results
reported in Table 8.1, i.e., we report average and standard error over the three
other runs only.

3 https://github.com/seuqaj114/paig

https://github.com/seuqaj114/paig
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C O N C L U S I O N

The main contribution of this thesis is the integration of highly structured rep-
resentations with neural network-based models in the context of deep learn-
ing, which we apply to learning tasks with both explicit and implicit structure.
Our focus lies in graph-structured or relational representations for which we
introduce and investigate a number of graph neural network (GNN) models that
structure representations and computations in the form of entities and pair-
wise relations (Chapters 3–6 and 8). We further investigate how to integrate
modular or compositional structure in sequential data in the form of events into
a deep learning framework (Chapter 7).

Having introduced the main body of our work in Parts 1 and 2 of this thesis,
we can now attempt to provide answers to our research questions posed in
Chapter 1 and point towards interesting directions for future work. The first
two research questions address learning with explicitly graph-structured data,
covered in Part 1 of this thesis, whereas the other questions are concerned with
learning with implicit structure in Part 2 of this thesis.

Research Question 1: Can we develop and efficiently implement deep neural network-
based models for large-scale node classification tasks in graph-structured datasets?

The graph convolutional network (GCN) (Kipf and Welling, 2017; Chapter 3) and
its extension for relational data (Schlichtkrull and Kipf et al., 2018; Chapter
5) provide an important first step towards resolving this question. We find
that our proposed GCN model significantly improves upon earlier methods
for the task of semi-supervised node classification on a range of undirected
graph datasets (Chapter 3). For relational graphs (i.e., directed graphs with
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multiple edge types), we find that the relational GCN (Chapter 5) can achieve
competitive results on entity classification tasks in knowledge bases with up to
approx. 6M edges.

Later work has addressed some of the shortcomings of our original proposal:
e.g., GraphSAGE (Hamilton et al., 2017a) achieves improved scalability by sub-
sampling messages. Graph attention networks (Veličković et al., 2018b) gen-
eralize the GCN message passing function by learning data-dependent edge
weights using an attention mechanism, which allows for improved predictive
performance across a range of application domains. We can conclude that
GNN-based approaches to node classification are a viable alternative to earlier
methods based on pre-trained node embeddings (Perozzi et al., 2014; Grover
and Leskovec, 2016) or graph-based regularization techniques (Zhu et al., 2003;
Zhou et al., 2004; Belkin et al., 2006; Weston et al., 2012), and hence Research
Question 1 can be answered in the affirmative.

Interesting open questions remain, for example, with respect to the ideal
model architecture for a particular dataset or graph structure: recent work has
shown that even linear propagation models combined with a simple classifier
can achieve competitive performance (Wu et al., 2019) on some graph datasets,
whereas more expressive model architectures show benefits in other cases (Xu
et al., 2018) such as for classification of molecular structures. Studying the rep-
resentational geometry of GNNs (Liu et al., 2019) is another promising avenue
for future research.

Research Question 2: Can graph neural networks be utilized for link prediction and
unsupervised node representation learning?

The (variational) graph auto-encoder (GAE) (Kipf and Welling, 2016; Chapter 4)
has served as a first exploration of utilizing GNNs in the absence of node labels.
In experiments on link prediction on undirected graphs we obtain competitive
results and our method naturally allows for inclusion of node features while
taking into account the structure of the graph.

The GAE model has inspired a variety of follow-up works (e.g., Ying et al.,
2018; Grover et al., 2018; Davidson et al., 2018; Veličković et al., 2018a) that over-
come limitations in terms of scalability (Ying et al., 2018), explore alternative
choices of decoders and scoring functions (Grover et al., 2018; Veličković et al.,
2018a), and alternative embedding geometries (Davidson et al., 2018). These
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methods achieve encouraging results both in terms of unsupervised learning
and link prediction in a variety of application domains.

We can conclude that GNN-based models for unsupervised node represen-
tation learning are a promising successor to earlier models based on matrix
factorization (Tang and Liu, 2011) or direct optimization of a scoring function
without an encoder (Perozzi et al., 2014; Grover and Leskovec, 2016). Hence,
we can answer Research Question 2 in the affirmative.

Research Question 3: Can deep neural networks infer hidden relations and interac-
tions between entities, such as forces in physical systems?

We have introduced the neural relational inference (NRI) model (Kipf and Fetaya
et al., 2018; Chapter 6) to address this question. NRI is framed as a latent vari-
able model over edges in a graph: nodes correspond to entities such as atoms
in a physical system, cars in traffic, or sports players on the field, whereas
edges model their hidden relations or interactions. Using GNNs both in the
encoder and in the decoder of NRI allows the model to effectively learn about
dynamical systems that consist of multiple interacting components. Our in-
vestigation on simulations of simple physical systems shows that the neural
network-based NRI model can indeed infer hidden interactions between parti-
cles based on observations of trajectories only.

This marks an important first step towards addressing Research Question 3

and suggests an affirmative answer, but NRI makes several limiting assump-
tions which have to be overcome in future work. NRI assumes static interaction
graphs, whereas many real-world examples involve dynamically changing in-
teractions in the form of interaction events (e.g., basketball players passing the
ball on the court). We further assume deterministic dynamics and access to
individual object trajectories. Combining NRI with a module for dynamic in-
ference of object identities from raw video data (e.g., Steenkiste et al., 2018) and
with a mechanism to model stochasticity as in Sun et al. (2019c) are interesting
directions for future research.

Research Question 4: How can we improve upon neural network-based models that
infer event structure and latent program descriptions in sequential data?
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The compositional imitation learning and execution (CompILE) model (Kipf et
al., 2019; Chapter 7) addresses this problem by means of a novel differen-
tiable sequence segmentation mechanism. CompILE is framed as an imitation
learning model that uses a sequence of latent variables. Each latent variable
describes a segment of varying length in the input, which allows CompILE
to infer latent sub-programs and their encodings without supervision. Com-
pared to earlier works (e.g., Fox et al., 2017; Shiarlis et al., 2018), that assume
partial annotation (Shiarlis et al., 2018) or discrete sub-task encodings (Fox et
al., 2017), CompILE makes fewer assumptions on the nature of the task and
achieves promising results in a multi-task imitation learning setting.

We can conclude that structure discovery in sequential data is possible by
means of the inductive bias provided by a specialized neural network archi-
tecture. A promising direction for future work is to explore applications of
the CompILE model beyond the setting of imitation learning, e.g., for event
discovery in video data.

Research Question 5: Can deep neural networks learn to discover and build effective
representations of objects, their relations, and effects of actions by interacting with an
environment?

This is a challenging yet important problem and we only make a small step
towards the resolution of this question in this thesis. In Chapter 8 and in Kipf
et al. (2020), we have introduced the contrastively-trained structured world model
(C-SWM) that utilizes graph-structured representations for objects and their
relations in a scene. C-SWMs discover objects from pixel-based observations
without direct supervision and learn a structured model of environment dy-
namics conditioned on actions of an agent. Learning is performed using a
contrastive loss in latent space that avoids typical failure modes of pixel-based
losses (e.g., placing less relevance on small objects). This highly structured
model allows for significantly improved generalization on environments that
are composed of multiple interacting objects compared to earlier work on un-
structured world models (Ha and Schmidhuber, 2018).

To conclude, we find that it is indeed possible to develop and train special-
ized neural architectures that can discover objects and model their relations
and interactions upon intervention by an agent, without explicit supervision.
Our findings, however, are limited to simple environments without stochastic-
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ity, containing a fixed number of objects, and with Markovian dynamics. We
expect that these limitations can be overcome in future work and that therefore
an affirmative answer to Research Question 5 is within reach.

This thesis was motivated by the idea of using our understanding about the
hierarchical and modular structure of the world around us in the design of
neural network-based models and intelligent systems. This theme has taken
us on a journey towards finding novel solutions to classical prediction prob-
lems on graphs, relational modeling, object discovery, and beyond, based on
a variety of (graph-)structured neural architectures. Incorporating structure as
prior knowledge takes inspiration from theories in cognitive science, such as
core knowledge (Spelke and Kinzler, 2007), that posit that humans (and to some
degree non-human primates) almost universally develop a number of core sys-
tems that serve as an invaluable prior (e.g., that of objectness) for understanding
the structure of the world around us. Incorporating such prior knowledge in
the form of architectural priors and inductive biases into neural network-based
models might ultimately help us develop more animal-like (and even human-like)
intelligent systems that can plan, act, and achieve goals in richly structured en-
vironments and generalize to new and unseen circumstances.
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S A M E N VAT T I N G - S U M M A R Y I N
D U TC H

In dit proefschrift, Deep Learning with Graph-Structured Representations, introduc-
eren we nieuwe benaderingen voor machine learning met gestructureerde data.
Deze benaderingen zijn grotendeels gebaseerd op het idee om representaties
en berekeningen van neurale netwerken te structureren in de vorm van een
graaf. Dit zorgt voor een verbeterde generalisatie bij het leren van data met
zowel een expliciete als een impliciete modulaire structuur.

We dragen het volgende bij:

• We introduceren graph convolutional networks (GCNs) (Kipf and Welling,
2017; Hoofdstuk 3) voor semi-supervised classificatie van knopen in graaf
gestructureerde data. GCNs zijn een bepaald soort graph neural network
die geparameterizeerde message passing operaties uitvoeren op een graaf.
Deze operaties worden gemodelleerd als eerste-ordebenaderingen van
spectral graph convolutions. Ten tijde van publicatie behaalden GCNs state-
of-the-art resultaten op classificatietaken op knoopniveau uit een aantal
ongerichte graaf datasets.

• We introduceren graph auto-encoders (GAEs) (Kipf and Welling, 2016;
Hoofdstuk 4) voor unsupervised learning en het voorspellen van zijden in
graaf gestructureerde data. GAEs hebben een encoder gebaseerd op graph
neural networks, en een decoder die zijden in een graaf reconstrueert op ba-
sis van een paarsgewijze scorefunctie. We introduceren ook een variant
van GAEs, ontworpen als een probabilistisch generatief model dat ge-
traind wordt met variational inference. We noemen deze variant variational
GAE. GAEs and variational GAEs zijn bijzonder geschikt voor represen-
tation learning op grafen als er geen labels voor de knopen beschikbaar
zijn.
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• We introduceren relational GCNs (Schlichtkrull and Kipf et al., 2018;
Hoofdstuk 5) die het GCN model uitbreiden naar een gerichte relationele
graaf met verschillende soorten zijden. Relational GCNs zijn geschikt om
relationele data te modelleren en we laten de toepasbaarheid zien op semi-
supervised entiteitsclassficatie in knowledge bases.

• We introduceren neural relational inference (NRI) (Kipf and Fetaya et al.,
2018; Hoofdstuk 6) voor het ontdekken van latente relationele structuur
in interacterende systemen. NRI combineert graph neural networks met
een probabilistisch latent variable model over verschillende soorten zijden
in een graaf. We passen NRI toe om interacterende dynamische systemen
te modelleren, zoals systemen met meerdere deeltjes in de natuurkunde.

• We introduceren compositional imitation learning and execution (Com-
pILE) (Kipf et al., 2019; Hoofdstuk 7), een model voor het ontdekken
van structuur in sequentiële gedragsdata. CompILE maakt gebruik van
een nieuw differentieerbaar mechanisme dat sequenties kan segmenteren.
Dit mechanisme wordt gebruikt om losse gedragingen en vaardigheden
te ontdekken in de context van imitation learning.

• We introduceren contrastively-trained structured world models (C-SWMs)
(Kipf et al., 2020; Hoofdstuk 8) om zonder supervisie van rauwe pixel
observaties object-gefactoriseerde modellen te leren van omgevingen. C-
SWMs maken gebruik van graph neural networks om de representatie van
een omgeving te structureren in de vorm van een graaf. In deze graaf rep-
resenteren knopen objecten en zijden representeren paarsgewijze relaties
of interacties onder invloed van een bepaalde actie. C-SWMs worden ge-
traind met constrastive learning zonder op pixels gebaseerde kostenfunc-
ties en zijn geschikt voor het leren van modellen van omgevingen met
een compositionele structuur.
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