
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Does higher sampling rate (multiband + SENSE) improve group statistics - An
example from social neuroscience block design at 3T

Bhandari, R.; Kirilina, E.; Caan, M.; Suttrup, J.; De Sanctis, T.; De Angelis, L.; Keysers, C.;
Gazzola, V.
DOI
10.1016/j.neuroimage.2020.116731
Publication date
2020
Document Version
Final published version
Published in
NeuroImage
License
CC BY

Link to publication

Citation for published version (APA):
Bhandari, R., Kirilina, E., Caan, M., Suttrup, J., De Sanctis, T., De Angelis, L., Keysers, C., &
Gazzola, V. (2020). Does higher sampling rate (multiband + SENSE) improve group statistics
- An example from social neuroscience block design at 3T. NeuroImage, 213, [116731].
https://doi.org/10.1016/j.neuroimage.2020.116731

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1016/j.neuroimage.2020.116731
https://dare.uva.nl/personal/pure/en/publications/does-higher-sampling-rate-multiband--sense-improve-group-statistics--an-example-from-social-neuroscience-block-design-at-3t(91ffedcc-6af9-4af7-abd1-aac74111a01b).html
https://doi.org/10.1016/j.neuroimage.2020.116731


NeuroImage 213 (2020) 116731
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Does higher sampling rate (multiband þ SENSE) improve group statistics -
An example from social neuroscience block design at 3T

Ritu Bhandari a,*, Evgeniya Kirilina b,c,1, Matthan Caan d,e,1, Judith Suttrup a,2,
Teresa De Sanctis a,2, Lorenzo De Angelis a,2, Christian Keysers a,f,3, Valeria Gazzola a,f,**,3

a Netherlands Institute for Neuroscience, KNAW, Amsterdam, the Netherlands
b Center for Cognitive Neuroscience, Free University, Berlin, Germany
c Max Plank Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
d Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
e Amsterdam UMC, University of Amsterdam, Biomedical Engineering & Physics, Amsterdam, the Netherlands
f Department of Psychology, University of Amsterdam, the Netherlands
A B S T R A C T

Multiband (MB) or Simultaneous multi-slice (SMS) acquisition schemes allow the acquisition of MRI signals from more than one spatial coordinate at a time.
Commercial availability has brought this technique within the reach of many neuroscientists and psychologists. Most early evaluation of the performance of MB
acquisition employed resting state fMRI or the most basic tasks. In this study, we tested whether the advantages of using MB acquisition schemes generalize to group
analyses using a cognitive task more representative of typical cognitive neuroscience applications. Twenty-three subjects were scanned on a Philips 3 T scanner using
five sequences, up to eight-fold acceleration with MB-factors 1 to 4, SENSE factors up to 2 and corresponding TRs of 2.45s down to 0.63s, while they viewed (i) movie
blocks showing complex actions with hand object interactions and (ii) control movie blocks without hand object interaction. Data were processed using a widely used
analysis pipeline implemented in SPM12 including the unified segmentation and canonical HRF modelling. Using random effects group-level, voxel-wise analysis we
found that all sequences were able to detect the basic action observation network known to be recruited by our task. The highest t-values were found for sequences
with MB4 acceleration. For the MB1 sequence, a 50% bigger voxel volume was needed to reach comparable t-statistics. The group-level t-values for resting state
networks (RSNs) were also highest for MB4 sequences. Here the MB1 sequence with larger voxel size did not perform comparable to the MB4 sequence. Altogether, we
can thus recommend the use of MB4 (and SENSE 1.5 or 2) on a Philips scanner when aiming to perform group-level analyses using cognitive block design fMRI tasks
and voxel sizes in the range of cortical thickness (e.g. 2.7 mm isotropic). While results will not be dramatically changed by the use of multiband, our results suggest
that MB will bring a moderate but significant benefit.
1. Introduction

Multiband (MB) or Simultaneous multi-slice (SMS) acquisition
schemes allow the acquisition of magnetic resonance imaging (MRI)
signals from more than one spatial coordinate at a time. Apart from the
obvious advantage in the reduction of per volume acquisition times
(Moeller et al., 2010), these sequences have been postulated to have
several advantages for functional MRI (fMRI), especially, higher signal to
noise per time unit, higher sampling rate resulting in higher statistical
power and a better estimation of physiological noise (Barth et al., 2016;
Feinberg and Setsompop, 2013; Olafsson et al., 2015). Most of the early
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testing of performance of MB acquisition employed resting state fMRI
and showed decreased total scan times (X.-H. Liao et al., 2013), better
noise estimation and spectral and spatial de-aliasing (Griffanti et al.,
2014; Kalcher et al., 2014; Tong and Frederick, 2014a, 2014b; Tong
et al., 2014) as well as better localization and estimation of functional
networks (Koopmans et al., 2012). However, much less information is
available about the benefits of MB acquisition for task based fMRI
(Feinberg and Yacoub, 2012). Particularly, the utility of MB acquisition
for group level statistics has not been evaluated yet. In this study we
therefore performed comprehensive analyses to test the advantages of
using MB acquisition schemes over single band EPI acquisition schemes
m, the Netherlands.
(V. Gazzola).
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in detecting task-based Blood Oxygenation Level Dependent (BOLD)
responses.

The idea of acquiring data from different spatial locations simulta-
neously was first proposed in the 1980s (see Barth et al., 2016 for a
historical review). However, the studies that brought widespread atten-
tion to the use of MB technique in fMRI were published in 2010 as part of
the Human Connectome Project (Smith et al., 2013; U�gurbil et al., 2013).
These two studies used multiplexed EPI combining simultaneous echo
refocusing (SIR) and multiband radio frequency pulses and showed
increased sensitivity to detect resting state networks (RSN) with 6 fold
higher sampling rate at 3 T (Feinberg et al., 2010), and comparable
activation between single band and MB acquisition using simple sensory
tasks at 7 T (Moeller et al., 2010). Since then, MB sequences were
improved to include multiple modalities (Cohen et al., 2017a), to reduce
radiofrequency power deposition (Auerbach et al., 2013; Koopmans
et al., 2012; Norris et al., 2011; Wu et al., 2013) and g-factor penalty due
to the suboptimal reconstruction of the images (Setsompop et al., 2012),
to ameliorate image reconstruction using controlled aliasing methods
(Blaimer et al., 2013) such as radial CAIPIRINHA (Yutzy et al., 2011) and
blipped CAIPI techniques (Setsompop et al., 2012), and by optimizing
coil designs (Poser et al., 2014). Together with these technical ad-
vancements in MR pulse sequence development and image quality im-
provements, the commercial availability of compatible hardware and
tailored acquisition and reconstruction software has brought the tech-
nique within the reach of many neuroscientists and psychologists, paving
the way to systematic testing, validation and application to basic and
clinical research settings (Chekroud et al., 2017; Cohen-Gilbert et al.,
2017; Gabrielsen et al., 2018; Harenski et al., 2018; Kim et al., 2016; King
et al., 2018; Kyathanahally et al., 2017; Provencher et al., 2018; Shah
et al., 2016; Suri et al., 2017).

Since the publication of the first fMRI studies using MB acquisition in
2010 (Feinberg et al., 2010; Moeller et al., 2010), several studies have
tested its benefits on resting and task based functional data. Using the
keywords ‘Multiband EPI’, ‘Multiband fMRI’, ‘Simultaneous Multislice
EPI’ and ‘Simultaneous Multislice fMRI’ in Pubmed on July 15, 2019, we
identified 41 publications (including the two 2010 publications) that
assessed the advantages of multiband acquisition for studying resting
state and/or task based fMRI (Table 1). The data presented in these
studies were collected on either 3 T or 7 T field strength scanners,
generally using small to moderate sample sizes (median ¼ 10; range ¼ 3
to 476), and different voxel sizes (ranging between 1.5 mm isotropic and
3.75 mm isotropic). Of these 40 studies, 20 studies used resting state
acquisition not only to assess the performance of short repetition times
(TRs) (Feinberg et al., 2010; Koopmans et al., 2012; X.-H. Liao et al.,
2013; Preibisch et al., 2015) but also to harness the advantages of the
short TRs in spectral de-aliasing of high frequency bands to study the
BOLD specific as well as noise specific components in different frequency
bands, and for ICA based de-noisingmethods (Boubela et al., 2013; Gohel
and Biswal, 2015; Griffanti et al., 2014; Kalcher et al., 2014; Tong and
Frederick, 2014a).

The main aim of the current study is to perform a detailed assessment
of the effects of MB acceleration on random effects group level statistics
for task-based fMRI, and identify the optimal acceleration for task-based
fMRI. We therefore analysed the 21 studies that employed task based
BOLD, in greater detail. Boyacio�glu et al. (2014) compared the perfor-
mance of Gradient echo (GE) and Spin echo (SE) sequences in combi-
nation with MB factor of 3 and using a random effect analysis concluded
that the performance of GE was superior in terms of the BOLD compared
to SE. De Martino et al. (2015), ingeniously used longer silent periods
between two TRs to present their auditory stimuli and showed a higher
BOLD contrast with MB2 compared to single band, concluding that
reducing the length of the scanner noise results in stronger auditory re-
sponses. Similarly, other studies that used MB accelerated sequences, but
did not directly compare their performances for task related statistics
were not analysed further (Shah et al., 2016; Vu et al., 2016). We iden-
tified three other studies that directly compared MB sequences for noise
2

amplification, slice leakage and serial autocorrelation matrices. These
studies unequivocally showed that the noise is amplified as MB factor
increases, leakagemight occur at very high acceleration (>MB8) and that
the conventional auto-correlation models might not be sufficient for data
acquired with faster TRs (Bollmann et al., 2018; Boubela et al., 2014;
Risk et al., 2018). Since group-level task-based BOLD was not the focus of
these studies, we did not analyse them further. This left us with 13 studies
which directly testedMB acquisition compared to the conventional single
band acquisition or standard datasets to assess the benefits of higher
sampling rate with short TRs on task-based fMRI. Collectively, these
studies showed that using MB acceleration of 2–3 times might yield
comparable or better statistics for task-based BOLD (Table 1). While
these studies are valuable in enhancing our understanding of the effects
of MB, there are several criteria, typical of modern cognitive neurosci-
ence applications, not fulfilled in these studies and therefore warrants
further investigation.

Up until now, the effects of MB acceleration have mostly been studied
in basic functional designs using finger tapping and visual checkerboard
(L. Chen et al., 2015; Chu and Noll, 2016; McDowell and Carmichael,
2018; Moeller et al., 2010; Sahib et al., 2018, 2016; Su et al., 2018; Todd
et al., 2016). These tasks massively activate motor and visual cortices
with strong contrasts between ON and OFF conditions. Since these are
predominantly positioned in the cortex of the brain and are close to the
MR receiver coils, higher acceleration factors are easily achieved. In
contrast, modern cognitive neuroscience tasks often contrast tightly
controlled conditions resulting in substantially smaller effect sizes than
has been explored in past multiband studies. Further, cognitive tasks may
accrue more within- and between-subject variability. Within-subject
variability may increase because higher cognitive processing is less
stimulus locked and may habituate more than early sensory or motor
tasks. Between-subject variance may increase because complex cognitive
tasks allow more individual variability in interpretation and depend
more on past experiences. This will further reduce effect sizes. Whether
MB provides advantages in the context of such smaller effects sizes and
increased individual variability is difficult to predict. We thus feel that
findings from MB-studies with basic sensory stimuli cannot be directly
generalized to cognitive neuroscience applications. Moreover, while
testing complex cognitive neuroscience applications, larger sample sizes
are needed to reliably detect the BOLD as compared to basic stimuli
where a sample size of <15 is enough for a reliable activation. A simple
power calculation showed that with a sample of size 3 (smallest sample
size reported in the literature reviewed in Table 1) one can expect
detection of an effect with an effect size of 2.3, whereas using 14 subjects
would allow us to detect an effect with effect size of 0.7. We included a
sample of 23 subjects as recommended for cognitive tasks in fMRI by
Thirion et al. (2007) which would allow us to observe the effects with
effect size of ~0.5.

Furthermore, the majority of these 13 studies that tested the effects of
higher sampling rate only report summary statistics such as mean t- or
top 10% t-values within selected ROIs from subject level analysis (L.
Chen et al., 2015; Chu and Noll, 2016; Kiss et al., 2018; McDowell and
Carmichael, 2018; Sahib et al., 2018, 2016; Todd et al., 2017, 2016).
Some studies additionally presented activation maps from representative
subjects for visual comparisons (Moeller et al., 2010; Su et al., 2018), but
only three studies presented voxel-wise, random-effects group-level,
task-related BOLD statistics followed by a visual assessment of the per-
formance of fast scanning.

In the current study, we add to our understanding of the effect of
accelerated image acquisition and therefore higher sampling on task
related BOLD statistics by addressing these gaps. We took advantage of a
paradigm we have often used in our laboratory (Arnstein et al., 2011;
Gazzola and Keysers, 2009; Gazzola et al., 2007; Valchev et al., 2016) and
thus have reference data to systematically test the effect of MB acquisi-
tion. This paradigm aims to identify brain regions involved in the action
observation network (Gazzola and Keysers, 2009) and involves observing
complex goal directed actions (CA) and contrasting that activation



Table 1
Summary of past studies exploring the benefits of MB acquisition and their main findings.

Publication

Technique Number of
subjects

Rest/Task (~scan
time)

Main results

Field
strength

MB factor(s) Voxel size
(mm3)

TRs compared

Feinberg et al. (2010)
SIR, MB 3 Rest (10 min) Increased peak functional sensitivity.
3 T 1, 2, 3 3 � 3 � 3 2.0s, 0.8s, 0.4s
Koopmans et al. (2012)
MB 6 Rest (15 min) Exquisite localization to grey matter.
7 T 1, 4 1.5 � 1.5 �

1.6
7.4s, 1.8s

(X.-H. Liao et al., 2013)
MB 11 Rest (6 min) Validity of multiband rs-fMRI to reliably detect functional hubs.
3 T 1, 4 3 � 3 � 3 2.5s, 0.6s
Boubela et al. (2013)
SIR, MB 10 Rest (6 min) Resting-state networks like the default-mode network in frequencies above 0.25 Hz.
3 T 4 2.4 � 1.9 �

3.5
0.3s

Griffanti et al. (2014)
MB 76 Rest (10 min) With optimal cleaning procedures, functional connectivity results from accelerated data were statistically

comparable or significantly better.3 T 1, 6 3 � 3 � 3 2 �
2 � 2

3.0s, 1.3s

Tong et al. (2014)
MB 5 Rest (6 & 10 min) Many voxels are highly correlated with pulsation regressors or its temporally shifted version.
3 T 6 3 � 3 � 3 0.4s
Tong et al. (2014b)
MB 9 Rest (6 min) Spatial distributions of different physiological processes are distinct.
3 T 6 3 � 3 � 3 0.4s
Tong et al. (2014a)
MB 7 Rest (6 & 10 min) Systemic oscillations pervade the BOLD signal; Temporal traces evolve as the blood propagates though the

brain; They can be effectively extracted via a recursive procedure and used to derive the cerebral circulation
map.

3 T 6 3 � 3 � 3 0.4s

Kalcher et al. (2014)
SIR, MB 20 þ 20 Rest (6 min) Correlations between resting-state signal fluctuations of distant brain regions even at high frequencies,

which can be measured using low-TR fMRI. In the high-TR data, loss of specificity of measured fluctuations
leads to lower sensitivity in detecting functional connectivity.

3 T 1, 4 1.5 � 1.5 � 3
2.4 � 1.9 �
3.5

1.8s, 0.3s

Olafsson et al. (2015)
ME, MB, 1.33-fold phase
encode acceleration

12 Rest (10 min) ME-ICA identifies significantly more BOLD-like components in the MESMS data as compared to data
acquired with a conventional multi-echo single-slice acquisition.

3 T 1, 3 3.7 � 3.7 � 4 2.6s, 0.87s
Gohel & Biswal (2015)
MB 21 Rest (10 min) Functional integration between brain regions at rest occurs over multiple frequency bands.
3 T 4 3 � 3 � 3 0.6s
(X. Liao et al., 2015)
MB 11 Rest (10 min) Economical, efficient, and flexible characteristics of dynamic functional coordination in large-scale human

brain networks during rest, and their relationship with underlying structural connectivity.3 T 4 3 � 3 � 3 0.6s
Preibisch et al. (2015)
MB, 2-fold in-plane sensitivity
encoding acceleration

20 Rest (7 min) MB factor of 2 only causes negligible SNR decrease but reveals common RSN with increased sensitivity and
stability. Further MB factor increase produced random artifacts that may affect interpretation of RSNs under
common scanning conditions.3 T 1, 2, 3, 4 3 � 3 � 3 2.0s, 1.0s, 0.7s,

0.5s
Smith-Collins et al. (2015)
MB 21 Rest (5 min) Rapid rs-fMRI acquisition in neonates, and adoption of an extended frequency range for analysis allows

identification of a substantial proportion of signal power residing above 0.2 Hz.3 T 1, 3 2.5 � 2.5 �
2.5

1.7s, 0.9s

Kalcher et al. (2015)
MB 15 Rest (7 min) Graph clustering based method for identifying venous voxels has a high specificity and additional

advantages of being computed in the same voxel grid as the fMRI dataset itself and not needing any
additional data beyond what is usually acquired in standard fMRI experiments.

3 T 8 1.7 � 1.7 � 2 0.3s

Thanh Vu et al. (2016)
MB, 2-3-fold in-plane phase
encoding acceleration

24 Rest (15 min) High resolution images acquired at 7 T provide increased functional contrast to noise ratios with
significantly less partial volume effects and more distinct spatial features.

3 T vs 7
T

3, 5, 8 0.9 � 0.9 �
0.9 1.2 � 1.2
� 1.2 1.5 �
1.5 � 1.5 1.6
� 1.6 � 1.6 2
� 2 � 2

0.7s, 1.3s 1.9s,
3.7

Reynaud, Jorge, Gruetter, Marques, & van der Zwaag (2017)
MB, 2D vs. 3D EPI 8 Rest (5 min) After physiological noise correction, 2D- and 3D-accelerated sequences provide similar performances at

high fields, both in terms of tSNR and resting state network identification and characterization.7 T 1, 6, 8 2 � 2 � 2 3.3s, 0.6s, 0.4s
Cohen et al. (2017b)

(continued on next page)
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Table 1 (continued )

Publication

Technique Number of
subjects

Rest/Task (~scan
time)

Main results

Field
strength

MB factor(s) Voxel size
(mm3)

TRs compared

MB 10 Rest (7 min) Sensitivity and specificity increases and reproducibility either increases or does not change for the MB
compared to the single band acquisitions. The MB scans also show improved grey matter/white matter
contrast compared to the single band scans. The local functional connectivity density and global functional
connectivity density patterns remain similar across MB and single band scans and confined predominantly
to grey matter. A strong spatial correlation of functional connectivity density between MB and single band
scans is observed indicating the two acquisitions provide similar information.

3 T 8 2 � 2 � 2
3.5 � 3.5 �
3.5

0.8s, 2.0s

Golestani et al. (2017)
MB 12 Rest (12 min) Physiological noise characteristics differ between SMS-EPI and regular EPI, with cardiac pulsatility

contributing more to noise in regular EPI data but low-frequency heart rate variability contributing more to
SMS-EPI. Signficant slice-group bias was observed in the functional connectivity density maps derived from
SMS-EPI data. Making appropriate corrections for physiological noise is likely more important for SMS-EPI
than for regular EPI acquisitions.

3 T 1, 3 3.4 � 3.4 �
4.6

0.3s

Smitha et al. (2018)
MBþ2-fold in plane
acceleration

9 Rest (7.4 min) Negligible differences between the conventional-rsfMRI and MB rsfMRI acquisitions on the computed graph
theoretic measures. MB-rsfMRI may be used as a time reducing acquisition technique that enables mapping
of functional connectivity with similar outcome as conventional rs-fMRI in healthy subjects.

3 T 1, 3 3.3 � 3.3 �
3.2

3.0s, 0.9s

Boubela et al. (2014)
MB 10 Rest (7 min) &

Task
Fast scanning may help to identify and eliminate physiologic components, increasing tSNR and functional
contrast.

3 T 8 1.7 � 1.7 � 2 0.3s
Boyacio�glu et al. (2015)
ME, MB, 3-fold in plane
GRAPPA

11 Rest (5 min) &
Task

After noise correction, the detection of rs-networks improves with more non-artefactual independent
components being observed. Additional activation clusters for task data are discovered for MBME data
(increased sensitivity) whereas existing rs-networks become more localized (improved spatial specificity).7 T 1, 3 3.5 � 3.5 �

3.5
2.2s, 0.7s

Shah et al. (2016)
SIR, MB 476 Rest (15 min) &

Task
Longer scan times are needed to acquire data on single subjects for information on connections between
specific ROIs. Longer scans may be facilitated by acquisition during task paradigms, which will
systematically affect functional connectivity but may preserve individual differences in connectivity on top
of task modulations.

3 T Not specified 2 � 2 � 2 0.7s

Demetriou et al. (2018)
MB, in plane acceleration
factor ¼ 2

10 þ 14 Rest (6 min) &
Task

Strong benefits of the multiband protocols on results derived from resting-state data, but more varied effects
on results from the task paradigms. Multiband protocols were superior when Multi-Voxel Pattern Analysis
was used to interrogate the faces/places data, but showed less benefit in conventional General Linear Model
analyses of the same data. In general, ROI-derived measures of statistical effects benefitted only modestly
from higher sampling resolution.

3 T 1, 2, 3, 4, 6 3 � 3 � 3 2.0s, 1.0s, 0.7s,
0.5s, 0.3s

Moeller et al. (2010)
MB, under sampling factor of 4
in PE direction

3 Task Task/stimulus-induced signal changes and temporal signal behavior under basal conditions were
comparable for multiband and standard single-band excitation and longer pulse repetition times.

7 T 4 2 � 2 � 2
1 � 1 � 2

1.2s, 1.5s

Boyacio�glu et al. (2014)
MB (GE vs SE), 3-fold in-plane
acceleration, PINS

6 Task GE-EPI shows higher efficiency and higher CNR in most brain areas; GE EPI was able to detect robust
activation near air/tissue interfaces such due to reduced intra-voxel dephasing because of the thin slices
used and high in-plane resolution.7 T 3 1.5 � 1.5 �

1.3
1.4s, 2.0s

Chu & Noll (2016)
MB, coil compression 5 Task Method to compress and reconstruct concentric ring SMS data improves preservation of functional

activation over standard coil compression methods.3 T 1, 3 Slice thickness
3

2.0s, 0.6s

De Martino et al. (2015)
MB 6 Task Reducing the length of the scanner noise results in stronger functional responses.
3 T 1, 2 2 � 2 � 2 3.0s
(L. Chen et al., 2015)
SIR, MB 7 Task Low acceleration factors (N � 6), setting SIR ¼ 1 and varying MB alone yielded the best results in all

evaluation metrics, while at acceleration N¼ 8 the results were mixed using both S¼ 1 and S¼ 2 sequences.3 T 1, 2, 4, 6, 8, 10,
12, 14, 16

2.5 � 2.5 � 3 4.0s–0.2s

Sahib et al. (2016)
MB 15 Task Colored noise in event-related fMRI obtained at short TRs originates mainly from neural sources and calls

for more sophisticated correction of serial autocorrelations which cannot be achieved with standard
methods relying on AR(1)þw models with globally fixed AR coefficients.

3 T 1, 2, 4, 5, 8, 10 3 � 3 � 3 2.6s–0.3s

Todd et al. (2016)
MB, 2-fold in-plane GRAPPA
acceleration

10 Task Imaging protocols using an acceleration factor of MB 2 � GRAPPA 2 can be confidently used for high-
resolution whole-brain imaging to improve BOLD sensitivity with very low probability for false-positive
activation due to slice leakage. Imaging protocols using higher acceleration factors (MB 3 or MB 4 �3 T 1, 2, 4, 6 1.5 � 1.5 �

1.5
6.6s, 3.3s, 1.6s,
1.1s

(continued on next page)
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Table 1 (continued )

Publication

Technique Number of
subjects

Rest/Task (~scan
time)

Main results

Field
strength

MB factor(s) Voxel size
(mm3)

TRs compared

GRAPPA 2) can likely provide even greater gains in sensitivity but should be carefully optimized to
minimize the possibility of false activations.

Kim et al. (2016)
ME, MB, Thin-slice summation 10 Task The SMSME-thin imaging technique enhanced the temporal-signal-to-noise ratio and functional activation

at high susceptibility regions of the brain.3 T 5 Slice thickness
4 vs. 1

2.5s

Vu et al. (2016)
MB 4 Task Substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs

of 1000 ms.3 T & 7
T

6, 7 Slice thickness
3 at 3 T and
2.5 at 7 T

0.5s

Bollmann et al. (2018)
MB, 2 or 3-fold GRAPPA
acceleration

10 Task Commonly used noise models, such as the AR(1) model, are inadequate for modelling serial correlations in
fMRI using sub-second TRs. Rather, physiological noise modelling in combination with advanced pre-
whitening schemes enable valid inference in single-subject analysis using fast fMRI sequences.7 T 4, 3 2.5 � 2.5 �

2.5
1.3 � 1.3 �
1.3

0.6s, 2.0s

Todd et al. (2017)
MB, 12% in phase acceleration 10 Task Lower g-factor noise area of V1 shows significant improvements at higher SMS factors; the moderate-level g-

factor noise area of the para-hippocampal place area shows only a trend of improvement; and the high g-
factor noise area of the ventral-medial pre-frontal cortex shows a trend of declining t-scores at higher SMS
factors. This spatial variability suggests that the optimal SMS factor for fMRI studies is region dependent.
SMS accelerations of 4x (conservative) to 8x (aggressive) for most studies and a more conservative
acceleration of 2x for studies interested in anterior midline regions is recommended.

3 T 1, 2, 4, 8 3 � 3 � 2.5 2.8s, 1.4s,
0.7s, 0.4s

Kiss et al. (2018)
MB 21 Task ~4 min of the scan time with 1 Hz (TR ¼ 1000 ms) sampling rate and ~2 min scanning at ~ 2.5 Hz (TR ¼

410 ms) sampling rate provide similar localization sensitivity and selectivity to that obtained with 11-min
session at conventional, 0.5 Hz (TR ¼ 2000 ms) sampling rate.

3 T 4, 6 3 � 3 � 3 2.0s, 1.0s, 0.4s

McDowell & Carmichael (2018)
MB 10 Task Modest TR reductions (to 1000� 200 ms) optimally improved event related fMRI performance independent

of design frequency. Autoregressive models with a local as opposed to global fit performed better, while low
order autoregressive models were sufficient at the optimal TR.

3 T 1, 2, 3, 4 2.5 � 2.5 �
2.5

2.5s, 1.2s, 0.8s,
0.4s

Sahib et al. (2018)
MB 15 Task At a conventional TR of 2.6 s, Functional Connectivity Degree (FCD) values were marginal compared to FCD

values using sub-seconds TRs achievable with multiband (MB) fMRI.3 T 1, 2, 4, 8 3 � 3 � 3 2.6s, 1.3s, 0.7s,
0.3s

Su et al. (2018)
MB, 2-fold GRAPPA
acceleration

20 Task Accelerated gradient echo (GRE) sequence combining simultaneous multislice excitation (SMS) with echo-
shifting technique for high spatial resolution BOLD fMRI has potential for high spatial resolution fMRI at
ultra-high field because of its sufficient BOLD sensitivity as well as improved acquisition speed over
conventional GRE-based techniques.

7 T 5, 1 1 � 1 �
2.5

3s

Risk et al. (2018)
MB 98 Task When data were smoothed, we found evidence of slice leakage in some, but not all, subjects. We also found

evidence of SMS noise amplification in unprocessed task and processed resting-state HCP data.3 T 8 2 � 2 � 2 0.7s
Corbin et al. (2018)
MBþ12% phase-over sampling 10 Task The “FAST” model implemented in SPM is used with a well-controlled number of parameters, it can

successfully prewhiten 80% of grey matter voxels even with volume repetition times as short as 0.35 s.
Temporal signal-to-noise ratio can be augmented to account for the temporal correlations in the time series.

3 T 1, 2, 4, 8 3 � 3 � 2.5 2.8s, 1.4s, 0.7s,
0.35s

Current Study
MB, 1.5 or 2-fold in-plane
phase encoding acceleration

23 Task & Pseudo
resting state

(i) Sequences with different acceleration factors are able to detect the brain networks involved in task
processing. (ii) Group level t-statistics improves with faster scanning. (iii) However it cannot compensate for
the effects of larger voxel sizes, sample sizes or total scan duration. (iv) This is true for both task and resting-
state analyses.

3 T 1, 2, 4 2.7 � 2.7
� 2.7
3 � 3 �
3.3

2.4s, 2.0s, 1.2s,
0.7s, 0.6s
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against complex control stimuli (CC) that include the same objects and
the same hand, but without the hand manipulating the objects. This
contrast is motivated by the fact that viewing objects and hands in mo-
tion would already activate a very broad network including early visual
areas, attentional brain circuits, spatial representations in addition to
regions specifically representing how the hand manipulates the object.
To focus on the latter, we thus subtract stimuli that include the same
basic visual elements and their spatial distribution and also include
movement, but without the actual hand-object interaction (Gazzola and
Keysers, 2009). This contrast is known to identify a broad network of
5

brain regions (often referred to as the action observation network)
encoding hand-object interactions in all participants via the CA-CC
contrast including premotor, somatosensory, insula, inferior parietal,
visual, and cerebellar regions (Gazzola and Keysers, 2009). This allowed
us to assess the benefits of MB across a wide range of brain regions and
their functional connectivity. Unlike most of the previous studies, we
present voxel-wise group-level analysis with detailed post-hoc analyses to
quantify the differences in the data acquired with different acceleration
using a sample size representative of modern task-based designs (n ¼ 23
subjects).



Fig. 1. Subjects observed 26 blocks of video stimuli per session (x 5 acquisition
sequences) showing one of the two conditions: complex action (CA) or complex
control (CC). Thirteen bocks per condition were presented and each block
comprised of three clips of the same condition. The inter block interval was
randomized between 8 and 12 s. The blocks and conditions were randomized
between the five acquisition sequences per subject and between subjects. The
top row schematically illustrates the structure of each run; the bottom two rows
illustrate, for a randomly chosen clip, how it differs in the two conditions: a goal
directed action in CA and a random movement in CC.
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To derive a hypothesis for the expected outcomes, we looked at the
underlying mechanisms that are inherent to the MB technology. On the
one hand, we might expect multiband to improve second level random-
effect statistics. This is because multiband increases the number of
samples that can be acquired in a given experimental time-window. More
samples should increase the precision of the parameter estimates at the
first level (Constable and Spencer, 2001). Because the second level re-
sidual variance is composed of the sum of ‘true’ between subject variance
and first level errors in parameter estimates, this could directly improve
statistics by reducing residual errors. On the other hand, other factors
may curtail these benefits. First, measurement noise might increase due
to imperfect separation of the aliased voxels (Golestani et al., 2017).
Second, more samples only improve parameter estimates if the additional
samples are independent, however the temporal auto-correlation in-
creases as the samples are acquired closer in time (Bollmann et al., 2018;
Corbin et al., 2018), limiting the independence of the samples and hence
the benefits from acquiring more samples. Whether multiband acquisi-
tion leads to a net improvement of group-level statistics thus depends on
the trade-off between these factors and is difficult to predict a priori. We
therefore based it on the previous literature and hypothesized that the
use of MB acquisition may show comparable if not higher t-values at a
group level in response to task stimuli. Moreover, we look at individual
factors such as subsampling the acquired volumes, tSNR and within and
between subject variances to tease apart the contribution of these factors
on our group level statistics. Finally, we performed a dual-regression
analysis with the pseudo resting state data obtained by regressing out
task-correlated activity to approximate the findings of the previous
studies that showed an improvement of resting state statistics with MB
acceleration. We hypothesized that on a group level, MB would outper-
form single-band acquisition in terms of the voxel-wise t-values.

2. Materials and methods

2.1. Subjects

Twenty-four (13 males, 11 females) right-handed (self-reported)
healthy volunteers (Mage ¼ 25.5 years, SDage ¼ 3.6, Range ¼ 21 to 33)
with no contraindications for MRI, and normal or corrected-to-normal
vision participated in the study. After the screening procedure, subjects
were familiarized with the MRI environment and were verbally informed
about the observation task that they will watch during the session. The
research was approved by the Amsterdam Medical Centre Ethics Com-
mittee Review Board, and the volunteers provided written consent at the
start of the study. In what follows, sequences will be shorthanded as
MBxSyTRres , where TR is the acquisition time of one volume, res the res-
olution in mm, and x and y, the multiband and SENSE factors respec-
tively. One subject (all sessions) was removed from the analysis due to
excessive head motion and theMB2S21:222:7iso session of another subject was
removed due to technical error during the acquisition, resulting in a final
sample size of N ¼ 23 for MB1S22:452:7iso, MB1S22:003x3x3:3, MB4S1:50:702:7iso,
MB4S20:632:7iso and of N ¼ 22 subjects for MB2S21:222:7iso session.
2.2. Task and experimental procedure

Subjects were shown movie stimuli previously used in our lab to
trigger robust activity in the action observation network (Gazzola and
Keysers, 2009; Valchev et al., 2016). These movies show a human hand
interacting with everyday objects. Examples of such interactions are
shown in Fig. 1 and listed in Supplementary Table 1 (see also Valchev
et al., 2016). Two types of stimuli were used: Complex actions (CA)
showed the hand interacting with the object in typical, goal directed
actions. For example, the hand of the actor reached for a lighter placed on
the table, grasped it, and lit a candle with it. Complex controls (CC)
stimuli had the exact same setting as the CA but the actor’s hand did not
interact with or manipulate the object on the table, instead, made aimless
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hand movements. A block was composed of three movies of the same
category (CA or CC) and lasted 7s. Each fMRI session was composed of 13
blocks per stimulus category for a total of 26 blocks, presented in a
randomized order. The inter-block-interval lasted between 8 and 12s and
consisted of a fixation cross on a grey and blue background similar to the
stimuli background. Five of these sessions were presented to each sub-
ject, showing the same blocks but in different order, with each session
acquired with a different acquisition scheme, varying in MB factor,
in-plane SENSE (S) acceleration and/or spatial resolution (Table 2). The
order of acquisition was randomized between subjects. Importantly, the
duration of the five sessions was similar (~8 min), but more functional
volumes were acquired during sessions where the acquisition parameters
lead to shorter TRs.
2.3. Image acquisition

Data were acquired on a 3 T Philips scanner, using a commercial
version of Philips’MB implementation (based on software release version
R5.4). A 32-channel head coil was used. The total length of the scanning
session per subject was around 50 minutes and included the functional
and anatomical scans. Functional data were acquired using five different
acquisition sequences (Table 2). These sequences were chosen based on
the following considerations. First, we wanted to acquire one of the most
typically used non-multiband sequences as a meter of comparison, and
therefore acquired a sequence with a TR ¼ 2.00s and close to 3 mm
isotropic resolution (MB1S22:003x3x3:3). Because multiband is typically used
with slightly smaller voxels, we acquired all other sequences at a reso-
lution of 2.7 mm isotropic, which is closer to the average grey matter
thickness. At that resolution, we then measured an acquisition at MB1S2
(MB1S22:452:7iso), and increased MB to 2 and 4. At MB4, we additionally
reduced SENSE acceleration to 1.5 as recommended by Philips, to miti-
gate potentially higher noise amplification. The SENSE reconstruction
method has been characterized as an image domain “unfolding” algo-
rithm. An acceleration (with reduction factor R) would result in a
reduced FOV in every component coil image. Each pixel in the individual
reduced FOV coil image will contain information from multiple (R),
equidistantly distributed pixels in the desired full FOV image. Addi-
tionally, these pixels will be weighted with the coil sensitivity at the
corresponding location in the full FOV (Blaimer et al., 2004). In our case,



Table 2
Overview of the scanning parameters used for the five acquisition sequences and the reference study. Note (in red) that the sequence MB1S22:003x3x3:3 has a coarser spatial
resolution compared to the other sequences. The sequence MB4S1:50:702:7iso differs from MB4S20:632:7iso in the SENSE acceleration and not in MB factor. Reference study was
collected with a different set of subjects and a different scanner. It is used to compare some results from this study.

Sequence Acronym MB1S22:003x3x3:3 MB1S22:452:7iso MB2S21:22
2:7iso MB4S1:50:702:7iso MB4S20:63

2:7iso Ref. Study

TR (seconds) 2.00 2.45 1.22 0.70 0.63 2.00
Multiband factor (MB) none none 2 4 4 none
SENSE acceleration (S) 2 2 2 1.5 2 2
Acquired voxel size (mm3) 3 £ 3 £ 3.3 2.7 isotropic 2.7 isotropic 2.7 isotropic 2.7 isotropic 3.5 isotropic
Flip angle in degrees 75 79 64 51 50 70
Number of slices 36 44 44 44 44 41
Acquired volumes 245 200 400 700 780 345
Slice gap (mm) 0.33 0.27 0.27 0.27 0.27 0.00
Field of view (mm3) 240 � 240 � 130.3 216 � 216 � 130.4 216 � 216 � 130.4 216 � 216 � 130.4 216 � 216 � 130.4 224 � 224 � 143
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the reduction factor of 1.5 would result in reduction of the FOV in the
phase-encoding direction by this factor. The resulting TRs were 2.45s,
2.00s, 1.22s, 0.70s and 0.63s for the sequencesMB1S22:452:7iso,MB1S22:003x3x3:3,
MB2S21:222:7iso, MB4S1:50:702:7iso and MB4S20:632:7iso respectively (Table 2). Slices
were acquired in ascending order in transverse direction. TE was kept
constant for all sequences at 30 ms. A default shift of ½ a FOV was used
while acquiring with MB 2 and 4 to improve reconstruction quality. The
flip angle was optimized to the Ernst angle of each TR. All functional
images were reconstructed using the SENSE reconstruction algorithm
(Setsompop et al., 2012) and this was done simultaneously with acqui-
sition. Note that the sequence MB1S22:003x3x3:3 has a coarser spatial reso-
lution compared to the other sequences, which would lead to differences
that are not related to the total acceleration in acquisition. We therefore
present the results of this sequence separately on figures rather than in
the same line as the other sequences. In addition, the sequence
MB4S1:50:702:7iso differs from MB4S20:632:7iso in the SENSE acceleration but not
in MB factor. Any differences in these two sequences therefore will not
reflect the effect of MB acceleration. A T1-weighted image was acquired
at the end of the functional runs with a field of view of 240 � 256 � 250
mm and the voxel size was 1 mm isotropic. Geometry factor (g-factor)
maps (see supplementary analysis 1) that quantify the aliasing noise per
voxel (Pruessmann, 1999) were obtained for sequences MB1S22:452:7iso,
MB2S21:222:7iso, MB4S1:50:702:7iso. Here the g-factor maps were computed
on-scanner using the vendor’s implementation and represent additional
SNR penalty of multiband and in-plane SENSE acceleration. Note that the
g-factor is computed from the coil sensitivity maps and the noise corre-
lation matrix, both of which are measured in the preparation phase ahead
of scanning (Pruessmann, 1999).
2.4. Reference study

As a reference for some of the analyses performed to test the effect of
accelerated acquisition, we used a previously acquired dataset. Data from
this previous study (Abdelgabar et al., 2018) consisted of fMRI data from
an independent group of 31 subjects. Images included an anatomical scan
and a functional run where the subjects viewed the same action obser-
vation paradigm used in this study (CA and CC blocks of 7s). In addition,
they also saw thirteen 7s blocks of Static Control (SC) movies, which had
the same elements as the CA and CC movies, but the hand lay still next to
the objects without any movement. Data were acquired using a Philips
Intera 3 T scanner (University Medical Centre Groningen, University of
Groningen. Groningen, The Netherlands), using a 32-channel coil. First, a
high-resolution, structural image (170 slices; scan resolution ¼ 256 �
256; field of view ¼ 232 � 232 mm; voxel size: 1 mm isotropic) was
acquired. Functional images were acquired using an echo planar
T2*-weighted gradient sequence (See Table 2 for additional parameters).
The aim of choosing this independent dataset as a reference instead of the
average data acquired in the current study was to avoid circularity, which
may result in inflated statistical estimates, and to use a study with an
even larger sample size to further approximate the true population
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activity that each multiband experiments aim to estimate. These data
were acquired without any MB acceleration.

2.5. Preprocessing

Reconstructed whole brain functional data were preprocessed using
SPM12 (Wellcome Trust Centre for Neuroimaging, UCL, UK) with Matlab
version 8.4 (The MathWorks Inc., Natick, USA). Briefly, functional im-
ages were slice-time corrected and then realigned to the estimated
average. Anatomical images were co-registered to the mean functional
image (rigid body transformation, DOF ¼ 6), and segmented. The
normalization parameters that were generated during segmentation
(unified segmentation) were used to bring all the images to the MNI
space. The resampled voxel size for the functional images was 2 � 2 � 2
mm and 1 � 1 � 1 for the anatomical scans. We adjusted the SPM12
bounding box settings to [-90 -126 -72; 90 90 108] in order to include the
cerebellum completely, as the default settings of [-78 -112 -70; 78 76 85]
may result in omission of some of the cerebellar voxels (Abdelgabar et al.,
2018; Gazzola and Keysers, 2009). Smoothing of 6 mm FWHM Gaussian
kernel was applied to the functional data. The reference dataset was
preprocessed similarly.

2.6. Subject level general linear models (GLM)

GLM with task predictors: Subject level GLM included CA and CC as
two separate task predictors with each predictor having 13 blocks of 7s.
The reference dataset additionally included SC as a predictor with 13
blocks of 7s. Boxcar functions were convolved with canonical haemo-
dynamic response function implemented in SPM. Regressors included the
six motion parameters estimated during realignment, first five principal
components of cerebrospinal fluid (CSF) and five principal components
of white matter (WM) (total 16 regressors). The CSF and WM principal
components were extracted from the normalized but unsmoothed func-
tional data for each subject using the average WM and CSF segments of
the subjects’ segmented and normalized anatomy, thresholded at 0.7
(arbitrary units) as masks (Behzadi et al., 2007). We used the principal
component analysis based regressors as they have been shown to yield
better results for physiological de-noising as compared to regressors
generated based on cardiac and respiratory traces recorded with the
respiration belt and pulse oximeter (Kirilina et al., 2016). FAST auto-
correlation algorithm implemented in SPM12 was used to correct for
temporal autocorrelations in the data which has been suggested to be
superior to the default AR(1) models specially for the shorter TRs
(Bollmann et al., 2018; Todd et al., 2016). All the other parameters,
including the high-pass filter (128 s), were left as the default in SPM12.
The residuals were saved and were used to calculate the effective tSNR
(see supplementary analysis 2).

GLM for resting state: Previous studies with MB show that acceler-
ating image acquisition may have benefits for detecting RSNs (Demetriou
et al., 2018; Griffanti et al., 2014; Preibisch et al., 2015; Reynaud et al.,
2017). To replicate these positive findings of MB acceleration on RSNs, in
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this study we created a pseudo resting state dataset by regressing out the
BOLD associated with task predictors CA, CC and the 16 nuisance re-
gressors. Briefly, a subject level GLM was performed on unsmoothed
functional data with the GLM described above (i.e. two task predictors,
CA and CC, and the 16 regressors). The residuals were saved which were
devoid of the BOLD that was detected as correlated to our action
observation task. These residuals were smoothed with 6 mm FWHM
Gaussian kernel and used in a spatial GLM in FSL (http://www.fmrib.ox.a
c.uk/fsl/index.html) with 20 resting state networks (RSN20) as pre-
dictors (Smith et al., 2009). FSL was used as it has a well-implemented
spatial GLM algorithm as a first step of the dual regression approach.
The RSN20 maps classified by Smith et al. (2009) consist of 10 primary
cortical networks, 3 cortical networks with partial spatial/functional
overlap with primary cortical network(s), 3 networks with spatial loca-
tion corresponding to subcortical or deep cortical areas and 4 artefactual
components. This spatial GLM step generated 20 time-courses per subject
per acquisition sequence, one for each RSN. These time courses were then
used as predictors in a subject level GLM along with the 16 nuisance
regressors for the normalized and smoothed data. Note that this analysis
is very similar to the dual regression analysis implemented in FSL. We
decided to perform the second step in SPM to keep the default processing
(e.g. auto-regression) similar to those used in the task-based GLM which
was performed in SPM, so as to avoid effects of using different packages
and to enable qualitative comparisons between task based and resting
state analyses.

2.7. Group statistics

Random effects group t-tests were performed separately for each
acquisition sequence using the parameter estimates from the subject level
GLMs (CA-CC contrast or RSNs). The significance of all group analyses
was evaluated at qfdr<0.05 at the voxel level and a cluster-size threshold
of 50 voxels. We use FDR correction rather than FWE correction here to
improve sensitivity (Lieberman and Cunningham, 2009; Lindquist and
Mejia, 2015), but also provide histograms of t-values to enable scientists
to appreciate the effect of MB at any threshold. When looking at the data
at uncorrected p < 0.001 (see Supplementary Analysis 7), the FDRc
cluster thresholds for different sequences ranged from 49 to 85. FDRc
represents the minimum cluster size that limits the false discovery rate to
0.05. For visualization purposes, we therefore decided to use a common
cluster threshold of 50 while evaluating the FDR corrected results.

Basic signal and noise characteristics of different acquisition
sequence, which include g-factor, tSNR (predicted, effective and raw)
and CNR are presented in supplementary materials (see Supplementary
analysis). In the result section 3.1, we focus on the random-effect group-
level task based BOLD outcomes for different acquisition sequences. We
look at:

(a) Voxel-wise t-statistics of individual sequences to see which se-
quences perform the best in terms of t-statistics. Next, using
Receiver Operating Characteristics (ROC) on the resulting voxel-
by-voxel t-values we analyse how similar/different the activa-
tion maps are between different acquisition sequences and the
reference study. The ROC analysis allows us to look at the hit rate
and false alarm rate in a non-threshold dependent manner. The
intent of using the ROC measures is not to find a “winner
sequence” but to see concordance between sequences. If a
sequence would show poor concordance with all other sequences,
it might warrant particular prudence. However, if all sequences
show high concordance, this will point to the fact that although
the t-statistics might differ between sequences, the sequence that
one chooses would not greatly alter functional interpretation
about the brain networks involved in the cognition of interest.

(b) We then label the activated brain regions using the AAL atlas
(Automated Anatomical Labeling, Tzourio-Mazoyer et al., 2002),
and explore the similarity of conclusions at the brain-region level
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using an ROC analysis (i.e. which AAL region are detected as
active and which not).

(c) To explain the small differences in the outcomes of different
acquisition sequences we performed within and between subject
variance analyses to see if there are systematic differences in the
variance patterns between different sequences as that would
directly impact the observed t-statistics.

(d) Previous studies with resting state show that MB acceleration may
enable us to shorten total acquisition times (Smitha et al., 2018).
To test this theory for task-based studies, we truncated the total
acquired data and looked if it would be possible to reduce the
number of task trials/total acquisition time with less loss in ac-
curacy at higher MB acceleration.

Section 3.2 reports the group statistics of the pseudo resting state data
as replication for the widely reported positive effects of MB in the resting
state literature.

3. Results

3.1. Random effect group level analysis

(a) Voxel-wise analyses: Fig. 2A and B presents the random-effect
group activation t-maps for each sequence separately. As a validation,
we also present the group maps of the reference study (Fig. 2C). Visual
comparison of the group voxel-wise results look very similar across se-
quences, and consistent with what has been reported in Gazzola and
Keysers (2009). Fig. 2D presents the histograms of the significant t-values
for the sequences MB1S22:003x3x3:3 MB1S22:452:7iso, MB2S21:222:7iso, MB4S1:50:702:7iso

and MB4S20:632:7iso. Both sequences with MB4 have higher t-values than
sequences with MB 1 and 2 with same spatial resolution of 2.7 mm
isotropic. Interestingly, this is the case despite the effective smoothness
(especially average subject FWHM) being lower in the MB4 sequences
compared to sequences with MB1 and 2 at the same acquired spatial
resolution (Fig. 2A).

One notable difference in the visual inspection of the maps is that all
of the sequences tested here activate fewer voxels than the independent
study when visualized at the same threshold (qfdr < 0.05). Fig. 2E shows
that the independent study (black line) has much higher t-values than the
two best sequences (pink and red lines in Fig. 2D) of the current study.
This could potentially be due to three reasons: i) the independent study
was conducted on 31 participants instead of the 23 participants included
here, affording it more statistical power. ii) While in the reference study
subjects viewed the stimuli only once, they saw them 5 times in our
within-subject MB comparison, potentially leading to some form of
repetition suppression. iii) The acquired voxel size in the reference study
(3.5 mm isotropic) was larger than the resolution used here (2.7 mm
isotropic or 3 � 3 � 3.3 mm3). We therefore compared two more GLMs,
one including just the first 23 subjects of the reference study and one with
just the first view of the stimuli in the current study (Fig. 2C). Note that
the “first view” GLM consists of data coming from different sequences. To
assess the impact of voxel size, we compared MB1S22:452:7iso and
MB1S22:003x3x3:3, as these differ only in the acquired voxel sizes.

Visual inspection of the maps confirmed the intuition that the sample
size (N ¼ 31 vs. N ¼ 23) has an impact on the group BOLD levels, as
although the networks look similar, the size of the clusters appears a bit
smaller when fewer participants are included (see green arrows in
Fig. 2C, and grey and black lines in Fig. 2E). Next, we considered the first
view in the current study regardless of the acceleration with which it was
acquired. Some clusters start to appear as significant (green boxes in
Fig. 2C compared to maps in Fig. 2A and B), which were either not
present or were smaller, when group analyses were done per sequence
and therefore contained first to fifth view of the task. Fig. 2E shows that
reference study (N ¼ 23) vs. the first view in this study are very similar
with slightly higher t-values for the reference study. Finally, the impact of

http://www.fmrib.ox.ac.uk/fsl/index.html
http://www.fmrib.ox.ac.uk/fsl/index.html


Fig. 2. All maps are overlaid on the mean grey
matter segment of the group. qfdr<0.05, cluster
threshold 50 voxels. (A) Group maps showing the
task correlated activity detected using the GLM pre-
dictors for the acquisition sequences MB1S22:452:7iso,
MB2S21:222:7iso, MB4S1:50:702:7iso and MB4S20:632:7iso. At the
group level the effective smoothing is ~0.5 mm more
in MB1S22:45

2:7iso compared to MB4S20:63
2:7iso and the

average smoothness at the subject level is ~1.4 mm
more for MB1S22:452:7iso compared to MB4S20:632:7iso. (B)
Group maps for the acquisition sequence
MB1S22:003x3x3:3. White arrows represent the effect of
voxel size on the BOLD outcomes. (C) Group maps
from the reference study using the same task (N ¼ 31
subjects), maps from the reference study with a
smaller sample of N ¼ 23 subjects and from the
current study looking at the first view of the task.
Green arrows show how results change with the
number of subjects. Green boxes represent the clus-
ters that become bigger or more significant if we only
consider the first view. (D) Histogram of the group t
values for the CA-CC contrast in Fig. 2A and B. (E)
Histogram of the group t values for the CA-CC
contrast in Fig. 2C.
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higher voxel size can be seen in sequencesMB1S22:452:7iso andMB1S22:003x3x3:3,
which differ in the voxel size but not in the acceleration: white arrows in
Fig. 2A and B show the areas with better BOLD for sequence with 3� 3�
3.3 mm3 voxels compared to sequence with 2.7 mm isotropic voxels
(Fig. 2D and E). Although it has been argued that temporal SNR no longer
depends on voxel volume beyond a voxel-size of 1.5 mm isotropic while
using 32 channel coils (Triantafyllou et al., 2011), our results show that
going from 2.7 mm isotropic to 3 � 3 � 3.3 mm3 improves the tSNR
(Supplementary analysis 2) as well as the t-values for task based BOLD
(Fig. 2D). Taken together the findings of the random effect analysis
suggest that in otherwise identical scanning parameters, MB4 shows
higher t-values than lower acceleration with MB2 or no MB. Larger voxel
sizes, larger group sizes and/or novelty of the task seems to show higher
t-values. In our sample, MB1 sequence with larger voxels show t-values
most comparable to MB4 sequences in terms of t-values, suggesting that
MB4 can be used to obtain finer spatial resolution while keeping the
t-sensitivity similar to a non-accelerated sequence with larger voxel sizes.

Since the GLM measures reported above are very threshold depen-
dent, we used ROC measures to compare the conclusions one would
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reach from different acceleration factors. Table 3 presents signal detec-
tion metrics (ROC, hit rate and false alarm rate) comparing the outcomes
of these GLMs. The area under the ROC curve, which is less threshold
dependent, is very high in all pairwise comparisons. It ranges from 85%
to 90% when comparing the sequences against the reference study, and
from 94% to 98% when comparing different sequences acquired here.
The hit-rate was low when assessing how many of the voxels in the
reference study were activated in each sequence (40% on average), and
there was no systematic trend of this hit rate increasing or decreasing
with the total acceleration. The hit rate was much higher when exam-
ining how much of the voxels from the current sequences were activated
in the highly powered reference study (83–90%), and when comparing
different accelerated sequences with each other (72% on average). The
false alarm rate was consistently low, with on average only 2% of the
voxels not activated in the reference study activated at any sequences,
and only 3% of voxels not activated in one sequence activated in another.
The sub-sample (N ¼ 23) of the reference study showed high corre-
spondence with the full sample (99%), had a high hit rate (81%) and a
small false alarm rate (1%). The hit rate for the sequences against the
subsample of the reference study was slightly higher (average 45%). The



Table 3
ROC measures for assessing similarity/differences between the t-maps resulting from the group ANOVA of the different sequences. Ref ¼ reference study. Ref 23 ¼
reference study with first 23 subjects. FV ¼ first view in the current study.

ROC Reference

Ref Ref 23 M1S22:452:7iso MB1S22:00
3x3x3:3 MB2S21:222:7iso MB4S1:50:702:7iso MB4S20:63

2:7iso FV

Comparison Ref 99% 95% 92% 95% 95% 94% 93%
Ref 23 99% 94% 92% 94% 94% 93% 92%
MB1S22:452:7iso 87% 88% 96% 95% 96% 96% 95%

MB1S22:003x3x3:3 88% 89% 98% 94% 97% 97% 95%

MB2S21:222:7iso 85% 86% 96% 94% 96% 94% 94%

MB4S1:50:702:7iso 90% 90% 97% 96% 96% 97% 97%

MB4S20:632:7iso 87% 88% 97% 97% 94% 97% 96%
FV 90% 90% 97% 96% 96% 98% 97%

Hit Rate Reference
Ref Ref 23 MB1S22:452:7iso MB1S22:00

3x3x3:3 MB2S21:222:7iso MB4S1:50:702:7iso MB4S20:63
2:7iso FV

Comparison Ref 96% 90% 83% 89% 87% 85% 80%
Ref 23 81% 87% 77% 85% 80% 80% 73%
MB1S22:452:7iso 32% 37% 57% 68% 58% 60% 47%

MB1S22:003x3x3:3 45% 50% 87% 78% 75% 78% 63%

MB2S21:222:7iso 32% 37% 69% 52% 58% 55% 47%

MB4S1:50:702:7iso 46% 50% 86% 73% 84% 77% 68%

MB4S20:632:7iso 45% 50% 87% 75% 79% 76% 64%
FV 56% 61% 92% 81% 91% 90% 87%

FA Rate Reference
Ref Ref 23 MB1S22:452:7iso MB1S22:00

3x3x3:3 MB2S21:222:7iso MB4S1:50:702:7iso MB4S20:63
2:7iso FV

Comparison Ref 4% 14% 12% 14% 12% 12% 10%
Ref 23 1% 11% 9% 11% 9% 9% 7%
MB1S22:452:7iso 1% 1% 1% 2% 1% 1% 1%

MB1S22:003x3x3:3 2% 3% 5% 5% 3% 3% 2%

MB2S21:222:7iso 1% 1% 2% 2% 1% 2% 1%

MB4S1:50:702:7iso 2% 2% 5% 3% 5% 3% 1%

MB4S20:632:7iso 2% 2% 4% 3% 5% 3% 2%
FV 3% 5% 8% 6% 8% 5% 6%
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hit rate was also higher when only the first view (vs. the reference study)
was considered. These matrices suggest that on average, the maps from
different acquisition sequences have a high concordance.

(b) Region-wise analyses: Next, we labelled the brain regions using
AAL (thresholded at qfdr<0.05) to explore whether different sequences
would lead to different conclusions about the brain network recruited by
our task (Table 4). What is apparent from the table is that the core regions
typically conceived of as part of the action observation network are found
to be activated whatever parameters one uses (e.g. Postcentral, Pre-
central, Rolandic, and Supramarginal Gyrus). Such perfect agreement on
the fact that a region is activatedwas true for 14 out of 62 brain regions in
at least one hemisphere. There is also broad agreement on the fact that
many regions are not activated (i.e. activated to less than 5%) in any of
the sequences. This was true for 39 of the 62 brain regions in at least one
hemisphere. In total, for 53 out of the tested 62 brain regions, scientists
would thus arrive at the same conclusionwhatever MB choice they would
use. There was however a number of regions on which the different
parameter choices did show substantial disagreement (highlighted in
blue). It is notable, that regions of disagreement are often subcortical,
including the cerebellum and basal ganglia.

While this provides a qualitative overview, to get a quantitative
summarymeasure of how similar a conclusion would be drawn from such
activation tables using different sequences, we examined ROC measures
and correlation measured across the regions obtained using different
sequences (Table 5). The ROC analysis revealed that the concordance has
an area under the curve of at least 0.87 for the worst of the comparisons,
and is very close to perfect (0.99) when comparing the highest acceler-
ation (MB4S20:632:7iso) against the gold standard sequence without MB
(MB1S22:003x3x3:3) that had voxels with 50% larger volume. Correlation
measures on un-thresholded tables (in terms of percent activated) was at
least 0.77 and on average 0.88, further supporting how similar a
10
conclusion would be reached. Binarizing the table in those regions acti-
vated (i.e. with at least 5% of the voxels in that region showing signifi-
cant activation) or not, reduced the correlation to 0.74 on average.

Taken together these findings suggest that on a group level, with the
exception of a few regions, one would reach very similar conclusions
about the cortical networks that are involved in action observation,
regardless of which acquisition sequence is used, with the highest ac-
celeration allowing a voxel-volume reduction of 50% without changing
conclusions.

(c) Between and within subject variances: The measurements with
MB acceleration are noisier due to the imperfect separation of the
simultaneously acquired voxels (Golestani et al., 2017). However, it also
allows acquisition of many more samples which are thought to increase
the temporal SNR per time unit (see supplementary analysis 1, 2). As the
noise levels have a direct impact on the t-value estimation, we looked at
the between and within subject variances to see if the marginally higher
t-values in sequences with MB4 can be explained by systematic differ-
ences in the variances. One might expect that MB acceleration has ben-
efits on within subject variance by providing more samples, but not on
between subject variance, because we did not measure more participants
at higher MB. We therefore performed a variance analysis as explained in
Kirilina et al. (2016). The maps of the intra-subject variance (σ2) were
calculated using the following equation.

σ2 ¼ 1
N

�
c Xð1Þ�Xð1Þ�TcT

�
Cð1Þ (1)

Here, N¼ number of subjects, c¼ contrast of interest (CA-CC), X(1)- is
the generalized inverse of the design matrix of the fixed effect analysis
and C(1) is the residual variance maps (ResMS) generated while esti-
mating the fixed effect ANOVA. Superscripted T signifies the trans-
position of the matrix. Since the random effect variance maps are a



Table 4
AAL labelling of the brain regions activated for the CA-CC contrast at q <

0.05 level. Red colours are used to colour-code the level of activation in a
region in terms of percentage activated. Blue cells are the brain region where
there is a disagreement between different sequences, with some sequences
showing more and some less than 5% activation (in both hemispheres). Note
that for the vermis we show the joint activity of right and left hemisphere on
the left side of the table. Values are % brain area active. Minimum red in-
tensity is 5 and maximum is 50.
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combination of inter subject and intra subject variances, inter-subject
variance maps (Σ2) were calculated by subtracting σ2 from the ResMS
maps estimated during the random effect second level ANOVA. Five
voxels with peak activities in the CA-CC contrast of the reference study
(Fig. 2C) were selected as centers of 6 mm radius spheres (ROI1: �50,
�24, 34 area PF of the inferior parietal lobe; ROI2: 40, �32, 44 Area 2 of
the primary somatosensory cortex; ROI3: 30, �12, 60 superior frontal
gyrus; ROI4: �40, �6, 4 insula lobe; ROI5: 38, �4, 10 area OP3 of the
secondary somatosensory cortex; See inset in Fig. 3 for the location of
each ROI). Fig. 3 presents the mean t-values for the fixed and random
effect models, and within- and between-subject variances. As can be seen,
some ROIs were dominated by within- (ROI4, 5) and some by between-
subject (ROI1, 2) variance, but in all cases, the MB4S1:50:70

2:7iso sequence
outperforms the MB1S22:45

2:7iso sequence in terms of t-values. Also, within
subject variance was often but not always reduced in MB4S1:50:70

2:7iso vs.
MB1S22:45

2:7iso sequences. There was thus no systematic relationship be-
tween benefits of MB against the dominant source of variance.

The inter-subject variance is a positively defined value. However, its
estimation is obtained as a difference between the total variance and
intra-subject variance in the second level analysis. In cases when inter-
subject variance is much smaller than the intra-subject contribution,
the difference might by chance become negative as can be seen in the
case of ROI 5 and 6 where intra-subject variance dominates.

(d) GLM on first third of the data: With a specific total acquisition
time, higher MB allows the acquisition of up to 4 times the number of
volumes acquired with no MB. We thus explored whether the addi-
tional volumes per unit time at high MB can help when experimental
time is limited. To test this, we repeated the subject level analysis
using only the first third of each session for all five sequences. Group
level t-maps were calculated using the CA-CC contrast image of each
sequence separately and the resulting group t-map was correlated to
the group t-map of the same contrast from the reference study. A
similar correlation was also computed between the t-maps of the full
GLM (see section 3.2) and the reference study.

As can be seen in the t-maps of the truncated dataset (one-third of the
total scan) presented in Fig. 4A, many nodes that are a part of the action
observation network can already be detected (see Fig. 2A–C for com-
parison). Moreover, looking at the histogram of these images, the overall
performance pattern is similar to the results of the full dataset: higher
acceleration result in higher t-values (Fig. 4B). MB1S22:003x3x3:3 which have
bigger voxel size also shows higher t-values than the sequence with same
acceleration but smaller voxel size (MB1S22:452:7iso). Looking at the corre-
lation levels, we observed two phenomena. First, all of the truncated
dataset were worse than the full dataset of the same sequence (Fig. 4C),
suggesting that longer tasks are beneficial even at high multiband. Sec-
ond, even high multiband acceleration failed to perform quite as well as
the full dataset without MB acceleration (Fig. 4C comparing the solid
blue point against the dashed green, cyan or red). Given that the dashed
red point (i.e. 1/3 at MB4S20:632:7iso) actually has 1.33x as many functional
volumes as the solid blue dot (MB1S22:452:7iso), this highlights that the
number of dynamic volumes alone does not determine the reliability of
activations. In summary, multiband is not a surrogate for total acquisition
time.

3.2. GLM for resting state networks

Multiband has so far been mainly used and validated for resting state
studies, where it has been suggested to improve the ability to detect
RSNs. To explore whether we can replicate that finding in our data, we
performed a pseudo resting state analysis with our data. The detailed
description of the method can be found in section 2.6.

Fig. 5 shows a representative network (rsn06 in Smith et al., 2009)
separately for each sequence. Overall, at the threshold of qfdr<0.05, the



Table 5
ROC and correlations between the levels of activation labelled using AAL atlas. No threshold in Yellow and with 5%
threshold in green.

Fig. 3. Mean parameter values for the CA-CC contrast from five ROIs (radius 6 mm) centered on the first five voxels showing highest t values (at correction qfdr<0.05)
for the CA-CC contrast in the reference study. Figure A and B show the mean t-values from the random effect model and the fixed effect model, respectively. Figure C
and D show the between-subject variance and the within-subject variance in these ROIs, respectively. Inset shows the location of the five ROIs.
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network looks very similar for all the five sequences. Careful visual ex-
amination shows a small decrease in the cluster sizes as the TR increases
(see white arrows and white boxes in Fig. 5 for examples).

To quantify this, we counted the total number of voxels that were
significant at qfdr<0.05 for all 20 networks. Fig. 6 present the average
number (over all networks) of voxels as a function of acquisition
sequence. An ANOVA was computed in SPSS with 20 components and 5
sequences and revealed a main effect of sequence (F(4,76) ¼ 28.82, p <

0.001). Post-hoc pairwise comparisons show that the slowest acquisition
(MB1S22:003x3x3:3,MB1S22:452:7iso) have fewer significant voxels than any of the
MB accelerated sequences (MB2S21:222:7iso, MB4S1:50:702:7iso, MB4S20:632:7iso). On
average across all RSNs, sequence with MB2S21:222:7iso show a 15% increase
in the number of significant voxels and sequence with MB4S1:50:702:7iso and
MB4S20:632:7iso show 35% and 38% increase respectively, as compared to
MB1S22:452:7iso, MB1S22:003x3x3:3 had the lowest number of voxels significant at
12
qfdr<0.05.
To explore this phenomenon in a way that is less threshold depen-

dent, and separately for each rsn, we plotted normalized cumulative
histograms in Fig. 7. Using qfdr<0.05 for each rsn for MB1S22:452:7iso, we
counted the number of significant voxels, Nref. For any higher point along
the x axis, we plot N(t � x)/Nref. Accordingly, for MB1S22:452:7iso, the first
point along the x axis has a value of 1, which then decreases as a higher
threshold is used while moving to the right. Values of other x-coordinates
of sequences can then be directly understood as the number of voxels
surviving that threshold relative to Nref. Plots framed in the orange
outline show the component for which MB2S21:222:7iso performs best, and
plots framed in red are the ones where sequences with no MB show the
highest number of supra-threshold voxels. All the others components
showed that MB4S1:50:702:7iso or MB4S20:632:7iso indeed identify more voxels
across a wide range of thresholds. The two components (in red) which do



Fig. 4. (A) Group maps showing the
task correlated activity detected using
the task GLM predictors, but using only
the first one third of the total acquisition
per sequence. Overlaid on the mean grey
matter segment of the group. qfdr<0.05,
cluster threshold 50 voxels. (B) Histo-
gram of the t values for the CA-CC
contrast for the one third of the total
acquisition per sequence. (C) Correla-
tion between t-maps of the CA-CC
contrast per sequence and t-maps of
the same contrast from the 31 subjects
of the reference study.

Fig. 5. Group maps per acquired sequence showing a representative RSN: network number 6, as described in Smith et al. (2009). White arrows and rectangles
evidence areas with visually different cluster extension across different sequences. Maps overlaid on the mean grey matter segment of the group, and thresholded at
qfdr<0.05 with a minimum cluster size of 50 voxels.
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Fig. 6. Total number of voxels that are significant at qfdr<0.05 for each
sequence. (*p < 0.001 for between sequence comparisons.)

Fig. 7. Per component number of voxels surviving any t-threshold relative to the non
the voxel wise t-values, and the y-axis the number of voxels surviving that threshold r
most inclusive, except for the plot framed in orange and red, where MB2S21:22

2:7iso and
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not show an advantage of MB are classified by Smith et al. (2009) as
belonging either to deep brain regions, or are artefactual components.
However, since 17 out of 20 components show that using MB4 would
yield higher t-values, this analysis recommends the use of MB 4 while
studying RSNs at the group level, if the aim is to be inclusive. One un-
expected finding of this analysis was that the MB1S22:003x3x3:3, which was
excellent for task based fMRI (performing better than MB1S22:452:7iso and
similar to the MB4S1:50:702:7iso and MB4S20:632:7iso), was one of the least
sensitive sequence for the RSNs. The potential reason for this curious
finding is discussed in the discussion section.

4. Discussion

We tested if acquisition with a shorter TR and therefore higher
sampling rate – as afforded by MB – may improve our power to identify
the neural substrates of cognitive functions. Based on our analysis of task-
based fMRI data, for group level analyses, the use of MB acceleration is
beneficial to improve voxel-wise statistics. In our Philips
-accelerated MB1S22:45
2:7iso sequence for resting state analysis. The x-axis represents

elative to the number of voxels surviving t � 2 at MB1S22:452:7iso. MB4 sequences are
MB1S22:452:7iso sequences include the largest number of voxels.
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implementation, sequences with MB4 acceleration (both S1.5 and S2)
and 2.7 mmisotropic voxels, showed the highest t-statistics in our task-
based fMRI analysis. Interestingly, this was the case despite the MB4
sequence generating data with less effective smoothing than the se-
quences with lower MB acceleration. This is surprising, because more
smoothing normally benefits t-values and reduces the correction for
multiple comparisons, and would thus be expected to put our MB4 se-
quences at a disadvantage.

Other than the effect ofMB acceleration, therewere threemain factors
that influenced the group statistics. First, the impact of voxel size is well
known (Robinson et al., 2008) and with this data we show that while for
tSNR, MB2 is enough to compensate for 50% reduction in voxel volume
(see Supplementary analysis, tSNR section, Supplementary Fig. 3),when it
comes to thegroup level t-values,MB4had t-values thatwere similar to the
t-values seenwithMB1 sequencewith 3� 3�3.3mm3 voxel size (Fig. 2B,
E). Furthermore, higher t-valueswere observedwhen the group sizeswere
bigger (Turner et al., 2018) and the subjects viewed the stimuli only once
(Larsson and Smith, 2011).While these are indirect observations from the
data presented here, it can be clearly seen from Fig. 2 C-E thatMB does not
compensate for factors such as larger sample sizes and repetition sup-
pression effect. While these contributions of voxel size, group size and
multiple view is not a novel discovery, the use of the higher-powered
reference study helps visualize the magnitude of t-value gains with MB
acceleration in a new light. It suggests that the effect sizes of the gains are
not big enough to nullify the effects of these factors.

It should be noted that all the sequences used in the current acqui-
sition were able to identify the core regions that have been shown to be a
part of the action observation network (Abdelgabar et al., 2018; Gazzola
and Keysers, 2009). ROC analyses suggest a strong concordance between
the outcomes of different sequences (Tables 3 and 5). So if one selects any
of the sequences presented here, they would reach more or less similar
conclusion about the brain regions implicated in the cognition of interest.
Looking at the areas where we found disagreement between the se-
quences, we notice that they particularly include subcortical regions
including the cerebellum and basal ganglia, which are detected more
often in sequences with MB acceleration or with the sequences with
bigger voxel sizes (see blue box in Table 4). This finding further supports
the use of MB acceleration for detecting task correlated BOLD particu-
larly if one is interested in these regions. Moreover, using dual regression
analysis we show similar benefits of MB acceleration on RSNs (Figs. 5–7)
supporting the evidence present in the literature that tests MB acquisition
using resting state fMRI (Feinberg et al., 2010; Griffanti et al., 2014; X.-H.
Liao et al., 2013).

We looked at inter and intra-subject variability in an attempt to shed
light on howMB benefits group analyses. In our previous study where we
tested standard single-shot 2D echo planar imaging (EPI) to three
advanced EPI sequences, i.e., 2D multi-echo EPI, 3D high resolution EPI
and 3D dual-echo fast EPI, inter-subject variability had a major impact in
determining the sensitivity of the group-level analyses (Kirilina et al.,
2016) in almost all brain regions except of prefrontal cortex, thereby
limiting the potential for improving results by improving the measure-
ment of each subject. However, in the current study, we found that the
contribution of intra- and inter-subject variance to the random effect
group level analysis was comparable. Therefore the dominant form of
variance varies across regions, making the distinction of between- and
within-subject variance less fruitful in understanding how MB benefits
the group analysis (Fig. 3).

Looking at other image statistics such as G-factor and tSNR, we see
that g-factor values increase with higher MB suggesting increase in noise
due to poorer separation of the aliased voxels (Supplementary Fig. 1).
However, correcting for the number of acquired volumes, the predicted
tSNR and the measured effective tSNR (Supplementary Table 2, Fig. 2)
both improve with higher MB factor. Since the variance shows no sys-
tematic differences (Fig. 3) and the noise measures increase with higher
MB (Supplementary Analysis 1, 3), increasing the sampling rate is the
most likely explanation for the better t-statistics with higher MB, and
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appears to have outweighed the disadvantages of MB (e.g. reduction in
raw tSNR and increased autocorrelation of samples).

To explore whether the additional volumes acquired with higher MB
can compensate for performing fewer repetitions of the task, we trun-
cated the data and examined the first third of each experiment. With one
third of the MB4 acquisition containing as many samples as the full MB1
acquisition, one might have expected the former to generate maps quite
similar to the latter. However, we see that higher multiband did not show
benefits in terms of localizing activations more reliably when fewer
repetitions of a condition are available. This is contrary to what has been
claimed for rs-fMRI (X.-H. Liao et al., 2013). This inability of the addi-
tional data points obtained using multiband to replace those obtained by
a longer task is similar to the recent findings showing that temporal down
sampling by randomly removing up to 50% of time points has little ef-
fects on BOLD reliability, while truncating the datasets is associated with
decreased reliability (Shah et al., 2016), and may reflect the fact that
temporal autocorrelation in fMRI data may make adjacent data-points
acquired with short TR comparatively redundant.

Taking these factors together, our data suggests that on our Philips 3 T
scanner, and implementation of multiband (based on scanner software
release version R5.4), faster scanning offers modest but significant ben-
efits for group-level voxel-wise task-correlated statistics and can be used
as a better alternative to the single-band EPI, if other variables such as
voxel size, scan duration and sample size are identical. UsingMB factor of
4 with in plane SENSE factor of 1.5 or 2 and spatial resolution of 2.7 mm
isotropic seems superior to the other sequences used here. However,
when deciding whether to invest into multiband technology for cognitive
neuroscience paradigms, our analyses suggests that for task-based
studies, results similar to MB acceleration of factor 4 can be achieved
by increasing the voxel size. This however might not be true for resting
state studies. In our resting state analysis, sequence with MB1 and 3 �
3�3.3 mm3voxel size showed the lowest t-values. The reason for the
observed better connectivity estimates for smaller voxel sizes at MB1 is
unclear. One potential reason could be a reduced intra-voxel dephasing
due to reduced field inhomogeneity for smaller voxel sizes.

One important thing to note here is that our study focuses on
comparing group-level statistics. This was chosen, because most cogni-
tive neuroscience studies draw their conclusions from such group studies
with ~20 participants. An interesting additional question is whether MB
would alter the t-values obtained at the single subject level. This might be
particularly interesting when studying rare patients, for instance, or
performing pre-surgical scanning. Even though each of our subjects was
scanned with all sequences, we found it difficult to answer this seemingly
simple question. This is due to two reasons. First, the difference in TR
across sequences substantially changes the white-matter/grey-matter
contrast (Supplementary Figs. 6 and 7). As a result, the global mean
normalization that is part of the traditional SPM pipeline applies different
normalizing factors to images from different TR, and hence makes the
beta maps non-comparable. Second, sequences with shorter TR acquire
more samples and their single subject t-values thus need to be compared
against different critical t-values due to the difference in degrees of
freedom. This makes comparing the single subject t-values across se-
quences meaningless. We tried to compensate for this effect by z-trans-
forming the p values (invnorm(p)) or comparing effect sizes (t/sqrt(df)),
but found that doing so leads to counterintuitive results that suggest
potential issues with the calculation of degrees of freedom. For a detailed
analysis on this topic using the same data presented here, see (Bhandari
et al., 2019).

To assess the task correlated BOLD, we convolved the boxcar with the
canonical haemodynamic function. It assumes that the BOLD response
peaks approximately 5 s after stimulation, and is followed by an under-
shoot. While this may be true in the primary sensory areas such as VI and
M1, this pattern may vary in other brain regions and between subjects.
Several alternative measures have been proposed for modelling the HRF
(Badillo et al., 2013; Kumar and Penny, 2014; Quir�os et al., 2010). A
systematic study of some of the commonly used algorithms and
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alternatives for modelling the haemodynamic response concluded that it
is surprisingly difficult to accurately recover true task-evoked changes in
BOLD signal and that there are substantial differences among models in
terms of power, bias and parameter confusability (Lindquist et al., 2009).
One should bear in mind the settings used here while interpreting the
findings.

Tobrieflyelaborateon this issuewithourowndata,we re-analysedour
data using the additional time and dispersion derivatives that allow us to
capture differences in the latency and the duration of the peak response,
respectively. The results (Supplementary Analysis 6) show that the
network recruited by the task remains largely unchanged. Moreover, the
histogram of the t-values shows that overall, MB4 accelerated sequences
still performs better than the sequences with no or lower MB accelerated
sequences as seen while modelling only with the canonical HRF.

Our study has a number of strengths and limitations that should be
considered. Limitations: Because we only used a block design task, our
study cannot address whether event-related designs may benefit more
from increased acquisition speed, and this should be investigated in
future studies. Theoretically, if the contribution of the white noise
(dependent on the subject and the MRI system electronics) in the data is
not substantial, then one may expect a higher gain in GLM activation
with increasing task frequency (characteristic of event related designs)
with shorter TRs (Chen et al., 2019). Several studies have investigated
the effect of MB acceleration on event-related designs (Demetriou et al.,
2018; McDowell and Carmichael, 2018; Sahib et al., 2018, 2016).
Together these studies showed that there might be benefits of using MB
acceleration for task based paradigms while analysing functional con-
nectivity and task-based BOLD contrasts. However, these effects might be
more nuanced and may depend on more factors than just the task design,
as Demetriou et al. (2018) specifically showed that while the ROI anal-
ysis were inconsistent, the benefits of using MB became apparent only
when using multivariate pattern analysis. Also, whether cognitive
neuroscience questions which can use MB acquisition without decreasing
the TR and thus using the silent periods for presenting auditory stimuli
(DeMartino et al., 2015) or performing simultaneous EEG recordings (Uji
et al., 2018) or other electrical recordings that may benefit from reduced
interference from the radio-frequency pulses from fMRI, have not been
tested here. Next, higher sampling with MB acceleration allows acqui-
sition of high frequency components. Here we do not explore whether
these higher frequencies, which are absent in the HRF convolved pre-
dictor, contain task-induced neural information. Moreover, shorter TRs
offer advantages for spectral de-aliasing (Tong and Frederick, 2014a;
Tong et al., 2014). Here we decided not to perform low-pass filtering
because studies have shown the presence of BOLD like components in
high frequency bands (Boubela et al., 2013). Here we employ 16 re-
gressors including the six motion and ten principal components from CSF
andWM (CompCorr, Behzadi et al., 2007) to de-noise the data. However,
the effect of other noise cleaning procedures that have been proposed for
cleaning MB data such as FIX (Boyacio�glu et al., 2015), have not been
tested on this data and may be considered in the future exploration using
this data. We performed our analysis using the algorithms implemented
in SPM that are most commonly used while analysing the data in
cognitive and social neurosciences. For instance to normalize the data,
the unified segmentation was used. Alternative algorithms implemented
in other software, such as AIR, ANIMAL, ART, Diffeomorphic Demons,
FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, DARTEL, or using surfaces
(Coalson et al., 2018; Klein et al., 2009) might provide alternate ways to
perform normalization. Future studies could use the data we make
available at https://osf.io/ncm25/?view_only¼1d15a45aa3444
a7caed90f3842d9f4e5 to examine the impact of these methods on the
effect of MB in our dataset. An additional limitation of our study is that
for the MB2 condition, we had 22 instead of 23 participants. Because
t-values scale with the square route of the degrees of freedom, this means
that we have underestimated the t-values for the MB2 by about 2%. The
differences between MB2 and MB4 we report here are however larger
than 2%, and we feel that our data therefore nevertheless supports
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benefits of MB4 over MB2, and performing all analysis on N ¼ 22 par-
ticipants lead to similar results (See Supplementary Fig. 8). Finally, we
report that the image grey-white CNR decreases as the TR becomes
shorter (Supplementary Figs. 6 and 7). In this data where the volunteers
were healthy adults and there was minimal subject movement, we did
not encounter any issues with the realignment steps of pre-processing
pipeline. However, in patient population where motion might be an
issue, an additional loss of CNR may result in sub-optimal realignment,
thereby affecting the final statistics. This concept can be explored using
controlled head movements in the scanner and may be addressed in
future studies. Strengths: While most of the previous studies looked the
effect of MB on the summary statistics from the subject level analyses
(Demetriou et al., 2018; Kiss et al., 2018; Sahib et al., 2016; Todd et al.,
2016), the current study is one of the only 2 studies that look at the effect
of MB acceleration on voxel-wise group-level task-related statistics
(Boyacio�glu et al., 2015). While the subject-level statics are good in-
dicators of the performance of MB, one should be careful while inter-
preting the findings coming from sequences that result in variable image
CNR as well as have different degrees of freedom per sequence (Bhandari
et al., 2019). While most previous studies looked at the effect of multi-
band on very simple sensory tasks and lenient contrasts, using very small
sample sizes (median N¼ 10), our study used a task and sample size more
representative of contemporary cognitive neuroscience studies to have
the power to detect even moderate benefits of multiband and ensure that
our results are reproducible and representative. That our group results
are so similar at different MB and so similar to an independent study
(Fig. 2) provides evidence for the robustness of our cognitive neurosci-
ence task and results. Using the same participants on the same scanner at
different multiband levels ensures that differences in multiband perfor-
mance are not the result of differences across subject pools or scanners.

Finally, there may be additional considerations for a potential user.
For example, the head coil must have a sufficient number of coil ele-
ments, with a minimum of 32 elements as used in this study. Commercial
solutions require appropriate licensing that needs to be acquired. The
size of the data increases linearly with the MB factor, requiring additional
storage space and processing timings. Moreover, different noise sources
may affect the data differently because of the reduced signal to-noise
ratio (SNR) per time frame due to reduced longitudinal magnetization
recovery (for a detailed analysis of this topic see J. E. Chen et al., 2019).
For instance, the impact of head movement on respiratory artifacts is
much more pronounced with short TRs than longer TRs. Therefore, with
special populations where head movement is an issue, use of shorter TRs
may not be ideal or would require implementation of special pre-
processing steps (J. E. Chen et al., 2019).

In summary, we can thus recommend the use of MB4 on a Philips
scanner when aiming to perform group-level analyses using cognitive
block design fMRI tasks using voxel sizes in the range of cortical thickness
(e.g. 2.7 mm isotropic). While results will not be dramatically changed by
the use of multiband, our results suggest that MB will bring a moderate
but significant benefit.
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