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Molecular dynamics trajectories 
for 630 coarse-grained drug-
membrane permeations
Christian Hoffmann1, alessia Centi1, Roberto Menichetti  1,2,3 & tristan Bereau  1 ✉

The permeation of small-molecule drugs across a phospholipid membrane bears much interest both in 
the pharmaceutical sciences and in physical chemistry. Connecting the chemistry of the drug and the 
lipids to the resulting thermodynamic properties remains of immediate importance. Here we report 
molecular dynamics (MD) simulation trajectories using the coarse-grained (CG) Martini force field. A 
wide, representative coverage of chemistry is provided: across solutes—exhaustively enumerating all 
105 CG dimers—and across six phospholipids. For each combination, umbrella-sampling simulations 
provide detailed structural information of the solute at all depths from the bilayer midplane to bulk 
water, allowing a precise reconstruction of the potential of mean force. Overall, the present database 
contains trajectories from 15,120 MD simulations. This database may serve the further identification of 
structure-property relationships between compound chemistry and drug permeability.

Background & Summary
The passive permeation of small organic, drug-like molecules across phospholipid membranes has garnered 
much interest, not only to practically optimize pharmaceutical properties, but also as a more fundamental 
physical-chemistry problem1. The latter acts as a testbed to understand the molecular driving forces at play during 
a permeation process across a soft interface. A more robust understanding of the structure-property relationship 
can be obtained by screening across chemistries and systematically measuring the permeability coefficient from 
in vitro experiments2,3. Given the small size and apparent bias of databases of experimental compounds4, the per-
spective to harness computational methods at high throughput has been on the rise5–9.

Permeation is described using the inhomogeneous solubility-diffusion model to yield a diffusion process in 
terms of a one-dimensional Smoluchowski equation along z—the normal to the membrane midplane. The result-
ing permeability coefficient, P, takes the form

P dz exp G z
D z
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,
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β
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where β =− k TB
1  is the inverse temperature, G(z) is the potential of mean force (PMF), and D(z) is the local dif-

fusivity. As such, knowledge of G(z) and D(z) enables an in silico estimation of P, which may be obtained from 
molecular dynamics (MD) simulations. While the direct estimation of these quantities from brute-force MD 
typically fails, enhanced-sampling methods have provided a robust strategy to estimate both G(z) and D(z). 
Equation 1 depends exponentially on G(z), but only linearly on D(z), making the latter quantity less critical—it 
was also found to depend rather weakly on the chemistry of the drug10. A large number of enhanced-sampling 
studies have demonstrated the capability to not only converge the PMF, but also to provide permeability coeffi-
cients that exhibit high correlation with experimental measurements10–16. An illustrative example of the PMF is 
shown in Fig. 1a, together with a cartoon of a phospholipid membrane in the background.

The in silico route is predictive and generalizable in that it does not rely on adjustable parameters: the main 
input of an MD simulation is the force field, often parametrized on properties unrelated to interactions with a 
phospholipid membrane17,18. Critically, this limits the danger of overfitting observed in statistical models19. The 
main downside of using MD simulations is the computational investment: atomistic simulations with explicit 
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solvent typically require 105 CPU-hours for a small molecule in a single-component lipid membrane10,13,14,20, 
hindering the prospects of running them at high-throughput.

We have recently proposed the use of coarse-grained (CG) models to tackle this problem. Coarse-graining 
can enable a more efficient sampling of the conformational space by lumping together atoms into super-particles 
or beads21,22. In particular we relied on the CG Martini model23–25, which is specifically tailored to reproduce 
the partitioning behavior of compounds in different environments—thus making it particularly well suited for 
permeability calculations. The modularity of Martini means that it constructs molecules based on a small set of 
bead types, each one encoding different chemical properties—mainly hydrophobicity, hydrogen-bonding, and 
charge (see Table 1 for details). We reported the systematic calculation of PMFs using umbrella sampling for all 

Fig. 1 Drug-membrane computer simulation setup; screening over both phospholipids and solute molecules. 
(a) Background: Simulation setup of a solute (yellow) partitioning between water (not shown) and the lipid 
membrane. Foreground: Potential of mean force along the normal of the bilayer, G(z). (b) Lipid membrane: 
Cartoon representations of the five phospholipids, differing in the number of unsaturated groups. (c) Solute 
molecule: Combinatorics of all 105 CG Martini dimers. (d) The present dataset contains the trajectory of each 
MD simulation.

Polarity Type HB ΔGOl→W

hydrophilic

P5 — −2.1

P4 — −2.2

P3 — −2.1

P2 — −0.9

P1 — −0.5

neutral

Nda d, a 0.6

Nd d 0.6

Na a 0.6

N0 — 1.0

hydrophobic

C5 — 1.7

C4 — 2.4

C3 — 3.0

C2 — 3.3

C1 — 3.4

Table 1. Characteristics of non-charged Martini bead types. The table contains information about the bead-
type name (Type), hydrogen-bonding capability (HB, “d” and “a” for donor and acceptor, respectively), and 
the octanol/water partitioning free energy (ΔGOl→W = ΔGwater − ΔGoctanol, in units of kcal/mol), as reported 
elsewhere38.
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CG compounds made of one and two neutral beads (hereafter denoted unimers and dimers)26. This amounted to 
14 unimers and 14 × 15/2 = 105 dimers (Fig. 1c). The thermodynamic parametrization of Martini yields accurate 
PMFs, as compared to reference curves from atomistic simulations, as well as remarkably-accurate permeabil-
ity coefficients, as compared to reference simulations and experiments27. Because of the transferable nature of 
Martini, the CG model significantly reduces the size of chemical space, such that these 119 computer simulations 
offer estimates for more than 500,000 small molecules26,27. We more recently extended our approach to linear 
trimers and tetramers, demonstrating that the screening range can be significantly increased28. As such, Martini 
offers a robust methodology to run high-throughput computer simulations of drug-membrane permeability.

The present database reports the full umbrella-sampling MD trajectories necessary to run PMF calculations 
for all Martini dimers in six different single-component phospholipid membranes. The 105 dimers inserted in 6 
membranes amounts to 630 drug-membrane combinations (Fig. 1). Given that each PMF calculation relied on 24 
umbrella sampling simulations, the present database contains 15,120 MD trajectories. The diversity of compound 
and lipid chemistries can offer unprecedented insight into the underlying thermodynamics26,29. Below we present 
an example use of the present database by displaying the tilt angle of each compound across membrane-insertion 
depth and compound chemistry. We believe that the raw MD trajectories provided for this breadth of chemistries 
will provide further insight into the structure-property relationships governing drug-membrane permeability.

Methods
We follow previously established simulation protocols that are described in detail elsewhere26. In brief, we built 
symmetric, single-lipid bilayer membranes that contain 64 lipids per leaflet using the Insane script30. Table 2 
informs on the composition of the various membrane systems that differ in the number of water beads. As it 
is common practice, we replaced at least 10% of the non-polarizable Martini waters by anti-freeze beads. 
Simulations were performed in Gromacs 4.6.631 using the Martini force field with standard input parameters32. 
We ran simulations in the NPT ensemble at 300 K and 1 bar controlled by means of a stochastic velocity-rescaling 
thermostat33 and a Parrinello-Rahman barostat34, respectively. We performed umbrella sampling along the bilayer 
normal (z-axis) in a range from 0.0 to 4.1 nm at a step size of 0.1 nm by generating 24 windows in which the 

Membrane NL NW NAF

DAPC 128 2430 270

DIPC 128 2120 236

DLPC 128 1883 209

DOPC 128 1890 189

DPPC 128 2014 224

POPC 128 2014 224

Table 2. Composition of single-lipid bilayer membranes. NL = number of lipid molecules, NW = number of 
water beads, NAF = number of anti-freeze beads. DAPC = 1,2-diarachidonoyl-sn-glycero-3-phosphocholine. 
DIPC = 1,2-dilinoleoyl-sn-glycero-3-phosphocholine. DLPC = 1,2-dilauroyl-sn-glycero-3-phosphocholine. 
DOPC = 1,2-dioleoyl-sn-glycero-3-phosphocholine. DPPC = 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. 
POPC = 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.

Folder/File I/O Description

us-x/

 equ.cpt I binary; checkpoint to extend a previous simulation

 equ.gro I coordinates of the starting configuration

 system.top I topology of the molecular system

 martini_v2.2.itp I Force field and parameters

 martini_v2.0_lipids.itp I Lipid force field

 mol3.itp, mol3-2.itp I Solute force field

 prod.mdp I simulation parameters

 prod.tpr I binary; overall simulation information

 prod.xtc O binary; trajectory

 prod.edr O binary; various observables (e.g., energies)

 prodx-umbrella0.xvg O time evolution of the solute CoMs along the z axis

 prodf-umbrella0.xvg O time evolution of the pull forces along the z axis

pmf/

 tpr-files.dat I indexes paths to the tpr files

 pullx-files.dat I indexes paths to the prodx files

 bsResult.xvg O PMF profile with error bars

Table 3. Supplied files and their purpose. All files provided in text format unless specified otherwise. 
I/O = input/output. CoM = center of mass.
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solute is centered via a harmonic biasing potential (k = 240 kcal/mol/nm2). For computational efficiency, each 
simulation box contained two solute compounds placed in different membrane leaflets. Each window included a 
sequence of minimization, heat-up, and equilibration runs prior to the production one, the latter being simulated 
for 1.2 · 105 τ using a time step of δt = 0.02 τ, where τ (1 ps) refers to the model’s natural unit of time. PMF profiles 
were then reconstructed by means of the weighted histogram analysis method (WHAM)35,36, with error bars 
estimated from 100 bootstraps.

Data Records
We provide datasets for MD trajectories of solute-membrane systems at a CG resolution for 105 solutes inserted 
in six different phospholipid bilayers37. Each dataset is denoted by the abbreviated name of the lipid and deposited 
as a single archive file, e.g., DPPC.tar.bz2. Within a dataset, there are 105 folders containing the trajectories 
and PMF profile of a particular solute, following the naming convention DIM_bead1-bead2, where bead1 
and bead2 denote the relevant bead types following the standard Martini notation (see Table 1). For improved 
sampling we have systematically placed two solutes in each simulation box, always separated by a normal distance 
(i.e., only along z) of 4.1 nm. The trajectories obtained from umbrella sampling (US) are stored in sub-folders 
denoted us-x, where x takes values 0.0, 0.1, …, 2.4, corresponding to the reference depth in the bilayer of 
one of the two solutes. For instance, the folder us-2.4 contains two solutes restrained around z1 = 2.4 nm and 
z2 = −1.7 nm. The US sub-folders contain all necessary input files to repeat the production runs as well as the 
respective output files, including trajectories and observables. The sub-folder pmf contains the input files to 
perform WHAM reweighting in Gromacs and the output PMF profiles. Table 3 lists all files included in the 
sub-folders us-x and pmf together with a brief description of their purpose. In Fig. 2 we report typical PMF 

P1-P1

(c)

(b)

C1-P3

(a)

C1-C1

Fig. 2 Examples of PMF profiles in different lipid environments. Three representative solutes are shown: (a) 
hydrophobic (C1-C1); (b) amphiphilic (C1-P3); and (c) polar (P1-P1). See labels for the different lipid types.
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profiles obtained for hydrophobic (Fig. 2a), amphiphilic (Fig. 2b), and polar solute compounds (Fig. 2c) across all 
considered lipid environments.

Our records indicate a computational investment to run heat-up, equilibration, and production simulations 
of roughly 0.5, 1, and 8 CPU-hours per umbrella, respectively. Summing up over all 15,120 MD simulations sup-
plied, this amounts to roughly 150,000 CPU-hours to generate the present dataset.

technical Validation
A number of studies using the same simulation protocol have demonstrated the thermodynamic validity and 
accuracy of CG Martini simulations. Bereau and Kremer found a mean absolute error between experimental and 
Martini transfer free energies between water and octanol of 0.79 kcal/mol across 653 neutral small organic mole-
cules—an excellent result given the minimalism of the model38. By further invoking relations between bulk trans-
fer free energies, used as proxy for various environments of the membrane, we deduced a mean absolute error 
on features of our CG PMFs of approximately 1.4 kcal/mol26. This remarkable agreement had been earlier probed 
specifically for amino acids39. On a structural level, we showed that backmapping CG snapshots and running 
short atomistic MD simulations offered a significant speedup in convergence of the atomistic PMF calculations, 
suggesting that the conformational ensemble of the CG model adequately matches its atomistic counterpart40. 
Moreover, as the permeability coefficient depends exponentially on the PMF, reliable estimates of the latter prove 
necessary13. We showed that the accuracy of the PMFs obtained through Martini translated into excellent predict-
ability for the permeability coefficient—roughly 1 log unit27,29.

Fig. 3 Average tilt angle in a DPPC bilayer as function of the z-distance across all 105 solute compounds.

https://doi.org/10.1038/s41597-020-0391-0
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Usage Notes
The 15,120 MD trajectories in this dataset provide a rich amount of information. As an illustration, we focus on 
the orientation of the solute with respect to the normal of the membrane bilayer. We define a tilt angle θ between 
the bond vector of the solute and the normal vector of the membrane, oriented as to point from the the bilayer 
midplane to the membrane surface. Figure 3 displays the average tilt angle as a function of the depth z in a DPPC 
bilayer across all 105 solute compounds. The depicted angles are normalized to sin θ to account for the Jacobian 
of the transformation to spherical coordinates.

We find that solutes composed of two beads of identical or similar polarity display no preferred orientation, 
such that θ ≈ 90°. On the other hand, features appear for compounds that show a difference in polarity between 
the two beads of the solute. These features are markedly present in the range of depths 0.9 < z < 2.2 nm, which 
entails the lipid tail region. These amphiphilic solutes, such as C1-P5, show a strong preference for small tilt angles 
θ < 45°, where the more hydrophobic bead is facing the membrane core. The lack of features below z ≈ 0.9 nm is 
likely due to the force field’s interaction cut-off. In addition, strongly amphiphilic solutes also show orientational 
order at the membrane/water interface (2.4 < z < 2.7 nm), but with a flipped bond vector (θ ≈ 130°), i.e., the polar 
site now faces the membrane.

Code availability
No custom code was used to generate this dataset. Simulations were run using Gromacs 4.6.6, and all input files 
used to generate the trajectories are contained in the present dataset. The output data contains a number of binary 
files, all generated from Gromacs. Gromacs is available across many platforms and architectures (see Gromacs 
manual) and its output files can be read either from a compiled version of the freely-available code, or from other 
analysis modules, such as mdanalysis41 or mdtraj42.

The WHAM-reconstructed PMFs were obtained by running a command that can be found in each DIM_
bead1-bead2/pmf/bsResult.xvg file.
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