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A Propositional Dynamic
Logic for Instantial
Neighborhood Semantics

Abstract. We propose a new perspective on logics of computation by combining instan-

tial neighborhood logic INL with bisimulation safe operations adapted from PDL. INL is

a recent modal logic, based on an extended neighborhood semantics which permits quan-

tification over individual neighborhoods plus their contents. This system has a natural

interpretation as a logic of computation in open systems. Motivated by this interpretation,

we show that a number of familiar program constructors can be adapted to instantial

neighborhood semantics to preserve invariance for instantial neighborhood bisimulations,

the appropriate bisimulation concept for INL. We also prove that our extended logic IPDL

is a conservative extension of dual-free game logic, and its semantics generalizes the mono-

tone neighborhood semantics of game logic. Finally, we provide a sound and complete

system of axioms for IPDL, and establish its finite model property and decidability.

Keywords: Dynamic logic, Game logic, Neighborhood models, Instantial neighborhood

logic.

1. Introduction

In this paper, we introduce a new modal logic of computation, in the style
of propositional dynamic logic, based on instantial neighborhood logic INL
[6]. The logic INL is based on a recent variant of monotone neighborhood
semantics for modal logics, called instantial neighborhood semantics. In the
standard neighborhood semantics, the box operator has the interpretation:
�p is true at a point if there exists a neighborhood in which all the ele-
ments satisfy the proposition p. So the box operator has a built-in fixed
existential-universal quantifier pattern. In instantial neighborhood logic, we
allow both universal and existential quantification over individual neighbor-
hoods, so the basic modality has the form �(p1, . . . , pn; q). This formula is
true at a point if there exists a neighborhood N in which all the elements
satisfy the proposition q, and furthermore each of the propositions p1, . . . , pn

are satisfied by some elements of N . INL is more expressive than monotone
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neighborhood logic, and comes with a natural associated notion of bisimu-
lation together with a Hennessy–Milner theorem for finite models. It has a
complete system of axioms, has the finite model property, is decidable and
PSpace-complete.

Formally, our proposal is to extend the base language INL with bisimula-
tion safe “program constructors”, as in standard propositional dynamic logic
of sequential programs (PDL). The usual repertoire here consists of choice,
test, sequential composition and a Kleene star for program iteration. Similar
additions have been studied extensively for the standard (monotone) neigh-
borhood semantics, with constructors interpreted as ways of constructing
complex games (this idea dates back to [19]). In the neighborhood setting,
additional operations are available, including the dual construction. This is
a very powerful device, and it is well known that dynamic game logic is not
contained in any fixed level of the μ-calculus alternation hierarchy [8].

We think of our extended system of ‘instantial PDL’ (IPDL for short),
as a dynamic logic for a richer notion of computation than sequential pro-
grams, which is sometimes referred to as open systems [2]. In open systems,
a computational process is viewed as an agent acting in an uncertain envi-
ronment that affects the outcome of each action. That is, each action by the
agent is followed by a response from the environment, which is not uniquely
determined. This is in contrast with reactive systems, where the behaviour
of the system is non-deterministic but completely determined by the actions
of the agent [1]. Many different logics for open systems have been proposed,
perhaps the most well known being the alternating-time temporal logic ATL
introduced by Alur et al. in [2]. Dynamic game logic can be interpreted in
a similar way, thinking of processes as “games against the environment”.
Game logic is usually interpreted with a neighborhood semantics, in which
neighborhoods of “worlds” in a model are taken to represent powers of some
player, i.e. goals that can be enforced by some action or strategy. Instantial
neighborhood semantics introduces a more fine-grained perspective to this
setting, with a more expressive language and a finer bisimulation concept
than standard neighborhood bisimilarity, namely the instantial neighbor-
hood bisimulations of [6]. Since INL formulas allow existential quantification
over individual neighborhoods, this language is suitable to describe not only
what conditions an agent can enforce by some action, but allows more pre-
cise reasoning about exactly what possible outcomes may result from some
action. Concretely, we introduce formulas of the following kind:

〈a〉(ψ1, . . . , ψn; ϕ)
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expressing the following property about the system/program a: “the agent
can act so as to ensure that ϕ holds, while allowing (for each i ∈ {1, . . . , n})
the possibility that the property ψi may hold”. In other words, instantial
neighborhood logic has a natural interpretation as a simple yet expressive
modal logic for computation in open systems.

However, on a computational interpretation, it is standard wisdom that
one needs to extend the language to allow certain fixpoint constructions,
since most specifications of systems that turn up in practice—safety, live-
ness, fairness etc.—involve fixpoints. There are many options available here,
the most obvious one being to simply add unrestricted fixpoint operators
as in the full modal μ-calculus. This route is already well understood: it
was noted in [6] that INL is a coalgebraic modal logic in a completely stan-
dard sense, and so the μ-calculus extension of INL is a coalgebraic modal
μ-calculus as in [14,22]. Such coalgebraic μ-calculi have been quite exten-
sively studied, with generic results on decidability and complexity, [11] and
completeness [12,13]. But there are also other versions of modal fixpoint
logics, often corresponding to fragments of μ-calculi. Most notably these
include propositional dynamic logics like PDL or game logic, and temporal
logics like CTL or ATL. Thus an obvious point on the agenda, for further ex-
ploration of INL as a modal logic of computation, is to develop dynamic and
temporal logic extensions of INL. This paper deals with the former, and sets
up a propositional dynamic logic interpreted over instantial neighborhood
semantics.

Overview of the Paper

We first introduce syntax and semantics of instantial neighborhood logic,
and its extensions leading up to the full language IPDL, provide sound and
complete systems of axioms, and establish bisimulation invariance and de-
cidability.

The completeness proof for IPDL, including all program constructors con-
sidered, is based on the standard completeness proof for PDL (see [9] for an
exposition), but involves non-trivial new features. In particular, the system
requires two distinct induction rules, corresponding to a nested least fix-
point induction, and the model construction makes heavy use of a normal
form for INL-formulas established in [6]. Finally, we prove that our logic is
a conservative extension of the dual-free fragment of dynamic game logic.

This paper is an extended version of a conference paper presented at
LORI VI 2017 [5]. The technical results presented here are the same as in
that paper, but we have added full proofs. We have also added an example
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illustrating how the logic can be used to reason about open systems com-
putation, and a discussion on the informal interpretation of the program
operations in the language, relating this to the issue of bisimulation safety.

2. Instantial Neighborhood Logic

2.1. Syntax and Semantics

We start by reviewing the basic language for instantial neighborhood se-
mantics. The only difference with [6] is that we interpret the language over
labelled neighborhood structures, where labels play the same role as “atomic
programs” in PDL. The syntax of INL is given by the following grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈a〉(Ψ;ϕ)

where a ranges over a fixed set A of atomic labels, and Ψ ranges over finite
sets of formulas of INL. We deviate a bit from the syntax of [6] here in allow-
ing Ψ to be a finite set rather than a tuple of formulas. We shall sometimes
write 〈a〉(ψ1, . . . , ψn; ϕ) rather than 〈a〉({ψ1, . . . , ψn}; ϕ), in particular, we
write 〈a〉(ψ; ϕ) rather than 〈a〉({ψ}; ϕ), and 〈a〉ϕ rather than 〈a〉(∅; ϕ).

The modalities of INL have a number of interpretations. In the present
setting, we interpret INL in terms of computation in open systems, so that
the formula 〈a〉(ψ1, . . . , ψn; ϕ) is informally interpreted as saying: “in the
system a, the agent has an action to enforce the condition ϕ while simulta-
neously allowing possible outcomes satisfying each of the conditions ψi”.

Example 1. Consider the following example: three separate servers are
shared by a number of agents and protected by passwords available to the
users. Each server can only be accessed by one user at a time. Taking the
perspective of one of the agents, let Ai stand for “the agent has access to
server Si”, for i ∈ {1, 2, 3}, and let Oi stand for “server Si is occupied”. If
we introduce a name σ for the system so described, then the following is
true for each given user, in each given state of the system σ:

¬〈σ〉(¬O1; A1) ∧ ¬〈σ〉(¬O2; A2) ∧ ¬〈σ〉(¬O3; A3)

This expresses that the user cannot log in to a server without blocking the
other users from having access to that server. The following also holds:

¬O3 → 〈σ〉(¬O1,¬O2; A3)

If server S3 is available then the agent can access it while leaving servers S1

and S2 available to be occupied by other users. Note the distinction here: the
user cannot guarantee that the servers S1,S2 will be available, they might
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be occupied by other users, but she can allow them to remain available.
Finally, the following holds:

¬〈σ〉(¬A1,¬A2; (O1 → A1) ∨ (O2 → A2))

This last example is perhaps less obvious: it says that the only way a user
can make sure that at least one of the servers S1 or S2 will not be occupied
by some other user is to log in to at least one of them herself.

For the formally precise semantics, formulas in INL will be interpreted
over neighborhood structures.

Definition 1. A neighborhood frame is a structure (W,R) where W is a
set and R associates with each a ∈ A a binary relation Ra ⊆ W × PW .
A neighborhood model (W,R, V ) is a neighborhood frame together with a
valuation V : Prop → PW .

Definition 2. We define the interpretations of all formulas in a neighbor-
hood model M = (W,R, V ) as follows:

- [[p]] = V (p).

- [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

- [[¬ϕ]] = W \ [[ϕ]].

- u ∈ [[〈a〉(ψ1, . . . , ψk; ϕ)]] iff there is some Z ⊆ W such that:
(u, Z) ∈ Ra and Z ⊆ [[ϕ]], Z ∩ [[ψi]] �= ∅ for i ∈ {1, . . . , k}

We write M, v � ϕ for v ∈ [[ϕ]], and we write � ϕ and say that ϕ is valid
if, for every neighborhood model M and v ∈ W , we have M, v � ϕ. We
allow the notation [[−]]M to make explicit reference to the model in the
background.

Neighborhood models come with a natural notion of bisimulation, in-
troduced in a more general setting in [6]. For this definition, the so called
Egli-Milner lifting of a binary relation will play an important role:

Definition 1. The Egli-Milner lifting of a binary relation R ⊆ X × Y ,
denoted R, is a relation from PX to PY defined by: ZRZ ′ iff:

1. For all z ∈ Z there is some z′ ∈ Z ′ such that zRz′.

2. For all z′ ∈ Z ′ there is some z ∈ Z such that zRz′.

We write R; S for the composition of relations R and S. It is well known
that the Egli-Milner lifting preserves relation composition:

R; S = R; S
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Definition 2. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be any neigh-
borhood models. The relation B ⊆ W × W ′ is said to be an instantial
neighborhood bisimulation if for all uBu′ and all atomic labels a we have:

Atomic For all p, u ∈ V (p) iff u′ ∈ V ′(p).

Forth For all Z such that uRaZ, there is some Z ′ such that u′R′
aZ ′ and

ZBZ ′.

Back For all Z ′ such that u′R′
aZ ′ there is some Z such that uRaZ and

ZBZ ′.

We say that pointed models M, w and N, v are bisimilar, written M, w �

N, v, if there is an instantial neighborhood bisimulation B between M and
N such that wBv.

It is easy to check that all formulas of INL are invariant for instantial
neighborhood bisimilarity:

Proposition 1. If M, w � N, v then M, w � ϕ iff N, v � ϕ, for each
formula ϕ of the language INL.

2.2. Axiomatization

We now turn to the task of axiomatizing the valid formulas of INL. Our
system of axioms is a gentle modification of the axiom system for instantial
neighborhood logic presented in [6]. The axioms and rules consist of all
propositional tautologies, plus the following schemas:

INL Axioms.

Weak: 〈a〉(Ψ;ϕ) → 〈a〉(Ψ′; ϕ) for Ψ′ ⊆ Ψ

Un: 〈a〉(ψ1, . . . , ψn; ϕ) → 〈a〉(ψ1 ∧ ϕ, . . . , ψn ∧ ϕ; ϕ)

Lem: 〈a〉(Ψ;ϕ) → 〈a〉(Ψ ∪ {γ}; ϕ) ∨ 〈a〉(Ψ;ϕ ∧ ¬γ)

Bot: ¬〈a〉(⊥; ϕ)

Rules.

MP:

ϕ → ψ ϕ

ψ

Mon:

ψ1 → α1 . . . ψn → αn ϕ → β

〈a〉(ψ1, . . . , ψn; ϕ) → 〈a〉(α1, . . . , αn; β)
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It is routine to derive the usual rule of replacement of equivalents:

RE:

ϕ ↔ ψ θ

θ[ϕ/ψ]

where θ[ϕ/ψ] is the result of substituting some occurrences of the
formula ψ by ϕ in θ.

We denote this system of axioms by Ax1 and write Ax1 � ϕ to say that
the formula ϕ is provable in this axiom system. We also write ϕ �Ax1 ψ for
Ax1 � ϕ → ψ, and say that ϕ provably entails ψ.

Theorem 1. The system Ax1 is sound and complete for validity on neigh-
borhood models.

The proof of this result is essentially the same as in [6], and will not
be repeated here. Since the proof in [6] constructs a finite model for each
consistent formula, we also get:

Theorem 2. The logic INL has the finite model property and is decidable.

Example 2. Continuing from Example 1, we recall the formula:

¬〈σ〉(¬Oi; Ai)

expressing that a user cannot both log in to a server and leave it available
to other users. This reduces, of course, to the fact that the formula Ai → Oi

is true in every state: a server cannot be both accessed by a user and at the
same time not occupied. So we can take this formula instead as an extra
assumption. By replacing equivalent formulas we then get the implication:

〈σ〉(¬Oi; Ai) → 〈σ〉(¬Oi; Ai ∧ Oi)

We can now apply the axiom (Un) to get the implication:

〈σ〉(¬Oi; Ai ∧ Oi) → 〈σ〉(¬Oi ∧ Ai ∧ Oi; Ai ∧ Oi)

Replacing equivalents again we get:

〈σ〉(¬Oi; Ai ∧ Oi) → 〈σ〉(⊥; Ai ∧ Oi)

But as an instance of (Bot) we have the implication:

〈σ〉(⊥; Ai ∧ Oi) → ⊥
So we get:

〈σ〉(¬Oi; Ai) → ⊥
i.e. ¬〈σ〉(¬Oi; Ai) as required.
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3. Basic Program Operations

3.1. Semantics and Basic Model Theory

In what follows we shall extend the language INL with program operations,
corresponding to known operations from PDL. We also include the “dual
choice” constructor from dynamic game logic. Of course, there are design
choices to make here, and we need to set up criteria for what counts as a
correct definition of each program operation. We shall follow these three:

1. The constructions should be as simple as possible.

2. Each operation should be a natural adaptation of the corresponding
operation from PDL to the INL framework, with minimal modifications.

3. Most importantly: each operation should be bisimulation safe, i.e. the
dynamic logic extending INL with all the program operations should
remain invariant for instantial neighborhood bisimulations.

We first extend the language INL with four basic PDL-style operations: test,
choice, parallel composition and sequential composition. The resulting lan-
guage will be called dynamic instantial neighborhood logic, or (DINL). The
syntax of DINL is defined by the following dual grammar.

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈π〉(Ψ;ϕ)

π := a ∈ A | ϕ? | π ∪ π | π ∩ π | π ; π

The operation ∪ is interpreted as non-deterministic choice between two pro-
grams for the agent: π1 ∪π2 means “either do π1 or do π2”. The operation ∩
is intepreted as a choice between two programs for the environment: π1 ∩π2

means “do π1 and π2 in parallell”. Formally, the operation ∩ is similar to the
parallell composition in concurrent PDL (see [15]). Finally, the operator ;
is interpreted as sequential composition: π1 ; π2 means “first do π1 then do
π2”. We define the formal interpretation [[o]] of each operation o ∈ {∪,∩, ; }
in a neighborhood model M as a binary map from pairs of neighborhood
relations to neighborhood relations, as follows:

− R1[[∪]]R2 = R1 ∪ R2

− R1[[∩]]R2 = {(w,Z1 ∪ Z2) | (w,Z1) ∈ R1 & (w, Z2) ∈ R2}
− (w,Z) ∈ R1[[ ; ]]R2 iff there is some set Y and some family of sets F

such that (w, Y ) ∈ R1, (Y, F ) ∈ R2 and Z =
⋃

F .
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The interpretation [[?]] of the test operator will be a map [[?]] assigning a
neighborhood relation to each subset Z of W , defined by:

[[?]]Z := {(u, {u}) | u ∈ Z}
We defer a more detailed discussion of the informal interpretation of the
program operations to Section 3.2. Note that [[?]] is monotone in the sense
that Z ⊆ Z ′ implies [[?]]Z ⊆ [[?]]Z ′. Each operator o ∈ {∪,∩, ; } is also
monotone, in the sense that R1[[o]]R2 ⊆ R′

1[[o]]R
′
2 whenever R1 ⊆ R′

1 and
R2 ⊆ R′

2. For the sequential composition operator, this uses the well known
fact that the Egli-Milner lifting is monotone, i.e. R ⊆ R′ whenever R ⊆ R′.

Definition 3. Given a neighborhood model, we define the semantic inter-
pretations of all formulas, and the neighborhood relations corresponding to
all complex labels π, by the following mutual recursion:

- [[p]] = V (p).

- [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

- [[¬ϕ]] = W \ [[ϕ]].

- u ∈ [[〈π〉(ψ1, . . . , ψk; ϕ)]] iff there is some Z ⊆ W such that:
(u, Z) ∈ Rπ and Z ⊆ [[ϕ]], Z ∩ [[ψi]] �= ∅ for i ∈ {1, . . . , k}.

- Rπ1oπ2 = Rπ1 [[o]]Rπ2 for o ∈ {∪,∩, ; }.

- Rϕ? = [[?]][[ϕ]]

The definitions of the dynamic operations stated abobve are tailored to-
wards obtaining the following result:

Proposition 2. All formulas of DINL are invariant for instantial neighbor-
hood bisimulations.

Proof. We first prove the following claim, expressing bisimulation safety
of the operations that we have introduced:

Claim 1. Let B be an instantial neighborhood bisimulation between models
M = (W,R, V ) and M′ = (W ′, R′, V ′). Then for any complex label π, such
that every term of the form ϕ? appearing in π, ϕ is invariant for instantial
neighborhood bisimulations, and for any u ∈ W and u′ ∈ W ′ with uBu′:

Forth For all Z such that uRπZ, there is some Z ′ such that u′R′
πZ ′ and

ZBZ ′.

Back For all Z ′ such that u′R′
πZ ′ there is some Z such that uRπZ and

ZBZ ′.
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We prove the Claim by induction on the complexity of labels. For atomic
labels the result holds by definition. For the inductive steps, we only prove
the “Forth” clause, as the “Back” clause follows by a symmetric argument.
For the test operator, the result follows immediately from the assumption
that every formula appearing in a sub-term of π is bisimulation invariant.

For choice, suppose (u, Z) ∈ Rπ1∪π2 . Then (u, Z) ∈ Rπ1 or (u, Z) ∈ Rπ2 ,
say, the first holds. Then by the Forth clause for π1 there is some Z ′ with
(u′, Z ′) ∈ R′

π1
such that ZBZ ′. Since (u′, Z ′) ∈ R′

π1∪π2
also, we are done.

For dual choice, suppose (u, Z) ∈ Rπ1∩π2 . Then Z = Z1 ∪ Z2 where
(u, Z1) ∈ Rπ1 and (u, Z2) ∈ Rπ2 . By the Forth condition for π1 and π2 we
find sets Z ′

1 and Z ′
2 such that (u′, Z ′

1) ∈ R′
π1

, (u′, Z ′
2) ∈ R′

π2
and Z1BZ ′

1,
Z2BZ ′

2. We leave it to the reader to check that:

(Z1 ∪ Z2, Z
′
1 ∪ Z ′

2) ∈ B.

Since (u′, Z ′
1 ∪ Z ′

2) ∈ R′
π1∩π2

, we are done.
Finally, for sequential composition, suppose there is a set X such that

(u,X) ∈ Rπ1 ; π2 , witnessed by a set Y such that (u, Y ) ∈ Rπ1 and a family
F ⊆ P(W ) such that (Y, F ) ∈ Rπ2 and X =

⋃
F . By the Forth condition

for π1 there is a set Y ′ such that (u′, Y ′) ∈ R′
π1

and Y BY ′. We define a
family F ′ ⊆ P(W ′) as follows: set Z ′ ∈ F ′ iff there is some v′ ∈ Y ′, some
v ∈ Y and some Z ∈ F such that: (v′, Z ′) ∈ R′

π2
, (v, Z) ∈ Rπ2 and ZBZ ′.

First, we claim that (Y ′, F ′) ∈ R′
π2 : first, if Z ′ ∈ F ′ then it is immediate

from the definition that (v′, Z ′) ∈ R′
π2

for some v′ ∈ Y ′. Conversely, given
v′ ∈ Y ′, since Y BY ′ there must be some v ∈ Y with vBv′, and since
(Y, F ) ∈ Rπ2 there is some Z ∈ F with (v, Z) ∈ Rπ2 . But then, by the Forth
condition for π2 there must be some Z ′ with (v′, Z ′) ∈ R′

π2
and ZBZ ′. We

immediately get Z ′ ∈ F ′, as required.
We now show that:

(⋃
F,

⋃
F ′

)
∈ B.

To see this, suppose first that w ∈ ⋃
F . Then w ∈ Z for some Z ∈ F . Since

(Y, F ) ∈ Rπ2 there is some v ∈ Y with (v, Z) ∈ Rπ2 . Since Y BY ′ there is
some v′ ∈ Y ′ such that vBv′. By the Forth condition for π2 there is some
Z ′ with ZBZ ′ and (v′, Z ′) ∈ R′

π2
. We get Z ′ ∈ F ′, and there must be some

w′ ∈ Z ′ with wBw′. But then w′ ∈ ⋃
F ′, as required.

Conversely, suppose w′ ∈ ⋃
F ′. Then w′ ∈ Z ′ for some Z ′ ∈ F ′. By

definition of F ′, there is a Z ∈ F with ZBZ ′, and so there is some w ∈ Z
with wBw′. But then w ∈ ⋃

F as required, and the claim is proved.
The proposition now follows from the claim by a routine argument.
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3.2. Informal Interpretation

The neighborhood relation Rπ associated with a program term π in a neigh-
borhood model M should be understood as follows: at each point w in a
model, there is a certain family of available actions of type π that the agent
can perform. Each such action α corresponds to a neighborhood Z ∈ Rπ[w],
and Z represents the possible outcomes of the action α, as determined by
the response of the environment. The interpretations of choice ∪ and dual
choice ∩ should thus be clear: an action of type π1∪π2 is simply an action of
either type π1 or π2, and so the definition of [[∪]] as union of neighborhood
relations is the natural one. For dual choice, an action α of type π1 ∩ π2

consists of an action β1 of type π1 and an action β2 of type π2, where the
action actually performed is determined by the environment. So a possible
outcome of the action α is either a possible outcome of β1 or one of β2. This
directly leads to the formal interpretation [[∩]] of ∩ as it has been defined.
The interpretation of the test operator is a straightforward adaption of the
usual PDL-definition, and motivated in the same manner.

The less straightforward case is the sequential composition operation.
Initially it seems clear what an action of type π1 ; π2 at a given state w
should be: it is an action β1 of type π1 followed by an action βv

2 of type
π2 performed at each possible outcome state v of the action β1 at w. A
possible outcome of such an action α at w should then be an outcome of
one of the actions βv

2 , where v is a possible outcome of the first action β1.
With this interpretation, one would expect the following definition, setting
(w,Z) ∈ R1[[ ; ]]R2 iff there is some set Y and a function S : Y → PW such
that:

1. (w, Y ) ∈ R1,

2. (v, Sv) ∈ R2 for each v ∈ Y , and

3. Z =
⋃

v∈Y Sv.

The conditions used in our actual definition of [[ ; ]] are weaker than this,
essentially allowing the assigment S to be a relation rather than a function.
The reason we cannot use the stricter version of the composition operation
is due to a technical fact: the “functional” version of the sequential composi-
tion operation violates bisimulation safety ! The example shown in Figure 1,
displaying two bisimilar rooted models, explains this.

In Figure 1, points are represented by bullets, neighborhoods are repre-
sented by ellipses, the dashed lines represent the neighborhood relation R1

and the dotted lines represent R2. In the model to the right, the root has a
neighborhood {a, b} according to the functional composition of R1 and R2,
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a b a b

Figure 1. Failure of bisimulation safety

but not in the left model. Note that according to our “relational” definition
of sequential composition, {a, b} is a neighborhood in both models.

A possible response to this problem would be to modify our notion of
instantial neighborhood bisimulation so as to recover safety. However, this
route does not seem attractive, as instantial neighborhood bisimulations
provide the natural bisimulation concept for INL, the basis for our dynamic
logic. One could let the technical point settle the matter: bisimulation safety
seems to be a minimal requirement for compositional reasoning about be-
haviour of systems, and our sequential composition operator recovers bisim-
ulation safety arguably in a simple and mathematically natural way. But
we believe there is no need for such a purely technical motivation: prop-
erly understood the sequential composition operator we have proposed fits
well with its intended interpretation, and with the idea of open systems in
general.

The idea is that the behaviour of an agent interacting with a system
may depend not only on the state of the system itself, but also on other
parameters: the internal state of the agent itself for example, or the state of
other processes that the agent is also interacting with. This feature of taking
into account possible interactions with unspecified, “external” systems is
part of the motivation behind existing logics for open systems like ATL (see
[2]). For example, looking back to Example 1, the state of the system itself
merely specifies which of the three servers are occupied by which agent. The
internal state of each agent—which in this case is a human—may for example
involve the agent’s current state of knowledge, preferences, intentions etc.
So when we consider the actions available to one of the agents, we think of
both the system and each of the agents as starting in a given “initial” state
which may change through the course of the computation, for example due
to communication between the agents, or interaction with other systems.
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Therefore, in the special case of a composite action of the type π1 ; π2

executed at some state w, the action of the agent in the computation π2 at
a later state v resulting as the outcome of the computation π1 might not
be determined uniquely by the state v of the system. It may also depend
on other parameters, which might change during the execution of π1. This
accounts for the extra non-determinism involved in our sequential compo-
sition operator, where an action of type π1 ; π2 need not specify a unique
response to each outcome of the first action.

3.3. Axiomatization

Our axiom system for DINL takes the sound and complete axioms for INL as
its base, and extends it with reduction axioms for the test, choice, parallel
composition and sequential composition operators. The axioms and rules are
listed below; note that the INL axioms and the axioms for frame constraints
are now stated for arbitrary complex labels π rather than just atoms a.

INL Axioms

(Weak), (Un), (Lem) and (Bot)

Reduction Axioms

Test: 〈γ?〉(Ψ;ϕ) ↔ γ ∧ ∧
Ψ ∧ ϕ

Ch: 〈π1 ∪ π2〉(Ψ;ϕ) ↔ 〈π1〉(Ψ;ϕ) ∨ 〈π2〉(Ψ;ϕ)

Pa: 〈π1 ∩ π2〉(Ψ;ϕ) ↔ ∨{〈π1〉(Θ1; ϕ) ∧ 〈π2〉(Θ2; ϕ) | Ψ = Θ1 ∪ Θ2}
Cmp: 〈π1 ; π2〉(ψ1, . . . , ψn; ϕ) ↔ 〈π1〉(〈π2〉(ψ1; ϕ), . . . , 〈π2〉(ψn; ϕ); 〈π2〉ϕ)

Rules

(MP) and (Mon)
We denote this system by Ax2 and write Ax2 � ϕ to say that formula ϕ

is provable in this axiom system. We also write ϕ �Ax2 ψ for Ax2 � ϕ → ψ.
We shall sometimes drop the reference to Ax2 to keep notation cleaner.

Proposition 3. (Soundness) If Ax2 � ϕ, then the formula ϕ is true on all
neighborhood models.

Proof. We consider only the new reduction axioms. Soundness of (Ch) is
immediate by the definition of [[∪]], so we focus on (Test), (Pa) and (Cmp).

For (Test), let M, u � 〈γ?〉(Ψ;ϕ). Then (u, {u}) ∈ Rγ?, which means that
M, u � γ, and {u} ⊆ [[ϕ]] and {u} ∩ [[ψ]] �= ∅ for each ψ ∈ Ψ, and hence
M, u �

∧
Ψ ∧ ϕ. So M, u � γ ∧ ∧

Ψ ∧ ϕ. The converse is similar.
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For (Pa), suppose that M, w � 〈π1 ∩ π2〉(Ψ;ϕ). Then there is some set
Z such that (w,Z) ∈ Rπ1∩π2 , Z ⊆ [[ϕ]] and Z ∩ [[ψ]] �= ∅ for all ψ ∈ Ψ.
Hence Z is of the form Z1 ∪ Z2 where (w,Z1) ∈ Rπ1 and (w, Z2) ∈ Rπ2 . Let
Θ1 = {ψ ∈ Ψ | Z1 ∩ [[ψ]] �= ∅}, and let Θ2 = {ψ ∈ Ψ | Z2 ∩ [[ψ]] �= ∅}. Then,
since Z = Z1 ∪ Z1, we have Ψ = Θ1 ∪ Θ2. Furthermore, we get

M, w � 〈π1〉(Θ1; ϕ) ∧ 〈π2〉(Θ2; ϕ)

as required. The converse direction of (Pa) is proved in a similar manner.
Next, we consider the case of sequential composition. For one direction of

the equivalence, suppose that M, w � 〈π1 ; π2〉(ψ1, . . . , ψn; ϕ). Then there is
some set Z with (w,Z) ∈ R〈π1 ; π2〉, Z ⊆ [[ϕ]] and Z∩ [[ψi]] �= ∅ for each ψi. By
definition of the composition operator, we find a set Y with (w, Y ) ∈ Rπ1

and a family of sets F such that (Y, F ) ∈ Rπ2 and Z =
⋃

F . So for each
v ∈ Y there is some Sv ∈ F with (v, Sv) ∈ Rπ2 , and we get Sv ⊆ [[ϕ]] so
M, v � 〈π2〉ϕ. Also, for each ψi there is some Si ∈ F with Si ∩ [[ψi]] �= ∅, and
there must be some v ∈ Y with (v, Si) ∈ Rπ2 , hence M, v � 〈π2〉(ψi; ϕ). It
follows that M, w � 〈π1〉(〈π2〉(ψ1; ϕ), . . . , 〈π2〉(ψn; ϕ); 〈π2〉ϕ) as required.

Conversely, suppose that M, w � 〈π1〉(〈π2〉(ψ1; ϕ), . . . , 〈π2〉(ψn; ϕ); 〈π2〉ϕ).
Then there is some set Y such that (w, Y ) ∈ Rπ1 , Y ⊆ [[〈π2〉ϕ]] and
Y ∩ [[〈π2〉(ψi; ϕ)]] �= ∅ for each i ∈ {1, . . . , n}. Let:

F := {Z ⊆ W | Z ⊆ [[ϕ]] & (v, Z) ∈ Rπ2 for some v ∈ Y }
Since Y ⊆ [[〈π2〉ϕ]] it follows that (Y, F ) ∈ Rπ2 , so (w,

⋃
F ) ∈ Rπ1 ; π2 .

Next, since Y ∩ [[〈π2〉(ψi; ϕ)]] �= ∅ for each i ∈ {1, . . . , n} it follows that⋃
F ∩[[ψi]] �= ∅ for each i ∈ {1, . . . , n}. We get M, w � 〈π1 ; π2〉(ψ1, . . . , ψn; ϕ)

as required.

By applying soundness of the reduction axioms, we can use a standard
argument to obtain for every consistent formula ϕ of DINL a provably (and
hence semantically) equivalent formula ϕt in INL, which is then satisfiable by
Theorem 1. E.g., the formula 〈γ?〉(ψ1, . . . , ψn; ϕ)t ibecomes γt∧ψt

1∧. . .∧t
n∧ϕ.

Theorem 3. (Completeness) A formula ϕ of DINL is valid on all neighbor-
hood models iff Ax2 � ϕ.

Also, the finite model property and decidability carry over from INL:

Theorem 4. The logic DINL has the finite model property and is decidable.
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4. Program Iteration and the Language IPDL

We now introduce the final operation that we consider here, a Kleene star
for finite iteration. This operation generalizes the game iteration operation
from game logic. The corresponding language will be denoted by IPDL, read
“instantial PDL”, and is given by the following dual grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈π〉(Ψ;ϕ)

π := a ∈ A | ϕ? | π ∪ π | π ∩ π | π ; π | π∗

The operation (−)∗ is interpreted as finite iteration: π∗ means “repeat π
a finite number of times”. More specifically, we think consider action of type
π∗ to be a long term strategy of the agent, such that each possible execution
of this strategy consists of finitely many actions of type π.

For the formal semantic interpretation of the Kleene star, it will be useful
to first define the relation skip by:

skip := {(w, {w}) | w ∈ W}
Definition 4. We define a relation R[ξ] for each ordinal ξ by induction:

− R[0] = ∅
− R[ξ+1] = skip[[∪]](R[[ ; ]]R[ξ])

− Rκ =
⋃

ξ<κ R[ξ] if κ is a limit ordinal.

We define [[∗]]R as R[ξ], with ξ the smallest ordinal satisfying R[ξ] = R[ξ+1].

It is easy to see that this is a standard least fixpoint construction—and
in particular, we have:

Proposition 4. Let W be a finite set and R ⊆ W × P(W ). Then:

[[∗]]R =
⋃

n∈ω

R[n]

Proposition 4 does not hold for arbitrary models: unlike for PDL, the
closure ordinal of the least fixpoint for the Kleene star may appear above ω.
yet this does not contradict the reading of the Kleene star as finite iteration.
The situation is analogous to the case of the μ-calculus formula:

μx.�x

which can be thought of as expressing that “all computations are finite”. It
is well known that the closure ordinal of the least fixpoint of this formula
can be higher than ω, which just means the formula may be true although
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the statement “all computations have length ≤ k” is false for all k. Similarly,
the formula 〈π∗〉ϕ expresses that the condition ϕ can be forced by an action
that only ever produces finitely many computations of type π, while there
may be no finite upper bound on the number of iterations of π required.

Definition 5. The semantics of IPDL-formulas in a neighborhood model
M = (W,R, V ) is given by the following inductive clauses:

- [[p]] = V (p).

- [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

- [[¬ϕ]] = W \ [[ϕ]].

- u ∈ [[〈π〉(ψ1, . . . , ψk; ϕ)]] iff there is some Z ⊆ W such that:
(u, Z) ∈ Rπ and Z ⊆ [[ϕ]], Z ∩ [[ψi]] �= ∅ for i ∈ {1, . . . , k}.

- Rπ1oπ2 = Rπ1 [[o]]Rπ2 for o ∈ {∪,∩, ; }.

- Rϕ? = [[?]][[ϕ]].

- Rπ∗ = [[∗]]Rπ.

Proposition 5. All formulas of IPDL are invariant for instantial neighbor-
hood bisimulations.

The proof of this rests on a bisimulation safety argument, and the step for
the Kleene star involves using the bisimulation safety of union and sequential
composition to prove the appropriate back-and-forth conditions for each
approximant R

[ξ]
π of the least fixpoint Rπ∗ = [[∗]]Rπ. We omit the details.

4.1. Axiomatization

Our axiomatization for IPDL is given below.

INL Axioms

(Weak), (Un), (Lem) and (Bot).

Reduction Axioms from DINL

(Test), (Ch), (Pa) and (Cmp).

Basic Rules

(MP) and (Mon).
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Kleene Star

Finally we add axioms and rules for iteration. The Kleene star is a least fix-
point construction, and a standard approach to axiomatizing least fixpoints
is to use one fixpoint axiom and one induction rule (see [17]).

The fixpoint axiom Fix is stated as follows:

〈π∗〉(Ψ;ϕ) ↔ (
∧

Ψ ∧ ϕ) ∨ 〈π ; π∗〉(Ψ;ϕ)

We will actually need two induction rules:

Ind1:

ϕ → γ 〈π〉γ → γ

〈π∗〉ϕ → γ

Ind2:

(ψ ∧ ϕ) → γ 〈π〉(γ; 〈π∗〉ϕ) → γ

〈π∗〉(ψ; ϕ) → γ

Remark 1. The reason that we require two distinct induction rules can
be seen as follows: the reduction axioms for IPDL should be interpreted as
encoding a recursive translation of the language IPDL into the modal μ-
calculus (interpreted on instantial neighborhood models). When we pass by
formulas involving the Kleene-star in this translation, the translation will
not surprisingly involve least fixpoint operators, and the induction rules then
correspond to the Kozen-Park induction rules for least fixpoint operators.
This step of the translation is trickier than the step for the Kleene star in a
translation of PDL into the μ-calculus (see [10]), and requires use of nested
least fixpoint variables. To illustrate, if a is an atomic game term and p, q
are propositional variables, then the formula 〈a∗〉(p; q) translates to:

μx.(p ∧ q) ∨ 〈a〉(x; μy.q ∨ 〈a〉y)

Note however that the fixpoint variables here are nested in a “weak” sense:
the variable y occurs inside the scope of the outer fixpoint variable x, but
is independent of it in the sense that there is no free occurrence of x in the
scope of the variable binder μy.

Note also that the second induction axiom only involves a single instan-
tial formula ψ. This is because we can “pre-process” an arbitrary formula
〈π∗〉(ψ1, . . . , ψn; ϕ) by applying the axiom (Fix), and then the composition
axiom (Cmp) to the formula 〈π ; π∗〉(ψ1, . . . , ψn; ϕ) to obtain the formula:

〈π〉(〈π∗〉(ψ1; ϕ), . . . , 〈π∗〉(ψn; ϕ); 〈π∗〉ϕ)
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where each occurrence of 〈π∗〉 is followed by at most one instantial formula.

We denote this axiom system as Ax3 and write ϕ �Ax3 ψ for Ax3 � ϕ → ψ.
We will also sometimes drop the index Ax3, simply writing � ϕ or ϕ � ψ.

Theorem 5. The axiom system Ax3 is sound and complete for validity over
neighborhood models.

We begin by checking soundness:

Proposition 6. (Soundness) If ϕ is provable in Ax3 then it is valid over
all neighborhood models.

Proof. We focus on proving soundness of the two induction rules. For the
first induction rule, suppose that the formulas ϕ → γ and 〈π〉γ → γ are valid.
Suppose that M, u � 〈π∗〉ϕ. Then there is some Z such that (u, Z) ∈ Rπ∗

and Z ⊆ [[ϕ]]. By definition of Rπ∗ it suffices to prove, by induction on an
ordinal ξ, that for all u, Z: if (u, Z) ∈ R

[ξ]
π and Z ⊆ [[ϕ]] then u ∈ [[γ]].

For ξ = 0 this is trivial, since R0
π = ∅. For a successor ordinal ξ + 1, if

(u, Z) ∈ R
[ξ+1]
π then either Z = {u} or there is a set Y and a family of sets

F such that (Y, F ) ∈ R
[ξ]
π , (u, Y ) ∈ Rπ and

⋃
F ⊆ [[ϕ]]. In the first case

we get M, u � ϕ, hence M, u � γ. In the second case it follows that there
is, for each v ∈ Y , some Zv such that (v, Zv) ∈ R

[ξ]
π and Zv ⊆ ⋃

F ⊆ [[ϕ]].
By the induction hypothesis we get Y ⊆ [[γ]]. But then M, u � 〈π〉γ, hence
M, u � γ as required. Finally, the induction step for limit ordinals is almost
immediate, by the definition of R

[ξ]
π as the union of all R

[ρ]
π for ρ < ξ.

For the second induction rule, suppose that the formulas (ψ ∧ ϕ) → γ
and 〈π〉(γ; ϕ) → γ are valid. Suppose that M, u � 〈π∗〉(ψ; ϕ). Then there
is some Z such that (u, Z) ∈ Rπ∗ and Z ⊆ [[ϕ]], Z ∩ [[ψ]] �= ∅. By definition
of Rπ∗ it suffices to prove, by induction on an ordinal ξ, that for all u, Z: if
(u, Z) ∈ R

[ξ]
π and Z ⊆ [[ϕ]], Z ∩ [[ψ]] �= ∅ then u ∈ [[γ]]. For ξ = 0 this is trivial,

since R0
π = ∅. For a successor ordinal ξ + 1, if (u, Z) ∈ R

[ξ+1]
π then either

Z = {u} or there is a set Y and a family of sets F such that (Y, F ) ∈ R
[ξ]
π ,

(u, Y ) ∈ Rπ and
⋃

F ⊆ [[ϕ]]. In the first case we get M, u � ψ ∧ ϕ, and
therefore M, u � γ. In the second case it follows that there is, for each v ∈ Y ,
some Zv ∈ F such that (v, Zv) ∈ R

[ξ]
π and Zv ⊆ ⋃

F ⊆ [[ϕ]]. Furthermore,
there is some set Z ′ ∈ F such that Z ′ ∩ [[ψ]] �= ∅, and Z ′ ⊆ ⋃

F ⊆ [[ϕ]].

Since (Y, F ) ∈ R
[ξ]
π there must be some w ∈ Y with (w, Z ′) ∈ R

[ξ]
π , and so,

by the induction hypothesis we get w � γ. But then Y ⊆ [[〈π∗〉ϕ]] (since
R

[ξ]
π ⊆ Rπ∗) and Y ∩ [[γ]] �= ∅, so M, u � 〈π〉(γ; ϕ). It follows that M, u � γ



A Propositional Dynamic Logic 737

as required. Finally, the induction step for limit ordinals is again immediate,
by the definition of R

[ξ]
π as the union of all R

[ρ]
π for ρ < ξ.

For the completeness proof, we rely heavily on the following lemma,
proved in a slightly different version in [6]: fix a finite and subformula closed
set of formulas Σ. An atom over Σ is a maximal consistent subset of Σ, and
we denote the set of atoms over Σ by At(Σ). Given any atom w ∈ At(Σ), let
ŵ be its conjunction, and let Ẑ = {ŵ | w ∈ Z} for a set of atoms Z.

Lemma 1. Let 〈π〉(Ψ;ϕ) be any formula such that each formula in Ψ ∪
{ϕ} is a boolean combination of formulas in Σ. Then 〈π〉(Ψ;ϕ) is provably
equivalent to a disjunction of formulas of the form 〈π〉

(
Ẑ;

∨
Ẑ

)
for Z ⊆

At(Σ) being some set of atoms with w � ϕ for each w ∈ Z and for all ψ ∈ Ψ
there is some v ∈ Z with v � ψ.

Proof. The required argument is very similar to [6].

We shall also need an adapted concept of Fischer–Ladner closure:

Definition 3. A set Σ of formulas is said to be Fischer–Ladner closed if
the following clauses hold:

− If ϕ ∈ Σ, and the main connective of ϕ is not ¬, then the formula ¬ϕ
is in Σ.

− Any subformula of a formula in Σ is in Σ.

− If 〈γ?〉(Ψ;ϕ) is in Σ then so is γ ∧ ∧
Ψ ∧ ϕ.

− If 〈π1 ; π2〉(ψ1, . . . , ψn; ϕ) ∈ Σ, then 〈π1〉(〈π2〉(ψ1; ϕ), . . . , 〈π1〉(ψn; ϕ);
〈π2〉ϕ) is in Σ too.

− If 〈π1 ∪ π2〉(Ψ;ϕ) ∈ Σ then 〈π1〉(Ψ;ϕ) ∨ 〈π2〉(Ψ;ϕ) ∈ Σ too.

− If 〈π1 ∩ π2〉(Ψ;ϕ) ∈ Σ then the formula:
∨

{〈π1〉(Θ1; ϕ) ∧ 〈π2〉(Θ2; ϕ) | Ψ = Θ1 ∪ Θ2}
is in Σ too.

− If 〈π∗〉(Ψ;ϕ) ∈ Σ then (
∧

Ψ ∧ ϕ) ∨ 〈π ; π∗〉(Ψ;ϕ) is in Σ too.

Lemma 2. Every formula ϕ is a member of some finite Fischer–Ladner
closed set of formulas.

Proof. The proof for this result is standard, see for example [9].

Lemma 3. Let Z be a set of atoms in At(Σ) and let θ be any formula (not
necessarily in Σ). Then we have θ � ∨

Ẑ if, and only if, every atom that is
consistent with θ is also consistent with

∨
Ẑ.
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Proof. The direction from left to right is trivial. From right to left we
reason by contraposition: suppose that θ �

∨
Ẑ. Then by Lindenbaum’s

lemma there is a maximal consistent set of formulas Γ containing θ and
¬ ∨

Ẑ. Then Γ ∩ Σ is an atom, and is clearly consistent with θ. But it
cannot be consistent with

∨
Ẑ: since any two distinct atoms are mutually

inconsistent, this could only be the case if in fact Γ ∩ Σ ∈ Z, which implies
that Γ̂ ∩ Σ � ∨

Ẑ. Since Γ̂ ∩ Σ ∈ Γ we would then get
∨

Ẑ ∈ Γ, and since
we had ¬ ∨

Ẑ ∈ Γ this is a contradiction since Γ was consistent.

Definition 4. Given any label π, we define the relation SΣ
π ⊆ At(Σ) ×

P(At(Σ)) by setting (w,Z) ∈ SΣ
π iff ŵ ∧ 〈π〉

(
Ẑ;

∨
Ẑ

)
is consistent with re-

spect to the system Ax3. The canonical neighborhood model over Σ, denoted
C,Σ is defined as the triple (WΣ, RΣ, V Σ) where WΣ is the set of atoms over
Σ, RΣ

a = SΣ
a for each atomic label a, and V Σ(p) = {w ∈ WΣ | p ∈ w}.

The key lemma in the completeness proof, which is proved using the
induction rules for the Kleene star, is the following:

Lemma 4. For each label π, we have SΣ
π∗ ⊆ [[∗]](SΣ

π ).

Proof. Since the set of atoms is finite, we can use the characterization of
the Kleene star operation on finite models given by Proposition 4.

Suppose that (w,Z) ∈ SΣ
π∗ , meaning that � ¬(ŵ∧〈π∗〉

(
Ẑ;

∨
Ẑ

)
. Let γ[Z]

be the disjunction of all formulas v̂ for (v, Z) ∈ [[∗]](SΣ
π ). We want to show

that 〈π∗〉
(
Ẑ;

∨
Ẑ

)
� γ[Z]. It will then follow that ŵ ∧ γ[Z] is consistent,

and clearly since w is an atom this can only happen if ŵ is already a disjunct
of γ[Z] which means that (w,Z) ∈ [[∗]](SΣ

π ) as desired.
More generally, for Z ′ ⊆ Z let γ[Z ′, Z] be the disjunction of all formulas

v̂ where v is an atom such that (v, Z ′′) ∈ [[∗]](SΣ
π ) and Z ′ ⊆ Z ′′ ⊆ Z for

some set Z ′′. We will show that 〈π∗〉
(
Ẑ ′;

∨
Ẑ

)
� γ[Z ′, Z]. The special case

for the formula γ[Z,Z] = γ[Z] then yields the desired result.
We first prove the claim for the case of Z ′ = ∅. We have

〈π∗〉
(
∅̂;

∨
Ẑ

)
= 〈π∗〉

(
∅;

∨
Ẑ

)
= 〈π∗〉

∨
Ẑ

So we want to show that 〈π∗〉 ∨
Ẑ � γ[∅, Z], and by the first induction rule

it suffices to prove that
∨

Ẑ � γ[∅, Z] and 〈π〉γ[∅, Z] � γ[∅, Z]. Now, since
γ[∅, Z] is a disjunction of conjunctions of atoms, it follows from Lemma 3
that, for any formula θ, we have that θ � γ[∅, Z] iff every atom that is
consistent with θ is also consistent with γ[∅, Z].
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Suppose first that w is consistent with
∨

Ẑ. Then w must be in Z, and
since (w, {w}) ∈ skip ⊆ [[∗]](SΣ

π ), w is consistent with γ[∅, Z] as required.
Next, suppose that w is consistent with 〈π〉γ[∅, Z]. By Lemma 1 there

must be some set Z ′ such that w is consistent with 〈π〉
(
Ẑ ′;

∨
Ẑ ′

)
and

u � γ[∅, Z] for each u ∈ Z ′. We get that (w, Z ′) ∈ SΣ
π , and furthermore for

each u ∈ Z ′ there must be some Zu ⊆ Z with (u, Zu) ∈ [[∗]](SΣ
π ). We get:

(Z ′, {Zu | u ∈ Z ′}) ∈ [[∗]](SΣ
π )

and hence we obtain:
(

w,
⋃

u∈Z′
Zu

)

∈ SΣ
π [[ ; ]]([[∗]](SΣ

π )) ⊆ [[∗]](SΣ
π )

and since ∅ ⊆ ⋃
u∈Z′ Zu ⊆ Z, we get w consistent with γ[∅, Z] as required.

Next, consider the case where Z ′ ⊆ Z is a singleton {s}. We write γ[s, Z]
rather than γ[{s}, Z]. We must show that 〈π∗〉

(
ŝ;

∨
Ẑ

)
� γ[s, Z], and we

use Lemma 3 as before. By the second induction rule, it suffices to prove
that

ŝ ∧
∨

Ẑ � γ[s, Z]

and

〈π∗〉
(
γ[s, Z]; 〈π∗〉

∨
Ẑ

)
� γ[s, Z]

The first statement is similar to the proof that
∨

Ẑ � γ[∅, Z] so we leave
it out. For the second part, suppose that the atom w is consistent with the
formula 〈π〉

(
γ[s, Z]; 〈π∗〉 ∨

Ẑ
)
. By the previous argument (i.e. for the case

where Z ′ = ∅) we get

〈π∗〉
∨

Ẑ � γ[∅, Z]

so by (Mon) we find that w is consistent with 〈π〉(γ[s, Z]; γ[∅, Z]). By
Lemma 1, there is some set Y such that w is consistent with 〈π〉

(
Ŷ ;

∨
Ŷ

)
,

u � γ[∅, Z] for each u ∈ Y , and v � γ[s, Z] for some v ∈ Y . We get that
(w, Y ) ∈ SΣ

π . Also, there is a set Zv with s ∈ Zv ⊆ Z and (v, Zv) ∈ [[∗]](SΣ
π ),

and for each u �= v in Y there is some Zu ⊆ Z such that (u, Zu) ∈ [[∗]](SΣ
π ).

If we set:

F = {Zv} ∪ {Zu | u ∈ Y \ {v}}
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then we get {s} ⊆ ⋃
F ⊆ Z. Furthermore, we get

(Y, F ) ∈ [[∗]](SΣ
π )

and hence we obtain the required inclusion:
(
w,

⋃
F

)
∈ SΣ

π [[ ; ]]([[∗]](SΣ
π )) ⊆ [[∗]](SΣ

π )

Finally, let Z ′ ⊆ Z be an arbitrary non-empty set, and suppose w is con-
sistent with 〈π∗〉

(
Ẑ ′;

∨
Ẑ

)
, where Z ′ = {s1, . . . , sn}. Then by the axiom

(Fix), w is consistent with the formula
(∧

Ẑ ′ ∧
∨

Ẑ
)

∨ 〈π ; π∗〉
(
Ẑ ′;

∨
Ẑ

)

So it now suffices to prove that:
(∧

Ẑ ′ ∧
∨

Ẑ
)

� γ[Z ′, Z]

and

〈π ; π∗〉
(
Ẑ ′;

∨
Ẑ

)
� γ[Z ′, Z]

Once again, the first claim follows by a familiar argument using skip ⊆
[[∗]](SΣ

π ). For the second claim, it suffices by axiom (Cmp) to prove that:

〈π〉
(
〈π∗〉

(
ŝ1;

∨
Ẑ

)
, . . . , 〈π∗〉

(
ŝn;

∨
Ẑ

)
; 〈π∗〉

∨
Ẑ

)
� γ[Z ′, Z]

But, using the previous arguments together with the rule (Mon), we find
that it suffices to prove:

〈π〉(γ[s1; Z], . . . , γ[sn; Z]; γ[∅, Z]) � γ[Z ′, Z]

We show that every atom consistent with the formula on the left-hand side
is also consistent with the formula on the right-hand side. Suppose that w is
consistent with the formula 〈π〉(γ[s1; Z], . . . , γ[sn; Z]; γ[∅, Z]). By Lemma 1
there must be some set Y such that w is consistent with 〈π〉

(
Ŷ ;

∨
Ŷ

)
,

u � γ[∅, Z] for each u ∈ Y , and for each i ∈ {1, . . . , n} we have vi � γ[si, Z]
for some vi ∈ Y . We get that (w, Y ) ∈ SΣ

π . Furthermore for each i ∈
{1, . . . , n} there is some set Si such that si ∈ Si ⊆ Z and (vi, Si) ∈ [[∗]](SΣ

π ),
and for each u /∈ {v1, . . . , vn}, u ∈ Y , there is some Zu ⊆ Z such that
(u, Zu) ∈ [[∗]](SΣ

π ). If we now set:

F = {S1, . . . , Sn} ∪ {Zu | u ∈ Y \ {v1, . . . , vn}}
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then we get {s1, . . . , sn} ⊆ ⋃
F ⊆ Z. Furthermore, we get

(Y, F ) ∈ [[∗]](SΣ
π )

and hence we obtain:
(
w,

⋃
F

)
∈ SΣ

π [[ ; ]]([[∗]](SΣ
π )) ⊆ [[∗]](SΣ

π )

as required.

Lemma 4 is needed to prove Lemma 5 below, by induction on the com-
plexity of program terms. Say that a label π is safe if, for every formula γ
such that the term γ? appears in π, we have that γ ∈ Σ and furthermore,
γ ∈ w iff CΣ, w � γ for each w ∈ At(Σ).

Lemma 5. For every safe label π, we have SΣ
π ⊆ RΣ

π .

Proof. By induction on the complexity of safe labels. For γ?, the result
follows from the safety assumption and the observation that

SΣ
γ? = [[?]]{w | At(Σ) | γ ∈ w}

This observation can be proved as follows: since γ is safe we have γ ∈ Σ, so
ŵ ∧〈γ?〉

(
Ẑ,

∨
Ẑ

)
is consistent iff ŵ ∧∧

Ẑ ∧∨
Ẑ is consistent, iff γ ∈ w and

Ẑ = {w} since w is an atom and Ẑ a set of atoms. Hence SΣ
γ? = {(w, {w}) |

γ ∈ w} and the result follows from the definition of [[?]].
For the Kleene star, by Lemma 4 we have SΣ

π∗ ⊆ [[∗]](SΣ
π ) for each label π.

Similarly we may prove: SΣ
π1∪π2

⊆ SΣ
π1

[[∪]]SΣ
π2

and SΣ
π1 ; π2

⊆ SΣ
π1

[[ ; ]]SΣ
π2

. We

omit the easy argument for ∪. For ∩, suppose that ŵ ∧ 〈π1 ∩ π2〉
(
Ẑ;

∨
Ẑ

)

is consistent. Then there are sets Z1, Z2 such that Z = Z1 ∪ Z2 such that:

ŵ ∧ 〈π1〉
(
Ẑ1;

∨
Ẑ

)
∧ 〈π2〉

(
Ẑ2;

∨
Ẑ

)

is consistent. Hence both ŵ ∧ 〈π1〉
(
Ẑ1;

∨
Ẑ

)
and ŵ ∧ 〈π2〉

(
Ẑ2;

∨
Ẑ

)
are

consistent, and using Lemma 1 we find sets Y1, Y2 ⊆ At(Σ) (corresponding
to disjuncts of the normal form) such that Z1 ⊆ Y1 ⊆ Z and Z2 ⊆ Y2 ⊆ Z

and such that both ŵ∧〈π1〉
(
Ŷ1;

∨
Ŷ1

)
and ŵ∧〈π2〉

(
Ŷ2;

∨
Ŷ2

)
are consistent.

Hence (w, Y1) ∈ SΣ
π1

and (w, Y2) ∈ SΣ
π2

, hence (w, Y1 ∪Y2) ∈ SΣ
π1

[[∩]]SΣ
π2

. The
result now follows since clearly Y1 ∪ Y2 = Z.

For composition, suppose that atom w is consistent with the formula
〈π1 ; π2〉

(
Ẑ;

∨
Ẑ

)
, where Z = {v1, . . . , vn}. Then w is consistent with

〈π1〉
(
〈π2〉

(
v̂1;

∨
Ẑ

)
, . . . , 〈π2〉

(
v̂n;

∨
Ẑ

)
; 〈π2〉

∨
Ẑ

)
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by the axiom (Cmp). For each i ∈ {1, . . . , m} let δi be the disjunction of
the set of all formulas û such that u is an atom with (u, U) ∈ SΣ

π2
for some

set of atoms U with vi ∈ U and U ⊆ Z, and let θ be the disjunction of all
formulas û such that u is an atom with (u, U) ∈ SΣ

π2
for some U ⊆ Z.

We first claim that:

〈π1〉
(
〈π2〉

(
v̂1;

∨
Ẑ

)
, . . . , 〈π2〉

(
v̂n;

∨
Ẑ

)
; 〈π2〉

∨
Ẑ

)
� 〈π1〉(δ1, . . . , δn; θ)

To see this, let the maximum modal depth of formulas in Σ be k, and
let F 2+k

Σ be the set of all formulas of modal depth at most 2 + k, such that
only labels appearing in formulas in Σ may appear in formulas in F 2+k

Σ . Let
an extended atom be a maximal consistent subset of F 2+k

Σ . Since there are
only finitely many formulas in F 2+k

Σ up to provable equivalence, there are
at most finitely many extended atoms, and for each extended atom e we
can form the conjunction ê of all formulas in e “up to logical equivalence”,
picking one conjunct from each logical equivalence class. Since both formulas
〈π1〉

(
〈π2〉

(
v̂1;

∨
Ẑ

)
, . . . , 〈π2〉

(
v̂n;

∨
Ẑ

)
; 〈π2〉

∨
Ẑ

)
and 〈π1〉(δ1, . . . , δn; θ)

are of modal depth ≤ 2 + k, it suffices to prove that every extended atom e
which contains the following formula:

〈π1〉
(
〈π2〉

(
v̂1;

∨
Ẑ

)
, . . . , 〈π2〉

(
v̂n;

∨
Ẑ

)
; 〈π2〉

∨
Ẑ

)

also contains:

〈π1〉(δ1, . . . , δn; θ).

So let e be an extended atom containing the first of these two formulas.
Once again, a proof similar to that of Lemma 1, shows that the formula

〈π1〉
(
〈π2〉

(
v̂1;

∨
Ẑ

)
, . . . , 〈π2〉

(
v̂n;

∨
Ẑ

)
; 〈π2〉

∨
Ẑ

)

is equivalent to a disjunction of formulas of the form 〈π1〉
(
Ê,

∨
Ê

)
where

E is a set of extended atoms such that 〈π2〉
∨

Ẑ ∈ ⋂
E and 〈π2〉

(
v̂i;

∨
Ẑ

)
∈

⋃
E for each i ∈ {1, . . . , n}. So one of these disjuncts 〈π1〉

(
Ê,

∨
Ê

)
belongs

to e. Furthermore, it is not hard to show that � ê′ → θ for each e′ ∈
E: if e′ ∈ E then 〈π2〉

∨
Ẑ ∈ e′. So we show that 〈π2〉

∨
Ẑ � θ: recall

that θ was the disjunction of all formulas û such that u is an atom with
(u, U) ∈ SΣ

π2
for some U ⊆ Z. We show that any atom u′ consistent with

〈π2〉
∨

Ẑ is consistent with θ also, from which the desired conclusion follows
using Lemma 3. But if u′ is consistent with 〈π2〉

∨
Ẑ then by Lemma 1 we
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find a subset U ⊆ Z such that u′ is consistent with 〈π2〉
(
Û ,

∨
Û

)
. Then

(u′, U) ∈ SΣ
π2

, hence u′ must be consistent with θ as required.
Similarly one can show that � ê′ → δi for each e′ ∈ E such that

〈π2〉
(
v̂i;

∨
Ẑ

)
∈ e′ (since e′ ∩ Σ is an atom consistent with 〈π2〉

(
v̂i;

∨
Ẑ

)
).

Therefore, we get:

〈π1〉
(
Ê,

∨
Ê

)
� 〈π1〉(δ1, . . . , δn; θ)

by (Mon), whence 〈π1〉(δ1, . . . , δn; θ) belongs to e as well.
So w is consistent with the formula 〈π1〉(δ1, . . . , δn; θ), and by Lemma 1

there is a set Q of atoms such that w is consistent with 〈π1〉
(
Q̂;

∨
Q̂

)
, s � θ

for each s ∈ Q and for each i ∈ {1, . . . , n} there is ti ∈ Q such that ti � δi.
It follows from this that for each s ∈ Q there is some Us ⊆ Z such that
(s, Us) ∈ SΣ

π2
, and for each i ∈ {1, . . . , n} there is some Pi ⊆ Z such that

vi ∈ Pi and (ti, Pi) ∈ SΣ
π2

. If we set

F = {Us | s ∈ Q} ∪ {Pi | i ∈ {1, . . . , n}}
then we get (Q,F ) ∈ SΣ

π2
, and so (w,

⋃
F ) ∈ SΣ

π1
[[ ; ]]SΣ

π2
. But

⋃
F = Z, so

we get (w,Z) ∈ SΣ
π1

[[ ; ]]SΣ
π2

as required.
Finally, a straightforward induction now shows that SΣ

π ⊆ RΣ
π for each

safe label π, using monotonicity of each of the operations [[∪]], [[∩]], [[ ; ]], [[∗]].
For atomic labels the claim holds by definition of RΣ

a = SΣ
a . For the case of

iteration, as an example, we have:

SΣ
π∗ ⊆ [[∗]](SΣ

π )

⊆ [[∗]](RΣ
π )

= RΣ
π∗

The other cases are similar.

Using Lemma 5 we can prove a truth lemma for the canonical model:

Lemma 6. For every atom w and any ψ ∈ Σ, we have the equivalence
(CΣ, w) � ψ if and only if ψ ∈ w.

Proof. By induction on the complexity of ψ. Note that the induction hy-
pothesis for subformulas of ψ guarantees that every label appearing in ψ is
safe. The only interesting cases are formulas of the form 〈π〉(Ψ;ϕ).

For right to left, suppose 〈π〉(Ψ;ϕ) ∈ w. By Lemma 1 we find a set Z of
atoms such that 〈π〉

(
Ẑ,

∨
Ẑ

)
is consistent with w, hence (w, Z) ∈ SΣ

π , and
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such that Ψ ⊆ ⋃
Z and ϕ ∈ ⋂

Z. By Lemma 5 we get (w, Z) ∈ RΣ
π , and the

induction hypothesis applied to the formulas in Ψ ∪ {ϕ} now readily yields
CΣ, w � 〈π〉(Ψ;ϕ) as required.

For left to right, it suffices to show that for all formulas 〈π〉(Ψ;ϕ) ∈ Σ,
all sets of atoms Z and all atoms w such that (w, Z) ∈ RΣ

π , ϕ ∈ ⋂
Z

and Ψ ⊆ ⋃
Z, we have 〈π〉(Ψ;ϕ) ∈ w. The required result then follows by

applying the induction hypothesis to Ψ, ϕ. We prove the claim by induction
on the complexity of the label π, assuming that π is a safe label.

If π is an atomic label a then we have RΣ
a = SΣ

a . So if (w, Z) ∈ RΣ
a then

(w,Z) ∈ SΣ
a , so w is consistent with 〈a〉

(
Ẑ;

∨
Ẑ

)
. From this we can easily

derive that w is consistent with 〈a〉(Ψ;ϕ) by an argument combining the
rule (Mon) and the axiom (Weak), given that ϕ ∈ ⋂

Z and Ψ ⊆ ⋃
Z. Since

〈a〉(Ψ;ϕ) ∈ Σ and w is an atom it follows that 〈a〉(Ψ;ϕ) ∈ w as required.
The induction steps for the constructions of test, choice, parallel composi-

tion and sequential composition are straightforward, making use of Fischer–
Ladner closure of Σ at each step.

We now focus on the case of the Kleene star. Suppose that there is some
Z such that (w,Z) ∈ RΣ

π∗ , ϕ ∈ ⋂
Z and Ψ ⊆ ⋃

Z. By Proposition 4 there is
some natural number n with (w,Z) ∈ (RΣ

π )[n], so we reason by induction on
n. That is, we show that for all w,Z,Ψ, ϕ and all n ∈ ω, if (w, Z) ∈ (RΣ

π )[n],
ϕ ∈ ⋂

Z and Ψ ⊆ ⋃
Z, then 〈π∗〉(Ψ;ϕ) ∈ w.

For n = 0, the result holds trivially, as (RΣ
π )[n] = ∅. And if the induction

hypothesis holds for n, if (w,Z) ∈ (RΣ
π )[n+1] then either (w, Z) ∈ skip, or:

(w,Z) ∈ RΣ
π [[ ; ]](RΣ

π )[n]

In the first case, we have Z = {w} so it immediately follows (using Fisher-
Ladner closure of Σ and 〈π∗〉(Ψ;ϕ) ∈ Σ ) that

∧
Ψ ∧ ϕ ∈ w. By the

axiom (Fix), we get 〈π∗〉(Ψ;ϕ) ∈ w as required. Otherwise, if (w, Z) ∈
RΣ

π [[ ; ]](RΣ
π )[n], there is a set Y and a family of sets F with (w, Y ) ∈ RΣ

π ,
(Y, F ) ∈ (RΣ

π )[n],
⋃

F = Z, ϕ ∈ ⋂
X for each X ∈ F , and for each ψ ∈ Ψ

there is some Xψ ∈ F with ψ ∈ ⋃
Xψ. By Fisher-Ladner closure we get

(
∧

Ψ ∧ ϕ) ∨ 〈π ; π∗〉(Ψ;ϕ) ∈ Σ

and hence, with Ψ = {ψ1, . . . , ψk}:

〈π〉(〈π∗〉(ψ1; ϕ), . . . , 〈π∗〉(ψk; ϕ); 〈π∗〉ϕ) ∈ Σ

For every ψ ∈ Ψ and every v ∈ Y such that (v, Xψ) ∈ (RΣ
π )[n], since we have

ψ ∈ ⋃
Xψ and ϕ ∈ ⋂

Xψ we obtain from the “inner” induction hypothesis
on n that 〈π∗〉(ψ; ϕ) ∈ v. By a similar argument, we get 〈π∗〉ϕ ∈ v for all
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X ∈ F and all v ∈ Y with (v,X) ∈ (RΣ
π )[n]. Since (Y, F ) ∈ (RΣ

π )[n], we find
that for each ψ ∈ Ψ we have 〈π∗〉(ψ; ϕ) ∈ ⋃

Y , and we also get 〈π∗〉ϕ ∈ ⋂
Y .

Since (w, Y ) ∈ RΣ
π we can now apply the “outer” induction hypothesis on

labels to the label π and get:

〈π〉(〈π∗〉(ψ1; ϕ), . . . , 〈π∗〉(ψn; ϕ); 〈π∗〉ϕ) ∈ w

By applying the axiom (Cmp) we get 〈π ; π∗〉(Ψ;ϕ) ∈ w, and hence

(
∧

Ψ ∧ ϕ) ∨ 〈π ; π∗〉(Ψ;ϕ) ∈ w

just from classical propositional logic. Finally, by the fixpoint axiom (Fix)
we get 〈π∗〉(Ψ;ϕ) ∈ w as required.

Proof of Theorem 5. Suppose the formula ϕ is not provable, so that ¬ϕ
is consistent. By Lemma 2, ¬ϕ belongs to some finite Fischer–Ladner closed
set Σ and since ¬ϕ is consistent it belongs to some atom w. Hence ϕ /∈ w
and by Lemma 6 we have CΣ, w � ϕ. So ϕ is not valid.

We note that as a corollary to the completeness proof, which produces a
finite model of effectively bounded size for a consistent formula, we get:

Theorem 6. IPDL has the finite model property and is decidable.

5. Comparison with Game Logic

We now show that IPDL can, in a precise sense, be viewed as a language
extension of dual-free game logic, called GL here for short. Formally, formulas
of GL and game terms are defined by the following dual grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈π〉ϕ
π := a ∈ A | ϕ? | π ; π | π ∪ π | π ∩ π | π∗

with Prop a fixed set of propositional variables and A a set of atomic games,
both assumed to be countably infinite. Note that GL is a syntactic fragment
of IPDL. Here, ∪ is interpreted as “angelic choice” (choice for Player I), ∩ is
interpreted as “demonic choice” (choice for Player II), ; is sequential game
composition and ∗ is finite game iteration (controlled by Player I).

Semantics of game logic formulas are given by neighborhood frames, with
the extra constraint that the family of neighborhoods associated with a world
is upwards closed under set inclusion:

Definition 5. A neighborhood frame (W,R) is said to be a monotonic
power frame if the following condition holds for each a ∈ A:
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(Monotonicity) For all u ∈ W , if (u, Z) ∈ Ra and Z ⊆ Z ′ then (u, Z ′) ∈
Ra.

A monotonic power model is a neighborhood model whose underlying
frame is a monotonic power frame.

To provide a semantics for formulas in a model, we need to interpret
the game constructors. In what follows, we shall use double vertical lines
‖−‖ for semantic denotations of formulas in GL and game constructors in
monotonic neighborhood models, as distinct from our semantics for PDL
presented earlier, that used square denotation brackets [[−]].

More precisely, using the format introduced in [3], we define operations
on the lattice NW = P(W × P(W )) of neighborhood relations over W :

- R‖∪‖R′ = R ∪ R′

- R‖∩‖R′ = R ∩ R′

- (u, Z ′) ∈ R‖ ; ‖R′ iff there is some Z ⊆ W with (u, Z) ∈ R
and (v, Z ′) ∈ R′ for all v ∈ Z.

- ‖?‖(Z) = {(w,Z ′) ∈ W × P(W ) | w ∈ Z ∩ Z ′}
Finally, we define ‖∗‖R to be the least fixpoint in the lattice NW of the
monotone map F defined by:

FS = skip↑‖∪‖(R‖ ; ‖S)

where skip↑ = {(w,Z) ∈ W × P(W ) | w ∈ Z}. We can now set up the
semantics of GL. Fixing a monotonic power model M, we define the in-
terpretation of every formula ϕ and the neighborhood relations Rπ corre-
sponding to each game term π in the obvious way, so that in particular we
have -Rπ1∪π2 = Rπ1‖∪‖Rπ2 , Rπ1∩π2 = Rπ1‖∩‖Rπ2 etc., and u ∈ ‖〈π〉ϕ‖ iff
(u, ‖ϕ‖) ∈ Ra. For a monotonic power model M = (W,R, V ) and u ∈ W
we shall also write M, u � ϕ for u ∈ ‖ϕ‖. Since semantic interpretations are
always defined relative to a model, if necessary we shall use the notation
‖−‖M rather than ‖−‖ to make it clear which model M is being referred to.
We write � ϕ if M, u � ϕ for every pointed monotone power model (M, u).

We can now state precisely how IPDL extends dual-free game logic:

Theorem 7. IPDL is a conservative extension of GL. That is, for every
GL-formula ϕ, we have that

� ϕ iff � ϕ

Proof. For every neighborhood model M, we define a monotonic power
model M↑ as follows: let M = (W,R, V ). We define the monotonic power
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model M↑ = (W,R, V ) as follows: set (u, Z) ∈ Ra iff there is some Z ′ ⊆ Z
with (u, Z ′) ∈ Ra. Now we have the following:

Claim 2. For all GL-formula ϕ and neighborhood models M, ‖ϕ‖M↑ =
[[ϕ]]M.

Proof of Claim 2. The result follows easily once we have established:

Claim 3. Given a neighborhood model M and a term π, let Rπ denote
the neighborhood relation corresponding to π in M computed by applying
the operations [[?]], [[∪]], [[∩]], [[ ; ]], [[∗]], and let Sπ denote the neighborhood
relation corresponding to π in M↑ computed by applying the operations
‖?‖, ‖∪‖, ‖∩‖, ‖ ; ‖, ‖∗‖. Then for all w,Z, we have (w, Z) ∈ Sπ iff there is
some Z ′ ⊆ Z with (w,Z ′) ∈ Rπ.

We devote the rest of the proof to establishing this claim. The claim
is immediate for atomic games, and the step for the test operator follows
trivially from the definitions. The direction from right to left is easy in each
case, so we focus on the converse implication.

The induction step for ∪ is entirely straightforward. For ∩, if (w, Z) ∈
Sπ1∩π2 then (w,Z) ∈ Sπ1 and (w,Z) ∈ Sπ2 . By the induction hypothesis,
there are sets Y, Y ′ ⊆ Z such that (w, Y ) ∈ Rπ1 and (w, Y ′) ∈ Rπ2 . So
(w, Y ∪ Y ′) ∈ Rπ1∩π2 . Since Y ∪ Y ′ ⊆ Z, we are done.

For the sequential composition operator, suppose (w, Z) ∈ Sπ1 ; π2 . Then
there exists a set Y such that (w, Y ) ∈ Sπ1 and (v, Z) ∈ Sπ2 for each v ∈ Y .
By the induction hypothesis, there are sets {Z ′

v}v∈Y with (v, Z ′
v) ∈ Rπ2

and Z ′
v ⊆ Z, and there exists a set Y ′ ⊆ Y with (w, Y ′) ∈ Rπ1 . We then

get (w,
⋃{Z ′

v | v ∈ Y ′}) ∈ Rπ1 ; π2 , and because of the successive inclusions⋃{Z ′
v | v ∈ Y ′} ⊆ ⋃{Z ′

v | v ∈ Y } ⊆ Z, we are done.
Finally, we consider the case of game iteration. First, we recall that skip

denotes the neighborhood relation {(w, {w}) | w ∈ W}, and skip↑ denotes
the relation {(w,Z) | w ∈ Z}.

Suppose the induction hypothesis holds for Rπ. Let

F := λZ.skip↑‖∪‖(Sπ‖ ; ‖Z)

so that Sπ∗ is equal to the least fixpoint for F . Alternatively, we can describe
Sπ∗ as the least fixpoint of the map F restricted to the complete sub-lattice
of NW given by {R ∈ NW | skip↑ ⊆ R}. Its bottom element is skip↑, so we
can write the approximating sequence for the least fixpoint as:

skip↑ ⊆ F skip↑ ⊆ F 2skip↑ ⊆ F 3skip↑ . . . Fωskip↑ ⊆ Fω+1skip↑ . . .

We denote the first two entries in the series as F 0skip↑ and F 1skip↑. We
show, by transfinite induction, that
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(w,Z) ∈ F ξskip↑ iff there is some Z ′ ⊆ Z such that (w, Z ′) ∈ (Rπ)[ξ]

The result then follows by considering ξ such that Rπ∗ = (Rπ)[ξ] and γ such
that Sπ∗ = F γskip↑. Next, pick some ρ greater than both γ and ξ. Then we
are done, because we have Rπ∗ = R

[ρ]
π and Sπ∗ = F ρskip↑.

To establish the claim, the case for ξ = 0 is trivial since by definition
F 0skip↑ = skip↑ and R

[0]
π = skip. Successor ordinals ξ + 1 are handled by

unfolding and comparing the definitions of R
[ξ+1]
π and F ξ+1skip↑, applying

the “inner” induction hypothesis to F ξskip↑, applying the “outer” induction
hypothesis to Sπ, and then repeating and combining the previous arguments
for ∪ and ; . Finally, limit ordinals κ are handled by simply noting that
R

[κ]
π =

⋃
ξ<κ(Rπ)[ξ] and Fκskip↑ =

⋃
ξ<κ F ξskip↑.

We can now prove Theorem 7. Suppose ϕ is a formula of GL and � ϕ.
Then since every monotonic power frame is a neighborhood frame, we get
M, w � ϕ for every pointed monotonic power model (M, w). But if M is a
monotonic power model, we have M↑ = M, so it follows from Claim 2 that
M, w � ϕ for every pointed monotonic power model as well. Hence � ϕ.

Conversely, suppose � ϕ, so that ϕ is valid on every monotonic power
frame. Then for any neighborhood model M and every state w in W , we
have M↑, w � ϕ, so M, w � ϕ by Claim 2. Hence � ϕ as required.

In other words: the formulas of IPDL that are valid on arbitrary neighbor-
hood frames form a conservative extension of the GL-formulas that are valid
over monotonic power frames.

6. Concluding Remarks

In this paper, we have introduced a new propositional dynamic logic IPDL
defined over instantial neighborhood logic, as a tool for exploring a new per-
spective on open systems computation. We found program operations that
respect a natural notion of bisimulation in this setting, and we axiomatized
the complete logic, which presented some non-trivial and interesting devia-
tions from the usual proof format for PDL. Finally, we positioned our logic
with respect to related views of computation by completely clarifying its
relation to Parikh’s dual-free game logic.

Our system fits in a broader technical context. Various extensions of our
base language would make sense, notably, the addition of least and greatest
fixpoint operators. Just as standard PDL can be translated into the modal
μ-calculus, our logic IPDL can be translated into the extension of INL with
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fixpoints, a translation that is implicit in our axiom system for IPDL. The fix-
point extension of INL is very well behaved from a co-algebraic perspective.
As shown in [6], INL is a coalgebraic modal logic corresponding to a weak
pullback preserving functor—the double covariant powerset functor—that
additionally preserves finite sets. This means that the μ-calculus extension
of INL inherits a number of properties that hold in much wider general-
ity. In particular, it has the finite model property and it is decidable [22],
and a sound and complete system of axioms is available [12]. However, as
usual, such general results need not transfer to natural fragments that zoom
in more closely on computation. Examples are Reynold’s highly non-trivial
completeness proof for CTL∗ [21], or Parikh’s game logic, which still lacks
a complete system of axioms. A closer comparison for our system would be
coalgebraic PDL, [18], but there the coalgebraic type functor is a monad.
By contrast, this is not the case for INL1. Still, there is work to be done.
For instance, our sequential program composition resembles the standard
Kleisli composition for the powerset functor—we leave these issues to future
investigation.

These are not the only connections to be clarified. In follow-up work,
we intend to show that IPDL can also throw new light on other logical
systems for computation, such as concurrent PDL ([7,15,20]), and that it can
contribute to a more fine-structured analysis of game equivalence and powers
of players, linking up with game theory (see [4], for which an extended follow-
up manuscript is in preparation). The relationship between IPDL and the
alternating-time temporal logics ATL and ATL∗ also remains to be explored.
Standard ATL describes abilities of players to force conditions on (potentially
infinite) computations by some strategy. An INL-like extension of ATL could
then allow reasoning involving more complex quantification over infinite
computations, involving both universal and existential quantification over
the set of computations that are compatible with a given strategy.

Acknowledgements. We thank the referee for valuable feedback and for spot-
ting an error in the original version of the proof of Theorem 7. We also
thank a number of colleagues for helpful discussions on earlier versions of
the manuscript, where in particular we wish to mention Valentin Goranko,
Helle Hansen, Tadeusz Litak and Lutz Schröder.

1We came to this conclusion after a private conversation with Helle Hansen, who cor-
rectly guessed that the double covariant powerset functor is not a monad. This fact has
very recently been verified by Klin and Salamanca in [16].
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