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ABSTRACT
Question answering over knowledge graphs (KGQA) has evolved
from simple single-fact questions to complex questions that require
graph traversal and aggregation. We propose a novel approach for
complex KGQA that uses unsupervised message passing, which
propagates confidence scores obtained by parsing an input question
and matching terms in the knowledge graph to a set of possible
answers. First, we identify entity, relationship, and class names
mentioned in a natural language question, and map these to their
counterparts in the graph. Then, the confidence scores of these map-
pings propagate through the graph structure to locate the answer
entities. Finally, these are aggregated depending on the identified
question type.

This approach can be efficiently implemented as a series of sparse
matrix multiplications mimicking joins over small local subgraphs.
Our evaluation results show that the proposed approach outper-
forms the state-of-the-art on the LC-QuAD benchmark. Moreover,
we show that the performance of the approach depends only on
the quality of the question interpretation results, i.e., given a cor-
rect relevance score distribution, our approach always produces a
correct answer ranking. Our error analysis reveals correct answers
missing from the benchmark dataset and inconsistencies in the
DBpedia knowledge graph. Finally, we provide a comprehensive
evaluation of the proposed approach accompanied with an ablation
study and an error analysis, which showcase the pitfalls for each
of the question answering components in more detail.

CCS CONCEPTS
•Mathematics of computing→ Probabilistic reasoning algo-
rithms; • Information systems → Uncertainty; Question an-
swering; • Computing methodologies→ Semantic networks.
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1 INTRODUCTION
The amount of data shared on the Web grows every day [14]. Infor-
mation retrieval systems are very efficient but they are limited in
terms of the representation power for the underlying data structure
that relies on an index for a single database table, i.e., a homoge-
neous collection of textual documents that share the same set of
attributes, e.g., web pages or news articles [30]. Knowledge graphs
(KGs), i.e., graph-structured knowledge bases, such as DBpedia [27]
or Wikidata [48], can interlink datasets with completely different
schemas [4]. Moreover, SPARQL is a very expressive query language
that allows us to retrieve data from a KG that matches specified
graph patterns [19]. Query formulation in SPARQL is not easy in
practice since it requires knowledge of which datasets to access,
their vocabulary and structure [12]. Natural language interfaces
can mitigate these issues, making data access more intuitive and
also available for the majority of lay users [20, 22]. One of the core
functionalities for this kind of interfaces is question answering
(QA), which goes beyond keyword or boolean queries, but also does
not require knowledge of a specialised query language [46].

QA systems have been evolving since the early 1960s with early
efforts in the database community to support natural language
queries by translating them into structured queries [see, e.g., 6,
17, 51]. Whereas a lot of recent work has considered answering
questions using unstructured text corpora [38] or images [16], we
consider the task of answering questions using information stored
in KGs. KGs are an important information source as an intermediate
representation to integrate information from different sources and
different modalities, such as images and text [7]. The resulting mod-
els are at the same time abstract, compact, and interpretable [50].
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Question answering over knowledge graphs (KGQA) requires
matching an input question to a subgraph, in the simplest case
matching a single labeled edge (triple) in the KG, a task also called
simple question answering [5]. The task of complex question an-
swering is defined in contrast to simple KGQA and requires match-
ing more than one triple in the KG [45]. Previously proposed ap-
proaches to complex KGQA formulate it as a subgraph matching
task [1, 29, 44], which is an NP-hard problem (by reduction to the
subgraph isomorphism problem) [53], or attempt to translate a
natural language question into template-based SPARQL queries to
retrieve the answer from the KG [8], which requires a large number
of candidate templates [42].

We propose an approach to complex KGQA, called QAmp, based
on an unsupervised message-passing algorithm, which allows for
efficient reasoning under uncertainty using text similarity and the
graph structure. The results of our experimental evaluation demon-
strate that QAmp is able to manage uncertainties in interpreting
natural language questions, overcoming inconsistencies in a KG
and incompleteness in the training data, conditions that restrict
applications of alternative supervised approaches.

A core aspect of QAmp is in disentangling reasoning from the
question interpretation process. We show that uncertainty in rea-
soning stems from the question interpretation phase alone, meaning
that under correct question interpretations QAmp will always rank
the correct answers at the top. QAmp is designed to accommodate
uncertainty inherent in perception and interpretation processes via
confidence scores that reflect natural language ambiguity, which
depends on the ability to interpret terms correctly. These ranked
confidence values are then aggregated through ourmessage-passing
in a well-defined manner, which allows us to simultaneously con-
sider multiple alternative interpretations of the seed terms, favoring
the most likely interpretation in terms of the question context and
relations modeled within the KG. Rather than iterating over all
possible orderings, we show how to evaluate multiple alternative
question interpretations in parallel via efficient matrix operations.

Another assumption of QAmp that proves useful in practice is to
deliberately disregard subject-object order, i.e., edge directions in a
knowledge graph, thereby treating the graph as undirected. Due to
relation sparsity, this model relaxation turns out to be sufficient for
most of the questions in the benchmark dataset. We also demon-
strate that due to insufficient relation coverage of the benchmark
dataset any assumption on the correct order of the triples in the KG
is prone to overfitting. More than one question-answer example
per relation is required to learn and evaluate a supervised model
that predicts relation directionality.

Our evaluation on LC-QuAD1 [45], a recent large-scale bench-
mark for complex KGQA, shows that QAmp significantly outper-
forms the state-of-the-art, without the need to translate a natural
language question into a formal query language such as SPARQL.
We also show that QAmp is interpretable in terms of activation
paths, and simple, effective and efficient at the same time. More-
over, our error analysis demonstrates limitations of the LC-QuAD
benchmark, which was constructed using local graph patterns.

The rest of the paper is organized as follows. Section 2 summa-
rizes the state of the art in KGQA. Section 3 presents our approach,

1http://lc-quad.sda.tech

QAmp, with particular attention to the question interpretation and
answer inference phases. In Section 4, we evaluate QAmp on the
LC-QuAD dataset, providing a detailed ablation, scalability and
error study. Finally, Section 6 concludes and lists future work.

2 RELATEDWORK
Themost commonly used KGQA benchmark is the SimpleQuestions
[5] dataset, which contains questions that require identifying a
single triple to retrieve the correct answers. Recent results [37]
show that most of these simple questions can be solved using a
standard neural network architectures. This architecture consists
of two components: (1) a conditional random fields (CRF) tagger
with GloVe word embeddings for subject recognition given the text
of the question, and (2) a bidirectional LSTM with FastText word
embeddings for relation classification given the text of the question
and the subject from the previous component. Approaches to simple
KGQA cannot easily be adapted to solving complex questions, since
they rely heavily on the assumption that each question refers to
only one entity and one relation in the KG, which is no longer the
case for complex questions. Moreover, complex KGQA also requires
matching more complex graph patterns beyond a single triple.

Since developing KGQA systems requires solving several tasks,
namely entity, relation and class linking, and afterwards query
building, they are often implemented as independent components
and arranged into a single pipeline [9]. Frameworks such as QALL-
ME [11], OKBQA [24] and Frankenstein [41], allow one to share
and reuse those components as a collaborative effort. For exam-
ple, Frankenstein includes 29 components that can be combined
and interchanged [43]. However, the distribution of the number of
components designed for each task is very unbalanced. Most of the
components in Frankenstein support entity and relation linking,
18 and 5 components respectively, while only two components
perform query building [42].

There is a lack of diversity in approaches that are being consid-
ered for retrieving answers from a KG. OKBQA and Frankenstein
both propose to translate natural language questions to SPARQL
queries and then use existing query processing mechanism to re-
trieve answers.2 We show that using matrix algebra approaches
is more efficient in case of natural language processing than tra-
ditional SPARQL-based approaches since they are optimized for
parallel computation, thereby allowing us to explore multiple alter-
native question interpretations at the same time [21, 23].

Query building approaches involve query generation and rank-
ing steps [29, 52]. These approaches essentially consider KGQA as
a subgraph matching task [1, 29, 44], which is an NP-hard prob-
lem (by reduction to the subgraph isomorphism problem) [53]. In
practice, Singh et al. [42] report that the question building com-
ponents of Frankenstein fail to process 46% questions from a sub-
set of LC-QuAD due to the large number of triple patterns. The
reason is that most approaches to query generation are template-
based [8] and complex questions require a large number of can-
didate templates [42]. For example, WDAqua [8] generates 395
SPARQL queries as possible interpretations for the question “Give
me philosophers born in Saint Etienne.”

2http://doc.okbqa.org/query-generation-module/v1/
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In summary, we identify the query building component as the
main bottleneck for the development of KGQA systems and propose
QAmp as an alternative to the query building approach. Also, the
pipeline paradigm is inefficient since it requires KG access first for
disambiguation and then again for query building. QAmp accesses
the KG only to aggregate the confidence scores via graph traversal
after question parsing and shallow linking that matches an input
question to labels of nodes and edges in the KG.

The work most similar to ours is the spreading activation model
of Treo [13], which is also a no-SPARQL approach based on graph
traversal that propagates relatedness scores for ranking nodes with
a cut-off threshold. Treo relies on POS tags, the Stanford depen-
dency parser, Wikipedia links and TF/IDF vectors for computing
semantic relatedness scores between a question and terms in the
KG. Despite good performance on the QALD 2011 dataset, the main
limitation of Treo is an average query execution time of 203s [13]. In
this paper we show how to scale this kind of approach to large KGs
and complement it with machine learning approaches for question
parsing and word embeddings for semantic expansion.

Our approach overcomes the limitations of the previously pro-
posed graph-based approach in terms of efficiency and scalability,
which we demonstrate on a compelling benchmark. We evaluate
QAmp on LC-QuAD [45], which is the largest dataset used for
benchmarking complex KGQA. WDAqua is our baseline approach,
which is the state-of-the-art in KGQA as the winner of the most
recent Scalable Question Answering Challenge (SQA2018) [33]. Our
evaluation results demonstrate improvements in precision and re-
call, while reducing average execution time over the SPARQL-based
WDAqua, which is also orders of magnitude faster than results re-
ported for the previous graph-based approach Treo.

There is other work on KGQA that uses embedding queries into
a vector space [18, 49]. The benefit of our graph-based approach is
in preserving the original structure of the KG that can be used for
executing precise formal queries and answering ambiguous natural
language questions. The graph structure also makes the results
traceable and, therefore, interpretable in terms of relevant paths
and subgraphs in comparison with vector space operations.

QAmp uses message passing, a family of approaches that were
initially developed in the context of probabilistic graphical mod-
els [25, 35]. Graph neural networks trained to learn patterns of
message passing have recently shown to be effective on a variety
of tasks [2, 15], including KG completion [39]. We show that our
unsupervised message passing approach performs well on complex
question answering and helps to overcome sampling biases in the
training data, which supervised approaches are prone to.

3 APPROACH
QAmp, our KGQA approach, consists of two phases: (1) question
interpretation, and (2) answer inference. In the question interpre-
tation phase we identify the sets of entities and predicates that
we consider relevant for answering the input question along with
the corresponding confidence scores. In the second phase these
confidence scores are propagated and aggregated directly over the
structure of the KG, to provide a confidence distribution over the
set of possible answers. Our notion of KG is inspired by common
concepts from the Resource Description Framework (RDF) [40],

a standard representation used in many large-scale knowledge
graphs, e.g., DBpedia and Wikidata:

Definition 3.1. We define a (knowledge) graph K = ⟨E,G, P⟩ as a
tuple that contains sets of entities E (nodes) and properties P , both
represented by Unique Resource Identifiers (URIs), and a set of
directed labeled edges ⟨ei ,p, ej ⟩ ∈ G, where ei , ej ∈ E and p ∈ P .

The set of edgesG in a KG can be viewed as a (blank-node-free) RDF
graph, with subject-predicate-object triples ⟨ei ,p, ej ⟩. In analogy
with RDFS, we refer to a subset of entities C ⊆ E appearing as
objects of the special property rdf:type as Classes. We also refer to
classes, entities and properties collectively as terms. We ignore RDF
literals, except for rdfs:labels that are used for matching questions
to terms in KG.

The task of question answering over a knowledge graph (KGQA)
is: given a natural language question Q and a knowledge graph K ,
produce the correct answer A, which is either a subset of entities
in the KG A ⊆ E or a result of a computation performed on this
subset, such as the number of entities in this subset (COUNT) or an
assertion (ASK). These types of questions are the most frequent in
existing KGQA benchmarks [5, 45, 47]. In the first phase QAmp
maps a natural language questionQ to a structured model q, which
the answer inference algorithm will operate on then.

3.1 Question interpretation
To produce a question model q we follow two steps: (1) parse, which
extracts references (entity, predicate and class mentions) from the
natural language question and identifies the question type; and (2)
match, which assigns each of the extracted references to a ranked
list of candidate entities, predicates and classes in the KG.

Effectively, a complex question requires answering several sub-
questions, which may depend on or support each other. A depen-
dence relation between the sub-questions means that an answer
A1 to one of the questions is required to produce the answer A2

for the other question: A2 = f (A1,K). We call such complex ques-
tions compound questions and match the sequence in which these
questions should be answered to hops (in the context of this pa-
per, one-variable graph patterns) in the KG. Consider the sample
compound question in Fig. 1, which consists of two hops: (1) find
the car types assembled in Broadmeadows Victoria, which have a
hardtop style, (2) find the company, which produces these car types.
There is an intermediate answer (the car types with the specified
properties), which is required to arrive at the final answer (the
company).

Accordingly, we define (compound) questions as follows:

Definition 3.2. A question model is a tuple q = ⟨tq , Seqq⟩, where
tq ∈ T is a question type required to answer the question Q , and
Seqq = (⟨Ei , P i ,Ci ⟩)hi=1 is a sequence of h hops over the KG, Ei is
a set of entity references, P i – a set of property references, Ci – a
set of class references relevant for the i-hop in the graph, andT – a
set of question types, such as {SELECT, ASK, COUNT}.

Hence, the question in Fig. 1 can be modeled as: ⟨SELECT, (⟨E1 =
{“hardtop”, “Broadmeadows, Victoria”}, P1 = {“assembles”, “style”},
C1 = {“cars”}⟩, ⟨E2 = ∅, P2 = {“company”}, C2 = ∅⟩)⟩, where Ei , P i ,
Ci refer to the entities, predicates and classes in hop i .
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Further, we describe how the question model q is produced by
parsing the input question Q , after which we match references in q
to entities and predicates in the graph K .

Parsing. Given a natural language question Q , the goal is to clas-
sify its type tq and parse it into a sequence Seqq of reference sets
according to Definition 3.2. Question type detection is implemented
as a supervised classification model trained on a dataset of anno-
tated question-type pairs that learns to assign an input question to
one of the predefined types tq ∈ T .

We model reference (mention) extraction Seqq as a sequence
labeling task [26], in which a question is represented as a sequence
of tokens (words or characters). Then, a supervised machine learn-
ing model is trained on an annotated dataset to assign labels to
tokens, which we use to extract references to entities, predicates
and classes. Moreover, we define the set of labels to group entities,
properties and classes referenced in the question into h hops.

Matching. Next, the question model (Definition 3.2) is updated
with an interpreted question model I (q) = (tq , SEQq ) in which each
component of Seqq is represented by sets of pairs from (E ∪ P ∪
C) × [0, 1] obtained by matching the references to concrete terms
in K (by their URIs) as follows: for each entity (or property, class,
resp.) reference in Seqq , we retrieve a ranked list of most similar
entities from the KG along with the matching confidence score.

Fig. 1 also shows the result of this matching step on our ex-
ample. For instance, the property references for the first hop are
replaced by the set of candidate URIs: P1 = {P11 , P

1
2 } ∈ SEQq

within I (q), where P11 = {(dbo:assembly, 0.9), (dbp:assembly, 0.9)},
P12 = {(dbo:bodyStyle, 0.5)}.

3.2 Answer inference
Our answer inference approach iteratively traverses and aggregates
confidence scores across the graph based on the initial assignment
from I (q). An answer set Ai , i.e., a set of entities along with their
confidence scores E×[0, 1], is produced after each hop i and used as
part of the input to the next hop i+1, along with the terms matched
for this hop in I (q), i.e., SEQq (i+1) = ⟨Ei+1, P i+1,Ci+1⟩. The entity
set Ah produced after the last hop h can be further transformed to
produce the final answer:Aq = ftq (Ah ) via an aggregation function
ftq ∈ F from a predefined set of available aggregation functions
F defined for each of the question types tq ∈ T . We compute the
answer set Ai for each hop inductively in two steps: (1) subgraph
extraction and (2) message passing.

Subgraph extraction. This step refers to the retrieval of relevant
triples from the KG that form a subgraph. Thus, the URIs of the
matched entities and predicates in the query are used as seeds to
retrieve the triples in the KG that contain at least one entity (in
subject or object position), and one predicate from the correspond-
ing reference sets. Therefore, the extracted subgraph will contain n
entities, which include all entities from Ei and the entities adjacent
to them through properties from P i .

The subgraph is represented as a set of k adjacency matrices with
n entities in the subgraph: Sk×n×n , where k is the total number of
matched property URIs. There is a separate n × n matrix for each
of the k properties used as seeds, where Spi j = 1 if there is an
edge labeled p between the entities i and j , and 0 otherwise. All

Algorithm 1 Message passing for KGQA

Input: adjacency matrices of the subgraph Sk×n×n ,
entity El×n and property reference activations Pm×k

Output: answer activations vector A ∈ Rn

1: W n ,Nn
P ,YE

l×n = ∅
2: for Pj ∈ Pm×k , j ∈ {1, ...,m} do
3: Sj =

⊕k
i=1 Pj ⊗ S ▷ property update

4: Y = E ⊕ ⊗Sj ▷ entity update
5: W =W +

⊕l
i=1 Yi j ▷ sum of all activations

6: NPj =
∑l
i=1 1 if Yi j > 0 else 0

7: YE = YE ⊕ Y ▷ activation sums per entity
8: end for
9: W = 2 ·W /(l +m) ▷ activation fraction
10: NE =

∑l
i=1 1 if YEi j > 0 else 0

11: return A = (W ⊕ NE ⊕ NP )/(l +m + 1)

adjacency matrices are symmetric, because I (q) does not model
edge directionality, i.e., it treats K as undirected. Diagonal entries
are assigned 0 to ignore self loops.
Message passing. The second step of the answer inference phase
involvesmessage passing,3 i.e., propagation of the confidence scores
from the entities Ei and predicates P i , matched in the question in-
terpretation phase, to adjacent entities in the extracted subgraph.
This process is performed in three steps, (1) property update, (2) en-
tity update, and (3) score aggregation. Algorithm 1 summarizes this
process, detailed as follows.

For each of m property references Pj ∈ Pm×k , j ∈ {1, . . . ,m}
wherem = |P i |, we
(1) select the subset of adjacency matrices from Sk×n×n for the

property URIs if pi j > 0, where pi j ∈ Pj , and propagate the
confidence scores to the edges of the corresponding adjacency
matrices via element-wise multiplication. Then, all adjacency
matrices are combined into a single adjacency matrix Sn×nj ,
which contains all of their edges with the sum of confidence
scores if edges overlap (property update: line 3, Algorithm 1).

(2) perform the main message-passing step via the sum-product
update, in which the confidence scores from l entity references,
where l = |Ei |, are passed over to the adjacent entities via all
edges in Sn×nj (entity update: line 4, Algorithm 1).

(3) aggregate the confidence scores for all n entities in the subgraph
into a single vector A by combining the sum of all confidence
scores with the number of entity and predicate reference sets,
which received non-zero confidence score. The intuition behind
this score aggregation formula (line 11, Algorithm 1) is that the
answers that received confidence from the majority of entity
and predicate references in the question should be preferred.
The computation of the answer scores for our running example
is illustrated in Fig. 2.

The minimal confidence for the candidate answer is regulated by a
threshold to exclude partial and low-confidence matches. Finally,
we also have an option to filter answers by considering only those
entities in the answer set Ai that have one of the classes in Ci .

3The pseudocode of the message passing algorithm is presented in Algorithm 1.
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Which     company     assembles     its     hardtop     style      cars      in      Broadmeadows, Victoria ?

dbo:assembly 0.9 
dbp:assembly 0.9

dbr:Ford_Falcon_Cobra 

dbr:Hardtop

dbo:bodyStyle dbp:assembly

dbr:Broadmeadows,_Victoria

dbo:parentCompany

dbo:Automobile

rdf:type 

dbr:Ford_Motor_Company 

dbo:Automobile 1 
dbr:Car 1 

dbo:company 1 
dbp:companyLogo 0.8 

dbo:parentCompany 0.8 

dbr:Hardtop 1 dbr:Broadmeadows,_Victoria 0.9
dbr:Victoria 0.2

dbo:bodyStyle 0.5

(a) Q:

(b)

1st hop2nd hop

Figure 1: (a) A sample question Q highlighting different components of the question interpretation model: references and
matched URIs with the corresponding confidence scores, along with (b) the illustration of a sample KG subgraph relevant to
this question. The URIs in bold are the correct matches corresponding to the KG subgraph.

W (    ) = 2 * (0.5 * 1.0 + 0.9 * 0.9) / (2 + 2) = 0.66

dbr:Ford_Falcon_Cobra 

dbr:Hardtop

dbo:bodyStyle dbp:assembly

(a)
0.9

0.91.0

(b)

dbo:assembly
0.9

0.2

(c)

dbr:Broadmeadows,_Victoria

dbr:Car1 

0.5

dbr:Car2 

dbp:assembly
0.9

dbr:Victoria

dbo:bodyStyle
0.5

Activation sums normalized (see Alg.1, lines 5&9)

W (    ) = 2 * (0.5 * 1.0 + 0.9 * 0.2) / (2 + 2) = 0.34

A (    ) = (0.66 + 2 + 2) / (2 + 2 + 1) = 0.93
A (    ) = (0.34 + 2 + 2) / (2 + 2 + 1) = 0.87

Aggregated scores (see Alg.1, line 11)

W (    ) = 2 * (0.9 * 0.9) / (2 + 2) = 0.41

A (    ) = (0.41 + 1 + 1) / (2 + 2 + 1) = 0.48

Figure 2: (a) A sample subgraphwith three entities as candidate answers, (b) their scores after predicate and entity propagation,
and (c) the final aggregated score.

The same procedure is repeated for each hop in the sequence
using the corresponding URI activations for entities, properties and
classes modeled in SEQq (i) = ⟨Ei , P i ,Ci ⟩ and augmented with the
intermediate answers produced for the previous hop Ai−1. Lastly,
the answer to the question Aq is produced based on the entity set
Ah , which is either returned ‘as is’ or put through an aggregation
function ftq conditioned on the question type tq .

4 EVALUATION SETUP
We evaluate QAmp, our KGQA approach, on the LC-QuAD dataset
of complex questions constructed from the DBpedia KG [45]. First,
we report the evaluation results of the end-to-end approach, which
incorporates our message-passing algorithm in addition to the ini-
tial question interpretation (question parser and matching func-
tions). Second, we analyze the fraction and sources of errors pro-
duced by different KGQA components, which provides a compre-
hensive perspective on the limitations of the current state-of-the-
art for KGQA, the complexity of the task, and limitations of the

benchmark. Our implementation and evaluation scripts are open-
sourced.4

Baseline.We use WDAqua [8] as our baseline; to the best of our
knowledge, the results produced by WDAqua are the only pub-
lished results on the end-to-end question answering task for the
LC-QuAD benchmark to date. It is a rule-based framework that
integrates several KGs in different languages and relies on a handful
of SPARQL query patterns to generate SPARQL queries and rank
them as likely question interpretations. We rely on the evaluation
results reported by the authors [8]. WDAqua results were produced
for the full LC-QuAD dataset, while other datasets were used for
tuning the approach.
Metrics. We follow the standard evaluation metrics for the end-to-
end KGQA task, i.e., we report precision (P) and recall (R) macro-
averaged over all questions in the dataset, and then use them to
compute the F-measure (F). Following the evaluation setup of the
QALD-9 challenge [47] we assign both precision and recall equal to
4https://github.com/svakulenk0/KBQA

https://github.com/svakulenk0/KBQA
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Table 1: Dataset statistics: number of questions across the
train and test splits; number of complex questions that ref-
erence more than one triple; number of complex questions
that require two hops in the graph through an intermediate
answer-entity.

Questions

Split All Complex Compound

all 4,998 (100%) 3,911 (78%) 1,982 (40%)
train 3,999 (80%) 3,131 (78%) 1,599 (40%)
test 999 (20%) 780 (78%) 383 (38%)

0 for every question in the following cases: (1) for SELECT questions,
no answer (empty answer set) is returned, while there is an answer
(non-empty answer set) in the ground truth annotations; (2) for
COUNT or ASK questions, an answer differs from the ground truth;
(3) for all questions, the predicted answer type differs from the
ground truth. In the ablation study, we also analyze the fraction of
questions with errors for each of the components separately, where
an error is a not exact match with the ground-truth answer.

Hardware.We used a standard commodity server to train and eval-
uate QAmp: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, RAM 16
GB DDR4 SDRAM 2400 MHz, 240 GB SSD, NVIDIA GP102 GeForce
GTX 1080 Ti.

4.1 The LC-QuAD dataset
The LC-QuAD dataset5 [45] contains 5K question-query pairs that
have correct answers in the DBpedia KG (2016-04 version). The
questions were generated using a set of SPARQL templates by seed-
ing them with DBpedia entities and relations, and then paraphrased
by human annotators. All queries are of the form ASK, SELECT, and
COUNT, fit to subgraphs with diameter of at most 2-hops, contain
1–3 entities and 1–3 properties.

We used the train and test splits provided with the dataset (Ta-
ble 1). Two queries with no answers in the graph were excluded. All
questions are also annotated with ground-truth reference spans6 to
evaluate performance of entity linking and relation detection [9].

4.2 Implementation details
Our implementation uses the English subset of the official DBpedia
2016-04 dump losslessly compressed into a single HDT file7 [10].
HDT is a state-of-the-art compressed RDF self-index, which scales
linearly with the size of the graph and is, therefore, applicable to
very large graphs in practice. This KG contains 1B triples, more than
26M entities (dbpedia.org namespace only) and 68,687 predicates.
Access to the KG for subgraph extraction and class constraint look-
ups is implemented via the Python HDT API.8 This API builds an
additional index [31] to speed up all look-ups, and consumes the
HDT mapped in disk, with a ∼3% memory footprint.9

5https://github.com/AskNowQA/LC-QuAD
6https://github.com/AskNowQA/EARL
7http://fragments.dbpedia.org/hdt/dbpedia2016-04en.hdt
8https://github.com/Callidon/pyHDT
9Overall, DBpedia 2016-04 takes 18GB in disk, and 0.5GB in main memory.

Our end-to-end KGQA solution integrates several components
that can be trained and evaluated independently. The pipeline in-
cludes two supervised neural networks for (1) question type detec-
tion and (2) reference extraction; and unsupervised functions for
(3) entity and (4) predicate matching, and (5) message passing.
Parsing. Question type detection is implemented as a bi-LSTM
neural-network classifier trained on pairs of question and type. We
use another biLSTM+CRF neural network for extracting references
to entities, classes and predicates for at most two hops using the
set of six labels: {“E1”, “P1”, “C1”, “E2”, “P2”, “C2”}. Both classifiers
use GloVe word embeddings pre-trained on the Common Crawl
corpus with 840B tokens and 300 dimensions [36].
Matching. The labels of all entities and predicates in the KG (rdfs:
label links) are indexed into two separate catalogs and embedded
into two separate vector spaces using the English FastText model
trained on Wikipedia [3]. We use two ranking functions for match-
ing and assigning the corresponding confidence scores: index-based
for entities and embedding-based for predicates. The index-based
ranking function uses BM25 [30] to calculate confidence scores for
the top-500 matches on the combination of n-grams and Snowball
stems.10 Embedding-based confidence scores are computed using
the Magnitude library11 [34] for the top-50 nearest neighbors in
the FastText embedding space.

Many entity references in the LC-QuAD questions can be han-
dled using simple string similarity matching techniques; e.g., ‘com-
panies’ can be mapped to “http://dbpedia.org/ontology/Company”.
We built an ElasticSearch (Lucene) index to efficiently retrieve
such entity candidates via string similarity to their labels. The
entity labels were automatically generated from entity URIs by
stripping the domain part of the URI and lower-casing, e.g., entity
“http://dbpedia.org/ontology/Company” received the label “com-
pany” to better match question words. LC-QuAD questions also
contain more complex paraphrases of the entity URIs that require
semantic similarity computation beyond fuzzy string matching,
such as “movie” refers to “http://dbpedia.org/ontology/Film”, “stock-
holder” to “http://dbpedia.org/property/owner” or “has kids” to
‘http://dbpedia.org/ontology/child’. We embeded entity and predi-
cate labels with FastText [3] to detect semantic similarities beyond
string matching.

Index-based retrieval scales much better than nearest neighbour
computation in the embedding space, which is a crucial requirement
for the 26M entity catalog. In our experiments, syntactic similar-
ity was sufficient for entity matching in most of the cases, while
property matching required capturing more semantic variations
and greatly benefited from using pre-trained embeddings.

5 EVALUATION RESULTS
Table 2 shows the performance of QAmp on the KGQA task in
comparison with the results previously reported by Diefenbach
et al. [8]. There is a noticeable improvement in recall (we were
able to retrieve answers to 50% of the benchmark questions), while
maintaining a comparable precision score. For the most recent
QALD challenge the guidelines were updated to penalize systems
that miss the correct answers, i.e., that are low in recall, which gives

10 https://www.elastic.co/guide/en/elasticsearch/reference/current
11https://github.com/plasticityai/magnitude

https://github.com/AskNowQA/LC-QuAD
https://github.com/AskNowQA/EARL
http://fragments.dbpedia.org/hdt/dbpedia2016-04en.hdt
https://github.com/Callidon/pyHDT
https://www.elastic.co/guide/en/elasticsearch/reference/current
https://github.com/plasticityai/magnitude
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Table 2: Evaluation results. (*) P of the WDAqua baseline is
estimated from the reported precision of 0.59 for answered
questions only. Runtime is reported in seconds per question
as an average across all questions in the dataset. The dis-
tribution of runtimes for QAmp is Min: 0.01, Median: 0.67
Mean: 0.72, Max: 13.83

Approach P R F Runtime

WDAqua 0.22* 0.38 0.28 1.50 s/q
QAmp (our approach) 0.25 0.50 0.33 0.72 s/q

a clear signal of its importance for this task [47]. While it is often
trivial for users to filter out a small number of incorrect answers
that stem from interpretation ambiguity, it is much harder for users
to recover missing correct answers. Indeed, we showed that QAmp
is able to identify correct answers that were missing even from the
benchmark dataset since they were overlooked by the benchmark
authors due to sampling bias.

5.1 Ablation study
Table 3 summarizes the results of our ablation study for different
setups. We report the fraction of all questions that have at least
one answer that deviates from the ground truth (Total column),
questions with missing term matches (No match) and other errors.
Revised errors is the subset of other errors that were considered as
true errors in the manual error analysis.

Firstly, we make sure that the relaxations in our question in-
terpretation model hold true for the majority of questions in the
benchmark dataset (95%) by feeding all ground truth entity, class
and property URIs to the answer inference module (Setup 1 in Ta-
ble 3).We found that only 53 test questions (5%) require one tomodel
the exact order of entities in the triple, i.e., subject and predicate
positions. These questions explicitly refer to a hierarchy of entity
relations, such as dbp:doctoralStudents and dbp:doctoralAdvisor

(see Figure 312, 13), and their directionality has to be interpreted
to correctly answer such questions. We also recovered a set of
correct answers missing from the benchmark for relations that
are symmetric by nature, but were considered only in one direc-
tion by the benchmark, e.g., dbo:related, dbo:associatedBand, and
dbo:sisterStation (see Figure 4).

These results indicate that a more complex question model at-
tempting to reflect structural semantics of a question in terms of
the expected edges and their directions (parse graph or lambda cal-
culus) is likely to fall short when trained on this dataset: 53 sample
questions are insufficient to train a reliable supervised model that
can recognize relation directions from text, which explains poor
results of a slot-matching model for subgraph ranking reported on
this dataset [28].

There were only 8 errors (1%) due to the wrong question type
detected caused by misspelled or grammatically incorrect ques-
tions (row 2 in Table 3). Next, we experimented with removing
class constraints and found that although they generally help to

12The numbers on top of each entity show its number of predicates and triples.
13All sample graph visualizations illustrating different error types discovered in the
LC-QuAD dataset in Figure 3, 4, 6 were generated using the LODmilla web tool,
http://lodmilla.sztaki.hu [32], with data from the DBpedia KG.

Figure 3: Directed relation example (dbp:doctoralStudents
and dbp:doctoralAdvisor hierarchy) that requires modeling
directionality of the relation. LC-QuAD question #3267:
“Name the scientist whose supervisor also supervised Mary
Ainsworth?” (correct answer: Abraham Maslow) can be eas-
ily confusedwith a question: “Name the scientist who super-
vised also the supervisor of Mary Ainsworth?” (correct an-
swer: Lewis Terman). LC-QuAD benchmark is not suitable
for evaluating directionality interpretations, since only 35
questions (3.5%) of the LC-QuAD test split use relations of
this type, which explains high performance results ofQAmp
that treats all relation as undirected.

filter out incorrect answers (row 3) our matching function missed
many correct classes even using the ground-truth spans from the
benchmark annotations (row 4).

The last four evaluation setups (5–8) in Table 3 show the errors
from parsing and matching reference spans to entities and pred-
icates in the KG. Most errors were due to missing term matches
(10–34% of questions), which indicates that the parsing and match-
ing functions constitute the bottleneck in our end-to-end KGQA.
Even with the ground-truth span annotations for predicate ref-
erences the performance is below 0.6 (34% of questions), which
indicates that relation detection is much harder than the entity
linking task, which is in line with results reported by Dubey et al.
[9] and Singh et al. [42].

The experiments marked GT span+ were performed by match-
ing terms to the KG using the ground-truth span annotations, then
down-scaling the confidence scores for all matches and setting the
confidence score of the match used in the ground-truth query to
the maximum confidence score of 1. In this setup, all correct an-
swers according to the benchmark were ranked at the top, which

http://lodmilla.sztaki.hu
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Table 3: Ablation study results. (*) Question model results set the optimal performance for our approach assuming that the
question interpretation is perfectly aligned with the ground-truth annotations. We then estimate additional (new) errors pro-
duced by each of the KGQA components separately. The experiments marked with GT use the term URIs and question types
extracted from the ground truth queries. GT span+ uses spans from the ground-truth annotations and then corrects the distri-
bution of the matched entities/properties to mimic correct question interpretation with a low-confidence tail with alternative
matches. PR (Parsed Results) stands for predictions made by question parsing and matching models (see Section 4.2).

Setup Question interpretation P R F
Questions with errors

Total New errors
Q. type Entity Property Class No match Other→Revised

1 Question model* GT 0.97 0.99 0.98 9% – 9% → 5%
2 Question type PR GT 0.96 0.98 0.97 10% – 1% → 1%
3 Ignore classes GT None 0.94 0.99 0.96 14% – 5% → 3%
4 Classes GT span+ GT GT span+ 0.89 0.92 0.90 17% 8% –
5 Entities GT span+ GT GT span+ GT 0.85 0.88 0.86 20% 10% 1%→ 1%
6 Entities PR GT PR GT 0.64 0.74 0.69 46% 27% 10%→ 5%
7 Predicates GT span+ GT GT span+ GT 0.56 0.59 0.57 48% 34% 5%→ 3%
8 Predicates PR GT PR GT 0.36 0.53 0.43 74% 34% 31%→ 19%

Figure 4: Undirected relation example (dbo:sisterStation)
that reflects bi-directional association between the adja-
cent entities (Missouri radio stations). LC-QuAD question
#4486: “In which city is the sister station of KTXY located?”
(correct answer: dbr:California,Missouri, dbr:Missouri; miss-
ing answer: dbr:Eldon,Missouri). DBpedia does not model bi-
directional relations and the relation direction is selected
at random in these cases. LC-QuAD does not reflect bi-
directionality either by picking only one of the directions
as the correct one and rejecting correct solutions (dbr:KZWY
→ dbr:Eldon,Missouri). QAmp was able to retrieve this false
negative sample due to the default undirectionality assump-
tion built into the question interpretation model.

demonstrates the correctness of the message passing and score
aggregation algorithm.

Figure 5: Processing times per question from the LC-QuAD
test split (Min: 0.01s Median: 0.68s Mean: 0.72s Max: 13.97s)

5.2 Scalability analysis
As we reported in Table 2, QAmp is twice as fast as the WDAqua
baseline using a comparable hardware configuration. Figure 5 shows
the distribution of processing times and the number of examined
triples per question from the LC-QuAD test split. The results are in
line with the expected fast retrieval of HDT [10], which scales lin-
early with the size of the graph. Most of the questions are processed
within 2 seconds (with a median and mean around 0.7s), even those
examining more than 50K triples. Note that only 10 questions took
more than 2 seconds to process and 3 of them took more than 3
seconds. These outliers end up examining a large number of alterna-
tive interpretations (up to 300K triples), which could be prevented
by setting a tighter threshold. Finally, it is worth mentioning that
some questions end up with no results (i.e., 0 triples accessed), but
they can take up to 2 seconds for parsing and matching.

5.3 Error analysis
We sampled questions with errors (P < 1 or R < 1) for each of the
setups and performed an error analysis for a total of 206 questions.
Half of the errors were due to the incompleteness of the benchmark
dataset and inconsistencies in the KG (column Revised in Table 3).
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Figure 6: Alternative entity example that demonstrates a
missing answer when only a single correct entity URI is
considered (dbr:Rome and not dbr:Pantheon,Rome). LC-QuAD
question #261: “Give me a count of royalties buried
in Rome?” (correct answer: dbr:Augustus; missing answer:
dbr:Margherita_of_Savoy). QAmpwas able to retrieve this false
negative sample due to the string matching function and re-
taining a list of alternative URIs per entity mention.

Since the benchmark provides only a single SPARQL query per
question that contains a single URI for each entity, predicate and
class, all alternative though correct matches are missing, e.g., the
gold-truth query using dbp:writer will miss dbo:writer, or match
all dbo:languages triples but not dbo:language, etc.

QAmpwas able to recover many such cases to produce additional
correct answers using: (1) missing or alternative class URIs, e.g.,
dbr:Fire_Phone was missing from the answers for technological
products manufactured by Foxconn since it was annotated as a
device, and not as an information appliance; (2) related or alterna-
tive entity URIs, e.g., the set of royalties buried in dbo:Rome should
also include those buried in dbr:PantheonRome (see Figure 6); (3)
alternative properties, e.g., dbo:hometown as dbo:birthPlace.

We discovered alternative answers due to themajority vote effect,
when many entities with low confidence help boost a single answer.
Majority voting can produce a best-effort guess based on the data
in the KG even if the correct terms are missing from the KG or
could not be recovered by the matching function, e.g., “In which
time zone is Pong Pha?” – even if Pong Pha is not in the KG many
other locations with similar names are likely to be located in the
same geographic area.

Overall, our evaluation results indicate that the answer set of
the LC-QuAD benchmark can be used only as a seed to estimate
recall but does not provide us with a reliable metric for precision.
Attempts to further improve performance on such a dataset can
lead to learning the biases embedded in the construction of the
dataset, e.g., the set of relations and their directions. QAmp is able
to mitigate this pitfall by resorting to unsupervised message passing

that collects answers from all local subgraphs containing terms
matching the input question, in parallel.

6 CONCLUSION
We have proposed QAmp, a novel approach for complex KGQA
using message passing, which sets the new state-of-the-art results
on the LC-QuAD benchmark for complex question answering. We
have shown that QAmp is scalable and can be successfully applied
to very large KGs, such as DBpedia, which is one of the biggest cross-
domain KGs. QAmp does not require supervision in the answer
inference phase, which helps to avoid overfitting and to discover
correct answers missing from the benchmark due to the limitations
of its construction. Moreover, the answer inference process can
be explained by the extracted subgraph and the confidence score
distribution. QAmp requires only a handful of hyper-parameters
to model confidence thresholds in order to stepwise filter partial
results and trade off recall for precision.

QAmp is built on a basic assumption of considering edges as
undirected in the graph, which proved reasonable and effective in
our experiments. The error analysis revealed that, in fact, symmetric
edges were often missing in the KG, i.e., the decision on the order of
entities in KG triples is made arbitrarily and is not duplicated in the
reverse order. However, there is also a (small) subset of relations,
e.g., hierarchy relations, for which relation direction is essential.

Question answering over KGs is hard due to (1) ambiguities stem-
ming from question interpretation, (2) inconsistencies in knowledge
graphs, and (3) challenges in constructing a reliable benchmark,
which motivate the development of robust methods able to cope
with uncertainties and also provide assistance to end-users in in-
terpreting the provenance and confidence of the answers.

QAmp is not without limitations. It is designed to handle ques-
tions where the answer is a subset of entities or an aggregate based
on this subset, e.g., questions for which the expected answer is a
subset of properties in the graph, are currently out of scope. An
important next step is to use QAmp to improve the recall of the
benchmark dataset by complementing the answer set with missing
answers derived from relaxing the dataset assumptions. Recogniz-
ing relation directionality is an important direction for future work,
which requires extending existing benchmark datasets and the ad-
dition of more cases where an explicit order is required to retrieve
correct answers. Another direction is to improve predicate match-
ing, which is the weakest component of the proposed approach
as identified in our ablation study. Finally, unsupervised message
passing can be adopted for other tasks that require uncertain rea-
soning on KGs, such as knowledge base completion, text entailment,
summarization, and dialogue response generation.

Acknowledgments
This work was supported by the EU H2020 programme under the
MSCA-RISE agreement 645751 (RISE_BPM), the Austrian Research
Promotion Agency (FFG) under projects CommuniData (855407)
and Cityspin (861213), Ahold Delhaize, the Association of Univer-
sities in the Netherlands (VSNU), and the Innovation Center for
Artificial Intelligence (ICAI). All content represents the opinion of
the authors, which is not necessarily shared or endorsed by their
respective employers and/or sponsors.



CIKM ’19, November 03–07, 2019, Beijing, China Vakulenko et al.

REFERENCES
[1] Jun-Wei Bao, NanDuan, Zhao Yan,Ming Zhou, and Tiejun Zhao. 2016. Constraint-

Based Question Answering with Knowledge Graph. In COLING 2016. 2503–2514.
[2] Peter W. Battaglia, Jessica B. Hamrick, et al. 2018. Relational inductive biases,

deep learning, and graph networks. CoRR abs/1806.01261 (2018). arXiv:1806.01261
[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-

riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146.

[4] Piero Andrea Bonatti, Stefan Decker, Axel Polleres, and Valentina Presutti. 2018.
Knowledge Graphs: New Directions for Knowledge Representation on the Se-
mantic Web (Dagstuhl Seminar 18371). Dagstuhl Reports 8, 9 (2018), 29–111.

[5] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. 2015. Large-
scale Simple Question Answering with Memory Networks. CoRR abs/1506.02075
(2015). arXiv:1506.02075

[6] Wim Bronnenberg, Harry Bunt, Jan Landsbergen, Remko Scha, Wijnand Schoen-
makers, and Eric van Utteren. 1980. The question answering system Phliqa1. In
Natural Language Question Answering Systems, L. Bolc (Ed.). MacMillan, 217–305.

[7] Fabrício F. de Faria, Ricardo Usbeck, Alessio Sarullo, Tingting Mu, and André
Freitas. 2018. Question Answering Mediated by Visual Clues and Knowledge
Graphs. In WWW. 1937–1939.

[8] Dennis Diefenbach, Andreas Both, Kamal Deep Singh, and Pierre Maret. 2018. To-
wards aQuestionAnswering System over the SemanticWeb. CoRR abs/1803.00832
(2018). arXiv:1803.00832

[9] Mohnish Dubey, Debayan Banerjee, Debanjan Chaudhuri, and Jens Lehmann.
2018. EARL: Joint Entity and Relation Linking for Question Answering over
Knowledge Graphs. In ISWC 2018. 108–126.

[10] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel Polleres,
and Mario Arias. 2013. Binary RDF Representation for Publication and Exchange
(HDT). J. Web Semant. 19 (2013), 22–41.

[11] Óscar Ferrández, Christian Spurk, Milen Kouylekov, Iustin Dornescu, Sergio
Ferrández, Matteo Negri, Rubén Izquierdo, David Tomás, Constantin Orasan,
Guenter Neumann, Bernardo Magnini, and José Luis Vicedo González. 2011. The
QALL-ME Framework: A specifiable-domain multilingual Question Answering
architecture. J. Web Semant. 9, 2 (2011), 137–145.

[12] André Freitas, Edward Curry, João Gabriel Oliveira, and Seán O’Riain. 2012.
Querying Heterogeneous Datasets on the Linked Data Web: Challenges, Ap-
proaches, and Trends. IEEE Internet Computing 16, 1 (2012), 24–33.

[13] André Freitas, João Gabriel Oliveira, Seán O’Riain, João Carlos Pereira da Silva,
and Edward Curry. 2013. Querying linked data graphs using semantic relatedness:
A vocabulary independent approach. Data Knowl. Eng. 88 (2013), 126–141.

[14] Amir Gandomi and Murtaza Haider. 2015. Beyond the hype: Big data concepts,
methods, and analytics. International journal of information management 35, 2
(2015), 137–144.

[15] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, et al. 2017. Neural Message
Passing for Quantum Chemistry. In ICML 2017. 1263–1272.

[16] Yash Goyal, Tejas Khot, et al. 2017. Making the V in VQA Matter: Elevating the
Role of Image Understanding in Visual Question Answering. In CVPR 2017.

[17] Bert F. Green, Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. 1963. Base-
ball: An automatic question answerer. In Computers and Thought. McGraw-Hill,
219–224.

[18] William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure
Leskovec. 2018. Embedding Logical Queries on Knowledge Graphs. In NeurIPS.
2030–2041.

[19] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language. W3C
Recommendation. (March 2013).

[20] Gary G Hendrix. 1982. Natural-language interface. Computational Linguistics 8,
2 (1982), 56–61.

[21] Fuad Jamour, Ibrahim Abdelaziz, and Panos Kalnis. 2018. A demonstration of
MAGiQ: matrix algebra approach for solving RDF graph queries. Proc. the VLDB
Endowment 11, 12 (2018), 1978–1981.

[22] Esther Kaufmann and Abraham Bernstein. 2007. How Useful Are Natural Lan-
guage Interfaces to the Semantic Web for Casual End-Users?. In ISWC. 281–294.

[23] Jeremy Kepner, Peter Aaltonen, David A. Bader, Aydin Buluç, Franz Franchetti,
John R. Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning
Meyerhenke, Scott McMillan, Carl Yang, John D. Owens, Marcin Zalewski, Tim-
othy G. Mattson, and José E. Moreira. 2016. Mathematical foundations of the
GraphBLAS. In HPEC. 1–9.

[24] Jin-Dong Kim, Christina Unger, Axel-Cyrille Ngonga Ngomo, André Freitas,
YoungGyun Hahm, Jiseong Kim, Gyu-Hyun Choi, Jeonguk Kim, Ricardo Usbeck,
Myoung-Gu Kang, and Key-Sun Choi. 2017. OKBQA: an Open Collaboration
Framework for Development of Natural Language Question-Answering over
Knowledge Bases. In ISWC.

[25] Daphne Koller, Nir Friedman, and Francis Bach. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT press.

[26] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Condi-
tional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. In ICML 2001. 282–289.

[27] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
et al. 2015. DBpedia - A large-scale, multilingual knowledge base extracted from
Wikipedia. Semantic Web 6, 2 (2015), 167–195.

[28] Gaurav Maheshwari, Priyansh Trivedi, et al. 2018. Learning to Rank Query
Graphs for Complex Question Answering over Knowledge Graphs. arXiv preprint
arXiv:1811.01118 (2018).

[29] Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty,
Asja Fischer, and Jens Lehmann. 2018. Learning to Rank Query Graphs
for Complex Question Answering over Knowledge Graphs. arXiv preprint
arXiv:1811.01118 (2018).

[30] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. 2010. Intro-
duction to information retrieval. Natural Language Engineering 16, 1 (2010),
100–103.

[31] Miguel A Martínez-Prieto, Mario Arias Gallego, and Javier D Fernández. 2012.
Exchange and consumption of huge RDF data. In ESWC. 437–452.

[32] AndrásMicsik, Sándor Turbucz, andAttila Györök. 2014. LODmilla: a LinkedData
Browser for All. In Posters&Demos SEMANTiCS 2014, Sack Harald, Filipowska
Agata, Lehmann Jens, and Hellmann Sebastian (Eds.). CEUR-WS.org, 31–34.

[33] Giulio Napolitano, Ricardo Usbeck, and Axel-Cyrille Ngonga Ngomo. 2018. The
Scalable Question Answering Over Linked Data (SQA) Challenge 2018. In SemWe-
bEval Challenge at ESWC. 69–75.

[34] Ajay Patel, Alexander Sands, Chris Callison-Burch, and Marianna Apidianaki.
2018. Magnitude: A Fast, Efficient Universal Vector Embedding Utility Package.
In EMNLP 2018. 120–126.

[35] Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc.

[36] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In EMNLP 2014. 1532–1543.

[37] Michael Petrochuk and Luke Zettlemoyer. 2018. SimpleQuestions Nearly Solved:
A New Upperbound and Baseline Approach. In EMNLP 2018. 554–558.

[38] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. In EMNLP
2016. 2383–2392.

[39] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. 2018. In ESWC. 593–607.

[40] Guus Schreiber and Yves Raimond. 2014. RDF 1.1 Primer. W3C Note. (June 2014).
[41] Kuldeep Singh, Andreas Both, Arun Sethupat Radhakrishna, and Saeedeh Shekar-

pour. 2018. Frankenstein: A Platform Enabling Reuse of Question Answering
Components. In ESWC. 624–638.

[42] Kuldeep Singh, Ioanna Lytra, Arun Sethupat Radhakrishna, Saeedeh Shekarpour,
Maria-Esther Vidal, and Jens Lehmann. 2018. No One is Perfect: Analysing the
Performance of Question Answering Components over the DBpedia Knowledge
Graph. CoRR abs/1809.10044 (2018).

[43] Kuldeep Singh, Arun Sethupat Radhakrishna, Andreas Both, Saeedeh Shekarpour,
Ioanna Lytra, Ricardo Usbeck, Akhilesh Vyas, Akmal Khikmatullaev, Dharmen
Punjani, Christoph Lange, Maria-Esther Vidal, Jens Lehmann, and Sören Auer.
2018. Why Reinvent the Wheel: Let’s Build Question Answering Systems To-
gether. InWWW. 1247–1256.

[44] Daniil Sorokin and Iryna Gurevych. 2018. Modeling Semantics with Gated Graph
Neural Networks for Knowledge Base Question Answering. In COLING 2018.
3306–3317.

[45] Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. 2017.
LC-QuAD: A Corpus for Complex Question Answering over Knowledge Graphs.
In ISWC. 210–218.

[46] Christina Unger, André Freitas, and Philipp Cimiano. 2014. An Introduction to
Question Answering over Linked Data. In Reasoning Web. 100–140.

[47] Ricardo Usbeck, Ria Hari Gusmita, Axel-Cyrille Ngonga Ngomo, and Muhammad
Saleem. 2018. 9th Challenge on Question Answering over Linked Data. In QALD
at ISWC. 58–64.

[48] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[49] Meng Wang, Ruijie Wang, Jun Liu, Yihe Chen, Lei Zhang, and Guilin Qi. 2018.
Towards Empty Answers in SPARQL: Approximating Querying with RDF Em-
bedding. In ISWC. 513–529.

[50] Xander Wilcke, Peter Bloem, and Victor De Boer. 2017. The knowledge graph as
the default data model for learning on heterogeneous knowledge. Data Science
(2017), 1–19.

[51] William Aaron Woods. 1977. Lunar rocks in natural English: Explorations in nat-
ural language question answering. In Linguistic Structures Processing, A. Zampoli
(Ed.). Elsevier North-Holland, 521–569.

[52] Hamid Zafar, Giulio Napolitano, and Jens Lehmann. 2018. Formal Query Genera-
tion for Question Answering over Knowledge Bases. In ESWC. 714–728.

[53] Lei Zou, Ruizhe Huang, HaixunWang, Jeffrey Xu Yu, Wenqiang He, and Dongyan
Zhao. 2014. Natural language question answering over RDF: a graph data driven
approach. In SIGMOD 2014. 313–324.

http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1803.00832

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Question interpretation
	3.2 Answer inference

	4 Evaluation Setup
	4.1 The LC-QuAD dataset
	4.2 Implementation details

	5 Evaluation Results
	5.1 Ablation study
	5.2 Scalability analysis
	5.3 Error analysis

	6 Conclusion
	References

