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The human visual system is an intricate network of brain regions
that enables us to recognize the world around us. Despite its
abundant lateral and feedback connections, object processing is
commonly viewed and studied as a feedforward process. Here, we
measure and model the rapid representational dynamics across
multiple stages of the human ventral stream using time-resolved
brain imaging and deep learning. We observe substantial repre-
sentational transformations during the first 300 ms of processing
within and across ventral-stream regions. Categorical divisions
emerge in sequence, cascading forward and in reverse across regions,
and Granger causality analysis suggests bidirectional information
flow between regions. Finally, recurrent deep neural network models
clearly outperform parameter-matched feedforward models in
terms of their ability to capture the multiregion cortical dynam-
ics. Targeted virtual cooling experiments on the recurrent deep
network models further substantiate the importance of their lateral
and top-down connections. These results establish that recurrent
models are required to understand information processing in the
human ventral stream.

object recognition | deep recurrent neural networks | representational
dynamics | magnetoencephalography | virtual cooling

Vision relies on an intricate network of interconnected corti-
cal regions along the ventral visual pathway (1). Although

considerable progress has been made in characterizing the neu-
ral selectivity across much of the system, the underlying com-
putations are not well understood. In human neuroscience and
corresponding modeling work, insight has often been generated
based on time-averaged data and feedforward computational
models. However, the primate visual system contains abundant
lateral and feedback connections (2). These give rise to recurrent
interactions, which are thought to contribute to visual inference
(3–13). Understanding the computational mechanisms of hu-
man vision therefore requires us to measure and model the rapid
representational dynamics across the different regions of the
ventral stream. To accomplish this, we here combine magneto-
encephalography (MEG), source-based representational dynamics
analysis (RDA) (14, 15), and deep learning. We shed light onto
the underlying computations by estimating the emergence of
representational distinctions across time and ventral-stream stages
and model the data using feedforward and recurrent deep neural
network (DNN) architectures.

Results
MEG data were recorded from 15 human participants (306 sen-
sors, 2 sessions each) while they viewed 92 stimuli from a diverse
set of natural object categories (human and nonhuman faces and
bodies, natural and manmade inanimate objects) (16). We focus
on 3 stages of the ventral visual hierarchy, including early-level
(V1–V3), intermediate-level (V4t/lateral occipital cortex [LO]),
and high-level (inferior temporal cortex [IT]/parahippocampal
cortex [PHC]) visual areas (17). Cortical sources were based

on individual-participant reconstructions of the cortical sheet
(based on anatomical MRI), and the source signals were
computed using minimum-norm estimation (MNE) (18). The
resulting data were subjected to RDA, a time-resolved variant of
representational similarity analysis (RSA). For each region and
time point, RDA characterizes the representation underlying the
stimulus evoked responses by a representational dissimilarity
matrix (RDM). This matrix indicates the degree to which dif-
ferent stimuli evoke similar or distinct response patterns in the
neural population (Fig. 1A). For each region of interest (ROI),
the temporal sequence of RDMs forms a movie that captures the
representational dynamics as a trajectory in a high-dimensional
RDM space.
Visual inspection of the RDM movies illustrates the diverse,

and highly dynamic nature of the computations along the human
ventral stream (Fig. 1B; see Movie S1 for the whole sequence).
RDMs for different regions exhibit distinct representational ge-
ometries at identical time points (Fig. 1B, columns), reflecting
the fact that different ventral-stream regions encode visual input
based on different features. In addition, representations within
each ventral-stream region exhibit dynamic changes (Fig. 1B, rows),
indicating that the intraarea computations, too, undergo substantial
transformations as time progresses.

Significance

Understanding the computational principles that underlie hu-
man vision is a key challenge for neuroscience and could help
improve machine vision. Feedforward neural network models
process their input through a deep cascade of computations.
These models can recognize objects in images and explain as-
pects of human rapid recognition. However, the human brain
contains recurrent connections within and between stages of
the cascade, which are missing from the models that dominate
both engineering and neuroscience. Here, we measure and
model the dynamics of human brain activity during visual per-
ception. We compare feedforward and recurrent neural network
models and find that only recurrent models can account for the
dynamic transformations of representations among multiple
regions of visual cortex.
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To gain quantitative insight into the neural representations as
they vary across time and space, we used linear modeling to break
the RDMs down into their component parts. Each RDM was

modeled as a nonnegative combination of a set of component
RDMs, capturing multiple representational dimensions thought to
be prominent in the ventral stream (1). The linear model captures

C

B

A

Fig. 1. Representational dynamics analysis (RDA) reveals how feature selectivity emerges over time along distinct ventral-stream regions. (A) RDA pipeline to
extract source-space RDM movies. (B) Participant-averaged RDMs (ranked) for regions V1–V3, V4t/LO, and IT/PHC at selected time points. All ROIs exhibit
distinctive multistage representational trajectories. (C) Linear modeling of the temporal evolution of feature selectivity reveals a staggered emergence of
representational distinctions within and across ventral-stream ROIs (black curve, V1–V3; blue, V4t/LO; red, IT/PHC). The horizontal bars indicate time points
with effects significantly exceeding prestimulus baseline (nonparametric cluster-correction; cluster inclusion and significance level, P < 0.05). SE across par-
ticipants shown as shaded area. Representational geometries at selected time points and ROIs are visualized in 2D using multidimensional scaling (MDS) to
visualize effect magnitude.
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representations that derive from low-level features (Gabor wave-
lets used in GIST; ref. 19), as well as more abstract distinctions
such as animacy (20–22), real-world size (21, 23), and the category
of human faces (24). Finally, more fine-grained categorical dis-
tinctions were modeled following the categorical structure of the
stimulus set (ref. 25; see SI Appendix, Figs. S1–S3 for further de-
tails). The unique contribution of each model component was
quantified as the additional variance explained when the compo-
nent was added to the model explaining the target RDM (26).
This analysis revealed that, as expected, the unique contribu-

tion of low-level image features (GIST) emerges early in V1–V3
(significant from ∼40 ms after stimulus onset, peaking at ∼100 ms)
and remains substantial and significant throughout the duration
of the stimulus (Fig. 1 C, Top Left). Low-level features were also
found to contribute to the early component of the IT/PHC
representation, with the onset trailing V1–V3 and the peak at a
similar latency (∼100 ms). However, in contrast to V1–V3, the
impact of low-level visual features subsequently diminishes in IT/
PHC (while remaining significant) as categorical components
come to dominate the representational geometry in a staggered
sequence. A unique contribution of the face category component
emerges next (Fig. 1 C, Bottom Left) as low-level features fade
(peaking at ∼130 ms in all areas). The rapid onset and strength
of the face effect across ROIs is consistent with a special status of
faces in the ventral stream (24, 27). Interestingly, the superor-
dinate division of animacy emerges in reverse cascade (Fig. 1 C,
Top Right): It first appears as a prominent peak in IT/PHC
(onset, ∼140 ms; peak, ∼160 ms), vanishes completely (returning
to nonsignificance at ∼200 ms), and then appears as a prominent
peak in V4t/LO (onset, ∼220 ms; peak, ∼260 ms), simultaneously
resurfacing in IT/PHC, albeit less strongly. Together, these re-
sults appear difficult to reconcile with a feedforward-only model.
The staggered emergence of representational distinctions (low-
level features, faces, animacy) within a given region, the tem-
porary waning of previously prominent divisions (GIST, faces,
animacy), and the reverse cascaded emergence of animacy, all
occurring while the stimulus is still on (500 ms), suggest highly
dynamic recurrent computations.
As an additional test for recurrent interactions across the

ventral-stream ROIs, we performed bottom-up and top-down
Granger causality analysis, testing in how far the past of a source
ROI can improve predictions of the RDMs observed in a target
ROI (Fig. 2; see Methods for details). Compatible with a feed-
forward flow of information, Granger causality was found to be
significantly above baseline from V1–V3 to V4t/LO and from
V4t/LO to IT/PHC, emerging around 70 ms after stimulus onset
in each case. In addition, Granger causality was significant in the
feedback direction, emerging more gradually with a peak just
past 110 ms for V4t/LO to V1–V3, and peaks around 140 and
260 ms for IT/PHC to V4t/LO. While the current Granger
causality model did not include common input to source and
target regions, the bidirectional influence observed is difficult to
reconcile with confounding input at differential delays from a
third lower-level region.
Our analyses thus far reveal rich representational dynamics

within ROIs, as well as bidirectional information flow between
ventral-stream regions. These suggest a prominent role of re-
currence in computations along the ventral visual pathway. We
next tested this hypothesis more directly using deep learning (28–
31) to obtain image-computable models of brain information
processing. We trained different DNN architectures to mirror
the time-varying representations of all ventral-stream areas (Fig.
3A). The trained models were then compared in terms of their
ability to predict held-out MEG data. This modeling approach
offers a direct test for the representational capacity of a given
network architecture and thereby helps distinguish between
competing hypotheses about the underlying computations. Two
classes of convolutional neural network architecture were tested:

feedforward and recurrent. Standard feedforward architectures,
including commonly used off-the-shelf pretrained DNNs, do not
express any dynamics, as each layer produces a single activation
vector that is passed on to the next. To maximize the potential
for complex dynamics within the feedforward framework, we
therefore allowed units to ramp-up their activity over time. This
was achieved via self-connections, whose weights were optimized
along with the other parameters to best match the MEG data.
Ramping feedforward models can exhibit complex dynamics,
capturing for example the way neurons integrate incoming sig-
nals and accumulate evidence. While this technically constitutes
a recurrent architecture, it does not enable lateral and top-down
message passing. Ramping feedforward models include pure
feedforward DNNs as a special case and therefore provide a
more conservative control in testing the hypothesis of recurrent
computation in the ventral stream. The recurrent models in-
cluded bottom-up, lateral, and top-down connections (BLT) (6),
i.e., local recurrence within network layers/regions (L) and bi-
directional connections across layers (B and T). The latter enabled
us to model feedback between ventral-stream ROIs, expanding on
previous work investigating the effects of recurrence within a given
region while restricting cross-regional information flow to the
feedforward direction (32, 33). Importantly, a meaningful com-
parison between recurrent and feedforward architectures requires
the control of as many architectural differences as possible. These
include, among others, the number of layers, feature maps, and
the total number of network parameters, all of which can affect a
network’s ability to fit to the data presented. To control for the

V1-3 V4t/LO

G
ra

ng
er

 c
au

sa
l i

nf
lu

en
ce

[G
C

]

A

G
ra

ng
er

 c
au

sa
l i

nf
lu

en
ce

[G
C

]

0

0.01

0.02

0.03

0.04

0.05

0.06

V4t/LO IT/PHC

B

time [s]
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.01

0.02

0.03

0.04

time [s]
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

Fig. 2. RSA Granger causality analysis was performed to estimate in-
formation flow between ventral-stream areas. (A) Feedforward (purple) and
feedback (orange) direction of Granger causal influence between early and
intermediate ROIs, and (B) effects between intermediate- and high-level
ROIs. The horizontal bars indicate time points with causal interactions ex-
ceeding effects during prestimulus baseline (FDR corrected at q < 0.05). Data
are shown baseline corrected.
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Fig. 3. DNN modeling of ventral-stream representational dynamics. (A) The RDM movies of all 3 ventral-stream regions were used as time-varying deep
learning objectives targeting separate DNN layers, together with a time-decaying category objective at the readout. Each artificial network thereby attempts
to simultaneously capture the representational dynamics of all ventral-stream areas. Stimulus display (Top Left) adapted with permission from ref. 20. (B)
Development of the average pattern distance across time. MEG data are shown together with the results of ramping feedforward, and recurrent DNNs. (C)
Average frame-by-frame RDM correlation between model and brain. Correlations estimated on separate data from individual participants, shown as gray
dots. Data are normalized by the predictive performance of the MEG RDM movies used for training (normalization factor shown for each region at the level
of 1.0). For all ROIs (black, V1–V3; blue, V4t/LO; red, IT/PHC), recurrent networks significantly outperform ramping feedforward architectures (significance
indicated by gray horizontal lines above). (D) Cross-validated predictive performance of different DNN architectures trained on the MEG data when tested
against fMRI RDMs, acquired from the same participants and ROIs. Correlations were noise-normalized using the respective lower bound of the noise ceiling.
For all regions, recurrent networks significantly outperform ramping feedforward architectures.
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additional parameters introduced by lateral and top-down con-
nections in the recurrent networks, we varied the kernel sizes in
2 ramping feedforward models (BK11, kernel size 11; BK9, kernel
size 9; for a similar approach, see refs. 34 and 35). This allowed us
to approximately match the number of parameters across network
architectures (see Methods for details), and hence directly test for
the effects of added recurrence.
To test the different network architectures for their capacity to

mirror the human ventral-stream dynamics, we introduced a
deep learning objective that uses the RDM data of the 3 ventral-
stream ROIs as targets for the representations in separate network
layers. Using backpropagation to learn the network weights, this
objective optimizes each model to best predict the MEG RDM
movies (dynamic representational distance learning [dRDL]; see
ref. 36 andMethods for details). The model time steps were set up
to mirror a 10-ms delay from one target ROI to the next (Fig. 3A),
in line with lower bound estimates for information transfer
across ventral-stream regions (37). To avoid overfitting to the
92 experimental stimuli, an independent set of 141,000 novel
images originating from the same object categories was used for
network training (SI Appendix, Fig. S4). Each trained network
was tested on the previously unseen experimental stimuli, and
the fit between the network RDM movies and the MEG RDM
movies was estimated by cross-validation (see SI Appendix, Fig.
S5 and Movies S2–S6 for a direct comparison of model and
ventral-stream RDM movies).
We first compared the trained DNNs to the ventral-stream

ROI dynamics in terms of the average representational distance
across all stimulus pairs as it varies across time (Fig. 3B). While
ramping feedforward networks exhibit complex representational
dynamics, their average representational distances did not closely
follow the empirical data, especially in higher-level ventral-stream
regions (average-distance trajectory correlations with held-out
data: 0.83, 0.59, and 0.47 for V1–V3, V4t/LO, and IT/PHC, re-
spectively). In contrast, recurrent DNNs almost perfectly matched
the average distances of all ventral-stream ROIs [average-distance
trajectory correlations: 0.95, 0.93, and 0.97 for V1–V3, V4t/LO,
and IT/PHC, respectively; significantly outperforming ramping
feedforward models for all ROIs and cross-validation splits at P <
0.0001 using Hittner’s r to z procedure (38, 39)], despite being
tested on a new set of stimuli and compared against held-out
MEG data. For a more detailed comparison of the patterns of
representational distances, we next evaluated how well the model
RDM movies matched the ventral-stream data frame by frame.
For each time point, we computed the correlation between the
RDM of the corresponding model layer and the ventral-stream
RDM. These correlations were averaged across time to yield a
summary statistic (Fig. 3C; see SI Appendix, Fig. S6 for the full
time courses). For each ventral-stream area, the recurrent model
significantly outperformed the ramping feedforward models
(Wilcoxon signed-rank test, P < 0.005 in all cases). The recurrent
models also outperformed a layer-based readout from commonly
used computer vision models Alexnet (40) and VGG16 (41) (SI
Appendix, Fig. S7). We also tested the DNNs, trained on the time-
varying MEG data, for their ability to predict temporally static
functional magnetic resonance imaging (fMRI) data acquired
from the same participants and ROIs. Again, recurrent models
provided a significantly better prediction to ramping feedforward
models (Fig. 3D; P < 0.001 for V1–V3, P < 0.05 for V4t-LO, and
P < 0.001 for IT/PHC; see Methods and SI Appendix, Fig. S8 for
details). Finally, the recurrent architectures also outperformed
the ramping feedforward models in terms of classification per-
formance on the held-out image test set by a large margin (top-
1 accuracy ∼64% for the ramping feedforward models [BK9,
BK11] and 73.9% for the recurrent models). These results add
to the growing body of literature suggesting that the perfor-
mance computer vision applications can be improved by integrating

neuroscientific computational principles, such as recurrence (5,
34, 35, 42, 43), and neuroscientific data (44).
To better understand the connectivity within the recurrent

networks, we performed virtual cooling experiments in which we
increasingly deactivated specific connection types (lateral and
top-down) in distinct network layers. We then tested the resulting
DNNs for their ability to 1) perform object classification and 2)
model human ventral-stream dynamics. For object classification,
we observed that lateral and top-down connections in lower layers
had a stronger impact on performance, with strong effects resulting
from cooling top-down connections into the network layer mod-
eling V1–V3 (Fig. 4A). For predicting ventral-stream dynamics, we
again found that both connection types were of importance, al-
though the success of higher-level ventral-stream predictions was
less reliant on top-down network connections (Fig. 4B).

Conclusions
Our analyses of the RDM dynamics, Granger causality between
regions, and DNN models all consistently show that human ventral-
stream dynamics arise from recurrent message passing, which,
among other computational functions, may facilitate recognition
under challenging conditions (6, 32, 33, 35). The combination of
source-based MEG RDA and recurrent DNN models opens hori-
zons for investigation of information processing in the human brain,
as well as for engineering applications that incorporate neural data
into machine learning pipelines.

Materials and Methods
MEG Data Acquisition, Preprocessing, and Source Reconstruction.
Experimental setup. Data collection procedures and experimental design were
described in detail previously (16). MEG data from 16 right-handed partici-
pants (10 females; mean age, 25.87 y; SD = 5.38) were recorded. MEG source
reconstruction analyses were performed for a subset of 15 participants for
whom additional structural and functional MRI data were acquired. All
participants had normal or corrected-to-normal vision and gave written in-
formed consent in each experimental session (2 MEGs and 1 fMRI for each
participant). The study was approved by the Institutional Review Board of
the Massachusetts Institute of Technology and conducted according to the
Declaration of Helsinki.

During the experiment, participants were shown 92 different objects. This
stimulus set was used across multiple studies and laboratories to collect
human fMRI (20) and MEG data (16, 45), human perceptual similarity
judgments (46), and macaque single-cell data (27), and was used in previous
investigations of DNN models (25, 47). The stimulus set therefore allows for
comparisons across modalities, species, and recording sites. Furthermore, it
includes a large variety of object categories, allowing for a more complete
characterization of population responses in the human visual cortex, com-
pared to less diverse sets. It includes depictions of 12 human body parts,
12 human faces, 12 animal bodies, 12 animal heads, 23 natural objects, and
21 artificial/manmade objects.

Each participant completed 2 experimental MEG sessions. Stimuli were
presented on a gray background (2.9° of visual angle, 500-ms stimulus du-
ration), overlaid with a dark gray fixation cross (trial onset asynchrony [TOA]
of 1.5 or 2 s). Participants were asked to indicate via button press and eye
blink whenever they noticed the appearance of a paper clip. These target
trials, occurring randomly every 3 to 5 trials, were excluded from further
analyses. Each session consisted of 10 to 14 runs, and each stimulus was
presented twice in a given run.
MEG data acquisition and preprocessing. Data were acquired from 306 MEG
channels (102 magnetometers, 204 planar gradiometers) using an Elekta
Neuromag TRIUX system (Elekta). The raw data, sampled at 1 kHz, were
bandpass filtered between 0.03 and 330 Hz, cleaned using spatiotemporal
filtering (maxfilter software; Elekta), and subsequently downsampled to
500 Hz. Trials were baseline-corrected using a time window of 100 ms before
stimulus onset. For each participant and session, flat sensors and sensors
exhibiting excessive noise (defined as baseline variance exceeding a z
threshold of ±3, z scores computed over the distribution of all sensors of a
given type) were removed from further analyses. On average, 2.67 gradi-
ometers (SD = 1.79) and 0.67 magnetometers (SD = 1.06) were excluded.
Trials with excessive noise were discarded by means of the autoreject tool-
box (48). After cleaning, an average of 26.08 (range, 16 to 35) repetitions per
stimulus, participant, and session entered subsequent analyses.
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MEG source reconstruction.
Source reconstructions. Source reconstructions were performed using MNE

(18), as implemented in the MNE Python toolbox (49). Volume conduction
estimates were based on participant individual structural T1 scans, using
single layer boundary element models (BEMs). BEMs were based on the in-
ner skull boundary [extracted via fieldtrip (50) due to poor reconstruction
results from the FreeSurfer (51) watershed algorithm used in MNE Python].
The source space comprised 10,242 source points per hemisphere, positioned
along the gray/white boundary, as estimated via FreeSurfer. Source orien-
tations were defined as surface normals with a loose orientation constraint.
MEG/MRI alignment was performed based on fiducials and digitizer points
along the head surface (iterative closest point procedure after initial align-
ment based on fiducials). The sensor noise covariance matrix was estimated
from the baseline period (−0.1 to 0 s with respect to stimulus onset) and
regularized according to the Ledoit–Wolf procedure (52). Source activations
were projected onto the surface normal, yielding one activation estimate
per point in source space and time.

ROIs. Three ROIs were defined along the ventral visual stream, covering
early (V1–3), intermediate (V4t/LO1–3), and downstream, high-level visual
areas (IT/PHC, consisting of TE1-2p, FFC, VVC, VMV2–3, PHA1–3). ROIs were
defined comparably large and spatially distinct to maximize signal-to-noise
ratio while limiting cross talk. A potential separation of the early ROI into
multiple smaller visual areas is complicated by the small stimulus size (2.9° visual
angle), preventing a clear attribution of activity near the foveal confluence.

Each ROI was derived from a multimodal atlas of cerebral cortex, which
provides the underlying parcellation (17). The atlas annotation files were
converted to fsaverage coordinates (53) and from there mapped to each
individual participant via spherical averaging.

MEG RDA.We used a time-resolved extension of RSA (14) to gain insights into
the representational transformations of the visual inputs across time for all 3
ROIs. The central element of RSA is RDMs, which characterize how a given
ROI distinguishes between experimental conditions. A small distance be-
tween a pair of conditions implies a similar neural response, whereas large

distances imply that the region treats the 2 stimulus conditions separately.
RDMs thereby equate to representational geometries, which define the
spatial relationship of experimental conditions in the underlying activation
space. To get a better understanding of the organizational principles un-
derlying a given RDM, computational and categorical models can be used to
predict (condition relative) empirical distances. Temporal sequences of RDMs
across multiple ROIs can furthermore be used to test for effects of Granger
causality, i.e., the transfer of representational organizations between ROIs.
RDM extraction. To compute temporally resolved RDM movies from MEG
source data, we first extracted a singlemultivariate source time series for each
condition by averaging across repetitions. RDMs were then computed by
estimating the pattern distance between all combinations of conditions using
correlation distance (1 − Pearson correlation). One RDM was computed
for each time point, yielding a temporally changing RDM movie (size:
n_objects × n_objects × n_timepoints). RDM movies were computed for each
participant, ROI, hemisphere, and session separately. We then averaged the
RDM movies across hemispheres and sessions, yielding one RDM movie for
each ROI and participant. As RDMs are diagonally symmetric, only the upper
triangles of the RDM movies were used for subsequent analyses. For visu-
alization purposes, all shown RDMs are rank-transformed. All analyses were
performed on the nontransformed data.
Model fitting and statistics. To better understand and quantitatively assess
representational transformations across time, we modeled the RDM movies
of each participant and ROI using a hierarchical general linear model (GLM).
The overall idea of RDM modeling is to define a set of external computa-
tional/categorical models, each predicting distinct condition-specific dis-
tances, which are then combined to explain the observed empirical distances.
These predictors are not necessarily orthogonal, and therefore the actual
contribution of each predictor to the overall variance explained can be
ambiguous. To solve this issue, we here compute unique variance explained
of each model predictor by subtracting the total variance explained of the
reduced GLM (excluding the predictor of interest) from the total variance
explained by the full GLM. This procedure was followed for each model
predictor, participant, ROI, and time point.

A

B

Fig. 4. DNN cooling studies. (A) Virtual cooling experiments allow for the specific targeting and deactivation of input connections into distinct network
layers. The effects of lateral (Left) and top-down (Middle) computations on object categorization performance vary across network depth, with stronger
effects observed while deactivating recurrence in earlier layers. Applied to the whole network (Right), the cooling of lateral and top down connections have
comparable effects, with perhaps stronger reliance on lateral connectivity. (B) Targeting specific connection types throughout the network reveals the im-
portance of lateral and top-down network connections for modeling human ventral-stream dynamics. Later network layers are increasingly robust to the
cooling of top-down input.
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To find the optimal weights for the linear combination of model pre-
dictors, we used a nonnegative least-squares approach. The predictions of
4 main and 10 additional control predictors were investigated. The resulting
14 model predictors were standardized before entering the GLM. The main
predictors included animate-, and face-clustering, low-level GIST predictions,
and representational geometries resulting from organizations based on the
real-world size (23). Beyond these 4, additional predictors were included,
which mirror the categorical structure of the stimulus space: inanimate,
human, animal, face (monkey, interspecies), body (human, monkey), and
natural and artificial object clustering. Finally, a constant term was included
in the GLM model. Following the GLM modeling approach described above,
we obtained unique variance traces across time for each participant, GLM
predictor, and ROI. Predictor-specific statistical tests were performed across
participants for each ROI and time point.

To establish whether the unique variance explained by a model predictor
exceeded the expected increase due to the addition of a free parameter to
the GLM, we tested the unique variance observed at each time point against
the average increase during the prestimulus baseline period. To control for
multiple comparisons across time, a nonparametric cluster test was used max-
sum test statistic, computed on a paired, one-sided t statistic (one-sided
because effects of interest are strictly larger than the effects observed dur-
ing baseline; cluster inclusion criterion of P < 0.05) (54). The statistical
baseline period was defined as the 50-ms time window directly prior to
stimulus onset. The first 600 ms of stimulus processing were included in the
analyses. Statistical comparisons were performed on the unsmoothed signal.
To aid visibility, unique variance curves were low-pass filtered at 80 Hz
(Butterworth IIR filter; order 6) prior to plotting.
RSA Granger analysis. To investigate the possibility of information transfer
between ROIs, we performed a Granger causality analysis on the basis of the
RDM movies (55). That is, we asked whether the current RDM of a target ROI
could be explained by the past RDMs of a source ROI, beyond the expla-
nation offered by the past of the target ROI itself. As for the model pre-
dictions above, this was also implemented by a hierarchical GLM approach
(again using nonnegative least squares). We first used the past RDMs of the
target ROI itself to explain the current RDM, and then tested in how far the
addition of the past RDMs from a source RDM would add to the variance
explained. Granger causal influence was defined as GC = ln(Ureduced/Ufull)
(U = unexplained variance by the reduced and full model, respectively; ref.
56). Again, the inclusion of additional predictors, and therefore free pa-
rameters, can by itself lead to an increase in the variance explained. We
therefore used the average increase in variance explained during a prestimulus
tine window (50 ms prior to stimulus onset) as baseline for statistical com-
parisons. For each pair of adjacent ROIs (V1–3 and V4t/LO1–3, as well as
V4t/LO1–3 and IT/PHC), we tested both directions of Granger causality, using
the standardized RDMs of each ROI once as source and once as target. To
predict the RDM data at time point t, we used a 100-ms time window of
t-120 ms to t-20 ms. To test for effects of Granger causality across time, we
performed above analysis separately for each time point within the first
300 ms post stimulus onset. To correct for multiple comparisons, we per-
formed a false-discovery rate (FDR) correction (P < 0.05) for all tested time
points tested for the 2 source ROIs. Statistical comparisons were performed
on the unsmoothed signal. To aid visibility, unique variance curves were low-
pass filtered at 80 Hz (Butterworth IIR filter; order 6) prior to plotting.
Noise ceiling estimates. We computed the upper and lower bounds of the
signal noise ceiling for each ROI and time point. We computed the lower
bound for each participant as the predictive performance of the grand av-
erage of all other participants. The upper bound was computed by using the
grand average of all participants (57). The latter is overfitted to the re-
spective group of participants, as each individual participant’s data are in-
cluded in the grand average prediction. This renders the upper bound a true
ceiling for model predictive performance. As we used nonnegative least
squares in the linear modeling analysis, we used the same analysis pipeline
to compute the variance explained by the respective grand average data.
We report the participant averaged noise ceiling in SI Appendix, Fig. S3.

fMRI Data Acquisition and Analyses. fMRI data were collected for 15 partici-
pants. Stimuli were presented once per run, participants completed between
10 and 14 runs each. Each run contained additional 30 randomly timed null
trials without stimulus presentation. During these trials, participants had the
task to report a short (100 ms) change in the luminance of the fixation cross
via button press. fMRI experimental trials had a TOA of 3 s (6 s in presence of a
null trial). For further acquisition details, please see ref. 16. Preprocessing was
performed using SPM8 (https://www.fil.ion.ucl.ac.uk/spm/). Functional data
were spatially realigned, slice-time corrected, and coregistered to the
participant-individual T1 structural image. Data were then modeled using a

GLM, which included movement parameters as nuisance terms. GLM pa-
rameter estimates for each condition/stimulus were contrasted against an
explicit baseline to yield a t value for each voxel and condition. The 500 most
strongly activated voxels were included in subsequent analyses.

ROIs were defined in alignmentwith theMEG ROIs. The corresponding ROI
masks were defined on the individual surface and projected into the func-
tional volume using freesurfer (51). To characterize the representational
geometry of a given ROI, the activation patterns (t values) were extracted
for all possible pairs of stimuli, and the pattern distances were computed
based on 1 − Pearson correlation, in line with the distance measures used in
the MEG data.
Recurrent convolutional neural network model predictions of fMRI data. Recurrent
convolutional neural network (RCNN) models, originally fitted to the MEG
data, were used to predict the temporally smooth fMRI representational
similarities. Since the RCNN models predict temporal sequences of RDMs for
each ROI, the time points of a given layer were linearly combined to obtain a
single RDM prediction for the fMRI data. Network layers were chosen for
each fMRI ROI to match the corresponding MEG ROI used during training.

The linear weights for the individual time points were computed using
nonnegative least squares, fitting to the average RDM of a given ROI based
on the data of N − 1 participants. The resulting reconstruction was then used
to predict the RDM of the left-out participant. The goodness of fit of this
cross-validated prediction was determined by correlating the upper trian-
gles of the 2 RDMs. Prediction accuracies were statistically compared using
random effects test across participants (nonparametric Wilcoxon signed-
rank test).

Neural Network Models. We modeled the observed MEG RDM movies with
convolutional neural networks implemented using TensorFlow (58). Two
specific architectures were tested, feedforward networks, where bottom-up
connections dominate (termed “B” for bottom-up hereafter), and a re-
current network, with bottom-up, lateral and top-down connections (BLT)
(6). Feedforward and recurrent models were matched to have approximately
the same number of parameters. To enable feedforward networks to exhibit
nontrivial dynamics, we allowed the networks to learn to ramp-up the ac-
tivity of their units over time.
Training datasets. Networks were trained using representational distance
learning (RDL) (36) to predict the time-varying representational dynamics in
the ventral stream up to 300 ms after stimulus onset. To train the networks
with RDL, we collected a dataset of 141,000 images—RDL61. This dataset
consists of 61 categories derived from the 92 images that were used in the
human imaging experiments. For each category in the experimental stimulus
set, a set of natural images were obtained and subdivided into a training set
and a validation set.
Image preprocessing. During network training, each image underwent a series
of preprocessing steps before being passed to the network. First, a crop was
randomly sampled from the image that covered at least a third of the image
area with an aspect ratio in the range of 0.9 to 1.1 (specified as the ratio
width/height). The image was then randomly flipped along the vertical axis,
and small random distortions were applied to the brightness, saturation, and
contrast. Finally, the image was resized to 96 × 96 pixels.
Cross-validation. To avoid overfitting, we cross-validated the networks with
respect to both the input images and the MEG data. First, all of the network
responses were analyzed using the same 92 stimuli that were shown to the
human participants. These images are both independent and visually dis-
similar (showing only a single object on a gray background) from the natural
images used to train the networks.

Second, networks were evaluated against MEG data that was held out
from the model fitting procedure. This was accomplished by assigning single-
session data for each subject to one of 2 splits. Networks were always tested
using the split of the data that was not used during training.We used a 2-fold
cross-validation procedure due to the excessive time taken to train the
networks. To ensure that cross-validation was representative of the data,
despite the small number of folds, the distribution of split-half reliabilities of
all possible splits was computed and the split that best represented the mean
of the distribution was chosen for all further analyses.
Architectural overview. Each network contains 6 convolutional layers followed
by a linear readout. All convolutions have a stride of 1 × 1 and are padded
such that the convolution leaves the height and width dimensions of the
layer unchanged. Prior to each convolutional layer (except the first), the
feedforward input to the network goes through a max pooling layer with 2
× 2 stride and a 2 × 2 kernel. This has the effect of reducing the height and
width dimensions of the input by a factor of 2.

Architectural parameters are outlined in SI Appendix, Table S1, including
the number of feature maps, kernel size, and image size for each layer. The
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addition of lateral and top-down connections in BLT leads to an increased
number of parameters compared to a feedforward B model. A larger kernel
size is used in B to approximately match the number of parameters in BLT,
while maintaining the same number of units and layers across the networks.
As it is not possible to exactly match the number of parameters by adjusting
the kernel size, we use the 2 closest B models, with kernel sizes of 9 and 11,
subsequently referred to as BK9 and BK11, respectively.

For architectural simplicity, the kernel size was kept fixed throughout the
networks. If the image size reduces to less than (k+1Þ=2 (where k is an odd
kernel size), then the whole kernel is not used after it has been centered on
each of the inputs. This reduces the effective kernel size for the layer, which
only occurs in the final convolutional layer of B (SI Appendix, Table S1).
Taking the effective kernel size into account, the number of parameters
sums to 3.0 million in BK9, 4.3 million in BK11, and 4.0 million in BLT.

Time is modeled in the neural networks by defining each convolution as
taking a single time step. In practice, it is easier to implement the feedforward
connections as instantaneous, lateral connections as taking 1 time step and
top-down connections as taking 2 time steps. These 2 definitions are com-
putationally equivalent if lateral and top-down connections have no influ-
ence prior to the arrival of feedforward input to the layer.
Recurrent convolutional layers. The recurrent convolutional layer (RCL) forms
the basis of the models used in these experiments. The activation in a single
RCL is represented by the 3D array Hτ,n; the index τ is used to indicate the
time step, and n is used to indicate the layer. The dimensions in Hτ,n corre-
spond to the height, width, and features in the layer. We define Hτ,0 to be
the input image to the network.

Convolutional weights for a given layer in the network are represented by
the arrays Wn. All instances of Wn are implemented using weight normali-
zation to assist learning (59). The biases for each layer are represented by
the vector bn, with a unique bias for each feature map in the output.

For classic feedforward (B) networks, the lack of recurrent connections
reduces RCLs to a standard convolutional layer:

Hτ,n =
h
Wb

n *Hτ−1,n−1 +bn

i
+
,

where Wb
n represents the bottom-up convolutional weights and ½ · �+ is the

rectified linear function. All layers are made inactive prior to the arrival of
feedforward input to the layer by defining Hτ,n = 0 when τ<n.

As standard feedforward networks lack dynamics, we modify the B layers
to allow units to ramp-up their activation over time via self-connections. Self-
connection weights are controlled by the parameter ωn, which is shared
across the layer. Note that this model class contains conventional feedfor-
ward models as a special case, where ωn = 0. The self-connection weights
were constrained to be nonnegative and optimized along with the other
connection weights:

Hτ,n =
h
Wb

n *Hτ−1,n−1 +ωnHτ−1,  n +bn

i
+
.

BLT layers are formed by the addition of lateral and top-down convolutions
with weights Wl

n and Wt
n, respectively:

Hτ,n =
h
Wb

n *Hτ−1,n−1 +Wl
n *Hτ−1,n +Wt

n *Hτ−1,n+1 +bn

i
+
.

Max-pooling has the effect of reducing the height and width dimensions of
RCLs as we move up the layers of the network. This means that the size of the
outputs from top-down convolutions does not match the size of the outputs
for bottom-up and lateral convolutions, as the convolutions preserve image
size. To compensate for this, we apply nearest-neighbor up-sampling to the
output of the top-down convolution to make the sizes match. This has the
effect of small, nonoverlapping patches of neighboring units receiving identical
top-down input.

In the final BLT layer, top-down input is drawn from the readout layer of
the network. In this case, a fully connected layer is used for top-down con-
nections as opposed to the convolutional layer that is used elsewhere.
Readout layer. A linear readout is added to the end of the network to produce
an output, hτ,cat, for each of categories that the network is trained on.

Prior to the readout, the bottom-up input goes through global average
pooling. This averages over the spatial dimensions of final layer, N, to pro-
duce a vector with length equal to the number of features in the final layer,

which we denote �hτ−1,N.
The readout layer is also provided with lateral input from the readout on

the previous time step, hτ−1,cat. This allows the network to sustain categori-
zation responses without depending on continuous bottom-up input.

In B networks, lateral inputs take the form of self-connections that enable
the units to increase their activation over time, in the same manner as the B
convolutional layers:

hτ,cat =Wb
cat

�hτ−1,N +ωcathτ−1,cat +bcat,

where Wb
cat are fully connected bottom-up weights.

In BLT networks, the readout units have a set of fully connected lateral

weights, Wl
cat, so each readout unit receives input from all other readout

units:

hτ,cat =Wb
cat

�hτ−1,N +Wl
cat   hτ−1,cat +bcat.

Training. The networks were trained using a 2 objectives, RDL and object
classification.

RDL. We extended RDL (36) to be used as an objective that aims to match
network representational dynamics across multiple selected layers to the
RDM movies of 3 ventral-stream regions. Input images were taken from the
RDL61 image set, which matches the categorical structure of the experi-
mental stimuli. We use RDL to train layers 2, 4, and 6 of the network to
match the dynamics of V1–V3, V4t/LO, and IT/PHC, respectively.

The ventral-stream RDMs undergo several preprocessing steps before
being used for RDL. First, distances are averaged across any of the 92 images
that fall into the same category in RDL61. For instance, the 92 stimuli contain
12 images of faces that constitute a single category in RDL61. Since opti-
mization was performed at the category level, a single distance estimate was
obtained as the average across all face distances. Averaging distances over
categories produces a 61 × 61 RDM for each time point in the MEG data. Each
of the reduced RDMs are down-sampled from 500 to 200 Hz by taking av-
erage RDMs over 5-ms time windows centered at 5-ms intervals from tstart to
tstart + 250 ms. The value of tstart varies for each of the ROIs: for V1–V3, tstart +
50 ms; for V4t/LO, tstart + 60 ms; and for IT/PHC, tstart + 70 ms. The delay
between each of the ROIs was used to account for the time taken to perform
feedforward processing, as the model does not process information prior to
arrival of feedforward input.

To apply RDL, minibatches are divided intoM=2 pairs, whereMis the batch
size. Images in the minibatch are pseudorandomly sampled so that each pair
contains 2 images, xa and xb, from 2 different categories, category a and
category b. Within a pair, we calculate the correlation distance between the
network activations in a given layer in response to these 2 images,

d̂τ,nðxa, xbÞ. This was performed for each time point and layer where RDL is

applied. To compute the error for RDL, we compare d̂τ,nðxa, xbÞ to the dis-
tance for the 2 categories in the ventral-stream MEG data, dτ,rða,bÞ:

ERDL =
X

n∈L,   r∈R

1
T

XT
τ

�
d̂τ,nðxa, xbÞ−dτ,rða,bÞ

�2

σ2τ,r
,

where L= f2, 4, 6g represents the network layers where RDL is applied and r
represents the corresponding ROI from the set of all ROIs, R, that were used
in training. We use the variance of the empirical RDM at each time step,σ2τ,r,
as a normalization factor. This normalization prevents the loss from being
biased toward time points with larger variance in the RDMs. As a result, each
time point will impact the optimization independently of the RDM variance/
noise level.

Categorization objective. The loss for categorization is calculated in 2 stages.
First, the softmax output ŷτ,i is computed from the readout layer of the
network for every category and time point. The error for the categorization
objective, Ecat, is computed by calculating the cross-entropy between the soft-
max output and target for each category output yi (where the target category
is represented with one-hot encoding), and then averaging across time:

Ecat =−
1
T

XT

t=1

XC

i=1

yi · logŷτ,i ,

where C represents the number of categories used during training and T is
the total number of time steps.

Overall objective. A combination of the RDL and categorization objectives,
with additional L2-regularization, produces the overall loss function for the
network:

L= γcat�Ecat + γRDL�ERDL + λjwj2,

where �Ecat and �ERDL are the average of Ecat and ERDL over the minibatch. The
contribution of each objective is controlled by the 2 coefficients γcat and γRDL. The
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level of L2-regularization is controlled by the coefficient λ= 10−5, and w rep-
resents all weights of the network in vectorized format.

We set γRDL = 1 throughout training and initially set γcat = 10, which causes
the categorization loss to dominate at the beginning of training (Fig. 3A).
Over the course of training, γcat decays by a factor of 10 every 10,000 mini-
batches until it reaches a value of 10−2, where it remains constant until
training terminates after 4 million minibatches.

We use Adam (60) to optimize the overall loss with the following pa-
rameters, learning rate α= 10−3, exponential decay parameters β1 = 0.9 and
β2 =0.999, and stabilization parameter ê= 10−1. See SI Appendix for image
classification test performance across training for the different model types.
Virtual cooling studies. To emulate cortical cooling studies, we used dropout at
different keep probabilities to specifically target lateral and top-down
connections in the computational graph of the network. Dropout was ap-
plied independently to the output of the lateral and top-down convolutions.
The change in the mean activity level of the network/layer was corrected.

The resulting network activations were then tested for 1) their ability to
predict the representational dynamics observed in the human ventral stream,
and 2) their ability to perform object categorization. To assess the ability to
predict human ventral-stream data, we computed the average correlation of
the frames of the network RDM predictions and the empirical RDM movies
(similar to Fig. 3C). To assess the networks’ ability to perform object cate-
gorization, we computed accuracy using the validation set (the accuracy
metric was weighted such that each recognition performance for each class
contributed equally to the overall score).
Model fitting for off-the-shelf architectures. Off-the-shelf feedforward DNNs
trained for classification have shown early success in predicting time-
averaged neural response profiles. Despite providing static output, as each
layer produced only one activation vector at its output, the predictive per-
formance of these models in the current dynamic setting can be informative.

As candidate models, we tested Alexnet (40) and VGG16 (41), which are
both used frequently in visual computational neuroscience. To select the
best layer for a given ventral-stream ROI, we probed the networks with the
same image dataset (RDL61) used previously for training our recurrent
models. The networks were shown sets of randomly sampled 61 images, one
for each visual category used in the human imaging experiments. The cor-
responding activation vectors (taken post ReLU) were then used to compute
layer-specific RDMs. These RDMs were compared against the empirical data
and the layer best predicting the whole time series of a given ROI was stored.
This process was repeated 1,000 times. Finally, for each ROI, the network layer
that was most frequently selected during bootstrapping was used for follow-
up tests. Following the same cross-validation procedures used for RDL training
above (session split half of the data, layer selection based on one half, test for
predictive performance on the other half), we then extracted the RDMs from
the winning layers for the 92 experimental stimuli. These RDMs were trans-
formed to static RDM movies and subsequently entered the same analysis
pipeline as the RDL networks (BLT, BK9, and BK11).

The Alexnet layers best predicting the MEG data were identical for the
2 cross-validation splits. Layers L5, L2, and L2were selected for V1–V3, V4t/LO,
and IT, respectively. For VGG16, the cross-validation selected layers were as
follows: 5 and 12 (relu3_1 and relu5_2) for the 2 splits of V1–V3, respectively,
and ReLU layer 13 (relu_5_3) for Vet/LO and IT/PHC.
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