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NONPARAMETRIC BAYESIAN INFERENCE FOR GAMMA-TYPE
LÉVY SUBORDINATORS∗

DENIS BELOMESTNY† , SHOTA GUGUSHVILI‡ , MORITZ SCHAUER§ , AND PETER

SPREIJ¶

Abstract. Given discrete time observations over a growing time interval, we consider a nonpara-
metric Bayesian approach to estimation of the Lévy density of a Lévy process belonging to a flexible
class of infinite activity subordinators. Posterior inference is performed via MCMC, and we circumvent
the problem of the intractable likelihood via the data augmentation device, that in our case relies on
bridge process sampling via Gamma process bridges. Our approach also requires the use of a new
infinite-dimensional form of a reversible jump MCMC algorithm. We show that our method leads to
good practical results in challenging simulation examples. On the theoretical side, we establish that our
nonparametric Bayesian procedure is consistent: in the low frequency data setting, with equispaced in
time observations and intervals between successive observations remaining fixed, the posterior asymp-
totically, as the sample size n→∞, concentrates around the Lévy density under which the data have
been generated. Finally, we test our method on a classical insurance dataset.

Keywords. Bridge sampling; Data augmentation; Gamma process; Lévy process; Lévy density;
MCMC; Metropolis-Hastings algorithm; Nonparametric Bayesian estimation; Posterior consistency;
Reversible jump MCMC; Subordinator; θ-subordinator

AMS subject classifications. Primary: 62G20, Secondary: 62M30

1. Introduction In this paper, to the best of our knowledge for the first time
in the literature, we study the problem of nonparametric Bayesian inference for infinite
activity subordinators, i.e., Lévy processes with non-decreasing sample paths. In the
last two decades, Lévy processes have received a lot of attention, mainly due to their
numerous applications in mathematical finance and insurance, but also in natural sci-
ences; see, e.g., Barndorff-Nielsen et al. (2001). As a matter of fact, thanks to their
ability to reproduce stylised features of financial time series distributions, Lévy pro-
cesses have become a fundamental building block for modelling asset prices with jumps,
see Cont and Tankov (2004). By the Lévy-Khintchine formula, the law of a Lévy pro-
cess is uniquely determined by the so-called Lévy triplet, which hence encodes all the
probabilistic information on the process. Since the Lévy triplet involves an infinite-
dimensional object, the Lévy measure of the process, this provides natural motivation
for studying nonparametric inference procedures for Lévy processes, where the objects
of inference are elements of some function spaces.

We term the class of increasing infinite activity Lévy processes that we study θ-
subordinators. Our model generalises the well-known Gamma process, which is a pop-
ular risk model, see Dufresne et al. (1991), and also forms a building block for more
general Lévy models, like the Variance-Gamma (VG) process, that finds many appli-
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2 Bayesian inference for subordinators

cations in finance, see, e.g., Madan and Seneta (1990). The family of θ-subordinators
also overlaps with the class of self-decomposable Lévy processes, that likewise have
important applications in finance, see, e.g., Carr et al. (2007).

We specifically concentrate on estimation of the Lévy triplet of a θ-subordinator.
On the computational side, our Bayesian procedure circumvents the problem of the in-
tractable likelihood for θ-subordinators via the data augmentation device, which relies
on bridge process sampling via Gamma process bridges, and also employs an infinite-
dimensional form of the reversible jump algorithm. On the theoretical side, we estab-
lish that our procedure is consistent: as the sample size grows to infinity, the posterior
asymptotically concentrates around the parameters of the Lévy processes under which
the data have been generated. We test our algorithm on simulated and real data exam-
ples. In particular we fit a θ-subordinator to a benchmark dataset in insurance theory,
large fire losses in Denmark, and study the question whether a risk model based on a
Gamma process is adequate for modelling this dataset.

1.1. Literature overview

To provide further motivation for a nonparametric Bayesian approach to inference
in Lévy processes and to highlight some associated challenges, in this subsection we
supply an overview of the literature on the subject.

The problem of nonparametric inference for Lévy processes has a long history, going
back to Rubin and Tucker (1959) and Basawa and Brockwell (1982). Revival of interest
in it dates around the year 2003, with contributions Buchmann and Grübel (2003),
Buchmann and Grübel (2004) and van Es et al. (2007), as well as numerous later
publications; see also Ilhe et al. (2015) for a further extension. Very recent works Coca
(2017) and Duval and Mariucci (2017) provide an extensive list of references.

In general, there are two major strands of mathematical statistics literature deal-
ing with inference for Lévy processes, or more generally semimartingales. The first
considers the so-called high frequency setup where asymptotic properties of the corre-
sponding estimators are studied under the assumption that observations are made at
an increasing frequency in time. In the second strand of the literature, times between
successive observations are assumed to be fixed (the so-called low frequency setup) and
the asymptotic analysis is done under the premise that the observational horizon tends
to infinity.

The last decade witnessed a tremendous advance in the area of statistics for high
frequency financial data, due to the development of new mathematical methods to anal-
yse these data, as well as increasing availability of such data. We refer to the recent
book Aı̈t-Sahalia and Jacod (2014) for a comprehensive treatment of modern statis-
tical methods for high frequency data. At the same time, progress was achieved also
in statistical inference for Lévy-driven models based on low frequency data, see, e.g.,
Belomestny et al. (2015) for an overview and references. The latter situation is more
challenging, as e.g. it becomes quite difficult to distinguish between small jumps of a
Lévy process and the Brownian increments. This often leads to rather slow, logarith-
mic convergence rates for resulting estimators, see, e.g., Belomestny and Reiß (2006),
Gugushvili (2009) and Gugushvili (2012). Hence accurate nonparametric inference for
Lévy processes typically requires very large amounts of data, which may not always be
available in practice. Fortunately, in many cases there is additional (prior) information
about the structure of the parameters, which can be used to improve the estimation qual-
ity under limited data. To account for this prior information, the Bayesian estimation
framework is quite appealing. Furthermore, the Bayesian approach provides automatic
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uncertainty quantification in parameter estimates through the spread of the posterior
distribution of the parameters. Also, in some fields, such as e.g. climate and weather
science, Bayesian approaches are thought to be default (see, e.g., Berliner et al. (1999)),
and studying them would go together with common practices in those fields. On the
other hand, there are also some formidable challenges in applying the nonparametric
Bayesian methodology to inference in Lévy processes. Firstly, the underlying process is
usually observed at discrete time instances, while Lévy models are formulated in con-
tinuous time. This gives rise to complications that are typical in inference for discretely
observed continuous time stochastic processes. Secondly, Bayesian estimation in its sim-
plest, pristine form requires knowledge of the likelihood of observations, and hence of
marginal densities of the underlying Lévy process; these, however, are rarely available in
closed form. Thirdly, devising valid MCMC algorithms in infinite-dimensional settings
is a highly non-trivial task. Cf. recent works on nonparametric Bayesian inference in
diffusion models, such as Beskos et al. (2008) and van der Meulen et al. (2014).

The literature on nonparametric Bayesian inference for Lévy processes is very recent
and also rather scarce, the only available works being Nickl and Söhl (2017a), Gugushvili
et al. (2015) and Gugushvili et al. (2018). These deal with a particular case of compound
Poisson processes, concentrate exclusively on theoretical aspects (with the exception of
the latter paper), and do not appear to admit an obvious extension to other classes of
Lévy processes. In fact, compound Poisson processes are rather special among Lévy
processes, and are of limited applicability in many practically relevant cases. Hence
there is space for improvement. On the positive side, the practical results we obtained
in this work demonstrate great potential of Bayesian methods for inference in Lévy
processes. Our approach is aimed at developing an applicable statistical methodology,
which we substantiate by theoretical results, and also test via challenging examples. At
the same time, we admit there remain several unresolved theoretical and practical issues,
such as derivation of posterior contraction rates or practical fine-tuning of the prior we
use. However, upon careful reading this should come as no surprise given the sheer
complexity of our undertaking, where several topics would have merited to be subjects
of independent research projects. We view our work as the first substantial step made
in the direction of studying inference problems for Lévy processes via nonparametric
Bayesian methods. It is our hope that our contribution will generate additional interest
in this statistically and mathematically fascinating topic.

1.2. Structure of the paper The rest of the paper is organised as follows:
in Section 2 we describe in detail the statistical problem we are dealing with and our
nonparametric Bayesian approach to it. Posterior inference in our setting is performed
through MCMC sampling, and Section 3 provides a detailed exposition of our sam-
pling algorithm. In Section 4 we establish the fact that our approach is consistent in
the frequentist sense: asymptotically, as the sample size n→∞, the posterior measure
concentrates around the Lévy triplet under which the data used in the estimation proce-
dure has been generated. In Section 5 we test the practical performance of our method
via simulation on a challenging example. In Section 6 we further generalise our basic
model from Section 2 and detail changes and extensions this requires in designing an
MCMC sampler in comparison to the one from Section 3. This new sampler is tested
in simulations in Section 7. In Section 8 we apply our methodology on an insurance
dataset. Possible extensions of our inferential approach to more general Lévy models
are discussed in Section 9. Finally, in Appendices A and B we state and prove some
technical results used in the main body of the paper, while in Appendix C we provide
some additional analyses to substantiate our modelling approach in Section 8.



4 Bayesian inference for subordinators

2. Statistical problem and approach

In this section we introduce in detail the statistical problem we are dealing with
and describe our approach to tackle it.

2.1. Statistical problem Consider a univariate Lévy process X= (Xt : t≥0)
with generating Lévy triplet (γ,0,ν), where ν([1,∞)) is finite and

γ=

∫ 1

0

xν(dx)<∞. (2.1)

Hence X has no Gaussian component and the law Pν of X is entirely determined by
ν. By the Lévy-Khintchine formula, see Theorem 8.1 in Sato (1999), the characteristic
function φX1

of X1 admits the unique representation of the type

φX1
(z) = exp

(
iγz+

∫
R

(
eizx−1− izx1|x|≤1

)
ν(dx)

)
.

We also assume that the Lévy measure ν admits the representation

ν(dx) =
β

x
e−αx−θ(x)dx, x>0, (2.2)

where α and θ : [0,∞)→R are parameters to be estimated, while β is a known or
unknown parameter. It follows that X is a pure jump process with non-decreasing
sample paths, or put another way, a subordinator with zero drift, cf. Sections 2.6.1–
2.6.2 in Kyprianou (2006). One may call this class of Lévy processes Gamma-type
subordinators, because X is a Gamma process when θ≡0, but we prefer to simply refer
to it as θ-subordinators.

Assume that the process X is observed at discrete time instances 0 = t0<t1< ·· ·<
tn=T, so our observations are X(n) = (Xti : i∈{0,. ..,n}). Our aim is nonparametric
Bayesian estimation for the parameter triple (α,β,θ). This requires specification of the
likelihood and the prior in our model, that are next combined via Bayes’ formula to form
the posterior distribution. This latter encodes all the necessary inferential information
within the Bayesian setup. By Theorem 27.7 in Sato (1999), marginal distributions of
X possess densities with respect to the Lebesgue measure. With ph(x;β,α,θ) denoting
the density of an increment Xt+h−Xt, the likelihood

n∏
i=1

pti−ti−1
(Xti−Xti−1

;β,α,θ)

is in general intractable, as the marginal densities of X are not known in closed form,
except some special cases. This complicates a computational approach to Bayesian infer-
ence. We will circumvent this obstacle by employing the concept of data augmentation,
see Tanner and Wong (1987). Specifically, we will propose a suitable nonparametric prior
distribution π(β,α,θ) on the parameter triple (β,α,θ), and derive a Metropolis-Hastings
algorithm relying on data augmentation to sample from the posterior distribution. De-
tails of our approach are given in the following subsections.

2.2. Likelihood We first consider the problem where β is known and fixed. All
processes and their laws in this section are restricted to the time interval [0,T ] for a fixed
T >0. Note that for any two Lévy measures ν and ν0 given by (2.2) with parameters
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β,α,θ and β,α0,θ0, respectively, provided θ(0) =θ0(0) = 0 and both functions θ and θ0

are Lipschitz in some neighbourhood of zero, we have

ν and ν0 are equivalent,

d2
H(ν,ν0) =

1

2

∫
(0,∞)

(
√

dν−
√

dν0)2<∞, (2.3)

where dH(·,·) is the Hellinger distance between two (infinite) measures. By assumption
(2.1) and property (2.3), together with Theorem 33.1 in Sato (1999), it follows that the
laws Pν and Pν0 of X= (Xt : t∈ [0,T ]) are equivalent. Furthermore, Theorem 33.2 in
Sato (1999) implies that a.s.

UT = log

(
dPν
dPν0

(
X
))

=
∑

(s,∆Xs)∈(0,T ]×{∆Xs>0}

φ(∆Xs)−T
∫

(0,∞)

(eφ(x)−1)ν0(dx),

where ∆Xs=Xs−Xs−, and

φ(x) = log

(
dν

dν0
(x)

)
=−(αx+θ(x)−α0x−θ0(x)), x>0.

We can also write the log-likelihood ratio UT as

UT =

∫
(0,T ]

∫
(0,∞)

φ(x)µ(ds,dx)−T
∫

(0,∞)

(ν−ν0)(dx),

where the jump measure µ is defined by

µ((0,t]×B) = #{s : (s,∆Xs)∈ (0,t]×B}

for any Borel subset B of (0,∞). We can view Pν0 as the dominating measure for
Pν . From the inferential point of view the specific choice of the dominating measure is
immaterial. A convenient choice of ν0 for the theoretical development in Section 4 is
to actually take ν0 to be the ‘true’ Lévy measure ν0 with parameters α0 and θ0 (recall
that β is fixed and assumed to be known).

2.3. Gamma processes

We temporarily specialise to the case of a Gamma process. A Gamma process is
an example of a pure jump Lévy process with non-decreasing sample paths. Its Lévy
triplet is given by (γ,0,ν), where

γ=

∫ 1

0

xν(dx), ν(dx) =
β

x
e−αxdx, x>0,

see Example 8.10 in Sato (1999). Making the dependence on parameters explicit, we
also refer to X as a Gamma(β,α) process. The distribution of Xt, t∈ [0,T ], is gamma
with rate parameter α and shape parameter βt, so that

Xt∼pt(x;β,α) =
αβtxβt−1e−αx

Γ(βt)
, x>0, (2.4)

where Γ denotes the gamma function.
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2.4. Data augmentation and bridge sampling

By using the data augmentation technique, we can utilise existence of a closed-
form likelihood for a continuously observed Lévy path, see Subsection 2.2, to define
a Metropolis-Hastings algorithm to sample from the posterior given the discrete ob-
servations X(n). This treats the unobserved path segments between two consecutive
observation times as missing data and augments the state space of the algorithm to
sample from the joint posterior of missing data and unknown parameters. Specifically,
this requires the ability to sample from the conditional distribution of the missing data
given the parameters and the observations.

Consider again the Lévy process X= (Xt : t∈ [0,T ]) with fixed parameters β, α, θ,
and denote the corresponding law by P. Conditional on the observations Xti−1

and
Xti and the parameters, by the independent increments property of a Lévy process,
the process can be sampled on each time interval [ti−1,ti] independently. Samples from
the conditional distribution on these intervals connect the observations in the form of
so-called bridges. It suffices to describe the construction for a single bridge from 0 to
T . A Gamma process X̃= (X̃t : t∈ [0,T ]) shares with the Wiener process a remarkable
property that samples from the conditional distribution can be obtained through a
simple transformation of the unconditional path, see Yor (2007). For the Wiener process
W conditional on WT =wT for a number wT , this transformation takes the form

t 7→Wt+
t

T
(wT −WT ), t∈ [0,T ].

For the Gamma process, the corresponding transformation takes a multiplicative form:
define for a path X= (Xt : t∈ [0,T ]) a map gxT by

gxT (X) = (xTXt/XT : t∈ [0,T ]). (2.5)

Then P̃?=gxT ◦ P̃, where P̃ denotes the law of X̃, defines a factorisation of the condi-

tional distribution P̃? of X̃ under the law P̃ given X̃T =xT . This result in combination
with a Metropolis-Hastings step can be used to sample from the conditional distribution
of a θ-subordinator given the observations and parameters.

Analogously, we denote by P? the conditional distribution of X under the law P
given XT =xT . Here and later we use a superscript star to denote the conditional
distributions, suppress the dependence on xT in the notation and write for example
P?(dX) for integration with respect to the conditional distribution. By conditioning,

dP?

dP̃?
(gxT (X)) =

p̃(xT )

p(xT )

dP
dP̃

(gxT (X)), (2.6)

where p and p̃ are the densities of XT under P and P̃, respectively. Note that dP
dP̃

(gxT (X))

is the continuous-time likelihood, which is known in closed form. Hence dP?
dP̃?

is also

known in closed form up to an unknown proportionality constant p̃(xT )
p(xT ) , and the ratio

of Radon-Nikodym derivatives dP?
dP̃?

(X◦)
/

dP?
dP̃?

(X), with X◦ denoting a proposal in the

MCMC algorithm, is given by formula (2.11) below. This allows us to use samples

distributed according to P̃?, i.e. Gamma(β,α) bridges, as proposals for the augmented
segment that follows the intractable conditional distribution P?.

2.5. Prior To define the prior, we consider a subclass of processes defined in
(2.2), where the parameter θ in the Lévy measure ν has the following form. Fix a
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sequence

0<b1< ·· ·<bN <∞,

set for convenience b0 = 0 and bN+1 =∞, and define bins Bk by

Bk = [bk,bk+1), k= 0,. ..,N.

Given bins Bk, assume the function θ is piecewise linear, i.e.,

θ(x) =

N∑
k=1

(ρk+θkx)1Bk , (2.7)

where ρk ∈R, k= 1,. ..,N, θk ∈R, k= 1,. ..,N, and θN >−α. Together with α, the pa-
rameter θk determines the slope of the function θ(x)+αx on the bin Bk, while ρk gives
the intercept. The process X with the law Pν can be viewed as a Gamma process
with rate parameter α and shape parameter β, subjected to local deviations in the be-
haviour of jumps of sizes falling in bins Bk compared to what of a Gamma process. The
parameters θk,ρk quantify the extent of these local deviations on the bin Bk.

We equip α,θk,ρk with independent priors. Note that these priors on α,θk,ρk
implicitly define a prior on the Lévy measure ν as well. The specific form of the prior is
not crucial for many arguments that follow, but is convenient computationally. In fact,
theoretical results in Section 4 can be derived for other series priors as well. However,
the local linear structure in (2.7) (which also means that the prior could be rewritten
as series prior with basis functions with compact support) is important to derive some
simple update formulae below.

For a realisation ν from the implicit prior on ν as above in the present section, let
us work out the integral

ν(Bk) =

∫ bk+1

bk

β

x
e−(α+θk)x−ρkdx,

which enters the expression for the likelihood in Subsection 2.2. To that end remem-
ber the definition of the exponential integral, E1(z) =

∫∞
z
t−1e−tdt, see, e.g., §15.09 in

Jeffreys and Swirles (1999) for its basic properties. Then a change of the integration
variable gives

ν(Bk) =βe−ρk{E1((θk+α)bk)−E1((θk+α)bk+1)}, k= 1,. ..,N. (2.8)

Observe that ν(BN ) =βe−ρNE1((θk+α)bN ). Similar to the case of ν,

ν0(Bk) =β{E1(α0 bk)−E1(α0 bk+1)}, k= 1,. ..,N.

Also here remark that ν0(BN ) =βE1(α0 bN ). For future reference in Subsection 2.6, note
that for any α,α′,

lim
x→0
{E1(αx)−E1(α′x)}= log

(
α′

α

)
, (2.9)

which follows from the formula for Frullani’s integral, see §12.16 in Jeffreys and Swirles
(1999).
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2.6. Likelihood expressions for parameter updates

The following expressions will be used in Section 3 to construct the Metropolis-
Hastings algorithm to sample from the posterior of α,θk,ρk. Define random variables

µT (Bk) =µ((0,T ]×Bk) = #{s : (s,∆Xs)∈ (0,T ]×Bk},

that for each k= 1,. ..,N, give the number of jumps of X, whose sizes fall into the bin
Bk. Consider two laws Pν and Pν◦ , where the Lévy measure ν is given by (2.2) and
(2.7), while ν◦ is given by (2.2) with coefficients α◦, θ◦1 ,. ..,θ

◦
N , ρ

◦
1,. ..,ρ

◦
N instead of the

coefficients α, θ1,. ..,θN , ρ1,. ..,ρN . The two laws Pν and Pν◦ are equivalent, since each
is equivalent to Pν0 . We have the following expression for the log-likelihood,

log
dPν◦
dPν

(X) = −(α◦−α)
∑

∆Xs∈B0,
0<s≤T

∆Xs−
N∑
k=1

(θ◦k+α◦−θk−α)
∑

∆Xs∈Bk,
0<s≤T

∆Xs

−
N∑
k=1

(ρ◦k−ρk)µT (Bk)−T
N∑
k=0

(ν◦−ν)(Bk),

(2.10)

where ν(Bk),k= 1,. ..,N, can be evaluated using (2.8), and an analogous formula holds
for ν◦(Bk), whereas by (2.9)

(ν◦−ν)(B0) =β log
( α
α◦

)
−β{E1(α◦b1)−E1(αb1)}.

Finally, for the ratio of Radon-Nikodym derivatives with respect to the law of a
Gamma process Pν̃ with the same parameter β we have

log

(
dPν
dPν̃ (X◦)
dPν
dPν̃ (X)

)
= −

N∑
k=1

θk

 ∑
∆X◦s∈Bk,

0<s≤T

∆X◦s −
∑

∆Xs∈Bk,
0<s≤T

∆Xs


−

N∑
k=1

ρk(µ◦T (Bk)−µT (Bk))

(2.11)

for X◦= (X◦t : t∈ [0,T ]) and X= (Xt : t∈ [0,T ]) with XT =X◦T , where µ◦T (Bk) is defined
analogously to µT (Bk) using X◦ instead X. Note that in this situation the righthand
side is independent of the choice of the α parameter of the Gamma process measure
used as the dominating measure.

3. Sampling the posterior

Using the usual convention in Bayesian statistics, denote the prior density of the
parameters ϑ= (α,θ1,ρ1,. ..,θN ,ρN ) by π(ϑ), and use a similar generic notation q(ϑ;ϑ◦)
for the density of the corresponding (joint) proposal kernel evaluated in ϑ◦, e.g. for
a random move from ϑ to ϑ◦. We first describe the Metropolis–Hastings algorithm
to sample from the posterior in continuous time and next make a remark about the
discretisation below.

• Initialise the parameters α, θk, ρk, k= 1, .. ., N , with their starting values.
Initialise the segments (Xt : ti−1≤ t≤ ti) with Gamma(β,α) bridges connecting
observations Xti−1

and Xti , i= 1,. ..,n, using (2.5).
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• Repeat the following steps:
(i) Independently, for each i= 1,. ..,n:

(a) Sample Gamma(β,α) bridge proposals (X◦t : ti−1≤ t≤ ti) connecting
observations Xti−1

and Xti using (2.5).
(b) Sample Ui∼U [0,1]. If

dPν
dPν0

(X◦)

dPν
dPν0

(X)
≥Ui, (3.1)

set Xt to X◦t on ti−1≤ t≤ ti, otherwise keep Xt on ti−1≤ t≤ ti.
(ii) Independently of step (i), propose ϑ◦∼ q(ϑ; ·) and let ν◦ denote the corre-

sponding Lévy measure. Sample U ∼U [0,1]. If

dPν◦
dPν

(X)
π(ϑ◦)

π(ϑ)

q(ϑ◦;ϑ)

q(ϑ;ϑ◦)
≥U

replace ϑ by ϑ◦, otherwise retain ϑ.

Note that Step (i)(b) is the accept-reject step based on (2.11). Note that while we
formulate the

3.1. Discretisation

The Metropolis-Hastings algorithm described above assumes one can sample the
various processes and their bridges in continuous time. In practice it is possible to sim-
ulate the relevant processes only on a discrete grid of time points, which, however, can
be made arbitrarily fine. In general it is preferable to work with a finite-dimensional
approximation of a valid MCMC algorithm with infinite-dimensional state space in-
stead of just an MCMC algorithm targeting a finite-dimensional approximation of the
(joint) posterior, because the latter approach might have a singularity (resulting e.g. in
vanishing acceptance probabilities) with growing dimension; see Beskos et al. (2008)
for an extended perspective. We now outline how our original algorithm can be dis-
cretised. Consider a discrete time grid ti,j = ti−1 + j

m (ti− ti−1) (and tn) for i= 1,. ..,n,
j= 0,. ..,m−1. Formula (2.5) remains valid also for discretised Gamma processes, and
those are readily obtained by sampling from the distribution of their increments. On the
other hand, in the likelihood expressions of Subsection 2.6 and in (3.1) we approximate
the sum of jumps of the process X with sizes in Bk, k≥0, by the sum of the increments
of X falling in Bk,∑

∆Xs∈Bk,
0<s≤T

∆Xs≈
∑
i

∑
j

(Xti,j −Xti,j−1
)1[Xti,j−Xti,j−1

∈Bk]. (3.2)

4. Posterior consistency

In this section we study asymptotic frequentist properties of our nonparametric
Bayesian procedure. The only comparable works for Lévy processes available in the
literature are Gugushvili et al. (2015), Gugushvili et al. (2018) and Nickl and Söhl
(2017a), but they deal with the class of compound Poisson processes, which is quite
different from the class of θ-subordinators considered in this work. Arguments in favour
of studying frequentist asymptotics for Bayesian procedures have been already given in
the literature many times, and will not be repeated here; see, e.g., Wasserman (1998).
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Our main result in this section is that under suitable regularity conditions, with growing
sample size, our nonparametric Bayesian approach consistently recovers the parameters
of interest. Thereby it stands on a solid theoretical ground.

4.1. Main results

Recall the setup of Section 2, which is complemented as follows. In this section
we assume that the process X is observed at equidistant times ti, i= 1,. ..,n. Without
loss of generality we assume that our observations are X1,. ..,Xn. This assumption,
which we did not require in earlier sections, implies that the increments of the process
are independent and identically distributed. This way we can develop our arguments
without the additional technical burden caused by non-i.i.d. increments. We denote
the increments by Zn={Z1,. ..,Zn}, where Zi=Xi−Xi−1, i= 1,. ..,n, and assume that
under the true Lévy density v0, Z1∼Qv0 . In general, Qv will stand for the law of
the increment Z1 under the Lévy density v. Furthermore, we introduce the law Pv0
of (Xt : t∈ [0,1]) under the true Lévy density v0. The law of this path under the Lévy
density v will be denoted by Pv. For our asymptotic results, we will let the number of bins
N depend on the sample size n, and writeNn instead. The prior Πn below will be defined
on a special class of Lévy densities, Vn. These are the densities that on the bins Bk =
(bk−1,bk], k= 1,. ..,N , b0 = 0, b1 = b, bN = b, have the form v(x) = β0

x exp(−αx−θk(x)),
with θk(x) =ρk+θkx, with the special choice ρ0 =θ0 = 0 and β0 = 1. So, with the above
notation,

Vn=

{
v : v|Bk(x) =

β0

x
exp(−αx−θk(x)), k= 1,. ..,N

}
.

Below we present our first condition, and we comment on it and give additional expla-
nations after it, as well as a few further comments after Condition 2.

Condition 1. Let the function θ0 have a compact support on the interval [b,b] where
the boundary points 0<b<b<∞ are known, ‖θ0‖∞<θ̄, and suppose θ0 is λ-Hölder
continuous, |θ0(x)−θ0(y)|≤L|x−y|λ (λ∈ (0,1], L>0). Suppose also that α0∈ [α,α]
with known boundary points 0<α<α<∞. Finally, assume that the parameter β0 is
known and, without loss of generality, equal to 1.

The assumption of known β requires some further comments. As we already re-
marked elsewhere, the parameter β plays a role similar to the dispersion coefficient σ
of a stochastic differential equation driven by a Wiener process. Derivation of nonpara-
metric Bayesian asymptotics for the latter class of processes (all of which is a recent
work) historically proceeded from the assumption of a known σ to the one where σ
is unknown and has to be estimated; see van der Meulen and van Zanten (2013), Gu-
gushvili and Spreij (2014) and Nickl and Söhl (2017b). In that sense the fact that at this
stage we assume β is known does not appear unexpected or unnatural. This assumption
assists in derivation of useful bounds on the Kullback-Leibler and Hellinger distances
between marginals of θ-subordinators under different Lévy triplets, which in general is
the key to establishing consistency properties of nonparametric Bayesian procedures.
We achieve this by reducing some of the intractable computations for these marginals
to calculations involving laws of continuously observed θ-subordinators, for which we
need precisely to assume that the parameter β is known; otherwise the corresponding
laws are singular, which would yield only trivial and useless bounds.

Condition 2. The coefficients θi, i= 1,. ..N−1, are equipped with independent uniform
priors on the known interval [−θ,θ], θ>0. Likewise, the coefficients ρi, i= 1,. ..,N−1,
are independent uniform on the interval [−θ,θ], whereas α is uniform on [α,α], α>0.We
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assume that all priors are independent. Implicitly, this defines a prior Πn on the class
of Lévy densities Vn, which are realisations from the prior.

The assumption in Condition 2 that various priors are uniform can be relaxed to
the assumption that they are supported on compacts and have densities bounded away
from zero there. In fact, other assumptions in Conditions 1 and 2 can be relaxed at the
cost of extra technical arguments in the proofs, but we do not strive for full generality
in this work: a clean, readable presentation of our results and conciseness in the proofs
is our primary goal.

Theorem 4.1 is our first main result in this section. Said shortly, it implies that
our Bayesian procedure is consistent in probability; this in turn implies the existence
of consistent Bayesian point estimates, see, e.g., Ghosal et al. (2000), pp. 506–507. We
use the notation Πn(dv |Zn) for the posterior measure. Also, Qnv0 denotes the law of
the sample Zn under the true Lévy density v0 and Q∞v0 denotes the law of the infinite
sample Z1,Z2,. .. under the true Lévy density v0.

Theorem 4.1. Assume that Conditions 1 and 2 hold and that Nn→∞ and Nn/n→0
as n→∞. Let dH be the Hellinger metric. Then, for any fixed ε,ε>0,

Qnv0 (Πn(v : dH(Qv0 ,Qv)>ε |Zn)>ε)→0

as n→∞.
Before proceeding further, we recall the definition of the Kullback-Leibler diver-

gence KL and the discrepancy V for two probability measures P�Q:

KL(P,Q) =

∫
log

(
dP
dQ

)
dP, V(P,Q) =

∫
log2

(
dP
dQ

)
dP.

Here log2 stands for the square of the natural logarithm.

Proof of Theorem 4.1. The technical results needed in the proof are collected in
Appendix A. Write B(ε) ={v : dH(Qv0 ,Qv)≤ ε} and note that

Πn(B(ε)c |Zn) =

∫
B(ε)c

∏n
i=1

dQv
dQv0

(Zi)Πn(dv)∫ ∏n
i=1

dQv
dQv0

(Zi)Πn(dv)
=

Numn

Denn
.

We will treat the numerator and denominator separately. We start with the denomina-
tor. Define the set

K(δ) ={v : KL(Qv0 ,Qv)≤ δ,V(Qv0 ,Qv)≤ δ},

where δ>0 is a fixed number. Let Π̃n be a restriction of the prior Πn to the set K(δ)
normalised to have the total mass 1. We can write

Denn≥Πn(K(δ))

∫
K(δ)

n∏
i=1

dQv
dQv0

(Zi)Π̃n(dv).

By a standard argument as in Ghosal et al. (2000), p. 525, using Lemmas A.5 and A.7,
on the sequence of events

An=

{∫
K(δ)

n∏
i=1

dQv
dQv0

(Zi)Π̃n(dv)≥e−Cnδ
}
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of Qnv0 -probability tending to 1 as n→∞,

1

Denn
. (cδ)−2NneCnδ.eδn, (4.1)

for δ= 2Cδ, where for two sequences {an} and {bn} of positive real numbers the notation
an. bn indicates that there exists a constant C>0 that is independent of n such that
an≤Cbn. We also used the fact that Nn/n→0. For future use remember that δ can
be made arbitrarily small by choosing δ small. This finishes bounding the term Denn.
Now we turn to Numn. By Lemma A.10, on the sequence of events

Bn=

{
sup

v∈B(ε)c

n∏
i=1

dQv
dQv0

(Zi)< exp(−c1nε2)

}

of Qnv0 -probability tending to 1 as n→∞, we have

Numn≤ exp(−c1nε2). (4.2)

The statement of the theorem now follows by choosing δ small enough, so that δ<c1ε
2.

Indeed, for all big n one has on An∩Bn by combining the bounds (4.1) and (4.2) that
Πn(v : dH(Qv0 ,Qv)>ε |Zn)≤ε. Hence,

Qnv0 (Πn(v : dH(Qv0 ,Qv)>ε |Zn)>ε)≤Qnv0(Acn∪Bcn)→0,

which proves the theorem.

The theorem has the following corollary that we will use in the proof of Theorem
4.2: a fixed ε can be replaced with a sufficiently slowly decaying εn.

Corollary 4.1. For every fixed ε>0, there exists a sequence εn→0, possibly depending
on ε, such that

Qnv0 (Πn(v : dH(Qv0 ,Qv)>εn |Zn)>ε)→0

as n→∞.
Proof. The result follows from Lemma 〈22〉 on p. 181 in Pollard (2002).

The metric for v, in which posterior convergence occurs in Theorem 4.1, is defined
indirectly, in terms of the distance between the corresponding laws Qv,Qv0 . However,
we will show that the theorem implies posterior consistency also in another and perhaps
more natural metric for v. Let denote weak convergence of finite Borel measures and
δ0 be the Dirac measure at zero. The following proposition holds, as a consequence of
Theorem 2 in Gnedenko (1939), see Appendix A for its proof. Note that in our setting
the first component of the Lévy triplet is completely determined by the Lévy density,
cf. (2.1).

Proposition 4.1. Define for Lévy triplets (γn,0,νn), (γ,0,ν) finite Borel measures

ν̃n(dx) =γnδ0(dx)+(x2∧1)νn(dx), ν̃(dx) =γδ0(dx)+(x2∧1)ν(dx),

where we assume νn and ν are on (0,∞), and γn=
∫ 1

0
xνn(dx) and γ=

∫ 1

0
xν(dx) are

finite. Then Qvn Qv if and only if ν̃n ν̃.

The following is our second main theoretical result, in which the metric for posterior
contraction is defined directly for the Lévy density v (equivalently, Lévy measure ν). As
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the Lévy density uniquely determines the corresponding Lévy measure, in the theorem
below as well as in its proof we will somewhat abuse the notation by considering posterior
probabilities of certain sets of Lévy measures.

Theorem 4.2. Let dW be any distance that metrises weak convergence of finite (signed)
Borel measures. Then, for any fixed ε,ε>0,

Qnv0 (Πn(ν : dW(ν̃0, ν̃)>ε |Zn)>ε)→0

as n→∞.

Since the Lévy measures we consider are infinite in any neighbourhood of zero,
using some weight function to convert them into finite measures does not appear to be
an unnatural idea, cf. Comte and Genon-Catalot (2011) for a similar approach.

Proof of Theorem 4.2. Note that Hellinger consistency in Theorem 4.1 also holds
when we replace dH with dW there, since Hellinger consistency implies consistency in
any metric metrising weak convergence. The proof of the theorem is by contradiction.
Assume that the statement of the theorem fails, so that there exist ε,ε,δ >0, such that

Qnv0 (Πn(ν : dW(ν̃0, ν̃)>ε |Zn)>ε)≥ δ (4.3)

along a subsequence of n, again denoted by n for economy of notation. On the other
hand, by Theorem 4.1 and Corollary 4.1 we know that for any ε′,δ′>0 there exists a
sequence εn→0, such that for all n large enough,

Qnv0 (Πn(v : dW(Qv0 ,Qv)≤ εn |Zn)>1−ε′)≥1−δ′. (4.4)

Take δ′= δ/2. Then the elementary relation

P (A∩B) =P (A)+P (B)−P (A∪B)≥P (A)+P (B)−1

together with (4.3)–(4.4) imply that the intersection of the events

An={Πn(ν : dW(ν̃0, ν̃)>ε |Zn)>ε} ,
Bn={Πn(v : dW(Qv0 ,Qv)≤ εn |Zn)>1−ε′}

for all n large enough has Qnv0 -probability at least δ/2. In formula,

Qnv0(An∩Bn)≥ δ/2. (4.5)

Let now ε′=ε/2, and suppose ω∈An∩Bn. Then by the same argument as above, for
the realisation Zn(ω), the intersection of two sets

A′={ν : dW(ν̃0, ν̃)>ε}, B′n={v : dW(Qv0 ,Qv)≤ εn}

must have posterior mass at least ε/2, for all n large enough. Note that by this fact it
also holds that

An∩Bn=
{

Πn(A′∩B′n |Zn)1[An∩Bn]≥ε/2
}
.

for all n large enough. However, by Proposition 4.1 the intersection A′∩B′n is an empty
set for n→∞, so that

Πn(A′∩B′n |Zn)1[An∩Bn]→0, Q∞v0 -a.s.

But then, as n→∞,

Qnv0 (An∩Bn) =Qnv0
(
Πn(A′∩B′n |Zn)1[An∩Bn]≥ε/2

)
→0.

This contradicts (4.5). The proof is completed.
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5. Example: Sum of two Gamma processes

Insurance theory, operational loss models, or more generally risk processes furnish
a natural field of application for subordinators. In particular, a risk model based on
Gamma process was extensively studied from a probabilistic point of view in the widely
cited work Dufresne et al. (1991). On the other hand, a given risk process may itself
be a result of conflation of several heterogeneous factors, for instance due to population
heterogeneity. We may assume that individual risk processes can be modelled through
independent Gamma processes. This is conceptually similar to using convolutions of
gamma distributions in, e.g., storage models; see Mathai (1982). The cumulative risk
process is again a Lévy process, though not necessarily gamma, as sums of independent
Gamma processes are not necessarily Gamma. However, such sums can be closely
approximated through θ-subordinators, as we will now demonstrate. It is enough to
consider the particular case of a sum of two independent Gamma processes, the general
case being only notationally more complex. Thus, let X̃= (X̃t : t≥0) and X̂= (X̂t : t≥
0) be two independent Gamma processes with parameters (β1,α1) and (β2,α2). Let the

process X= (Xt : t≥0) be their sum, Xt= X̃t+X̂t. Its Lévy density is given by

v(x) =
β1

x
e−α1x+

β2

x
e−α2x.

The process X can be viewed as a mixture of phenomena happening at different time
scales (slow and fast). For x→∞, the behaviour of v is determined by β1 +β2 and
min(α1,α2). On the hand, consider the equation

β1

x
e−α1x+

β2

x
e−α2x=

β1 +β2

x
e−θ(x)−αx,

where α>0 will be chosen later on. Solving for θ, we get

θ(x) =−log

(
β1e
−α1x+β2e

−α2x

β1 +β2

)
−αx. (5.1)

Now note that for x→0,

−log

(
β1e
−α1x+β2e

−α2x

β1 +β2

)
≈ β1α1 +β2α2

β1 +β2
x.

We then take

α=
β1α1 +β2α2

β1 +β2
.

This choice of α implies that the function θ is negligibly small in a neighbourhood of zero
(θ(x) behaves as x2 for x small). It then follows that the Lévy density of a sum of two
independent Gamma processes can be closely approximated by the Lévy measure of the
type (2.2), where θ is piecewise linear as in (2.7). Thus, θ-subordinators can be used to
approximate, to an arbitrary degree of accuracy, sums of independent Gamma processes.
For an illustration, see Figure 5.1, that plots the function x 7→−log(xv(x)) together with
the corresponding slope α at x= 0, and the asymptote min(α1,α2)x−const for Example
5.1 below.

We now consider a numerical example. All the computations in this work are
performed using the software package Bridge (Schauer et al. (2017)) available for the
Julia programming language, see Bezanson et al. (2017).

Example 5.1. For the simulation of the synthetic data we chose α1 = 2.0, β1 = 0.4,
α2 = 0.2, β2 = 0.04. For these parameters the behaviour sample paths of both com-
ponents is neither too similar nor too far apart (as judged by consulting Figure 5.1),
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Figure 5.1. The function x 7→−log(xv(x)) in Example 5.1 together with the corresponding slope
α at x= 0, and the asymptote α2x−const =min(α1,α2)x−const.

making this an interesting statistical problem. We simulated the process up to time
T = 2000 and took n= 10000 observations at distance 0.2.

For the prior we chose N = 3 with grid points b= [1,2,4], α∼Gamma(2,1), θk∼
N(0,10) and ρk∼N(0,50), k≥1, conditional on the realisation fulfilling θ(x)→∞ for
x→∞.

In the data augmentation step we took intermediate points at distance 0.01.

In the Gibbs sampler in each step new Gamma bridges are proposed in the data aug-
mentation step, followed by a parameter update Metropolis-Hastings step with normal
random walk proposals. For the joint parameter update, using independent standard
normal (Gaussian) innovations Zα,Zθ,Zρ of appropriate dimensions, we set

α=α+σαZα,

θ◦=θ+σθZθ−(α◦−α),

ρ◦=ρ+σρZρ,

where σα=σθ = 0.025, σρ= 0.15.

The MCMC algorithm was run for 200000 iterations. Figure 5.2 shows trace plots
and running averages of the posterior samples of the parameters α and θ1, θ2, θ3, ρ1,
ρ2, ρ3. Figure 5.3 shows marginal Bayesian credible bands for the function θ(x)+αx
contrasted with the true function given by (5.1). As evidenced by the size of the marginal
posterior bands, for bins chosen as indicated the observations do contain information
about the Lévy density on each bin.

6. Estimation of β

Thus far we assumed the parameter β in (2.2) is known. In practice such an as-
sumption cannot always be justified, and the question arises how to adapt our Bayesian
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Figure 5.2. Trace plots of the parameters for Example 5.1. First panel: trace and running
average of samples of α, α= β1α1+β2α2

β1+β2
is marked as yellow line. Second panel: trace and running

average of samples of θ1, θ2, θ3. Last panel: trace and running average of samples of ρ1, ρ2, ρ3.
Running averages of posterior samples of parameters are indicated by decorating the parameter with a
bar.

computational methodology to the case of an unknown β. It should be noted that when
viewed from a Bayesian data augmentation point of view, the parameter β is rather
different from the parameters α,θ: knowledge of β is required in order to write down
the likelihood of a continuously observed process X. As we noted before, in a sense, the
parameter β0 plays a role similar to the diffusion coefficient of the stochastic differential
equation driven by the Wiener process. Over the years, computational methods for
handling the case of the unknown diffusion coefficient have been developed in the liter-
ature, see, e.g., van der Meulen and Schauer (2017) and references therein. The basic
idea of one such approach is that the laws of the bridge proposals can be understood as
push forwards of the laws of some underlying random processes. For Gamma process
bridges (our bridge proposals) such a push forward map is given by (2.5) and P̃β is the
law of a Gamma process with parameter β. In the case of diffusion processes, where the
bridge proposals are defined as strong solutions of stochastic differential equations, the
law P̃ of the driving Brownian motion serves this purpose as a single law common to all
models with different diffusion coefficients σ2. In our Lévy setting the laws are different
– and mutually singular – but are chosen in such a way that Metropolis-Hastings steps
from one law P̃β to another P̃β◦ can be balanced.

We now move to providing details of our approach. Making use of the Markov
property of a Lévy process, we can restrict our attention to the case of a single bridge
segment from 0 at time t= 0 to xT at time t=T. A generalisation to several bridges is
straightforward. Since in our MCMC sampler for the posterior in an update step for
the parameter β, we will keep all other parameters fixed, in this section we can assume
all the parameters except β are known and fixed. In what follows, Pβ denotes the law
of a Lévy process with Lévy measure

ν(dx) =
β

x
e−αx−θ(x),
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Figure 5.3. Marginal Bayesian credible bands for Example 5.1 for the function θ(x)+αx, based
on all samples. Orange: truth from equation (5.1).

and P̃β denotes the law of a Gamma(β,α) process X̃, both defined on [0,T ]. Next, pβ
and p̃β denote marginal densities of XT and X̃T ; furthermore, conditional laws (under

Pβ and P̃β) of the full Lévy path given XT =xT are denoted P?β and P̃?β . The map g
defined in (2.5) is written as gxT =g0,xT . Table 6.1 summarises the notation for easy
reference.

Process Law Marginal density at t=T Law conditional on XT =xT

X Pβ pβ P?β
X̃ P̃β p̃β∼Gamma(tβ,α) P̃?β
X̃◦ Qβ,β◦(X̃; ·) – –

Table 6.1. Notation chart for Section 6.

Let β be equipped with a prior distribution Π assumed to be given by a density π.
With Ψβ =

dPβ
dP̃β

, the joint posterior of (β,X) given XT =xT can be factorised as

Π((dβ,dX) |xT )∝π(β)pβ(xT )
dP?β
dP̃?β

(
X
)
P̃?β(dX)dβ

=π(β)p̃β(xT )Ψβ

(
X
)
P̃?β(dX)dβ,

(6.1)

where the second equality follows from (2.6).
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Define a measure

Λ(dβ,dX̃) =π(β)p̃β(xT )Ψβ

(
gxT (X̃)

)
P̃β(dX̃)dβ. (6.2)

Then Π((dβ,dX) |xT ) is proportional to the image measure of Λ(dβ,dX̃) under (β,X̃) 7→
(β,gxT (X̃)), because gxT (X̃)∼ P̃?β for X̃∼ P̃β . Note that Λ does not involve the in-
tractable density pβ , and Ψβ is analytically known, cf. (2.11).

We define a Metropolis-Hastings chain with Λ as its invariant measure, from which
samples (β,gxT (X̃)) of the joint posterior in (6.1) are obtained. As gxT is not invertible,

this is a data augmentation procedure, only that X̃, unlike the augmented path, can
hardly be interpreted as an unobserved object.

Let X̃ be a Gamma(β,α) process and assume that a proposal density for β◦ is given

by q(β;β◦). For a given β◦, if β◦>β, set X̃◦t = X̃t+X̃ ′t, where X̃ ′∼ P̃′ is an independent
Gamma(β◦−β,α) process. If β◦<β, then set

X̃◦t =
∑

∆X̃s>0
s≤t

Us∆X̃s,

where Us is an independent collection of Bernoulli(β◦/β) random variables indexed by

a countable set {s : ∆X̃s>0}. By Lemma 6.1 (i) and (ii) ahead, X̃◦ is a Gamma(β◦,α)

process with law P̃β◦ . Denote the probability kernel for a transition from X̃ to X̃◦ (con-

ditional on β and β◦), which is implied by the preceding construction, by Qβ,β◦(X̃; ·).
We will show that proposing a move from β to β◦ from q and subsequently from

X̃ to X̃◦ and accepting it with acceptance probability A((β,X̃),(β◦,X̃◦)) to be derived
below, is a reversible move for Λ. By Tierney (1998), this follows if detailed balance

Λ(dβ,dX̃)q(β;β◦)Qβ,β◦((β,X̃);(dβ◦,dX̃◦))A((β,X̃),(β◦,X̃◦))dβ◦

= Λ(dβ◦,dX̃◦)q(β◦;β)Qβ◦,β((β◦,X̃◦);(dβ,dX̃))A((β◦,X̃◦),(β,X̃))dβ

holds. By (6.2) and Lemma 6.2 given below, the lefthand side is equal to

π(β)p̃β(xT )Ψβ

(
gxT (X̃)

)
q(β;β◦)µ((dβ,dX̃),(dβ◦,dX̃◦))A((β,X̃),(β◦,X̃◦))

with µ defined in Lemma 6.2 ahead. Therefore, choosing

A((β,X̃),(β◦,X̃◦)) = max

(
π(β◦)

π(β)

p̃β◦(xT )

p̃β(xT )

Ψβ◦(gxT (X̃◦))

Ψβ(gxT (X̃))

q(β◦;β)

q(β;β◦)
,1

)

can be seen to make the expressions on both sides of the last display equal, thanks to
(6.2) and Lemma 6.2 together with the symmetry of µ established in Lemma 6.2.

Lemma 6.1. Let X̃t=
∑
s≤t : ∆X̃s>0 ∆X̃s be a Gamma(β,α) process.

(i) If β◦>β and X ′ is an independent Gamma(β◦−β,α) process, then

X̃◦t = X̃t+X ′t,

is a Gamma(β◦,α) process.
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(ii) If β◦<β and Us is a countable collection of Bernoulli(β◦/β) random variables

indexed by {s : ∆X̃s>0}, then

X̃◦t =
∑

∆X̃s>0
s≤t

Us∆X̃s

is a Gamma(β◦,α) process.

Proof. We sketch the proof. The first part is straightforward. The second part
is more involved, but is a standard technique to sample Lévy processes by thinning
marked Poisson point processes, see the rejection method in Rosiński (2001); it could
also be derived from the proof of Lemma 6.2.

Lemma 6.2 (Transdimensional balance). For β,β◦>0,

P̃β(dX̃)Qβ,β◦(X̃;dX̃◦) = P̃β◦(dX̃◦)Qβ◦,β(X̃◦;dX̃) (6.3)

holds, and

µ((dβ,dX̃),(dβ◦,dX̃◦)) = dβdβ◦P̃β(dX̃)Qβ,β◦(X̃;dX̃◦)(=µ((dβ◦,dX̃◦),(dβ,dX̃)))

defines a symmetric measure.

Proof. Without loss of generality, assume β◦>β. The process X̃ is determined by
the jump times J i={s : ∆X̃s∈ [ui,vi)} and jump sizes ∆X̃s, s∈J i on all disjoint strips
[0,T ]× [ui,vi), where (0,∞) =

⋃∞
i=1[ui,vi) with v0 =∞, vi= 1/i, ui= 1/(i+1). Similar

to J i, denote by J i,◦ the jump times of X̃◦ with their sizes in [ui,vi). The number of
jumps |J i| is Poisson(βci) distributed, with density written as piβ(|J i|)), where

ci=T ν̃([ui,vi))/β=T ν̃◦([ui,vi))/β
◦.

Conditional on |J i|, the elements of J i are independent uniforms on [0,T ], and ∆X̃s,
s∈J i, are independently

T ν̃(·)|[ui,vi)/(βc
i) =T ν̃◦(·)|[ui,vi)/(β

◦ci) (6.4)

distributed; note that either side of (6.4) does not depend on β, which cancels from
the formulae. Let qiβ,β◦(n;n◦) denote the counting density of moving from |J i|=n to

|J i,◦,|=n◦ under Qβ,β◦(X̃; ·). This is well defined, as |J i,◦,| under Qβ,β◦(X̃; ·) only

depends on X̃ through |J i|.
On each strip it holds that

piβ(|J i|)qiβ;β◦(|J i|; |J i,◦|) =
(βci)|J

i|e−βc
i

|J i|!
((β◦−β)ci)|J

i,◦|−|Ji|e−(β◦−β)ci

(|J i,◦|−|J i|)!

=
(β◦ci)|J

i,◦|e−β
◦ci

|J i,◦|!

(
|J i,◦|
|J i|

)(
β

β◦

)|Ji|(
1− β

β◦

)|Ji|−|Ji,◦|
=piβ◦(|J i,◦|)qiβ◦;β(|J i,◦|;|J i|),

as the number of jumps of X̃ ′ (the notation is as in Lemma 6.1 (i)) in [ui,vi) has the
Poisson((β◦−β)ci) distribution. Note that∏

s∈Ji,◦
p((t◦s,∆X̃

◦
s )) =

∏
s∈Ji

p((ts,∆X̃s))
∏
s∈Ji,′

p((t′s,∆X̃
′
s))
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where we used that the joint density p is the same for all arguments by (6.4).

Therefore on each strip it holds that

P̃β(dπi(X̃))Qβ,β◦(πi(X̃);dπi(X̃◦)) = P̃β◦(dπi(X̃◦))Qβ◦,β(πi(X̃◦);dπi(X̃)), (6.5)

where πi : X̃ 7→ (|J i|,{(ts,∆X̃s),s∈J i}). The statement of the lemma now follows from
an application of Lemma B.1, by which (6.5) together with the independent increments
property of the jump measure of a Lévy process gives (6.3) and thus also the symmetry
of µ.

The terminology ‘transdimensional balance’ for (6.3) is suggested by a connection
to the transdimensional MCMC in Green (1995). In fact, note that for β◦>β, with

X̃∼ P̃β and X̃ ′ as in Lemma 6.1, the proposal

X̃◦t =

X̃tβ◦/β t≤ β
β◦T

X̃T +X̃ ′β◦−β
β◦ (t− β

β◦ T )
t> β

β◦T,

has also distribution P̃β . This closely resembles the ‘standard template’ given by Green
(1995) for a transdimensional reversible jump move, although here all spaces are infinite-
dimensional.

6.1. Discretisation In order to be able to employ the result of this section
in practice, we now discuss how to perform steps (i) and (ii) of Lemma 6.1 for the
approximations defined on the discrete time grid as introduced in Subsection 3.1. Step
(i) is straightforward, noting that for β◦>β,

X̃◦t+h−X̃◦t | X̃t+h−X̃t∼ X̃t+h−X̃t+Z,

where Z∼Gamma(h(β◦−β)α).

For step (ii), when β◦<β, we use the following formula linking the law of the
increments of the thinned process with the Beta distribution,

X̃◦t+h−X̃◦t | X̃t+h−X̃t∼
(
X̃t+h−X̃t

)
Z,

where Z∼Beta(hβ◦,h(β−β◦)).

7. Example: sum of two Gamma processes, unknown β

We revisit Example 5.1 from Section 5, but now additionally assuming the param-
eter β is unknown. We endow β with an independent uniform prior on the interval
[0.1,1000]. To estimate β, we perform a transdimensional move, as explained in Sec-
tion 6, at every 5th iteration in the otherwise unchanged algorithm from Section 5.
Proposals for β◦ are obtained from a random walk with independent Gaussian incre-
ments, with standard deviation σβ = 0.01. No further tuning is necessary.

Figure 7.1 shows trace plots and running averages of the posterior samples of the
parameters α and β. The data – for the parameter values considered – is informative
for the parameter β and the Metropolis-Hastings chain sampling from the posterior of
β mixes fast. While not covered by our posterior consistency result, the results of the
numerical experiment indicate that the sampling procedure for β integrates seamlessly
into the algorithm. Figure 7.2 shows trace plots and running averages of the posterior
samples of θ1, θ2, θ3 and of ρ1, ρ2, ρ3. Figure 7.3 shows histograms of the posterior



Belomestny, Gugushvili, Schauer, Spreij 21

samples of α and β, whereas Figure 7.4 shows histograms of the posterior samples of θ1,
θ2, θ3 and of ρ1, ρ2, ρ3. Figure 7.5 shows marginal Bayesian 95 % credible bands for the
function −log(xv(x)) contrasted with the true function −log(xv0(x)) given by (5.1).
The conclusion is that we are able to recover the qualitative properties (as indicated
by the asymptotes in Figure 5.1) of the process in both time scales from the discrete
observations.
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Figure 7.1. Trace plots of the parameters α and β for Example 5.1. Left: trace and running
average (ᾱ) of samples of α. The value øα= β1α1+β2α2

β1+β2
is marked as a dotted yellow line. Right:

trace and running average of samples of β. The value β1 +β2 is marked as a dotted yellow line.

8. Danish data on fire losses

Over the last two decades there has been an increasing interest in applying Bayesian
methods to insurance problems, see, e.g., Hong and Martin (2017a) and references
therein. Hong and Martin (2017b) apply a Dirichlet process mixture prior to model
the density of insurance claim sizes, and provide motivation for using a nonparametric
Bayesian approach in the actuarial science. In this section we will apply our Bayesian
approach to the Danish data on large fire losses. This dataset is a standard test example
in extreme value theory, and from that point of view it has been a subject of several deep
studies, such as McNeil (1997) and Resnick (1997). Our goals here are more modest,
and aim at demonstrating the facts that firstly, θ-subordinators can be potentially used
to capture some aggregate features of the Danish data on large fire losses, and secondly,
statistical inference for real data modelled through such processes can be successfully
performed using the Bayesian methodology developed in this paper. This can be viewed
as a partial empirical investigation of the risk model based on Gamma processes from
Dufresne et al. (1991). As observed in Hewitt and Lefkowitz (1979), a single standard
distribution, such as the gamma, log-gamma or log-normal distribution, may not suf-
fice to adequately model the distribution of individual insurance losses. For instance,
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Figure 7.2. Trace plots of the parameters for Example 5.1. Left column: trace and running
average of samples θ1, θ2, θ3. Right column: trace and running average of samples of ρ1, ρ2, ρ3,
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Figure 7.3. Histograms of the posterior samples of α (left) and β (right) for Example 5.1.

multimodality in claim size distribution may result from presence of hidden factors or
due to existence of illegal practices, such as exaggeration of injuries and excessive treat-
ment costs, that are well-documented in auto insurance; see, e.g., Rempala and Derrig
(2005) and the references therein. Since allowing for greater flexibility, in particular
multimodality, in claim size distribution modelling is likely to result in multimodality of
marginal distributions of the cumulative risk process, using a θ-subordinator instead of
a Gamma process to model evolution of the cumulative risk process over time a priori
appears to be a sound approach.

8.1. Data description and visualisation
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Figure 7.4. Histograms of the posterior samples of the parameters for Example 5.1. Left column:
parameters θ1, θ2, θ3. Right column: parameters ρ1, ρ2, ρ3.

A succinct description of the Danish data on large fire losses can be found on p. 298
in Embrechts et al. (1997). The dataset (scaled for privacy reasons) comprises 2167
fire losses (adjusted suitably for inflation to reflect the 1985 values) in Denmark over
the 10 year period starting on 6 January 1980 and ending on 30 December 1990, that
exceed in size one million DKK, and that were registered by Copenhagen Reinsurance.
The rationale for thresholding losses at one million DKK is given in McNeil (1997),
pp. 119–120, and consists in the fact that in practice it is virtually impossible to collect
exhaustive data on small losses: insurance is typically provided against significant losses,
while small losses are dealt with by insured parties directly.

The data can be accessed through the QRM package in R under the name danish.
The time plot of the data is given in the left panel of Figure 8.1. Presence of several
exceedingly large losses is apparent from the plot, and therefore we use a logarithmic
transformation to stabilise extreme variations in the data. Furthermore, this transforms
observations on [1,∞) to observations on [0,∞), the support of the marginal distribu-
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Figure 7.5. Marginal Bayesian credible bands for Example 5.1 for the function −log(xv(x)) based
on all samples. Red: truth − log(xv0(x)) from equation (5.1).

tions of a θ-subordinator. One feature of the data is that on numerous days no losses
have been registered. This is not compatible with the behaviour of an infinite activity
subordinator; in fact, such a subordinator X with probability one must have an infi-
nite number of jumps in every finite time interval, and hence its increments must be
strictly positive with probability one. A simple fix to this is to aggregate log losses over
longer time periods than daily ones; aggregation over weekly periods (from Monday to
Sunday) turned out to be sufficient (except few cases, where we had to aggregate data
over periods of two weeks). The aggregated data on a logarithmic scale is displayed in
the right panel of Figure 8.1. The idea of aggregation is a natural one, and embodies
the fact that a probabilistic model unsuitable on a certain time scale may very well
be appropriate on another time scale. In fact, already Albert Einstein in his classical
paper on the Brownian motion observed that his model for displacement of a Brownian
particle becomes inapplicable as the time interval between successive measurements of
positions of a Brownian particle becomes increasingly small; see pp. 380–381 in Einstein
(1906).

According to the exploratory analysis of the transformed data that we supply in
Appendix C, the data can be modelled as an i.i.d. sequence that follows a Gamma-like
distribution, but perhaps is not genuinely Gamma. This suggests a possibility of using
a θ-subordinator to model the data.

8.2. Modelling fire losses with a θ-subordinator

Because the sample size is much smaller compared to our simulation examples, we
chose N = 1 corresponding to a single grid point b1 = 2 and four parameters α, β, θ1,
ρ1. In light of Example 5.1 and in order to improve mixing of the chain, we use a
reparameterisation α1 =α+θ1, β1 =β exp(−ρ), and work with four parameters α, β,
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Figure 8.1. Danish data on large fire losses. Left: original daily data (the unit is one million
DKK). Right: logarithmically transformed and aggregated data.
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Figure 8.2. Trace plots of the parameters α and β for the fire loss data. Left: trace and running
average of samples of α. (The latter indicated by ᾱ.) The maximum likelihood estimate α̂ of α using
a Gamma process model is marked as the dotted yellow line. Right: trace and running average of
samples of β. (The latter indicated by β̄.) The maximum likelihood estimate β̂ of β using a Gamma
process model is marked as the yellow dotted line.

α1, β1, so that

v(x) =

{
β
x exp(−αx) x≤ b1,
β1

x exp(−α1x) x>b1.

A priori we equip these four parameters with independent Gamma distributions, with
mean 0.75 and variance 0.36 for the parameters α,α1, and mean 90 and variance 2500
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Figure 8.3. Trace plots of the parameters used for the bin (b1,∞) for the fire loss data. Left: trace
and running average of the samples of α1. The maximum likelihood estimate of α using a Gamma
process model is marked as yellow line. Right: trace and running average of the samples of β1. The
maximum likelihood estimate of β using a Gamma process model is marked as yellow line.
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Figure 8.4. Marginal Bayesian credible bands for the fire loss data for the function −log(xv(x))
based on all samples. Yellow: maximum likelihood estimate −log(xv̂(x)) assuming a Gamma process.
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for the parameters β, β1. In the data augmentation step we take intermediate points at
distance 0.0192, corresponding to m= 1000.

For the parameter updates we took independent Gaussian innovations with standard
deviations σα=σα1

= 0.03, σβ = 1 and σβ1
= 6, respectively. In the Gibbs sampler in each

step new Gamma bridges are proposed in the data augmentation step, followed by a
parameter update Metropolis-Hastings step cycling through updates of β in the first
and second and the other parameters jointly in each of the remaining three of in total
5 stages. With these choices, the chains mix sufficiently well. The MCMC algorithm
was run for 200000 iterations. Figure 8.2 shows trace plots and running averages of the
posterior samples of the parameters α and β, whereas Figure 8.3 shows similar plots for
the parameters α1 and β1.

Figure 8.4 shows the 95% marginal Bayesian credible band for the function θ(x)+αx
contrasted to the maximum likelihood estimate that assumes the observations come
from a Gamma process. This plot suggests that modelling the losses with a Gamma
process leads to overestimation of the number of small jumps and possibly of large jumps
too; however, more data is necessary to make a definitive statement (unfortunately, as
observed in Chavez-Demoulin et al. (2016), it is difficult for academia to gain access to
the insurance data). In connection to this, we note that a difference in the estimates of
the rate of decay of the Lévy density (value of α1 in the model) has serious implications
of practical relevance for the assessment of the risk of very large fire losses.

9. Outlook As a possible extension of the model studied in this paper, one can
consider a class of increasing, infinite activity Lévy processes, which one can call (a,b,θ)-
subordinators. Fix some a∈ [0,1), b≥0 and a non-decreasing, non-negative function θ on
R+; then a Lévy process (Xt)t≥0 is called an (a,b,θ)-subordinator, if the characteristic
function of X1 has the form

ϕ(z) = E[eizX1 ] = exp

(∫
R

(eizx−1)ν(dx)

)
, z∈R,

where the Lévy measure ν is given by

ν(dx) =
b

x1+a
e−θ(x)1(0,∞)(x)dx. (9.1)

On one hand, this model generalises the Gamma process with a= 0 and θ(x)≡λx, λ>0.
On the other hand, (a,b,θ)-subordinators cover the class of one-sided tempered stable
processes, that have recently gained attention in physics and mathematical finance, see
Rachev et al. (2011). Furthermore, the family of (a,b,θ)-subordinators overlaps with
the class of self-decomposable Lévy processes, that likewise have important applications
in finance, see, e.g., Carr et al. (2007).

In order to extend the inferential approach presented in the current work to this new
model, we need to be able to sample from the distribution of X conditional on XT =xT .
The problem of sampling from tempered stable bridges has been recently studied in Kim
et al. (2016). Let us also mention the fact that the problem of estimating the stability
index α is difficult from a Bayesian point of view due to singularity of the measures
induced by two Lévy processes with different stability indices. However, several fre-
quentist approaches to estimate α are available in the literature, see Belomestny and
Reiß (2006). Also, our estimation approach can be conceivably extended to Gamma
driven stochastic differential equation models.

Appendix A. Technical results for Section 4.
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Proof of Proposition 4.1.

For ease of notation we put µn(dx) = (x2∧1)νn(dx) and µ(dx) = (x2∧1)ν(dx). Gne-
denko’s theorem, see, e.g., Theorem 2 in Gnedenko (1939), states that Qvn Qv if and
only if γn→γ and µn µ, referred in this proof as Gnedenko’s conditions. We show
that these conditions are equivalent to ν̃n ν̃. Assume the latter and take the bounded
and continuous function f = 1. It then follows that γn+µn(R)→γ+µ(R). Next we
show that γn→γ. Let fε(x) = (1− x

ε )+ for x≥0 and 0<ε≤1. Then

0≤
∫
fε(x)µn(dx) =

∫ ε

0

fε(x)x2νn(dx)≤
∫ ε

0

x2νn(dx)≤ε
∫ ε

0

xνn(dx)≤εγn.

It follows that γn≤
∫
fεdν̃n≤ (1+ε)γn, and hence limsupγn≤

∫
fεdν̃≤ (1+ε)liminf γn.

Similar considerations yield γ≤
∫
fεdν̃≤ (1+ε)γ, and a combination of these results

yields max{limsupγn,γ}≤ (1+ε)min{liminf γn,γ}. Since ε is arbitrary, it follows that
γn→γ and, in view of the earlier limit, also µn(R)→µ(R). Let f0 be bounded and
continuous such that f0(0) = 0. Then

∫
f0dµn=

∫
f0dν̃n→

∫
f0dν̃=

∫
f0dµ. Take now

an arbitrary bounded and continuous function f , and let f0 =f−f(0). Then, in view
of the above, one has

∫
fdµn=

∫
f0dµn+f(0)µn(R)→

∫
f0dµ+f(0)µ(R) =

∫
fdµ. Both

of Gnedenko’s conditions are thus satisfied. This shows one implication. Conversely, by
assuming Gnedenko’s conditions, one obtains by a simple addition that ν̃n ν̃.

The next two lemmas bound the Kullback-Leibler divergence between two measures
Qv0 ,Qv.
Lemma A.1. We have KL(Qv0 ,Qv)≤KL(Pv0 ,Pv).

Proof. This is the inequality stated on p. 12 in Gugushvili et al. (2015). The fact
that there it is obtained in the context of the compound Poisson processes plays no role
in our case: the result follows from the well-known inequality due to Csiszár (1963); cf.
Lemma 2 and arguments preceding it in Gugushvili et al. (2015).

Lemma A.2. We have KL(Qv0 ,Qv). |α−α0|+‖θ−θ0‖∞. The constant in the inequal-
ity depends on α0,θ0 and known constants only.

Proof. We will bound from above KL(Pv0 ,Pv), which by Lemma A.1 automatically
yields an upper bound on KL(Qv0 ,Qv). By formula (A.1) in Cont and Tankov (2006),

KL(Pv0 ,Pv) =

∫
x>0

v0(x)log

(
v0(x)

v(x)

)
dx+

∫
x>0

(v(x)−v0(x))dx= I+II.

We will separately bound the two terms. We start with the first one:

I = (α−α0)

∫
x>0

e−α0x−θ0(x)dx+

∫
b≤x≤b

1

x
e−α0x−θ0(x)(θ(x)−θ0(x))dx.

It follows that |I|. |α−α0|+‖θ−θ0‖∞. The constant in the inequality depends on
α0,θ0, and known constants.

Now we turn to II. We have

II =

∫
0<x<b

1

x

(
e−αx−e−α0x

)
dx

+

∫
b≤x≤b

1

x

(
e−αx−θ(x)−e−α0x−θ0(x)

)
dx

+

∫
b<x<∞

1

x

(
e−αx−e−α0x

)
dx.



Belomestny, Gugushvili, Schauer, Spreij 29

By the mean-value theorem, using also the facts that α0,α≥α, x>0, the first term on
the right in the above display is up to a constant bounded in absolute value by |α−α0|.
A similar bound is true for the third term too. As far as the second term is concerned,
notice that for any x,y,

|ex−ey|≤max(ex,ey)|x−y|,

so that for x∈ [b,b] we have∣∣∣e−αx−θ(x)−e−α0x−θ0(x)
∣∣∣. |α−α0|x+‖θ−θ0‖∞.

This in turn entails that∣∣∣∣∫
b≤x≤b

1

x

(
e−αx−θ(x)−e−α0x−θ0(x)

)
dx

∣∣∣∣. |α−α0|+‖θ−θ0‖∞.

Combination of the above intermediate inequalities completes the proof.

The next three lemmas bound the discrepancy V between two measures Qv0 ,Qv.
Lemma A.3. We have

V(Qv0 ,Qv)≤V(Pv0 ,Pv)+4KL(Pv0 ,Pv).

Proof. This is equation (21) in Gugushvili et al. (2015). The fact that in the
original context it dealt with the compound Poisson process, plays no role in our case,
the arguments go through without modification.

Lemma A.4. We have

V(Pv0 ,Pv) =

∫ ∞
0

v0(y)log2

(
v(y)

v0(y)

)
dy

+

(∫ ∞
0

(
1− v(y)

v0(y)
+log

(
v(y)

v0(y)

))
v0(y)dy

)2

.

Proof. It follows from Theorem 4 in Brockett et al. (1978) that

φ(u) := EPv0

[
exp

(
iu log

(
dPv
dPv0

))]
= exp

[
iu

∫ ∞
0

(
1− v(x)

v0(x)

)
v0(x)dx+

∫ ∞
0

(
eiux−1

)
v0 ◦g−1(dx)

]
with g(x) = log

(
v(x)
v0(x)

)
. We have

φ′(u) =

(
i

∫ ∞
0

(
1− v(x)

v0(x)

)
v0(x)dx+i

∫ ∞
0

xeiux(v0 ◦g−1)(dx)

)
φ(u)

and

φ′′(u) =−
(∫ ∞

0

x2eiux(v0 ◦g−1)(dx)

)
φ(u)
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−
(∫ ∞

0

(
1− v(x)

v0(x)

)
v0(x)dx+

∫ ∞
0

xeiux(v0 ◦g−1)(dx)

)2

φ(u).

As a result, we get that

EPv0

[(
log

(
dPv
dPv0

))2
]

=−φ′′(0) =

∫ ∞
0

x2(v0 ◦g−1)(dx)

+

(∫ ∞
0

(
1− v(x)

v0(x)

)
v0(x)dx+

∫ ∞
0

x(v0 ◦g−1)(dx)

)2

.

Now note that by the change of the variable formula,∫ ∞
0

x(v0 ◦g−1)(dx) =

∫ ∞
0

v0(y)log

(
v(y)

v0(y)

)
dy,∫ ∞

0

x2(v0 ◦g−1)(dx) =

∫ ∞
0

v0(y)log2

(
v(y)

v0(y)

)
dy.

This completes the proof.

The next result is used to bound from below the denominator in the posterior and
is a simple restatement of Lemma 8.1 in Ghosal et al. (2000).

Lemma A.5. Let Π̃ be an arbitrary probability measure on the set

K(δ) ={v : KL(Qv0 ,Qv)≤ δ,V(Qv0 ,Qv)≤ δ},

where δ>0 is any fixed number. Then for every constant C>1,

Qnv0

(∫
K(δ)

n∏
i=1

dQv
dQv0

(Zi)Π̃(dv)≤e−Cnδ
)
≤ 1

(C−1)2nδ
.

The next lemma, together with Lemma A.2, is instrumental in verifying the prior
mass condition, that is one of the key ingredients for derivation of posterior consistency.

Lemma A.6. We have

V(Qv0 ,Qv). |α−α0|+‖θ−θ0‖∞+ |α−α0|2 +‖θ−θ0‖2∞.

The constant in the inequality depends on α0,θ0 and known constants only.

Proof. The result follows from Lemmas A.2, A.3 and A.4 after some tedious calcu-
lations as in the proof of Lemma A.2.

The next results deals with the prior mass condition.

Lemma A.7. For every δ>0 small enough and all n large,

Πn (K(δ))& (cδ)2Nn

for a constant c independent of n.

Proof. By Lemmas A.2 and A.6, there exists a constant c>0, such that

K(δ)⊆{|α−α0|∨|α−α0|2≤ cδ}∩{‖θ−θ0‖∞∨‖θ−θ0‖2∞≤ cδ}.

Since priors on α and θ are independent, we get that

Πn(K(δ))≥
[
Πn(|α−α0|≤ cδ)∧Πn(|α−α0|2≤ cδ)

]
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×
[
Πn(‖θ−θ0‖∞≤ cδ)∧Πn(‖θ−θ0‖2∞≤ cδ)

]
.

We will bound each of the terms on the right separately. For δ small enough,

Πn(|α−α0|≤ cδ)≤Πn(|α−α0|2≤ cδ), Πn(‖θ−θ0‖∞≤ cδ)≤Πn(‖θ−θ0‖2∞≤ cδ),

so that it is sufficient to bound from below the terms on the left hand side of these two
inequalities.

Note that since α is equipped with the uniform prior, Πn(|α−α0|≤ cδ)� δ. On the
other hand,

Πn(‖θ−θ0‖∞≤ cδ) = Πn

(
max

1≤k≤N
sup
x∈Bk

|θ(x)−θ0(x)|≤ cδ
)

=

Nn∏
k=1

Πn

(
sup
x∈Bk

|θ(x)−θ0(x)|≤ cδ
)
.

Consider a term

Πn

(
sup
x∈Bk

|θ(x)−θ0(x)|≤ cδ
)

= Πn

(
sup
x∈Bk

|ρk+θkx−θ0(x)|≤ cδ
)
.

By the Hölder assumption on θ0, we have by the triangle inequality

|ρk+θkx−θ0(x)|≤ |ρk+θkbk−θ0(bk)|+L(x−bk)λ

≤|ρk+θkbk−θ0(bk)|+L∆λ
n,

where ∆n denotes the length of the bins, ∆n= b/Nn. As ∆n→0 for n→∞, we can
make it small enough to have (for any c,δ >0) L∆λ

n≤ δ/2. It follows that for sufficiently
small δ one has {

sup
x∈Bk

|θ(x)−θ0(x)|≤ cδ}⊃{|ρk+θkbk−θ0(bk)|≤ cδ
2

}
.

Furthermore, we have{
|ρk+θkbk−θ0(bk)|≤ cδ

2

}
⊃
{
|ρk−θ0(bk)|≤ cδ

4

}
∩
{
|θkbk|≤

cδ

4

}
.

Then by independence of θk and ρk,

Πn

(
|ρk+θkbk−θ0(bk)|≤ cδ

2

)
≥Πn

(
|ρk−θ0(bk)|≤ cδ

4

)
Πn

(
|θkbk|≤

cδ

4

)
.

As the interval (θ0(bk)− cδ
4 ,θ0(bk)+ cδ

4 ) is contained in [−θ̄, θ̄] for all sufficiently small
δ, the first factor on the right is bounded from below by a constant (independent of n
and k) times δ. So is the second factor, because

Πn

(
|θkbk|≤

cδ

4

)
≥Πn

(
|θk|≤

cδ

4b

)
.

It follows that

Πn

(
sup
x∈Bk

|θ(x)−θ0(x)|≤ cδ
)
& δ2.
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Thus, after an evident renaming of constants, Πn (K(δ))& (cδ)2Nn for a constant c
independent of n.

The result of the next lemma is a variation on Lemma A.2. Its main use lies in
establishing a certain metric entropy bound in Lemma A.9.

Lemma A.8. It holds that dH(Qv0 ,Qv). |α−α0|+ ||θ−θ0||∞.

Proof. We first note that

d2
H(Qv0 ,Qv)≤d2

H(Pv0Pv),

see Gugushvili et al. (2015), p. 14.

Further, one has d2
H(Pv0Pv) = 1−exp(−h)≤h, see Theorème 1 in Mémin and

Shiryaev (1985), where h= 1
2

∫∞
0

(
√
v0(x)−

√
v(x))2 dx. By a splitting procedure as

in the proof of Lemma A.2, we get d2
H(Qv0 ,Qv). |α−α0|2 + ||θ−θ0||2∞. Finally, use the

inequality
√
x2 +y2≤x+y for x,y≥0.

In the proof of Lemma A.10 below we need an auxiliary result. For any class of
functions F , recall the bracketing entropy H[ ](u,F) = logN[ ](u,F), with N[ ](u,F) the
bracketing number under the Hellinger metric. Useful will be the inequality H[ ](u,F)≤
H∞(u/2,F), see Lemma 2.1 in van de Geer (2000), where H∞(u,F) = logN∞(u,F),
with N∞(u,F) the covering number of F with balls of radius u under the supremum
norm. For the latter we have the following result.

Lemma A.9. Let Fn be the set of probability measures Qv, where the Lévy densities v
are elements of Vn. It holds that H∞(u,Fn)�Nn log(1+ 1

u ), and hence there is C>0
such that for all sufficiently small δ>0 and sufficiently large Nn (the number of bins),
one has ∫ δ

0

H1/2
∞ (u,Fn)du≤C

√
Nnδ log1/2

(
1

δ
+1

)
.

Proof. Starting point is the result of Lemma A.8. First we need a δ-cover of the
interval [α,α], for which the covering number needed is of order δ−1 +1. To cover a set
of functions θ, it is sufficient to cover the bounded intervals to which the corresponding
ρk and θk belong. Hence δ-covers for both are again of order δ−1 +1, and we have to do
this on Nn bins separately. Altogether, this implies that a cover of size O(δ−1 +1)2Nn+1

is sufficient to cover the set Fn. Hence
∫ δ

0
H

1/2
∞ (u,Fn)du�

√
Nn
∫ δ

0
log1/2(u−1 +1)du.

We now show that the latter integral is of order δ log1/2(1+ 1
δ ) for small δ. For this we

assume that δ< 1
e−1 , which entails log(1+ 1

δ )>1> 1
1+δ , log(y+1)>1 and and 1

y <
2
y+1

for y>δ−1. These inequalities are used to show via lengthy but standard computations
that ∫ δ

0

log1/2(u−1 +1)du≤2δ log1/2(δ−1 +1).

The result of the lemma follows.

The next result is used to handle the numerator in Bayes’ formula in our main
result, Theorem 4.1.

Lemma A.10. Fix ε>0 and define B(ε) ={v∈Vn : dH(Qv0 ,Qv)≤ ε}. Then there exist
positive constants c1,c2,c3, independent of n, such that

Qnv0

(
sup

v∈B(ε)c

n∏
i=1

dQv
dQv0

(Zi)≥ exp(−c1nε2)

)
≤ c3 exp(−c2nε2).
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Proof. We will use Theorem 1 in Wong and Shen (1995). The main fact to establish

is a bound on the entropy integral
∫ ε

0
H

1/2
[ ] (u,Fn)du (the set Fn as in Lemma A.9)

of the form C
√
nε2. It follows from Lemma A.9 and the remarks preceding it, that∫ ε

0
H

1/2
[ ] (u,Fn)du≤C

√
Nnεlog1/2( 1

ε +1). We want to choose Nn, so that

√
Nnεlog1/2

(
1

ε
+1

)
.
√
nε2

for all n and all small enough ε. To that end it is enough to have

Nn
n
.

ε2

log( 1
ε +1)

,

which in fact holds for all n large enough, since Nn/n→0 by assumption. Then Condi-
tion (3.1) in Wong and Shen (1995) is satisfied, and hence we can apply Theorem 1 of
that paper, which yields the assertion.

Appendix B. Technical lemma for Section 6.

Lemma B.1. Let I be a countable index set and (Ei,Ai,Pi), i∈ I, a collection of prob-
ability spaces or σ-finite measure spaces. Denote the corresponding product measurable
space with the product measure by (E,A,P). Let πJ : x∈E 7→ (xi)i∈J be the coordinate
projections for J ⊂ I. Assume that Q(x,dx◦) is a σ-finite transition measure with a
localisation property

Q(x;dπI1∪I2( ·)) =Q(πI1(x);dπI1(·))⊗Q(πI2(x);dπI2(·))

for all x∈E, I1,I2⊂ I, I1∩I2 =∅. Then the local balance condition

Pi(dxi)Qi(xi;dx◦i ) =Pi(dx◦i )Qi(x◦i ;dxi),

where Qi(xi;A) =Q(πi(x);(πi)−1(A)) for A∈Ai, implies

P(dx)Q(x;dx◦) =P(dx◦)Q(x◦;dx). (B.1)

Proof. A measure on E2 can be written as a measure on Ẽ2 =×i∈NE
2
i using an

obvious change of coordinates. Denote the measure P(dx)Q(x,dx◦) seen as a measure

on Ẽ2 by µ. Then

µ

(
(×
i≤n

(Ai×A◦i ))×(×
i>n

E2
i )

)
=
∏
i≤n

∫
Ai

Qi(xi,A◦i )Pi(dx), Ai,A
◦
i ∈Ai

for all n∈N. Therefore µ is a product measure. It is also a symmetric measure in
the following sense: µ(s(A)) =µ(A) for s(A) ={(x◦i ,xi)i∈I : (xi,x

◦
i )i∈I ∈A}. This can

be formally shown by the “good set principle”: Let S be the collection of sets such that
µ(s(S)) =µ(S) holds for S∈S. First,×i≤n(Ai×A◦i )×(×i>n

E2
i ))∈S, so S contains

a generator which has the intersection property (π-system). Now E∈S, and also com-
plements of sets in S are in S, and countable unions of disjoint sets in S are in S as
well: if Ai∈S are disjoint sets and A=

⋃
Ai, then

µ(A) =
∑

µ(Ai) =
∑

µ(s(Ai)) =µ(s(A)).
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Figure C.1. Logarithmically transformed and aggregated Danish data on large fire losses. Left:
autocorrelation function. Right: partial autocorrelation function.

Therefore S=A by Dynkin’s π-λ theorem. The balance equation (B.1) follows.

Appendix C. Danish fire losses: exploratory data analysis.

In this appendix we perform an exploratory analysis of the Danish data on large
fire losses. We primarily use graphical tools; these may look simple, but are commonly
applied in similar analyses (see, e.g., McNeil (1997) and Resnick (1997)) and convey
useful information that is not easily obtainable otherwise.

Figure C.1 gives the plots of the estimated autocorrelation and partial autocorre-
lation functions of logarithmically transformed and aggregated Danish fire losses. Both
plots are compatible with the assumption that the data follow a white noise process.
A more formal confirmation comes from the Box-Pierce and Ljung-Box tests, that we
applied with 20 lags, and that yielded p-values 0.5847 and 0.5547, respectively (the tests
are implemented in R via Box.test). This suggests that weekly data can indeed be
modelled as an i.i.d. sequence.

We also produced the histogram of the weekly data, and fitted the Gamma dis-
tribution via the maximum likelihood method. The results are displayed in the left
panel of Figure C.2, and provide a visual hint that a Gamma-type distribution yields a
reasonable fit to the data. Since a histogram is a somewhat crude nonparametric esti-
mator and is strongly dependent on the choice of the bin number (we used the default
implementation in R via the command hist), we also visually compared the Gamma
fit to a kernel density estimator, with bandwidth selected through cross-validation (we
used the density in R with the Gaussian kernel), see the right panel of Figure C.2.
Ignoring the edge effects near the boundary point of the support of the distribution,
it appears that the two estimates are different e.g. in a neighbourhood of the mode of
the Gamma density, with probability mass of the kernel density estimate shifted to the
right. On the other hand, the tail behaviour of both estimates is similar.

Although evidence is not decisive, a further hint that the Gamma distribution is
perhaps not entirely adequate for modelling the Danish fire losses data comes from the
QQ-plot of empirical quantiles of the Danish fire losses data versus theoretical Gamma
quantiles; see Figure C.3 (we used the command qqPlot from the car package in R).

Summarising the results of our exploratory data analysis, it appears that if aggre-
gated over weekly (or in some exceptional cases over bi-weekly) periods, the logarithmi-
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Figure C.2. Logarithmically transformed and aggregated Danish data on large fire losses. Left:
histogram with a superimposed gamma density evaluated at the maximum likelihood estimate. Right:
kernel density estimate (dotted line) with the same superimposed gamma density (solid line) evaluated
at the maximum likelihood estimate.

Figure C.3. Logarithmically transformed and aggregated Danish data on large fire losses: QQ-plot
of empirical quantiles versus theoretical gamma quantiles.

cally transformed Danish fire losses data can be adequately modelled as a realisation of
an i.i.d. sequence that follows a Gamma-like distribution, but perhaps is not genuinely
Gamma.
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J. Mémin, A.N. Shiryaev. Distance de Hellinger-Kakutani des lois correspondants à
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frequency observations. Bernoulli, 15:223–248, 2009.
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