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The atoms, as their own weight bears them down
Plumb through the void, at scarce determined times,
In scarce determined places, from their course
Decline a little- call it, so to speak,
Mere changed trend. For were it not their wont
Thuswise to swerve, down would they fall, each one,
Like drops of rain, through the unbottomed void;
And then collisions ne’er could be nor blows
Among the primal elements; and thus
Nature would never have created aught.

–Lucretius, De Rerum Natura ∼ 60BC
(Trans. W. E. Leonard)





CHAPTER 1

Introduction

1.1 Self-assembly in nature

In the summer before starting my physics degree, I read in a home-printed copy of
Feynman’s physics lectures:

If, in some cataclysm, all of scientific knowledge were to be destroyed,
and only one sentence passed on to the next generations of creatures,
what statement would contain the most information in the fewest words?
I believe it is the atomic hypothesis (or the atomic fact, or whatever
you wish to call it) that all things are made of atoms, little particles
that move around in perpetual motion attracting each other when they
are a little distance apart, but repelling upon being squeezed into one
another. In that one sentence, you will see, there is an enormous amount
of information about the world, if just a little imagination and thinking
are applied.” – The Feynman Lectures on Physics

Feynman need not worry, because the notion that all things are made of atoms is
firmly engraved in our culture. However, this hardly starts to explain anything about
the world and will most likely not impress the next generation creatures too much.
It is, after all, rather easy to see how we can go one way: Dissecting things to find
everything is made from simple building blocks. But how on earth does nature go
the other way? How does the enormous amount of atoms conspire together to make
something as sophisticated and delicately ordered like all the living creatures that
you see around you? How do things build themselves?

An early suggestion comes from Lucretius (99 BC - c. 55 BC), who was already
an atomist 2000 years ago. He proposes the ‘clinamen’, which denotes the random
swerving and swirling of atoms that cause atoms to collide with each other, thus
bringing into being our diverse world. Though poetic, this idea is not quite precise
enough for modern science. Yet, when interpreting his notion of collisions more
generally as (local) interactions, he does seem to foreshadow the modern notion of
self-assembly, which can be defined as:
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Self-assembly : A process by which disordered building blocks form
an ordered structure through only local interactions.1

Here, interactions should be understood as the sum of all attractions and repulsions
present between the building blocks. In self-assembly, when building blocks are in
close proximity, it is these interactions that can cause them to click together in an
orderly fashion like Lego blocks. The adjective local is essential in this definition.
It conveys that building blocks only have local information, and have no awareness
of what bigger structure they are forming. For self-assembly to work, one needs at
least three ingredients: (i) Building blocks, (ii) interactions that cause the ‘clicking’
of blocks, (iii) a source of movement, which can be completely random (clinamen-
like) but is required to bring the building blocks within close enough proximity in
order to interact.

Self-assembly processes do not only happen in living nature or always start with
atoms, but can be seen everywhere and at all length scales [7], see Figure 1. When
walking over a bridge in a park during fall, you might see leaves arranged in regular
patterns. More spectacular might be the rings of Saturn. Initially, Saturn was
surrounded by a swirling sea of ice and rock fragments (how this came about is
still debated). Collisions and the law of conservation of angular momentum caused
these fragments to be confined in narrow beautiful disks. Biology is especially full
of self-assembly. Army ants that live in rain forests self-assemble in a multitude
of structures, a famous one being ‘living bridges’ by means of which fellow colony
members can efficiently traverse gaps [5]. Diving deeper down in size, one can find
fibrin networks that can quickly solidify a drop of blood by spanning a net that
connects red blood cells together. Their self-assembly is triggered when a vein is
cut, to stop the bleeding as soon as possible. Interestingly, the building blocks of
these fibrin networks, fibrinogen proteins, are themselves examples of what could
be called the masters of self-assembly: Proteins. Fibrinogen is, like all proteins, a
specifically arranged sequence of amino-acids that spontaneously assembles to form
the exact right 3d structure. The importance and sophistication of this particular
self-assembly process has earned itself a specific name: Protein-folding.

It is a fun exercise to identify the three self-assembly ingredients in all of these
cases. Building blocks are quite simple to determine. What is striking is that the
building blocks vary widely in complexity. Compare, for instance, the relative sim-
plicity of the dead leaf and the amino acid, with the complexity of the ant or the
fibrinogen protein. Interactions and the source of movement are sometimes more
difficult to identify. The different length scales and media involved determine the
physical principles that govern the interactions and movement, and set the opportu-
nities and challenges for self-assembly there. Rocks around Saturn interact through
elastic collisions, and in the vacuum of space they move simply due to inertia. Leaves
move as they are pushed by currents and waves in the water, and likely interact by
a combination of surface tension and capillary forces. Ants can locomote and grab

1This definition was inspired by Skylar Tibbits [1], and should be considered a working definition.
An exact definition is difficult to give mainly due to the difficulty of what is meant by order. For
a sophisticated attempt to exactly define the closely related term self-organization see Ref. [2]
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Figure 1.1: Self-assembly processes in nature occur at all length-scales (a) Hubble
telescope image of Saturn. Saturn’s rings consist of ice and rock particles, dynamically
self-assembled in a narrow ring. Shown is also saturn’s ultraviolet aurora. (credit:
ESA/Hubble, NASA, A. Simon, J. DePasquale., L. Lamy Source: APOD 03−09−2018
[3]) (b) leaves stitched together to make a floating chain (not shown) the next day it
became a hole supported underneath by a woven briar ring (credit: Andy Goldsworthy
[4]) (c) Army ants form a living bridge (credit: Chris Reid and Matthew Lutz [5])
(d) Electron micrograph of fibrin network connecting red blood cells in a blood cloth,
(PHIL public domain, credit: Janice Haney Carr) (e) Molecular drawing of an inactive
Fibrinogen protein in it’s folded state (adopted from [6])

each other with their legs. The realm of microbiology is aquatic. A diverse number
of forces exist at this length scale in water, to name a few: Electrostatics, hy-
drophobic/hydrophilic interactions, dispersion forces. These are all gratefully used
by proteins and their complexes, such as fibrin. This rich palette is further supported
by a surprising fact. Movement comes for free. That’s because water molecules are
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constantly jiggling due to thermal energy. All microscopic things that are immersed
in water start to experience the individual kicks of the water molecules. This results
in an erratic movement called Brownian motion. The diverse interactions and the
presence of Brownian motion make water at the nano- to microscopic length scale
a particularly rich realm for self-assembly, which is an important reason why life
originated there, and why the human body consists of roughly 60% water.

There are a lot of surprises in self-assembly, because what you put in does not
equal what you get out. In other words, self-assembly of building blocks can lead
to emergent unexpected properties; a superstructure can have properties completely
absent from those of its building block. This aspect fascinates philosophers [8] and
scientists [9–11] as new theories and patterns might be lurking in these emergent be-
haviors. This is especially true when assembled superstructures sequentially further
self-assemble in a hierarchical manner. This happens widely in biology and results in
new behavior at each step: Fibrin withstands stress - dispersed fibrinogen doesn’t.
Cells can reproduce - atoms and proteins can’t. Birds can fly - atoms, proteins and
cells can’t. Obviously, to say birds self-assemble from cells is stretching terminology.
Somewhere along the ladder of hierarchical assembly, structures are formed that con-
sume energy and start to sense and process information, at which point self-assembly
turns into self-organization. Even higher up, living things emerge that grow and di-
vide. Self-assembly sits at the basis of this ladder. But the exact transitions between
levels are grey zones. The goal of self-assembly research is partly to clear these grey
zones, and partly to push self-assembling systems to the limits of what is possible,
trying to answer questions such as: What are the minimal ingredients to obtain a
self-reproducing system? What building blocks and self-assembly driveway is needed
to obtain structures with similar mechanical functionality as molecular biomachines?

1.2 Self-assembly with colloidal building
blocks

Researchers are developing a variety of ways to mimic self-assembly in nature, partly
to study fundamental questions. In addition, much of this research is driven by
technological promises. At the macroscopic scale there are swarm robots [18], and
robots that assemble themselves through folding [19]. Molecular self-assembly acts
at the other end of the scale [20, 21], a mature field, that resulted for instance in
self-healing polymers [22], with applications in flexible electronics and artificial skin
[23]. The current forerunner in the controlled assembly of micro structures should
technically be called a hybrid natural/man-made system: DNA origami is able to
program self-assembly through a designed sequence of base pairs [24]. Also, the
self-assembly of inorganic materials is being pursued, for instance semiconducting
nanoparticles, whose controlled assembly has important applications in photovoltaics
[25].
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Figure 1.2: Colloids are model building blocks for self-assembly. Top: logarithmic
length scale showing the colloidal domain with respect to other artificial self-assembly
systems. (a) A typical milky colloidal dispersion, the pinkish color comes from us-
ing fluorescently dyed particles. (b) Zooming-in using optical microscopy reveals the
sample consists of microscopic floating spheres. (c) Electron micrographs that show
colloidal particles have advanced from isotropic spheres to designer shapes. (top left)
The authors own attempts at making a snowman particle, inset shows fluorescently
label ‘head’. (continuing clockwise) Expertly made dimpled particles, tetrahedrons,
peanut shaped particles and tetrapatch particles (credit: S. Sacanna, Z. Gong, M.
Youssef [12]). (d,e,f) Graphic representations of self-assembled structures. (d) Exper-
imentally realized one dimensional assemblies: Flexible lock-and-key chains [13], more
rigid colloidal ‘polymers’ from dipatch particles [14], extendible colloidal fibers from
Janus ellipsoids actuated by an electric field [15]. (e) Experimentally realized two-
dimensional Kagomé lattice from triblock colloids [16]. (f) Three-dimensional equilib-
rium gel network from tetrapatch and dipatch particles, predicted by simulations [17]
but so far only indirectly observed for nanoparticles.
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1.2.1 Colloids, collectivist beings
Colloids appear, at first sight, somewhat inconspicuous amongst these ambitious
self-assembling systems. Colloids consist of small particles of a few 100nm in size
that are floating in a liquid, suspended by Brownian motion [26, 27], see Fig. 1.2.
Such systems, as for instance milk or paint, occur naturally. Usually, they can be
recognized by an unspectacular turbid appearance, that results from light scattering.
The features of an individual colloidal particle are often close to a sphere.

However, their ordinary appearance is deceiving. To cite a recent review: “A col-
loid is a dispersion of microscopic particles that are individually unremarkable but
collectively interesting” [28]. Colloids stand out as self-assembling building blocks
precisely because of their individual simplicity. By making minor changes on the
building block level, such as varying particle shape or interaction directionality, the
effect on the resulting assembled structure can be investigated conveniently: A col-
loidal particle is typically big enough to be imaged using light microscopy. This
way, the assembly process can be followed directly and dynamically, something that
is much more difficult to achieve for smaller building blocks such as nanoparticles
and DNA. At the same time, their size is small enough to exhibit Brownian mo-
tion as a natural source of movement, in contrast to bigger building blocks, which
require active driving mechanism. For these reasons colloids are ideal as a test-bed
to study fundamental questions, leading to a close relation between theoretical and
experimental work.

Up until recently, colloidal particles were mostly restricted to a completely spher-
ical geometry. Interestingly, already these simplest of building blocks lead to a
plethora of interesting collective assemblies [29], from equilibrium hard sphere crys-
tals [30] and attractive ionic crystals [31], to out-of-equilibrium fractal gels [32] and
glasses [33]. The similarity of these assemblies to atomic states of matter earned
colloids the name of model atoms, and their direct visualization offered insight into
fundamental processes that are difficult to study on the atomic scale, such as crystal
nucleation [34], defect dynamics [35] and structural rearrangements in glasses [36].

1.2.2 Colloids, model building blocks
Continuous advances in synthesis have transformed colloidal particles from isotropic
spheres to designer parts with precise control over shape, composition and inter-
action. For instance, the colloidal particles shown in Fig. 1.2(c) are the result of
recent synthesis protocols, yielding snowman particles [37], dimpled particles [13],
regular polyhedra like tetrahedra or cubes [38, 39], and peanut shaped particles [40].
Especially optimized for self-assembly are so-called patchy particles, that achieve lim-
ited valency and directional bonding through a minimal adjustment, a heterogenous
surface with well-defined patches of tunable size [38]. The control of colloidal inter-
actions has likewise been subject to continued advances. By grafting complementary
DNA strands on particle surfaces, specific interactions that can be programmed such
that particles have a ‘color’ and only bond to specific complementary particles [41],
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chiral interactions [42], and flexible bonds with valency [43], have been achieved. In
addition, externally controllable interactions using critical Casimir forces [44], ther-
mally sensitive depletants [45], or external electric/magnetic fields [46] allow for the
on and off switching of interactions and the tuning of interaction strength, directing
the assembly. Finally, colloidal particles can be rendered active through rotating
electric fields, the consumption of chemical fuels or local thermal gradients [47]. The
non-Brownian dynamics of active colloids can push a system far from equilibrium,
resulting in new avenues for dynamic structure formation inspired by biology [48].

These developments at the single particle level take colloidal particles from model
atoms to designated building blocks that self-assemble into various designer struc-
tures, such as micelles, tubes, chiral helices and shells [49–53], freely jointed mecha-
nisms and chains [13, 43, 54], patchy colloidal ‘molecules’ and ‘polymers’ [14], chiral
architectures [42], shape-changing and activated filaments [15, 55], or self-spinning
microgears [56], see Fig. 1.2(d) for graphic representations of some of these struc-
tures. In addition, surprising new lattice equilibrium states have been found, such
as the Kagomé lattice assembled from triblock Janus particles [16], see Fig. 1.2(e).
Finally, using a hierarchical assembly technique and specific, DNA-programmed in-
teractions, three-dimensional crystals with diamond and pyrochlore sublattices have
been assembled [57]. Such crystal structures had long been sought after, because
they are predicted to have a large photonic bandgap, which is interesting both for
fundamental reasons and for potential optical applications.

These experimental achievements are guided by equally active theoretical efforts
[58]. At the basis lie two fundamental and difficult problems that often require nu-
merical simulations. (i) The first is the forward problem of self-assembly: Given a
system of building blocks and interactions, to predict the resulting assembled struc-
ture. This problem has been extensively explored for patchy particles. Numerical
simulations predict these will assemble into new equilibrium states that have no
atomic equivalent, such as zero-temperature stable liquids and equilibrium gel net-
works [17, 59], see Fig. 1.2(f). Together with analytical studies this lead to the
identification of the importance of rotational entropy in explaining the stability of
open space-spanning structures [60]. In addition, the effect of shape anisotropy has
been simulated. By varying facets of hard polyhedra, a variety of crystal, plastic
crystal and liquid crystal phases are predicted to form [61], which can be understood
through emergent directional entropic forces [62]. (ii) The second fundamental prob-
lem is the inverse problem of self-assembly: Given a desired structure, to identify
constituents that will assemble into that form. One analytical study proposes a
scheme using both directional bonding, and specific colored interactions, and ob-
tains a criterium for the minimum amount of colors needed for the kinetically robust
assembly of a desired periodic structure [63]. Beyond periodic structures, ambitious
schemes try to emulate self-replication and metabolism in colloidal systems [64].
They show using simulations, that close packed clusters can self-replicate and cat-
alytic cycles can emerge, if interactions are carefully designed using not only specific
and valent interactions but also time-dependent interactions [65, 66].

Some of this theoretical work has been translated to experiments or, such as
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the Kagomé lattice, was inspired by initial experimental results. Some proposals,
such as ‘life-like’ colloidal systems, seem still to require a lot of innovation. And
some predictions appear particularly close to experimental realization, with all the
building blocks in place, such as an equilibrium gel made from patchy particles.

1.2.3 Colloidal mechanics

The above exposition has focused on individual building blocks and the structures in
which they self-assemble, but in order to evaluate and design the functionality of such
assemblies, mechanical considerations are of paramount importance. Traditionally,
such consideration would start by studying the averaged bulk properties of materi-
als. In contrast to strong materials, for which strength, hardness and toughness are
some of the key parameters, colloidal matter is a typical soft matter, characterized
by a complex rheology involving both flow and rigidity. Indeed, the rheology of col-
loids features viscoelastic and viscoplastic effects such as shear thinning (yoghurt),
shear thickening (corn starch), shear banding and yield stresses [67]. These different
rheological responses are intimately connected to the underlying colloidal structure
and the hydrodynamics of the suspending liquid. Relating structure to rheology is
challenging, involving complex questions concerning network rigidity, the role of en-
tropy and contact mechanics. The improved structural control of novel self-assembly
systems could help to answer some of these questions. At the same time, structures
with new bulk rheology, so far not seen for colloidal systems, could be designed. For
instance, gel networks from patchy particles, as shown in Fig. 1.2(f), have limited
connectivity, similar to biopolymer hydrogels such as fibrin. Their rheology might
therefore be similar, which is interesting because semiflexible biopolymer networks
are known for their particularly rich mechanical behavior [68].

However, with the advent of self-assembled colloidal designer architectures, the
traditional focus on bulk rheology is shifting to micromechanical considerations.
This is not only done in order to better understand the link between local and bulk
behavior, but primarily because some of these architectures are designed to show in-
teresting local mechanical behavior. For instance, the lock-and-key mechanisms [13],
actuated shape-shifting Janus ellipsoids [15] and chains showing mechanical instabil-
ities [69] have mechanical functionality that remind of macroscopic meta-mechanical
systems [70], see Fig. 1.2(d). Furthermore, spinning microgears demonstrate the
potential of coupling activity with small scale rigid structures [56]. Such trends take
inspiration from biological protein machines such as the ribosome, or the workings
of the cytoskeleton, which more than macroscopic machines make use of delicate me-
chanical functionality, enabled by shape, mechanisms and self-assembly, to do useful
work in a Brownian environment [71].



1.3 Thesis outlook 9

1.3 Thesis outlook
This thesis deals with the assembly of patchy colloidal particles, and the mechanical
properties of assembled structures. The colloidal building blocks used, copolymer
spheres grafted with polymer brushes [72] and patchy particles made by colloidal
fusion [38], are engineered particles optimized by design for self-assembly. An ex-
ternally controllable interaction is used, called the critical Casimir interaction. This
is a temperature-controlled interaction that arises between colloids suspended in a
near-critical binary mixtures. With this system we self-assemble various colloidal
structures and study their micromechanics.

Chapter 2 introduces the experimental systems and techniques used. This chapter
starts out on a conceptual level, with a general discussion on how to make colloidal
particles. This is followed by the particle synthesis method, a short introduction
to the critical Casimir interaction as a tool for self-assembly, and its application to
patchy particle assembly. Finally, the main experimental techniques are summarized,
and short literature surveys are provided outlining their previous uses in colloidal
science.

In Chapter 3, the critical Casimir interaction is directly measured between two
isotropic particles and compared with theoretical models over a wide range of binary
solvent concentration. This extends previous studies at the critical concentration to
experimental conditions optimal for self-assembly. We thus validate the agreement of
theoretical predictions with experimental measurements in a wider solvent concen-
tration range, relevant for assembly. Precise knowledge of the interaction potential
is essential to rationally design self-assembly pathways and to interpret the behavior
of assembled structures.

This is built upon in Chapter 4, where critical Casimir forces are used to assem-
ble a chain of isotropic particles. Using laser tweezers to perform micromechanical
experiments on this chain, we explore the buckling instability of filaments in the
presence of thermal fluctuations and plasticity. We identify a novel form of stochas-
tic buckling instability, for which fluctuations become amplified and diverge in the
vicinity of the critical buckling transition.

Chapter 5 presents the critical Casimir assembly of patchy particles, showing
single bond per patch interactions that are reversible and tunable with temperature.
We demonstrate the assembly of various well-defined structures: Small assemblies of
dipatch and tetrapatch particles form colloidal ‘molecules’, such as colloidal pentane.
Larger assemblies of dipatch particles form colloidal ‘polymers’. By including tetra-
patch particles, these polymers cross-link, forming branched clusters that approach
a gel network with a mesh size tunable by the ratio of tetrapatch/dipatch particles.
Finally, we achieve a true patchy percolated gel network by decreasing the size of
the particles to speed up formation kinetics. This structure has a good chance of
being an equilibrium gel.

With the realization of a well-controlled and patchy aggregating system, a stage
is reached to ask detailed questions about the mechanics of such assemblies. Chap-
ters 6 and 7 explore in detail the mechanics of one of the self-assembled patchy
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structures achieved: Straight colloidal dipatch chains. This particularly well-defined
and reproducible structure shows rich semiflexible mechanics, and forms an excel-
lent model system for micrometer-size filaments, a common motif in many soft and
biological materials. Chapter 6 uses the thermal bending fluctuations of a quiescent
chain to show that, like the interparticle radial interaction strength, the bending
rigidity increases as temperature is increased closer to the critical point.

The final chapter 7 uses optical tweezers to probe the mechanics of dipatch chains
under extreme deformations, inducing buckling and fracture. These tests reveal a
mechanical response that resembles the richness of biological filaments, involving
buckling, viscoelastic effects and ultimately fracture upon a critical bending. These
results provide insight into the mechanics of assembled colloidal structures, essential
to the design of functional colloidal architectures.







CHAPTER 2

Concepts and methods

2.1 Colloidal building blocks for
self-assembly

2.1.1 Colloidal synthesis
This thesis focuses on the assembly and mechanical properties of patchy particle
structures. It addresses questions like, how to tune effective interactions, what are
the self-assembly pathways and what mechanical properties do the resulting struc-
tures have? It is only possible to explore such questions experimentally due to the
fine control over the shape and surface functionality of colloids afforded by the recent
progress in colloidal chemistry. Indeed, the two types of colloidal particles mainly
used in this thesis, copolymer spheres grafted with polymer brushes [72] and patchy
particles made by colloidal fusion [38], are sophisticated engineered particles. Their
features have been optimized by design for research and include o.a. material control
over refractive index and density, surface modification to control charge, fluorescent
dyes for optimal microscopic visibility, and well-defined heterogenous surfaces for
directional, patchy interactions. Before describing in more detail the synthesis of
the patchy particles, I would like to sketch the basic ingredient, which itself is an
interesting example of self-assembly.

The essential synthesis technique that lies at the basis of both types of colloidal
particles used, is dispersion polymerization [73]. This method is particularly suitable
to create particles in the 1 µm size range, ideal for optical imaging. In dispersion
polymerization, monomers are first dissolved in a solvent. In addition, initiator and
a steric stabilizer are added. The necessary condition for dispersion polymerization
is that the reaction medium is a good solvent for the monomer and the initiator,
but does not dissolve the polymer. Therefor, once the polymerization is initiated,
the polymer precipitates out of solution. These precipitates form small droplets
that initially coalesce and grow by absorbing remaining monomer, until they reach a
maximum size at which they become sterically stabilized. By using the right steric
stabilizer(s) and the right reaction conditions such as temperature and stirring speed
exquisitely monodisperse particles (< 5%) can be created [74].
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Figure 2.1: Colloidal fusion (a) Play-dough macroscopic model of a colloidal fusion
synthesis of a tetrapatch particle, orange spheres represent PS and purple sphere
represents TPM, reprinted with permission from ref. [38] (b) epifluorescent image of
a dipatch particle obtained through colloidal fusion (DP-B) (c) Tetrapatch particle
(TP-A). Scalebars are 3 µm.

It is interesting to note that dispersion polymerization can in some sense it-
self be viewed as a self-assembly process. The final size of the particle is spon-
taneously determined and reproduced with great fidelity by the balance between
physico-chemical forces such as capillary interactions and steric repulsion. This is a
clear example where a precise structure is acheived without bottom-up fabrication.
The widespread applications, and the typical low cost of dispersion polymerization
and other similar bulk colloidal synthesis techniques, are in that sense themselves a
testament to the promises of self-assembly.

2.1.2 Patchy particle synthesis and characterization
Dipatch and tetrapatch patchy particles were synthesized by our collaborator at
NYU, following a recently published protocol with minor adjustments, described
in ref. [38]. This synthesis, called colloidal fusion, combines polystyrene (PS) and
3-(trimethoxysilyl)propyl methacrylate (TPM) spheres to create composite patchy
particles with PS as bulk material and fluorescently labeled surface patches consisting
of TPM, see Fig. 2.1. A macroscopic model that gives a visual explanation of the
synthesis is shown Fig. 2.1(a). A particular strength of this method is its tunability:
By changing only a single parameter, the size ratio α between the PS spheres and
TPM sphere before fusion, patchy particles with different number of patches and
different patch-sizes are achieved.

Exploiting this tunability, they made tetrapatch particles with smaller and big-
ger patch sizes referred to as TP-A and TP-B, and dipatch particles, DP-A and
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DP-B, with bigger and smaller patch sizes. In accordance with the protocol, the
synthesis was done following four main steps. (i) First, they synthesized monodis-
perse, negatively charged, solid spheres of PS with a diameter of approximately
2.2 µm. The spheres are prepared by dispersion polymerization with Potassium
persulfate (KPS) as radical initiator and Polyvinylpyrrolidone (PVP), following the
procedure in ref. [75]. After synthesis they were measured to be negatively charged
in water with a zeta potential Vzeta = −55(5) mV at 12.5mM NaCl. By using
these spheres they deviate slightly from the published protocol which uses purely
sterically PVP stabilized PS, and positively charged PS spheres. They deviated be-
cause the sterically stabilized PS was less charged (Vzeta = −7(3) mV, at 12.5mM
NaCl), and therefore less convenient for critical Casimir assembly which requires a
hydrophilic PS matrix. Furthermore, the positively charged PS particles turned out
to be unstable in the binary mixture. In addition, they synthesized four batches of
monodisperse TPM oil droplets with sizes of 1.1, 1, 0.65 and 0.6 µm that were
used for TP-A, TP-B, DP-A and DP-B respectively. The TPM oil was fluorescently
dyed with rhodamine (ii) Next, liquid colloidal clusters were created by mixing the
solid sphere and oil droplets. In the case of the tetrapatch particles four spheres
assembled around a single liquid core. Because of the chosen size ratio between PS
spheres and TPM droplets of α ≈ 2, this resulted in close-packed tetrahedrons with
a liquid TPM core. In the case of the dipatch particles (α ≈ 3), that three solid
spheres assemble around a liquid core (iii) Next, 5%wt. dodecyltrimethylammonium
bromide (DTAB) is added to the cluster suspension to reach a final conc. of 0.8%wt,
followed by the addition of a PS plasticizer (tetrahydrofluran) which caused the PS
spheres to deform and effectively fuse, while extruding the liquid TPM core through
the interstices of the cluster. The addition of DTAB is necessary because it changes
the interfacial tension of PS/TPM making the extrusion more favorable.

After synthesis, the morphology of the patchy particles was carefully character-
ized. The tetrapatch particles have an average diameter of d = 3.7(2) µm, and
d = 3.7(1) µm for TP-A and TP-B respectively, where the uncertainty is the poly-
dispersity. The dipatch particles have a diameter d = 3.2(1) µm, and 3.1(1) µm for
DP-A and DP-B respectively. These sizes were determined in the same solution in
which later experiments were performed to take possible swelling effects into account.
To measure their sizes, we assembled the particles patch to patch and measured the
center-to-center distance between touching particles using optical microscopy. As a
consistency check we note that the ratio of dipatch to tetrapatch size is 1.15(±0.05).
This is close to the expected ratio (4/3)1/3 ≈ 1.1, which is derived from the fact that
dipatch particles are made from three PS spheres and tetrapatch particles from four
PS spheres.

In addition, we determined the average patch size of each particle type using
a setup that combines optical and atomic force microscopy (AFM). Samples were
dried on glass slides such that monolayers form at the drying front. After locating a
patch in the right orientation a surface scan was performed, which revealed spherical
patches, see Fig. 2.2. The edge of the patch is clearly recognized by a narrow
trench and a change in curvature marking the transition form PS bulk to TPM
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Figure 2.2: AFM measurements of patch sizes of the different patchy particles used
(a) TP-A: schematic indicating definition of projected patch diameter dp and patch
arc angle θp, surface height measured using AFM (zoom on patch) and height profile
along the blue line indicated in the surface plot. (b,c,d) TP-B, DP-A and DP-B (e)
Height profile zoomed in on patch, aspect ratio was set to 2. (f) Mean projected
patch diameter dp, patch arc angle θp, patch height hp, and patch surface fraction σp
averaged over 2,2,4 and 7 AFM measurements of the respective particles

patch material. This trench is caused by the wetting difference between PS and
TPM, and reveals the nonzero contact angle between PS and TPM at the material
transition point. We determined the size of the patch by measuring the projected
patch diameter dp as defined in Fig. 2.2(a,e). This was done by drawing linear profiles
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Particle name d [µm] dp [µm] θp [◦] hp [nm] Rp [µm] σp[%]

TP-A 3.7(2) 0.93(5) 30(2) 75(5) 1.5(2) 6.6(5)
TP-B 3.7(1) 0.54(5) 17(2) 84(5) 0.5(1) 2.4(5)
DP-A 3.2(1) 0.58(5) 21(2) 45(5) 1.0(2) 1.6(2)
DP-B 3.1(1) 0.38(5) 14(2) 15(5) 1.2(2) 0.7(2)

Table 2.1: Patchy particle patch morphology parameters measured using AFM, from
left to right: Particle diameter d, projected patch diameter dp, patch arc-angle θp,
patch height hp, patch radius of curvature Rp, total particle surface fraction covered
by patches σp

crossing the center of the patch and measuring the distance between the patch-bulk
transition points. These linear profiles in addition showed a good fit with a sphere
with diameter d = 3.5± 0.1 µm for the tetrapatch particles and d = 3.3± 0.1 µm in
the case of dipatch particles, Fig. 2.2(red dotted lines). This value is in agreement
with the previously determined particle radii validating the AFM measurements.

We quantified the patch size in terms of the patch arc angle θp, which is a particle
size independent measurement of the patch size, see schematic Fig. 2.2(a,f). The
patch arc angle was determined from the projected patch diameter dp and particle
diameter d using the relation θp = 2 sin−1(dp/d), see table 2.1(third column). Here,
the uncertainty is the standard deviation of the measured patches and gives the patch
size polydispersity. We note that the polydispersity is a rough estimation limited by
the low measurement statistics.

Apart from patch sizes, the AFM measurements also provide information on the
height hp of patches. Interestingly, not all patches stick out equally, as shown by
the profiles that are zoomed-in on the patch Fig. 2.2(e,f). Particularly TP-B sticks
out significantly from the PS bulk sphere, more than would be expected from simply
following the curvature of the PS matrix. This results in a different curvature at the
patch than for the rest of the particle. Modelling the patches as spherical caps, we
can extract the radius of curvature R of each patch via R =

(
(dp/2)2 + h2

p

)
/2hp,

see table 2.1. Next to patch size, the patch curvature will influence the inter-patch
interaction, as a higher curvature results in less contact when patches are close
together and is therefore expected to decrease the interaction strength. In addition
we determined the area of each patch using the relation for spherical caps A =
π
(
(dp/2)2 + h2

p

)
. The total fraction of the particle surface that is covered with

patch material σp is than σp = 4A/(πd2) for tetrapatch particles and σp = 2A/(πd2)
for dipatch particles, see table 2.1. This likewise is an important quantity that will
determine the interaction strength.

As a final note, we mention that it is possible to create smaller patchy particles
using the same method. By using smaller PS and TPM precursor spheres, but keep-
ing their size ratio’s similar as discussed above, our collaborators were able to make
particles with diameters of approximately 1.5 µm. In this thesis, we initially focus
on the larger particles, whose big size allows for easier characterization. However,
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Figure 2.3: Artist impression of two colloids interaction through the critical Casimir
interaction in a close to critical medium.

for assembly experiments it is also interesting to employ the smaller particles, which
we will demonstrate in the final section of chapter 5. Their faster diffusion dynam-
ics speed up the kinetics of structure formation and made the particles more easily
escape trapped states. In addition, their increased gravitational height enables us to
study 3d structure formation.

2.2 Self-assembly using the Critical Casimir
interaction as a driving force

The critical Casimir interaction arises between surfaces (such as two colloids) that
are immersed in a medium that is close to a critical phase transition. The behavior
of such a critical medium is dominated by critical fluctuations, correlated regions
that fluctuate due to thermal energy, which grow in size according to power laws
as one approaches the critical point [76, 77]. The size of these correlated regions is
quantified by the correlation length ξ. When two surfaces, immersed in a critical
medium, are close to each other, they confine the critical fluctuations in the gap
between them, more specific: The surface impose boundary conditions that reduce
the fluctuation spectrum between these surfaces compared to the region surrounding
them. These boundary conditions cause a change in the system’s free energy, which
result in effective interactions. When colloids are immersed in the critical solvent,
their surfaces act as boundaries confining fluctuations between them, thus resulting
in an effective force between the particles. An artistic impression of a medium with
critical fluctuations and two immersed colloids is shown in Fig. 2.3.

Critical Casimir interactions are thus part of the very general class of fluctuation-
induced interactions [78]. To this category belong also the ubiquitous van der Waals
interaction [21] and the quantum-mechanical Casimir interaction [79], in analogy of
which the critical Casimir interaction got its name [80]. Apart from the conceptual
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Figure 2.4: Schematic of the phase diagram of a binary liquid mixture of molecular
species A and B that phase separates above temperatures Tcx (red region) into an
A-rich and a B-rich component. At the critical concentration cc and critical temepra-
ture Tc the phase transition is critical. In the region surrounding the critical point
(turquoise shading) emerge critical fluctuations.

analogy with these other fluctuation-induced interactions, details concerning the
strength and form of the critical Casimir interaction depend on the particularities of
confining critical fluctuations. The rich physics that arises in such critical systems has
yielded a broad literature around the subject [44, 81, 82]. One specific particularity
of the critical Casimir interaction is the fact that surfaces often have an adsorption
preference for one of the two phases involved in the phase transition. This creates
an adsorption layer that extends on the order of the correlation length, shown in the
artistic impression by the light blue highlight around the particles. If surfaces have
the same adsorption preference, there is an inclination towards overlapping these
adsorption layers, resulting in an attractive force that is an important contribution to
the effective interaction. On the other hand, when surfaces have opposite adsorption
preferences the adsorption layers tend to repel. These effects appear, on first sight, to
be of energetic nature, however it also has an entropic contribution as the adsorption
layer is never static but fluctuating around a mean. This has led to some controversy
over the analogy with fluctuation-induced forces and the rightfulness of the name
“Casimir”, which are normally thought of as purely entropic effects [82]. However,
given that such adsorption effects are taken into account in the modern critical
Casimir literature, this thesis will follow the convention of using the name “Casimir”.
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2.2.1 Critical Casimir forces in binary mixtures

From an experimental point of view not every critical system is equally practical as
a colloidal medium. The most well known critical phase transitions and historically
the first to be discovered concerned the liquid-gas critical point, such as that of water
or carbon dioxide [83]. However, the fact that these transitions happen at elevated
pressures makes these systems not practical as colloidal mediums. Fortuitously, the
universality of critical phenomena causes similar effects to be present in a wealth of
other system. In particular, binary liquid mixtures, consisting of molecular species A
and B, show a phase transition at the coexistent temperature Tcx from a mixed phase
to a demixed A-rich and B-rich phase, see Fig. 2.4. At a specific critical concentration
cc of A molecules and temperature Tc, this coexistence ends at the critical point.
The associated critical fluctuations are in this case correlated regions of elevated
concentrations of A or B species with respect to the average concentration. Binary
mixtures are interesting as suspending mediums because instead of the pressure, the
concentration ratio c of the two liquids is the control parameter for criticality, while
operating at convenient (atmospheric) pressures. Especially convenient are binary
mixtures that demix upon heating, at temperatures slightly above room temperature.
Commonly used are the mixtures 3-methylpyridine and heavy water, exhibiting a
critical temperature of Tc ≈ 38◦C, and 2,6-lutidine and water, with Tc ≈ 33◦C.
These are the systems that will be used in this thesis also, though a range of other
binary mixtures are also possible candidates and have been shown to exhibit similar
effects. [84–87]

Although colloids in a near-critical binary mixtures allow convenient tuning of
interactions, their description is complex. This is at least because of three distinct
reasons: (i) First of all, the confinement of critical fluctuations is intimately linked
to finite-size effects in critical system [88]. Though these have been extensively
studied, they remain technical subjects, which require subtle theoretical analysis.
Especially difficult are quantitative predictions in experimentally realistic situations
such as curved surfaces, off-critical concentrations, and surfaces that have partial
adsorption preferences. Here, analytical solutions are not available and to calculate
effective interaction potentials, numerical minimizations and in some cases Monte
Carlo simulations have to be used. Chapter 3 contains a detailed comparison of ex-
actly such a calculation with experimental results. (ii) A second source of complexity
are other effects that occur close to a demixing phase transition. At concentrations
further away from the critical concentration, wetting layers dominant in one of the
two binary species can form around the colloid. These have a well-defined surface
tension and can bridge with wetting layers around other colloids causing strong in-
teraction [89]. Such strong wetting induced interactions are, however, avoided in
this thesis. (iii) Lastly, and importantly, in a conventional colloidal system, charge
and ions are paramount to determine its behavior and stability. Most often, charge
stabilized colloids have been used in combination with critical Casimir interaction.
However predicting what would happen when including free ions and charged col-
loids in the above picture is not straightforward. Assumptions of DLVO theory break
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Figure 2.5: Three useful traits of critical Casimir interactions for controlled self-
assembly by controling temperature and binary mixture composition. (a) Reversible
aggregation of colloidal particles that have an adsorption preference for B molecules
(b) Due to the surface specificity of the critical Casimir interaction, A and B pre-
ferring colloidal particles attract predominantly on opposite concentrations of cc. (c)
The interaction strength is continuously tunable with temperature

down, which assume a homogeneous liquid with equal solvability and permittivity
throughout. However the critical compositional fluctuations and the adsorption layer
around a colloid break these assumptions dramatically. In addition, ions can alter
the interactions between the species A and B of the liquid mixture, and influence the
thermodynamics of the mixture itself. It is therefore not too surprising that strong
effects upon addition of ions, especially ones that have strong solvation preference
for one of two binary species, have been reported. These can switch the adsorption
preference of a particle from lutidine to water [90], and can even switch the sign of
the interaction from attractive to repulsive [91].

2.2.2 A reversible, surface-specific and tunable in-
teraction

The critical Casimir interaction can act as a sophisticated tool: a controlled inter-
action that allows to study and guide self-assembly. There are three main reasons
for this: Reversibility, surface-specificity and tunability, graphically summarized in
Fig. 2.5.

Reversibility. The interaction strength is set by the distance to the critical point,
which can be conveniently changed by increasing and lowering the temperature. If
a sample, with colloidal particles that are stable at room temperature, is brought
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close to the critical point of the solvent, the induced critical Casimir interaction can
overcome the stabilizing forces and cause the particles to aggregate, see Fig 2.5(a).
Here, the blue region indicates the temperatures and concentration range where the
sample will aggregate. The aggregation can be reversed by decreasing the tempera-
ture below the blue region, where the critical Casimir interaction becomes so weak
that the particle clusters fall apart. Such reversible assembly is useful for creating a
switchable material. In addition, it can act as an analytical tool: Assembly exper-
iments can be repeated at will, allowing to study dynamics and reproducibility of
structure formation.

Surface specificity. The blue aggregation curve is drawn asymmetrically around
the critical concentration cc in Fig 2.5(a). This aggregation curve refers to a colloidal
particle that has an adsorption preference for the B molecular species. The general
rule is that particles attract stronger on that side of cc that is poor in concentra-
tion of the molecular species for which the particle has an adsorption preference.
In the phase diagram of Fig 2.5 the horizontal axes measures concentration of A-
species, so the B preferring particle attracts stronger for c > cc. This response
can be qualitatively understood in terms of the adsorption layer. If a particle has
an adsorption layer of species B this is further from equilibrium for compositions
where there are less B molecules, so for c > cc. The increased distance from equi-
librium causes a stronger tendency to minimize the size of the adsorption layer, this
increases the tendency to overlap adsorption layers, effectively increasing the attrac-
tion. The opposite behavior is seen for particles that prefer species A, which will
attract stronger for concentrations c < cc. In this way the critical Casimir attrac-
tion strength becomes surface specific. This has the interesting consequence that a
mixture of A and B-preferring particle will show aggregation of only A-preferring
particles for concentrations far enough below cc, and oppositely for concentrations
far enough above cc, see Fig 2.5(b). The surface specificity greatly extends possible
self-assembly scenarios. For instance, particles that have patches with an opposite
adsorption preference as the rest of the particle, are expected to form directional
bonds, if the right composition of binary mixture is used.

Tunability. More than just being reversible, the critical Casimir interaction is
tunable in a continuous manner using temperature. This is illustrated by the ef-
fective interaction potential between two particles, shown in Fig 2.5(c). This set
of potential curves has been calculated using realistic experimental parameters, as
described in chapter 3. It is the sum of a stabilizing electrostatic repulsion and a crit-
ical Casimir interaction continuously increasing with temperature. The sum of these
two interactions create a well, that will cause particle bonding if deep enough. In-
terestingly, already before permanent bonding, significant attraction can be present,
leading to the observation of liquid as well as crystalline phases [92, 93]. Further-
more, even after bonding occurs, the depth of the well can be increased by increasing
temperature further. This affects the mechanical behavior of assembled structures
as demonstrated in chapter 6.
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Figure 2.6: Schematic of patchy critical Casimir interaction. The lutidine-water phase
diagram shows an inverted demixing phase transition above temperatures Tcx (red
region), depicted are aggregation lines Ta, for lutidine-philic (yellow) and water-philic
(blue) surfaces. For patchy particles with lutidine-philic patches and concentrations
cL < cc patch-to-patch bonding is expected, whereas for cL > cc bulk bonding is
expected, as demonstrated for the case of dipatch particles.

2.2.3 Optimizing binary solvent for patchy interac-
tions

To induce critical Casimir interactions between patches we used a binary mixtures
of 2,6-Lutidine (≥ 99%, Sigma-Aldrich) and distilled water. According to literature
cc = 0.30(±0.005)%vol lutidine and the critical temperature Tc = 33.9◦(±0.3◦) C,
where the error is the variation between literature sources [94]. At lutidine concen-
trations cL above critical, cL > cc, water-philic surfaces that prefer water adsorption
over lutidine, show a stronger attraction, see Fig. 2.6. In contrast, at concentration
cL < cc lutidine-philic surfaces that prefer lutidine adsorption over water, show a
stronger attraction. In addition, aggregation regions can also differ in absolute size,
in the schematic this is represented by a bigger overall blue than yellow aggrega-
tion region. Taking this into account, patchy particles with lutidine-philic patches
and a water-philic bulk are expected to show selective patch-to-patch bonding for
cL < cc above an aggregation temperature Ta, see Fig.2.6. Furthermore, there is an
optimal lutidine concentration, co, at which the temperature window between ag-
gregation and phase separation, ∆T = Tcx − Ta of pure patch-to-patch attraction is
largest, Fig.2.6 (green bar). We use the terminology water-philic and lutidine-philic
instead of hydrophilic and hydrophobic because it is not necessary that a surface
is hydrophobic for left side attraction, the only condition is that it prefers lutidine
over water. Likewise, it is not necessary that a surface is hydrophilic for right side
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attraction, the only condition is that it prefers water over lutidine.
Despite these conceptual ideas, the patchy particles, in their pristine state af-

ter synthesis, did not show a strong enough adsorption contrast between patch and
bulk to induce patch-to-patch bonding. In order to increase adsorption contrast,
two strategies were explored: First we tried silane treatments to increase the hy-
drophobicity of the TPM patches. This however did not give satisfactory results
and furthermore added an extra tedious synthesis step. One problem could be that
the silanes (trimethylmethoxysilane and dimethyldimethoxysilane) and salinization
method explored, actually did not couple the silane to the patch. This is suggested
by the TPM particles having the same zeta potential (∼ 45mV in 15mM NaCl) as
untreated particles. Therefore, we instead explored the possibility of adding salts as
tertiary elements to the binary mixture. Though only partially understood, espe-
cially hydrophilic ions have been shown to effectively shift the adsorption preference
of particles in binary mixtures, thereby strongly changing their critical Casimir in-
teraction [90, 91, 95]. Such adsorption change due to salt will depend sensitively on
the surface properties of a particle and might thus be different for the TPM patch
and PS bulk. As salts we used potassium chloride KCl, magnesium sulfate MgSO4

and calcium chloride CaCl2.
To more efficiently scan the large parameter space of salt and lutidine concentra-

tion in a controlled fashion, we first investigated the assembly behavior of the single
particles composing the patchy particle. As matrix material we used the PS spheres
that are the precursors of the colloidal fusion synthesis. In order to obtain parti-
cles representing the patch material, we polymerized TPM droplets under the same
conditions as was used to polymerize the patches, using AIBN as radical initiator
and in the presence of F108. This resulted in solid particles of diameter d ≈ 1 µm.
These particles have similar surface properties as the final composite patch particle
allowing us to test the aggregation behavior and critical Casimir interaction of the
patch and bulk material separately. In order to find optimal parameters we prepared
binary mixtures of lutidine and water at various lutidine concentration ranging form
cL = 23%vol to cL = 32%vol, to the left and right of the critical concentration.
Next we added various concentrations of KCl, MgSO4 or CaCl2. We dispersed the
isotropic TPM particles in the binary mixtures with salt and washed multiple times
using centrifugation.

In order to check for aggregation in the entire parameter space, we performed
macroscopic flocculation experiments. This allowed us to test multiple experimental
conditions in parallel. Sealed capillaries were immersed in a temperature-controlled
water bath. Then, the temperature was slowly increased in a continuous fashion from
32C◦ to 35C◦ over 15 hours to ensure thermodynamic equilibrium while recording
images at a frame rate of 1 frame per minute. We determined the aggregation temper-
ature by noting the time and corresponding temperature at which visible flocculation
occurred, identified by a rapid coarsening of the sample and a strongly increased sed-
imentation rate. We found that MgSO4 and CaCl2 both shifted TPM’s adsorption
preference to lutidine-philic with MgSO4 showing a stronger effect, whereas KCl left
TPM water-philic. Therefore we continued to work with MgSO4 as it provided the
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Figure 2.7: Adding magnesium sulfate creates a sweet spot of pure patch material
attraction (a) Bright field images showing aggregation contrast of singlet particles con-
sisting of bulk (PS, big particles) and patch material (TPM, small particle). Clockwise,
starting top left, conditions are: cL = 28%vol [MgSO4] = 0, cL = 32%vol [MgSO4] = 0,
cL = 25%vol [MgSO4] = 0.5mM, cL = 32%vol [MgSO4] = 0.5mM. Scalebar is 3µm (b)
Aggregation diagram showing the shifted aggregation lines T ∗cx−∆Ta of TPM without
salt (blue circles), with [MgSO4] = 0.5mM (red squares), PS without salt (black stars),
black continuous line shows theoretical coexistence temperature of the binary mixture
close to critical T ∗cx = Tc(1 + (|cc − cL|/B)1/β). Colored stars and pentagons indicate
corresponding measurement condition of (a). Green dotted line indicates the optimal
lutidine volume fraction for patchy assembly c0 = 0.25.

best contrast.
To check if MgSO4 did not also influence the behavior of the PS surface, mix-

tures of TPM and PS particles were likewise dispersed in various binary mixtures
for microscopic characterization. This time, microscopic experiments were done as
the bigger size of the PS prevented macroscopic characterization due to too rapid
sedimentation. Furthermore by mixing in TPM particles we could also investigate
the PS-TPM interaction. Samples were imaged while the temperature was slowly in-
creased using a temperature-controlled stage connected to a water bath, as described
later in this chapter. An oil-immersion objective with 63x magnification was used
for imaging. While temperature was increased we used video recordings to identify
the aggregation temperature as the temperature at which clear cluster formation
occurred, as shown in Fig. 2.7.

Without added salt the PS particles providing the particle matrix exhibit stronger
interaction than TPM particles that are of the material that will constitute the
particle patch. This happens both for solvent compositions on the right and left
side of the critical composition, see Fig. 2.7. This can be seen in the microscope
snapshots which show aggregated clusters of PS particles, while the TPM particles
still diffuse freely Fig. 2.7(a). Indeed, the aggregation temperature curve of the PS
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particles is lower than the TPM aggregation curve for all concentrations of lutidine,
Fig. 2.7(b). These aggregation lines are obtained from the measured aggregation
temperature Ta at which cluster formation starts, and the measured coexistence
temperature Tcx, identified by bubble formation. The difference ∆Ta = Tcx − Tc
is insensitive to calibration uncertainties. We then use the fact that for close to
critical lutidine concentrations T ∗cx follows the universal equation of state T ∗cx =
Tc(1 + (|cc − cL|/B)1/β), with cc = 0.3, Tc = 304K, B = 0.6 and β = 0.3265 [96].
The aggregation lines are then drawn as T ∗cx − ∆Ta. The aggregation lines show
that without salt, PS particles (black line) and TPM particles (blue line) aggregate
stronger for lutidine concentrations above critical, meaning that they both show the
same water-philic affinity and are not suitable to obtain a patch-to-patch attraction.
Adding monovalent salt KCl did not change this behavior: The PS particles still
showed a stronger attraction and it didn’t effect TPM’s affinity.

However, by adding only a small amount, 0.5mM, of Magnesium Sulfate the ag-
gregation behavior of TPM particles changes completely: Aggregation disappears
for concentrations above critical and instead a stronger critical Casimir attraction
is observed to the left of cc, Fig. 2.7(b, red line). This indicates that the adsorption
preference of TPM switches to lutidine-philic when adding MgSO4. The aggregation
temperature of PS particles is however little affected and remains water-philic as
can be seen from the snapshots that show cluster formation of PS still happens at
the right side of cc, Fig. 2.7(a, bottom right). While we did not measure aggrega-
tion curves as extensively PS particles, we could pinpoint a sweet spot where only
TPM particles are expected to attract Fig. 2.7(b, green region). Furthermore, we
extract an optimal lutidine concentration co = 0.25 that shows the largest range
of TPM-TPM attraction with PS being not attractive. Indeed, when checking the
microscopy images we find that for this concentration, only TPM particles attract,
which crystalize due to a low polydispersity while the PS particles freely diffuse
Fig. 2.7(a, bottom left).

The change of the TPM aggregation temperature can be understood by a shift
in adsorption preference of TPM due to MgSO4. This change of the adsorption
preference of TPM is further confirmed by heating the system above the phase
separation temperature, see Fig. 2.8. Without salt, TPM particles prefer to go to
the bottom, water-rich phase after phase separation, confirming they are water-
philic. In stark contrast, with MgSO4 salt, the TPM particles instead prefer the
lutidine-rich phase (top) after phase separation, confirming the change to a lutidine-
philic affinity. This is confirmed by the iridescent colors due to Bragg scattering at
the crystallized TPM particles.

Interestingly, CaCl2 showed a similar change of the adsorption affinity, see ap-
pendix. The mechanism behind this affinity shift is not clear to us. A potential
explanation could follow similar lines of argument as the previously observed switch-
ing of attractive to repulsive critical Casimir forces between substrate and particle
upon addition of the hydrophilic salt KBr [91, 95]. However, the fact that we focus
on off-critical compositions might add a complication factor. It might also be com-
pared to early experiments which observed an affinity change of silica particles with
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Figure 2.8: Macroscopic observation of water-philic to lutidine-philic phase separation
for TPM singlet particles made from patch material. Time t1 is right after phase
separation where bubbles are lutidine rich, time t2 is later when the bubbles have
coalesced in a top lutidine-rich layer. Sample A contains 0.5mM MgSO4 and sample B
contains no salt. Temperature was T = 38C◦ and lutidine concentration cL = 25%vol.
Scalebar is 1cm. (Video: https:// youtu.be/ gllpr4V7rSk)

the addition of Mg(NO3)2 [90]. Intriguingly, in that case salt caused particles to
switch from lutidine-philic without salt to water-philic with, which is the opposite
affinity shift as we observe.

In spite of this lack of complete understanding, we thus establish a reliable pro-
tocol that yields patchy critical Casimir interactions using the affinity contrast be-
tween patch and bulk upon addition of MgSO4. In conclusion the optimal binary
solvent, that showed the largest temperature window for patchy interactions was
obtained using MgSO4 at a lutidine volume fraction cL = 0.25. We note that, for
salt concentrations & 0.5mM MgSO4, the PS particle bulk was observed to aggre-
gate irreversibly in some occasions at room temperature. In order to stay sufficiently
away from this point we will use in the remainder of this thesis a concentration of
0.375mM MgSO4.

https://youtu.be/gllpr4V7rSk
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2.3 Experimental techniques
The experimental imaging and characterization techniques used in this thesis are,
in approximate order of appearance: Dynamic light scattering, confocal microscopy,
optical tweezers, bright-field microscopy, epifluorescent microscopy and atomic force
microscopy. Apart from atomic force microscopy, which was used purely to char-
acterize particle morphology after synthesis, all these techniques required tempera-
ture controlled setups in order to control/tune the critical Casimir interaction. In
this section I briefly describe the two most prevalent techniques used: Optical mi-
croscopy and optical tweezers. In addition, I elaborate on how temperature control
was achieved in the different setups used. Finally, subpixel accurate locating is
discussed.

2.3.1 Optical Microscopy
Traditionally, scattering techniques with visible, neutron and x-ray sources, have
been the prime tool to investigate colloidal solutions [97]. Their advantage is pro-
vided by an efficient access to global, sample averaged properties. These techniques
have, for instance, allowed the structural characterization of the diverse phases of
isotropic monodisperse colloidal particles, from crystals [30] to fractal gels [32] and
glasses [33]. A growing interest in local behavior pushed the application of optical
microscopy techniques in colloid science. Complementary to scattering techniques,
real-space microscope images can resolve structure and dynamics at the individual
particle level [98]. Especially confocal microscopy, which is able to record three di-
mensional images deep in the sample bulk, has gained popularity [99]. Quantitative
analysis of such data was made possible by the increased computational and storage
capabilities of computer hardware, and the creation of automatic particle localiza-
tion algorithms [100, 101]. Microscopy techniques truly exploited the uses of colloids
as a model atomic system, allowing a direct visualization of fundamental processes
that are difficult to study on the atomic scale, such as crystal nucleation [34], defect
dynamics [35] and structural rearrangements in glasses [36].

The current interest in taking colloids from model atoms to designated building
blocks that self-assemble in designer architectures with diverse functionality [28],
follows largely from these microscopy techniques. This has been the technique of
choice, especially since most work in this area has so far focused on small assemblies
and local mechanisms. Important achievements have been revealed using 3d confocal
microscopy such as shape-changing filaments and chiral architectures [15, 42]. In
addition, conventional bright-field microscopy is a useful tool for systems that have
two-dimensional structure, and has for instance been used to study active flocking
and activated chains [55, 102].

Optical microscopy of colloids is complicated by the fact that colloidal particles
are in size often close to the optical resolution limit. Resolution is defined as the
minimum distance two objects have to be apart to be able to distinguish them. There
are fundamental limits to resolution which are due to the wave nature of light. Even
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ideal point sources transform to extended patterns, called point spread functions,
when traveling through an optical system due to finite range of scattering angles
captures by the lens. The overlapping of point spread functions sets the maximum
resolution achievable with a given lens. An often used maximum resolution is given
by the Abbe diffraction limit [103],

R =
λ

2NA
, (2.1)

where λ is the wavelength of light used and NA the numerical aperture of the
objective used for imaging. A system using white light with a wavelength maximum
at 550 nm, and an oil-immersion objective with NA = 1.4, will have a maximum
resolution of R = 280 nm. This is close to, but significantly smaller than the size of
colloidal particles used in this thesis, which vary in diameter between 2− 4 µm.

It is important to note that the diffraction limit gives an idealized resolution for
point sources. In practice, the actual resolution is further limited by the contrast
between signal and background. Bright-field microscopy, which uses transmitted
white light, can suffer from out-of-focus light, scattered from particles above or below
the focal plane. This limits its use mainly to dilute samples or samples that consist
of a single 2d layer of particles. Epifluorescent microscopy uses monochromatic light
to excite fluorescent markers. A filter transmits only the fluoresced light, which is
used to create the image. This increases contrast between particle and background.
In addition, by using multiple fluorescent markers, it allows to distinguish different
parts of a particle (such as patch and bulk). However, epifluorescent microscopy is
still limited to dilute or 2d samples. Laser scanning confocal microscopy (here simply
referred to as confocal microscopy) overcomes this limitation. Using a focused laser,
points in the sample is illuminated one-by-one exciting fluorescently labeled particles.
The fluorescent light from the sample travels back through the objective and is used
to form an image. In addition, a pinhole is placed in the conjugate focal plane to
reject out-of-focus light. By scanning the laser focus point by point using rotating
mirrors an image is created. In this way the image is essentially build up as a series
of point sources. The advantage is that only light from a narrow focal plane is
recorded, and by shifting the focus height sequentially, an accurate 3d image can be
constructed.

This thesis relies on optical microscopy. Confocal microscopy is used to mea-
sure the critical Casimir interaction potential in chapter 3. In that case, confocal
microscopy was used to be able to image in the sample bulk and avoid wall ef-
fects. Later chapters on the other hand rely on bright-field microscopy as we studied
structures that sedimented to the sample floor forming 2d layers.

2.3.2 Optical tweezers
Optical tweezers use a strongly focused beam of light to trap small objects, ranging
from micron sized beads to atomic vapors [104]. The resulting nanometric confine-
ment and control has revolutionized fields ranging from ultracold atomic physics
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Figure 2.9: Optical tweezers can be used to probe the mechanics of colloidal structures
(a) Sketch of a colloidal particle in a focused laser beam that acts as Hookean spring
(b) Two tweezer setup that is used to exert tensile and compressive forces on a colloidal
structure, in this case a colloidal chain.

[105] to biophysics [106]. A recent testament of their importance has been the 2018
Nobel prize in physics, which was awarded to Arthur Ashkin for his invention of
optical tweezers [107, 108]. A microscopic particle is trapped by a single laser beam
through a balance of radiation pressure that tends to push the particle upwards and
gradient forces that push the particle to the laser focus [109]. For tightly enough
focused beams, as can be achieved using high aperture immersion objectives, parti-
cles are stably trapped in three dimension, and assuming a harmonic potential, the
tweezer acts as a Hookean spring, see Fig. 2.9(a).

In colloidal science, early applications of optical tweezers included controlled
diffusion experiments and measurements of the interaction potential between two
spheres [110]. This line of research is continued, recent results of particular interest to
the work in this thesis are the measurement of the non-additivity of critical Casimir
forces using optical tweezers [111], and the creation of a micro engine by active
rotation of a trapped particle immersed in a binary mixture [112].

Beyond investigating properties of individual colloids, optical tweezers can also
be used to study the mechanics of assembled colloidal structures. A single bead
in an optical tweezer can act as a probe to perform micro rheology measurements
[113, 114]. By using two optical tweezers, two-point tests can be performed [69,
115]. For instance, by grabbing a structure at opposite ends, compressive and ten-
sile stresses can be exerted by changing the distance between the two tweezers, see
Fig. 2.9(b). This mode of operation is similarly used to study the mechanical prop-
erties of biomolecules and filaments such as DNA and actin. A difference is that in
those cases anchor particles need to be tethered to the materials of inquiry, which
itself can typically not be trapped in a controlled fashion. This is often not necessary
for colloidal structures, as the constituting colloids can act as natural anchor. By
using more than two tweezers, more diverse mechanical tests can be performed, such
as three point tests and shear experiments [116].
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Figure 2.10: Inexpensive way to achieve precise (±0.02K) temperature control on a
bright field and confocal microscopy setup with immersion objectives (a) Schematic of
water circulator and microscope, elements through which temperature controlled water
flows are indicated in red, sample is in orange (b) Photograph of setup (c) Zoom-in on
glass flow cell and objective heater, in between which the capillary sample is visible
(d) Objective inside objective heater (e) Capillary with colloidal sample.

Using optical tweezers as micromechanical probes, complements the global rhe-
ology provided by a rheometer with local information. Furthermore, it provides a
way to study the mechanical behavior of self-assembled colloidal architectures de-
signed with local microscopic mechanisms, that so far have mainly been studied on
a structural level using microscopy.

2.3.3 Temperature control
“It appears, therefore, that the expression, animal life, is nearly syn-

onymous with the expression, animal heat. ... The grand necessity, then,
for our bodies, is to keep warm, to keep the vital heat in us.”

— Henry David Thoreau, Walden

To take full advantage of the critical Casimir interaction, fine temperature control
is essential. Furthermore, this temperature control needs to be integrated with
the microscope and tweezer setups in order to study in-situ the effect of changing
temperature and interaction. This was achieved by different types of setup partly
fabricated in-house.

The first type uses a circulating temperature-controlled water bath (Julabo F25
ME) as shown in Fig. 2.10. Temperature can be manually set through the thermostat
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interface or through a connected computer using serial communication. The water
is continuously pumped through two elements, an objective heater and flow cell,
that were designed and fabricated in the in-house workshop, see Fig. 2.10(c,d). The
objective heater is made from a brass hollow block that fits tightly around the
objective, which is wound by cupper tubes through which the hot water flows. The
flow cell is made from glass in order to allow for transmitted light for bright-field
microscopy. It is constructed by fusing a glass petri dish with a glass plate to create a
hollow cell. Additionally, two glass hose barbs are fused at opposite ends of the flow
cell. All connections are fused as gluing is prone to leakage due to the pressurized
flow and temperature variations. A 3d-printed container tightly holds the glass flow
cell and rests on the sample stage. Hoses are used to connect the objective heater and
flow cell in series with the pump. For experiments we use glass capillaries (Vitrocom)
Fig. 2.10(e). The samples are attached to the flow cell on top and are in contact
through the immersion oil with the heated objective below. In this way the sample
is heated from both sides and a temperature control with a precision of 0.02K was
achieved. An additional advantage of using this circulating heating setup is that it
also provides active cooling. This setup was used in chapters 4,5 and 6.

Two other similar setups were developed. One electrical heating stage relied
on resistive heating elements instead of water circulation. In this design, a similar
brass hollow collar is placed around the objective. Inside the collar, a resistive
heating element and a thermocouple are placed, which are connected to a digital
temperature controller (Omron E5CN). In addition, a brass block with resistive
heating element and thermocouple replaces the flow cell and heats the sample from
above. Because this brass block is not transparent, this particular setup can only
be used with microscopy techniques that illuminate through the objective, such as
epifluorescence or confocal microscopy. The benefit of the electrical heating is that it
heats very fast and that there is no risk of water leakage. The achieved temperature
precision was approximately identical to the precision of the water circulator setup
0.02K. The electrical heating setup was used for the confocal experiments of chapter
3.

A third setup was developed for the tweezer setup in chapter 7, based on cir-
culation. This tweezer setup involved imaging with an immersion condenser lens.
To heat this condenser lens and the sample attached to it, another collar, wound
with cupper hoses, as used for the objective, was fabricated to fit around the con-
denser lens. Because the sample contact is less direct in this case, precisions of only
approximately 0.05K were achieved.

2.3.4 Particle locating with subpixel accuracy
Many of the results in this thesis depend on the ability to precisely locate the center
of a particle based on microscopy video recordings. Although the resolution of a con-
ventional microscope is fundamentally limited by the wavelength of light, as shown
by Eq. 2.1, the locating accuracy of a single particle, when sufficiently separated
from nearby particles, can be much higher than this. In fact, accuracy can even be
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higher than the pixel size. In an image with pixel size spx, a particle can be located
with an uncertainty e = spx/spa, where spa is the subpixel accuracy, which using
conventional locating algorithms is on the order of 10 [100]. Given a pixel size of
spx = 100 nm, typical for a 63x objective, this leads to an accuracy e = 10 nm, much
higher than the Abbe limit R = 280.

The possibility of subpixel accurate locating stems from the fact that the image of
a particle is not a single bright pixel but a profile that extends over multiple pixels.
By interpolating between the intensity profile of the image, a subpixel accuracy
is reached that in principle is given by spa ∝

√
Npx, with Npx the number of

pixels constituting the intensity profile [99]. This is analogous to super-resolution
microscopy techniques. In that case, instead of multiple pixels, multiple photons
are used to extract information on length scales smaller than the photon itself,
such that the diffraction limit can be broken, and has to be replaced by RSR ∝
R/
√
Nfot, with Nfot the number of photons used to take an image [117]. In reality,

the locating accuracy is not only determined by image size, but additionally by the
static imaging noise inherent in any imaging system, and dynamic errors that arise
from the movement of particles during image acquisition [118].

The exact way to interpolate the center of the particle from the particle image can
differ. The method of choice needs to balance optimal accuracy and optimal speed,
which depends on the number of particles and the length of the video recording.
An intuitive approach is to use non-linear fitting of a model to the intensity profile,
such as a gaussian profile [119]. The advantage of model fitting is that also more
complicated image models can be used, such as point spread functions [117], particle
scattering holograms [120], or non-spherically symmetric models for anisotropic par-
ticles [121]. Though such fitting approaches are least sensitive to noise, they require
significant computational cost. In contrast, a more efficient algorithm commonly
known as the “Crocker and Grier” algorithm (CG), in reference to its pioneering
developers [100], makes iterative improvements on an initial best particle center es-
timate. It determines the center coordinate ~ci by calculating the center-of-mass (as
weighed by the intensity) of a masked area around the previous center estimate ~ci
[100, 121]:

ci =

∑
dist(~x, ~ci−1)≤R I(~x)~x
∑
dist(~x, ~ci−1)≤R I(~x)

, (2.2)

where I(~x) is the intensity at pixel ~x and R the radius of the circular mask. The CG
algorithm has found widespread use in the soft matter community and a number
of different language implementations exist. A particularly well documented and
actively maintained version is the open-source python implementation Trackpy [122],
which has been used throughout this thesis.
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2.4 Appendix

2.4.1 Other multivalent salt
The effect of salt on the aggregation and associated surface affinity of TPM particles
was not only investigated for MgSO4 but also for monovalent KCl and CaCl2. As seen
in Fig. 2.11, KCl does not induce a boundary condition change of TPM: The strongest
aggregation remains for lutidine concentrations c > cc. Interestingly adding both
KCl and MgSO4 seems to render the effect of KCl null. However, CaCl2 has a similar
effect as MgSO4.

Figure 2.11: Effect of salt on aggregation temperature Ta (rhombuses) and coexistence
temperature Tcx (spheres). (a) Three concentrations of MgSO4, top panel Ta and
Tcx as a function of lutidine concentration, bottom panel ∆T = Tcx − Ta between
coexistence temperature and lowest aggregation temperature. (b) similar for KCl and
mixtures with MgSO4. (c) similar for CaCl2







CHAPTER 3

Critical Casimir interactions
between colloids around the

critical point of binary solvents

Critical Casimir interactions between colloidal particles arise from the confinement
of fluctuations of a near-critical solvent in the liquid gap between closely-spaced par-
ticles. So far, the comparison of theoretical predictions and experimental measure-
ments of critical Casimir forces (CCFs) has focused on the critical solvent composi-
tion, while it has been lacking for off-critical compositions. We address this issue by
investigating CCFs between spherical colloidal particles around the critical point of
a binary solvent through a combination of experiments, previous Ising Monte Carlo
simulation results and field-theoretical methods. By measuring the correlation length
of the near-critical solvent and the pair potentials of the particles in terms of radial
distribution functions and by determining the second virial coefficient, we test in de-
tail theoretical predictions. Our results indicate that the critical Casimir theory gives
quantitative correct predictions for the interaction potential between particles in a
near critical binary mixture if weak preferential adsorption of the particle surface is
taken into account.
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CRITICAL POINT OF BINARY SOLVENTS

3.1 Introduction

Precise knowledge of the interaction potential is essential to rationally design self-
assembly pathways and to interpret the behavior of assembled structures. Advances
in the statistical mechanical theory and computer simulations of critical Casimir
forces (CCFs) allow prediction of the range and strength of CCFs. Likewise, recent
experimental techniques have provided direct measurement of the effective poten-
tial, allowing verification of the theoretical predictions. (Recent developments are
reviewed in Ref. [44] with a focus on experiments, and in [82] with a focus on the
theory.) By using total internal reflection microscopy, the critical Casimir potential
(CCP) between a colloidal particle and a planar wall suspended in a near-critical
binary mixture has been measured [89, 123, 124]. Furthermore, the effective poten-
tial between colloidal particles has been measured using confocal microscopy [93,
125, 126]. For a sufficiently dilute suspension of solute, the potential of mean
force Vmf (r) = −kbT ln g(r) can be identified with the effective pair potential V (r),
while the pair correlation function g(r) can be determined directly from confocal
microscopy images.

In Chapter 2, the potential for patchy assembly using critical Casimir forces was
demonstrated. We showed that in order to obtain a aggregation contrast between
patch and particle bulk material, off-critical concentrations are required. However,
particularly at off-critical compositions, the origin of the critical Casimir force re-
mains debated. Early experiments [127–129] already reported that the temperature
- composition region (T, c), in which colloidal aggregation occurs, is not symmet-
ric and strong aggregation occurs on the side of the critical composition cc poor in
the component preferred by the particles. This preference gives rise to an effective
surface field Hs conjugate to the solvent order parameter at the surface, causing an
adsorption layer rich in the preferred component. The critical Casimir potential is
therefore expected to depend strongly on the composition of the solvent, as well as
on the strength of the surface field. Both dependencies have been recently worked
out in theoretical predictions of the CCF between two spherical particles as a func-
tion of thermodynamic fields (T, c) [96] and surface field [130]. Experiments [93,
125] on dilute suspensions of poly-n-isopropyl acrylamide microgel (PNIPAM) par-
ticles clearly showed the effect of solvent composition on the effective pair potential
for two representative off-critical compositions. The theoretical modeling however
remained limited to the asymptotic exponential form of the CCP, valid only for
large ratios r/ξ, and the extracted length scale of the CCP differed from the bulk
correlation length. In a subsequent paper [125], the fitting procedure was extended
to include the standard scaling law for the bulk correlation length, ξt = ξ

(0)
t |t|−ν ,

with the nonuniversal amplitude ξ(0)
t as the only fit parameter. Yet, the reduced

deviation (Tcx − T )/Tcx from the actual coexistence temperature Tcx(c) was used
instead of t, neglecting the explicit solvent-composition dependence of ξ and hence
of the CCP. In an attempt to further improve the theoretical prediction of the exper-
imental g(r) close to the critical composition, Mohry et al. [96] explicitly accounted
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for the solvent-composition dependence of the CCP. But as the amplitude ξ(0)
t was

inferred from the experimental data presented in Ref. [131], and the critical mass
fraction ω3MP,c of the liquid mixture has significant uncertainty, the fitting proce-
dure was again not optimal. A reliable comparison of experimental measurements
and theoretical predictions needs an accurate solvent phase diagram and simulta-
neous measurement of the solvent correlation length for internal calibration. Such
dedicated measurements of critical Casimir interactions remain elusive. As a result,
there is active debate about the nature of the attractive force in particular for off-
critical compositions. Most notably it remains unclear whether a critical Casimir
force alone can explain the observed colloidal attraction. One of the difficulties is
the inevitable simultaneous presence of various contributions to the effective pair
potential. Hence, well-calibrated theoretical and experimental results are required
to improve the interpretations.

Here we combine measurements, theory and results of previous Monte Carlo sim-
ulations to investigate the effective interactions of spherical colloidal particles in a
binary solvent based on consistent, well calibrated data. To internally calibrate our
measurements and link to theoretical predictions, we complement measurements of
the pair correlation function with dynamic light scattering measurements of the sol-
vent phase diagram and correlation length. We perform measurements for various
solvent compositions, varying temperature for each of them to approach the solvent
two-phase coexistence curve from the homogeneous mixed phase. To most reliably
compare measurements of particle interactions with theoretical predictions, we di-
rectly compare virial coefficients that are unaffected by particle locating inaccuracy
and polydispersity. This allows us to demonstrate for the first time a fully consistent
quantitative description of the critical Casimir interaction from the internally cali-
brated solvent phase diagram and correlation length based on only one remaining
fit parameter, the effective surface field of the particles. We obtain very good agree-
ment between measurements and predictions of the CCP in the entire near-critical
composition range. These results indicate that the observed attraction is indeed
dominated by a critical Casimir force, identified by its characteristic temperature
and composition dependence.

This chapter proceeds as follows: In Sec. 3.2.1 we present the theoretical back-
ground, defining the CCP and its universal scaling function. We show how the sol-
vent composition is related to the scaling variable describing thermodynamic states
at off-critical composition. We present methods to calculate the scaling function
of the CCP for these states. In Sec. 3.2.2 we discuss the scaling behavior of the
CCP for colloids exhibiting a weak adsorption preference for one of solvent compo-
nents. In Sec. 3.2.3 we introduce the model for an effective pair potential between
colloidal particles. The discussion in Sec. 3.2 forms the basis for the interpretation
of the experimental results. Section 3.3 describes experimental measurements and
data analysis, and in Sec. 3.4 we present in detail the experimental results for the
bulk phase diagram and the bulk correlation length of the pure solvent, the pair po-
tential between colloids and the second virial coefficient, comparing them with the
theoretical predictions. Conclusions and a discussion of perspectives are provided in
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Sec. 3.5. Details of the numerical procedures are provided in the appendices.

3.2 Theoretical background

3.2.1 Critical Casimir interactions
The solvent-mediated force, fs, between two spherical particles with radius R, a
surface-to-surface distance D apart, is defined as

fs = −∂F
ex

∂D
= −∂(F − V fb)

∂D
, (3.1)

where fb is the bulk free energy density of the solvent and F is the free energy
of the solvent in the macroscopically large volume V excluding the volume of two
suspended colloids. The critical Casimir force (CCF) fC is the universal contribution
to fs, which emerges upon approaching the bulk critical point of the solvent. The
associated critical Casimir potential (CCP) is

VC(D) ≡
∫ ∞

D

dz fC(z). (3.2)

In order to analyze experimental data for the pair potential of colloidal particles
immersed in a near-critical mixture, detailed knowledge of the critical Casimir po-
tential in the whole neighborhood of the critical point of the binary solvent, i.e. as a
function of both temperature and solvent composition close to (Tc, cc), is necessary.
The relevant scaling fields of the near-critical solvent are t = (Tc − T )/Tc (for the
solvent with lower-critical point considered here) and the bulk ordering field, hb,
conjugate to the order parameter. The bulk field hb is proportional to the deviation
of the chemical potential difference ∆µ = µa−µb of the two species a and b from its
critical value, i.e. hb ∼ ∆µ−∆µc. Each point in the solvent phase space is uniquely
defined by a value of t and hb. (We note that the form of the fluid scaling fields differ
from those of the Ising model due to the lack of symmetry between coexisting phases
of fluids; the actual scaling fields are linear combinations of T and hb, which we ne-
glect here). For the demixing phase transition of a binary liquid mixture, the order
parameter (OP) φ conjugate to the field hb is proportional to the deviation of the
composition ca of species a from its value ca,c at the critical point, i.e. φ = ca− ca,c.
The composition ca = %a/(%a + %b) is defined by the number densities %α, α ∈ {a, b}
of the molecules of species a and b, respectively. We generally leave out the explicit
a dependence as this choice is arbitrary and write φ = c − cc. The OP can be
controlled experimentally by changing the mass or the volume fraction of one of the
components of the mixture.
According to finite-size scaling theory [88, 132], the critical Casimir potential ex-
hibits scaling described by a universal scaling function Θ̂ determined solely by the
universality class of the solvent and the surface universality classes of the surfaces of
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the colloids in contact with the binary liquid mixtures near their segregation tran-
sition [81, 133–136]. The relevant bulk universality class for colloidal suspensions is
the Ising universality class in spatial dimension d = 3. Surfaces of colloidal parti-
cles generically exhibit preferential adsorption of one of the two components of the
mixture. This preference results in the enhancement of the order parameter φ close
to the particle surfaces, characterized by an effective surface field Hs acting on φ.
Such surfaces belong to the universality class of the so-called normal transition [133].
One usually refers to the boundary conditions (BCs), imposed on the fluctuations of
the order parameter, as (+) or (−) depending on whether the surface favors φ > 0
or φ < 0, respectively. If we assume strong adsorption Hs = ±∞, the CCP for
spherical surfaces depends on three scaling variables, and we can write

VC(D)/(kBT ) =
R

D
Θ̂

(
Y = sgn(t)

D

ξt
,∆ =

D

R
,Λ = sgn(hb)

D

ξh

)
, D = r − 2R > 0,

(3.3)
where ξt(t ≷ 0) = ξ

(0)
t,±|t|−ν and ξh = ξ

(0)
h |hb|−ν/(βδ) are the solvent correlation

lengths governing the exponential decay of the solvent bulk two-point order param-
eter (OP) correlation function along the specific paths t → 0± for hb = 0, and
hb → 0 for t = 0, respectively, and ± refers to the sign of t. The amplitudes ξ(0)

t,±
are non-universal but their ratio ξ(0)

t,+/ξ
(0)
t,− is universal. The amplitude ξ(0)

h is also
non-universal; ν, β, and δ are standard bulk critical exponents [137].

The bulk correlation length ξ depends on both scaling fields t and hb, and close
to the bulk critical point, can be written in the scaling form

ξ(t, hb) = ξt Ξ

(
|Σ| = ξt

ξh

)
, (3.4)

where the universal bulk scaling function Ξ satisfies Ξ(|Σ| → ∞) = 1 and Ξ(|Σ| →
0) = |Σ|−1 (The functional form of Ξ(|Σ|) depends on the sign ± of t, but not
on the sign of the bulk scaling variable Σ). The thermodynamic paths of fixed
solvent composition are particularly experimentally relevant, and we thus take the
convention to write the scaling function of the critical Casimir potential Θ̂ as a
function of the scaling variables Y,∆,Σ rather than Y,∆,Λ. We further relate the
scaling variable Σ that depends on the only indirectly known field hb to the solvent
OP φ, which is the direct experimental control parameter. For this purpose, we use
the equation of state, which close to the critical point takes the scaling form [137]

hb = D sgn(φ) |φ|δ F±
(
sgn(t) |tB/φ|1/β

)
, (3.5)

where F±(|X| = |tB/φ|1/β) is a universal scaling function and ± refers to the sign
of t. D and B are non-universal amplitudes that depend on the definition of φ. B is
defined via the near-critical behavior of the bulk OP on the coexistence curve:

φb(t→ 0−, hb = 0) = B |t|β . (3.6)
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Note that experimentally, the phase coexistence curve may be determined in terms of
weight fraction, mole fraction or number density of one component, all of which yield
different amplitudes B that are directly related to each other. The transformation
of the OP is given in Appendix 3.6.1. D, B, and the correlation length amplitudes
ξ

(0)
t,± and ξ(0)

h are related to each other by universal amplitude ratios such that only
two of them are independent [137, 138]. To linear order in X, the universal scaling
function F±(|X|) has the form F±(|X|) = 1± |X|, capturing the crossover between
the critical behavior at t = 0 and hb = 0 [137]. In terms of the scaling variables Σ
and X, the equation of state takes the scaling form

sgn(Σ) |Σ|βδ/ν =

(Rχδ/Q2)δ/(δ−1)(Q+
ξ /Q

c
ξ)
βδ/ν

× sgn(X) |X|−βδ F±(|X|),
(3.7)

where Rχ, Q2, Q+
ξ , and Q

c
ξ are universal amplitude ratios [137].

For all parameters which are needed for comparison with the experiment, in prin-
ciple, it is possible to determine the CCP in the bona fide sphere-sphere geometry
by using mean-field approximation. Numerically, however, this task is too demand-
ing. The other possibility is to express the scaling function of the CCP between
two spheres in terms of the scaling function ϑ(d=3)

|| of the CCFs between two parallel
plates by using the Derjaguin approximation [139]. The CCFs between two paral-
lel plates (film geometry) can be determined by using mean field theory within the
framework of Landau-Ginzburg theory [140]. Some results beyond mean-field the-
ory are also available, e.g., from MC simulations [141–146] or within the extended
de Gennes-Fisher local functional method [96, 147, 148]. We should remark that
the validity of the Derjaguin approximation is limited to temperatures correspond-
ing to ξ . R, for which the CCF acts at colloidal surface-to-surface distances D
small compared to R. Encouraged by observations that in many cases the Derjaguin
approximation works surprisingly well even for D . R [149, 150], we will use this
approximation to describe experimental data. Specifically, we calculate the scaling
function of the CCP in terms of the scaling variable Σ using [89, 139, 151]

Θ(d=3,Derj)(Y,∆→ 0,Σ) = π

∫ ∞

1

dx(x−2 − x−3)ϑ
(d=3)
|| (xY,Σ). (3.8)

The scaling function ϑ(d=3)
|| is calculated using two approaches: the local functional

approach, described in detail in Ref. [96, 147], and the “dimensional” approximation
introduced in Ref. [152, 153]. Within the “dimensional” approximation, the scaling
function ϑ

(d=3)
|| (Y,Σ) is constructed such that for hb → 0 it reduces exactly to

ϑ
(d=3)
‖ (Y,Σ = 0) and for fixed values of Y its functional form is the one obtained

from mean-field theory (d = 4):

ϑ
(d=3)
|| (Y,Σ) =

ϑ
(d=4)
|| (Y,Σ)

ϑ
(d=4)
|| (Y,Σ = 0)

ϑ
(d=3)
|| (Y,Σ = 0). (3.9)



3.2 Theoretical background 43

We take ϑ(d=3)
|| (Y,Σ = 0) from MC simulation data [142, 143] and assume that

within the mean-field expressions ϑ(d=4)
|| (Y,Σ), the scaling variables involve the crit-

ical bulk exponents in spatial dimension d = 3. Thus the approximation concerns
only the shape of the scaling function itself, which typically depends on the spa-
tial dimension only mildly. The function ϑ(d=4)

|| (Y,Σ) is calculated within Landau-
Ginzburg theory via the so called stress tensor [96, 154].

3.2.2 Critical Casimir potential for weak adsorption
preference

While the scaling form of the critical Casimir potential in Eq. (3.3) is valid for
strongly adsorbing particles in the limit Hs = ±∞, for weakly adsorbing particles,
the CCP depends also on the surface field Hs via a scaling variable hs = H̃s|t|−∆1 .
Here, H̃s = Hs/(kBT ) and ∆1 is the surface counterpart of the bulk gap expo-
nent [133]. Theoretical and MC simulation results for the film geometry indicate
[130, 155–157] that while the amplitude of CCFs decreases, the shape of the scaling
function ϑ|| does not vary significantly with hs. Hence, within mean field theory and
in d = 4 the dependence on hs at the critical concentration (Σ = 0) can be reduced
to a re-mapping [130]

ϑ̃
(d=4)
|| (Y,Σ;hs) = sd ϑ

(d=4)
|| (s−1Y,Σ) (3.10)

with a rescaling parameter s = s(hs). To the best of our knowledge, it has not been
studied yet whether such a rescaling holds in d = 3 and for off-critical concentrations,
though we expect a similar result but with a parameter s(hs, hb) that depends also
on the bulk ordering field hb, at least if hs and hb have an opposite sign.

We show the scaling function Θ̃(d=3,Derj) for the scaling parameter s = 0.84 and
(+,+) BCs in Fig. 3.1(a) (solid lines). The experimentally accessible range of the
scaling function is usually limited to its exponential tail [93, 123, 158]. In this range,
we found that one may mimic the rescaling using an effective temperature offset toff
that shifts the relative temperature according to

t′ =
Tc − Texp + ∆Toff

Tc
= t+ toff, (3.11)

combining effects of a weak surface field (Sec. 3.2.3) and any small remaining tem-
perature uncertainties: While the rescaling (solid lines) and the temperature offset
(dashed lines) have different functional form close the critical point Y = 0, they give
the same exponential decay for Y � 1. We show the resulting pair potentials in
Fig. 3.1(b), where we have added the electrostatic repulsion present in the charge-
stabilized colloidal system, see next section. Within the range of Y explored in the
experiment, the two approaches are indiscernible. We will employ toff as a fitting
parameter; any finite value of toff should be understood as indicating the presence
of weak surface fields that corresponds to a rescaling of the scaling function of the
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Figure 3.1: (a) Scaling function Θ̃(d=3) of the CCP obtained from Θ(d=3) for (+,+)
BCs by rescaling according to Eq. (3.10) with s = 0.84 (solid lines) for several values
of Σ. Rescaling mimics the case of particles with weak surface fields (note that it
is exact only for Σ = 0 in d = 4). The same effect can be achieved by using the
temperature offset toff = 0.14 (dashed lines) - at least for the exponentially decaying
tails of the scaling function. (b) The two rescaling methods with the same values, but
shown for the pair potential Eq. (3.15). The scaling variable Σ has been replaced by
the composition c (see main text).

CCP. This rescaling is expected to depend on the bulk field hb, and therefore on the
composition of the solvent.

3.2.3 Effective potential
Besides the critical Casimir forces, there are other interactions between the colloidal
particles, including van-der-Waals attraction, and hard-core and screened electro-
static repulsion of the charge-stabilized particles. Because of the large length-scale
ratio between the colloidal particles and the solvent molecules, one can ignore the
discrete nature of the solvent and use a simplified pair potential model as a back-
ground interaction potential. This background potential adds onto the CCP, but is
present also outside the critical solvent regime, capturing the essential features of
the stable suspension on the relevant mesoscopic length scale. For the repulsive com-
ponent, we employ the widely used Yukawa potential of particles charge-stabilized
against flocculation [26, 159, 160]:

Vrep(D)/(kBT ) = Urep(D) = (U0/(κD)) exp(−κD), D = r − 2R > 0. (3.12)

where the Debye screening length κ−1 =
√
εkBT/(e2

∑
i ρi) (see, e.g. Ref. [161]),

with e the elementary charge, ε the permittivity of the solvent relative to vacuum,
and ρi the number density of ions, sets the range of the repulsion. A simplified,
purely exponential form of the repulsive pair potential,

Vrep(D)/(kBT ) = Urep(D) = A exp(−κD), (3.13)
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is often used for suspensions in which κ−1 � R for distances 2R > D > R + κ−1,
for which all curvature effects associated with the spherical geometry of the colloidal
particles effectively drop out [21, 162]. The corresponding condition κ−1 � R is
practically satisfied for the experimentally relevant systems for which the Debye
length is of the order of 10 nm and the colloidal size of the order of 1µm. The
amplitude A is given by [26]

A = U0/(2κR) = 2π(εε0)−1Υ2κ−2R/(kBT ), (3.14)

where ε0 is the permittivity of the vacuum, and Υ is the surface charge density of
the colloidal particles.

The amplitude of the Van der Waals dispersion forces, the Hamaker constant,
depends on the dielectric properties of the materials involved in the experiment
under consideration [161]. In our nearly index-matched colloidal suspensions, this
amplitude is strongly reduced, and we estimate these dispersion forces to be negligible
at the particle separations relevant in our studies.

Our pair potential model for colloidal particles interacting in near-critical solvents
due to screened electrostatic and critical Casimir forces hence corresponds to the sum
of Eqs. (3.12) and (3.3):

U(r) =

{
∞, D < 0

Urep + U
(d=3)
C = (U0/(κD)) exp(−κD) + (1/∆)Θ(d=3,Derj)(Y,Σ), D > 0.

(3.15)
Using this effective pair potential, we can calculate the second virial coefficient

B2, which for dilute suspensions is a useful measure of the strength of the attraction
and may be a useful measure for predicting of the onset of colloid aggregation. For
radially symmetric spherical particles [163], B2 is calculated from the pair potential
using

B2 = 2π

∫ ∞

0

dr r2 [1− exp(−U(r))] . (3.16)

B2 occurs in the expansion of pressure p in terms of the number density ρ of the
colloid p(ρ)/(kBTρ) = 1+B2ρ+ . . . as a leading correction to the ideal gas pressure.
It has been shown that an extended law of corresponding states can be applied to
colloidal suspensions with short-ranged interactions [164, 165], meaning that different
systems exhibit approximately the same thermodynamic behavior if they have the
same value for the reduced second virial coefficient B∗2 = B2/B

(hs)
2 , independent from

details of the pair interaction. Here, B(hs)
2 = 2πd3/3 is the second virial coefficient

of a hard-sphere reference system with diameter d. For systems with a soft-core
repulsion and an attractive contribution, as is the case here, the reference system is
commonly chosen to be a hard-core interaction with an effective diameter deff > 2R
in order to incorporate effectively the soft-core repulsion. The separation of the pair
potential into a repulsive and attractive part is not unique. We follow the Weeks,
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Chandler, and Andersen [166] (WCA) separation into an attraction

Ua(r) =

{
Umin, r ≤ rmin
U(r), r > rmin,

(3.17)

where Umin = U(rmin) is the minimum of the pair potential, and a repulsion

Ur(r) =

{
U(r)− Umin, r ≤ rmin
0, r > rmin.

(3.18)

The effective diameter is given by the repulsive contribution via

deff =

∫ ∞

0

dr [1− exp(−Ur(r))] . (3.19)

Only a few attractive model interactions allow to calculate B2 analytically. For the
sticky hard-sphere model [167] of vanishing interaction range and strength given
by the inverse stickiness parameter τ , one finds B∗2 = 1 − 1/(4τ). A gas-liquid
phase transition is found for values of τ smaller than a critical value, leading to
B∗2 < B∗2,c = −1.212 [168, 169]. Though critical Casimir interactions are long-ranged
(algebraically decaying with distance) right at the critical point, in the experimen-
tally studied regime near the critical point, the interaction is short-ranged (exponen-
tially decaying with distance). We can thus evaluate the “stickiness” of the particles
by comparison of the experimental results for B∗2 with the sticky hard-sphere model
in the form of B∗2,c.

3.3 Experimental measurements

3.3.1 Correlation length
As suspending solvent we use a binary mixture of 3-methylpyridine (3MP) and heavy
water prepared from distilled 3MP (purity = 99.5%) and heavy water (D2O, purity
> 99%). Solvents are prepared with 3MP weight fractions c ranging from 23.5 to
33%, around the critical 3MP weight fraction cc ∼ 28.0% [170]. To introduce a well-
defined ion concentration, we add 1mM KCl salt; this concentration is of the same
order as used in previous studies, and is well below concentrations where anomalous
effects due to ion-solvent coupling start to occur [91, 171–175].

We use dynamic light scattering to determine both the phase-coexistence tem-
peratures Tcx of the solvents as well as the solvent correlation lengths; for these
measurements, we load 400µl of the binary solvent into a NMR tube which we flame
seal, while keeping the solvent in the tube cold to minimize compositional changes
due to solvent evaporation. The scattered intensity is monitored at an angle of 90◦

to the incident beam, corresponding to a diffraction vector q = 4πn/λ sin(θ/2) of
length 19µm−1, where we use the refractive index n = 1.39 for the binary solvent
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Figure 3.2: (a) Normalized second-order autocorrelation functions acquired through
dynamic light scattering of solvent fluctuations. Dots are data points from a sample
of c = 29.5% of which for clarity only a selection of the total temperatures measured
is depicted. Solid lines are fits based on the single exponential decay of the first-
order autocorrelation function. (b) Extracted effective diffusion coefficients for all
the temperatures and compositions in the dataset as a function of the normalised
temperature distance from the phase-coexistence temperature Tcx.

that depends slightly on temperature [131], and the wavelength of the incident He-Ne
laser light λ = 633 nm. For each composition, we perform measurements at around
20 temperatures with a temperature stability of ∼ 0.01 ◦C, ranging from room tem-
perature to slightly above the solvent phase separation temperature, Tcx. After every
temperature change, we let the sample chamber equilibrate for 20 minutes, and then
record the scattered intensity for 5 minutes to determine its autocorrelation func-
tion. Phase-separation temperatures, determined from the sudden disappearance
of the solvent scattering, are used to map the phase diagram of the binary sol-
vent around its consolute point. These measurements yield the critical temperature
Tc = 37.30 ◦C from phase separation of the solvent with critical composition. Below
Tc, the solvent correlation lengths are determined from the temperature-dependent
autocorrelation function of the scattered intensity. These autocorrelation functions
are well-described by single-exponential decays with a characteristic time constant
τ , as shown for solvent composition c = 29.5% close to the critical composition in
Fig. 3.2(a). Here, the autocorrelation functions have been normalized by dividing
by the proportionality factor obtained from the single exponential fit. We use the
fitted decay time to compute the effective diffusion coefficient D = (q2τ)−1, which
we show as a function of temperature for various solvent compositions in Fig. 3.2(b).

This effective diffusion coefficient is related to the size of the correlated regions ξ
via a relation analogous to Stokes-Einstein relation for Brownian particles, but de-
pending intricately on additional microscopic details. Notably, close to the critical
point, the diffusion coefficient decomposes into a critical and a background contri-
bution [131],

D = Dc +Dbg, (3.20)
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similar to the viscosity that likewise separates into a critical and background part,

η = ηbg + ηc. (3.21)

Bhattacharjee et. al. [176] have worked out a crossover function H that relates η to
ηbg,

η

ηbg
= exp(z H(Q0 ξ, qD/qc)), (3.22)

where z = 0.065 is a critical exponent (prediction from mode-coupling theory in
good agreement with experiments), Q0 a system-dependent wave number and qD/qc
is the ratio of two wave numbers; qD/qc →∞ corresponds to the case of a dominant
background contribution whereas qD/qc → 0 to the case of vanishing background.
For a full expression of H we refer to Appendix 3.6.2. We assume that around the
critical point the crossover function H depends on the thermodynamic state only via
ξ in the first variable, i.e. the ratio qD/qc = const. is independent of φ and T . For
qD/qc � 1, which holds for the present experimental system, the crossover function
H depends only weakly on qD/qc.

Using Eqs. (3.21) and (3.22) we can derive the expressions for the diffusion coef-
ficient. The critical part is given by [131, 177, 178]

Dc =
R kBT
6π η ξ

K(q ξ)
(
1 + b2(q ξ)2

)z/2
, (3.23)

where η is the full viscosity, and R ≈ 1.05 is a universal dynamic amplitude ratio
[178, 179], K(x) = 3/(4x2)[1 + x2 + (x3 − x−1) arctanx] is the Kawasaki function
[180], and we adopt the value b = 0.55 from Ref. [178] for the correction to scaling.
The background contribution to the diffusion coefficient is given by [131, 177, 178]

Dbg =
kBT

16 ηbg ξ

1 + (q ξ)2

qc ξ
. (3.24)

From this it is possible to rewrite the complete expression for the diffusion coefficient
as a function of ξ, φ and T depending on the known constantsR and z and the a priori
not known ηbg and constants Q0 and the ratio qD/qc, see Appendix Eq. (3.38). We
determine ηbg as function of T and φ by extrapolating off-critical measurements to
the critical region; here we use the polynomial approximation and viscosity data from
Ref. [181]. We are thus left with a relation with three unknowns: ξ, Q0 and qD/qc,
which we solve via numerical root finding, by determining iteratively the correlation
length ξ that yields the same diffusion coefficient as experimentally determined. For
the details, see Appendix 3.6.2. Best agreement is obtained for Q0 = 0.17 nm−1,
ξ

(0)
t,+ = 0.44 nm and qD/qc = 0.235, which is used in the following section for all
experimental samples, at critical and off-critical weight fractions. Based on these
fitting values, the prediction for the critical viscosity has been checked against data
from Ref. [181] with good agreement, see Appendix 3.6.2.
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3.3.2 Colloidal suspension

To study particle interactions, we synthesize copolymer particles [72] whose polymer
ratio is tuned (FEMA:tBMA, 10.5:89.5 %vol) to match the density of the binary
solvent at the critical composition [125]. The density match allows observation of
the particles without much disturbance by gravity. Additionally, during the syn-
thesis we add 2 vol% ethylene glycol dimethacrylate (EGDMA), a crosslinker that
minimizes the swelling of the particles in the binary mixture. Compared to previ-
ously used microgel particles [93], these polymer particles are rigid, allowing more
straightforward comparison with theory predictions for hard electrostatically stabi-
lized particles. The particles are dyed with a cross-linkable fluorescent probe (Cy3)
during synthesis. These particles are hydrophilic, preferring the aqueous component
of the binary mixture, as confirmed by their assembly in the water-rich phase after
phase separation. The particle diameter in water is d0 = 2.0µm with a polydis-
persity of < 5% as measured by dynamic light scattering and using a second order
cumulants fit. We estimate the polydispersity to be 3% based on previous, more
accurate measurements of particles made using the same synthesis technique which
is known to be very reproducible [72]. In the binary mixture, the particles swell
slightly. We determined a diameter of d = 2.12µm by confocal microscopy and
assume the same polydispersity as in water. The particles have a negative surface
charge with a measured zeta-potential of -166 meV, as measured by electrophoresis
on particles in a binary mixture with composition c = 31% at 25◦C (Malvern In-
struments Zetasizer Nano Series). At higher temperatures, composition fluctuations
interfere with the measurement, and the results become less accurate. We use the
semi-empirical equation of Loeb, Overbeek, and Wiersema [182] to relate the zeta
potential to the surface charge density according to

Υ(ζ) = εε0
kBT

z e
κ

[
2 sinh

(
z e ζ

2 kBT

)
+

4

κR
tanh

(
z e ζ

4 kBT

)]
. (3.25)

The resulting surface charge density is Υ = −0.17 e/nm2.

Colloidal suspensions with solvent composition c = 25, 26.5, 28, 29.5 and 31% are
prepared by washing the particles four times in the binary solvent with the highest
3MP weight fraction c = 31% with 1 mM KCl and then diluting with 1 mM KCl-
D2O solution to the final solvent composition. The resultant colloid volume fraction
is φ ∼ 0.5%. For microscopy, the samples are filled into rectangular glass capillaries
with dimensions 40 mm by 4 mm by 0.2 mm (Vitrocom,borosilicate glass). Due to
their small volume, the capillaries are not flame sealed, as this would lead to irre-
producible aggregation temperatures [183], but instead closed using 3MP-resistant
Teflon grease, and subsequently sealed using epoxy glue.
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3.3.3 Pair potential

Confocal microscopy is used to image the particles and study the temperature and
composition-dependent particle pair correlation function g(r) that indicates the
probability of finding a particle at a distance r from a reference particle relative
to the ideal gas distribution. We use a laser-scanning confocal microscope (Zeiss
LSM5 Pascal) with a 63X, 1.4 NA oil immersion objective. The sample and ob-
jective lens are heated using a home-made heating stage and a resistive heating
element around the objective resulting in a temperature stability of ∼ 0.02 ◦C. To
ensure good temperature calibration consistent with light scattering, we use the
phase-separation temperature of each sample as a reference. We first determine the
aggregation temperature Ta by increasing the temperature in steps of 0.1 ◦C, noting
when aggregation occurs and then taking the average of the last two temperatures for
Ta. We then measure temperature-dependent pair correlations below Ta by heating
the colloidal suspension to the desired temperature, equilibrating for 15 min, and
recording 2000 images of particle configurations ∼ 30µm above the bottom glass
slide to avoid any influence of the boundaries. The particles diffuse during image
acquisition; the scanning time for our field of view of 140 × 140µm with a resolu-
tion of 1024 × 1024 pixels is 1.58 s. This time is sufficiently large compared to the
diffusion time in the potential well or alternatively the width of the g(r) peak of
∼ 0.4µm for the frames to be uncorrelated on the length scales that are relevant for
the pair interaction. On the other hand, this time would significantly distort the
diffusing particles during three-dimensional acquisition of image stacks; we therefore
restrict our analysis to two dimensions. It was shown in [184] that if care is taken
to discriminate out-of-plane features, 2D data is able to reproduce the actual g(r)
as accurately as 3D data.

Particle centers are then located in the horizontal plane using a Python adapta-
tion of a standard particle tracking algorithm [100, 122]. We minimize the known
effect of an attractive bias for features at close distance by choosing a small long-
wavelength cutoff when applying the bandpass filter to the images. Furthermore, to
eliminate dim spurious features and particles out of the focal plane, we applied a
minimum brightness threshold of 50% of the brightness of the in-plane features. The
horizontal locating uncertainty of a diffusing particle is estimated to be 75 nm from
the uncertainty due to noise, limits of the algorithm itself and the root mean square
displacement (RMSD) of a particle during the time it takes to scan an individual
particle. To be explicit, the RMSD during the scanning time (23 ms) of an individ-
ual particle is ∼ 80 nm; assuming that the locating determines the average position
of the diffusing particle, this gives an uncertainty of 40 nm, half the RMSD. The
locating uncertainty due to noise and algorithmic limitations was determined from
repeated imaging of stationary particles to be ∼ 35 nm. The vertical resolution, i.e.
vertical range around the focal plane in which particles are located, is determined to
be 3.2µm from the brightness of stationary particles as a function their out-of-plane
displacement, from which we estimate a half-width at half-maximum of 1.6µm or
a full width of 3.2µm. We expect this to be the upper limit for the vertical range.
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This way, we identified typically around 40 features per frame, corrresponding to an
average volume fraction of 0.27%, indicating that we indeed are in the low-volume
fraction regime and can neglect many-body effects.

To study particle pair potentials, we link experimental and predicted pair corre-
lation functions, focusing first on data taken at 3 K below the critical temperature,
where critical Casimir interactions are vanishingly small and the pair potential is
dominated by the electrostatic repulsion. The inverse Debye screening length κ es-
timated from the added 1mM salt and the dissociated particle surface charges is
κ−1 ∼ 6 nm (varying slightly with temperature and composition, which we take into
account), which should yield a sharp increase in the g(r) as shown in Fig. 3.3(a)
(green curve). In contrast, the experimental g(r) determined from particle tracking
is much softer. This softness arises from the locating uncertainty, the polydispersity
of the particles, and the effective slice thickness. To incorporate these effects we
compare the experimental pair correlation function with the projected theoretical
function gproj(r′ = {x′, y′, z′})

gproj(r
′) =

∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dx f{0,σz}(z)f{y′,σ}(y)f{x′,σ}(x)g(

√
x2 + y2 + z2),

(3.26)
in which the probability distributions f{x′,σ}(x), f{y′,σ}(y) and f{0,σz}(z) account
for the uncertainty in the two horizontal directions and the vertical direction, re-
spectively, with the in-plane spreads σ = σx = σy being equal. To incorporate the
different sources of uncertainty, we model them using the normal distributions

f{µ,σ}(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (3.27)

with mean µ and width σ. Note that we enforce g(r < d) = 0, so that no con-
figurations with physically overlapping pairs contribute to the integral, though the
projected result may appear to have particle overlap. The three-dimensional integral
in Eq. (3.26) can be straightforwardly evaluated numerically, yet, the kernel of three
normal distributions lends itself to apply a Monte-Carlo integration, where each set
of random numbers can be interpreted as one realization in the experiment.

As seen in Fig. 3.3(a), this uncertainty indeed makes the g(r) look much softer.
We determine the values of the broadening parameters by fixing σz = 6σ based on
the optical spreads and varying σ till a good agreement is obtained for Fig. 3.3(a).
For a vanishing critical Casimir interaction this seems to be σ/d = 0.067. This
number is very reasonable given the horizontal locating uncertainty of 75 nm and
the particle size variation due to polydispersity of ∼ 60 nm, giving a total variance
of ∼ 135nm corresponding to σ/d ∼ 0.064. Also σz = 6σ ∼ 0.8µm is smaller than
the limit for the half-width of the effective slice thickness of 1.6µm, but comparable
to the particle radius. More accurate fitting of the tracking uncertainties is hardly
justified given the limited statistics and noise affecting the pair correlation function
g(r).

The broadening of the g(r) holds also when critical Casimir forces act between
the particles. As an example, we show pair correlations at temperatures close to
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Figure 3.3: Influence of the positional uncertainty in particle tracking on the pair
correlation function g(r). The experimental tracking results (red points) are for c =
28 %. (a) ∆T = 3 K, for which the interaction is dominated by the electrostatic
repulsion. The green curve σ/d→ 0 represents the electrostatic repulsion as modeled
by Eq. (3.15), with the inverse Debye length κ being ∼ 6 nm. The theory predicts a
much sharper step than indicated by the experimental results. However, incorporating
positional uncertainties due to polydispersity, optical shifts and the limited resolution
of the digitized images, using Eq. (3.26) with an uncertainty σ = σx = σy in the
image plane and σz = 6σ for the vertical resolution, results in a good agreement
for σ/d = 0.05 (cyan curve) and σ/d = 0.067 (=̂1 px; blue curve). (b) Close to the
critical point (red points: ∆T = 0.4 K), the strong critical Casimir attraction results
in a peak of the pair correlation function g(r) at r/d ' 1. The theoretical model
Eq. (3.15) (σ/d → 0; green curve) shows only some agreement for r/d > 1. When
incorporating the positional uncertainties with σ/d = 0.05 and σ/d = 0.067 (cyan and
blue curve), the shape of the peak changes and resembles more closely the experimental
results. Around the peak, we indicate the estimated error. The lateral error in the
plot represents ∆r = 1px and the error ∆g is given by the standard deviation of the
g(r) values between sets calculated using different cutoffs for the brightness in the
algorithm.

Tc in Fig. 3.3(b) (red points), where we compare the experimental data with pair
correlations computed from the full pair potential of Eq. (3.15). Due to the critical
Casimir attraction, the pair correlation function develops a strong peak close to
r/d = 1 (green curve). When incorporating the tracking uncertainty with σ/d = 0.05
(light blue), and σ/d = 0.067 (dark blue), the correlation peak broadens, yielding
good agreement with the experimental data. The figure suggests that the smaller
uncertainty σ . 0.05d = 106 nm leads to better fit, while Fig. 3.3(a) suggested that
far below Tc, when the repulsion is dominant, the larger uncertainty of σ = 0.067d =
141 nm describes the data best. Since our interest lies in capturing the critical
Casimir attraction, in the following, we generally adopt a value of σ/d = 0.05 for
comparison with the experimental results.

We note that a measure insensitive to these experimental inaccuracies is given
by the virial coefficient that is unaffected by the experimental broadening: In the
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Figure 3.4: Coexistence curve and correlation length of the binary solvent determined
by dynamic light scattering. (a) Phase separation temperature as defined from the
minimum of the diffusion coefficient. The coexistence curve is theoretically expected
to follow φb = B |t|β from Eq. (3.6), where B is a non-universal amplitude specific
to the solvent. The error bars indicate the limited temperature resolution given by
∆T . We find good agreement for B = 0.6 and for the critical point at Tc = 37.26 ◦C,
c = 27.7 % (cross symbol). (b) Correlation length ξ as a function of t = (Tc − T )/Tc
for various compositions. For compositions around cc ≈ 28%, the correlation length
clearly follows the power law ξ

(0)
t,± |t|−ν , with ξ(0)t,+ = 0.44nm found from the numerical

minimization. Curves for off-critical compositions bend downwards, as expected.

low-density limit where g(r) ≈ e−U(r), the second virial coefficient is related to
the radial distribution function via B2 =

∫
V

d~r [1 − g(~r)]. One can verify that for
any normalized and symmetric distribution function for f{µ,σ} in Eq. (3.26), the
virial coefficient of the broadened distribution gproj, B2,proj =

∫
V

d~r [1− gproj(~r)], is
identical to B2. Hence, despite the choice and disparity between g(r) and gproj(r)
as input, there is only one unique thermodynamically relevant B2. We have also
confirmed this numerically.

3.4 Results

3.4.1 Solvent phase diagram and correlation length
The solvent phase diagram extracted from dynamic light scattering is shown in
Fig. 3.4(a). The phase separation temperatures can indeed be fitted with the bulk
coexistence relation φb = c − cc = B |t|β from Eq. (3.6). For the fit, we have fixed
the critical exponent β = 0.3265 to its theoretical value [137], and left the amplitude
B and the coordinates of the critical point (cc, Tc) as adjustable parameters. Note
that the values presented here are not based solely on fitting of the experimental
coexistence data, but from a combination with further analysis below. We find
B = 0.6, close to the amplitude B ' 0.5 [96] derived from the phase diagram
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Figure 3.5: The ratio Ξ̃(φ, t) = ξ(φ, t)/ξt, i.e. the correlation length ξ(φ, t) normalized
by the scaling law ξt = ξ

(0)
t,± |t|−ν . This is analogous to the scaling function Ξ(|Σ|) in

Eq. (3.4), except plotted for y = |φ|/|t|β instead of the scaling variable Σ. There are
two limiting cases, Ξ̃(y → 0) = 1 and Ξ̃(y →∞) = |Σ|−1. For the latter, y →∞, the
experimental results of Ξ̃ are in good agreement with the linear approximation of the
EOS for Σ in Eq. (3.28) (black dashed curve), even for intermediate values of y.

of the pure 3MP-D2O binary mixture [170]. The coordinates of the critical point
cc = 0.277, Tc = 37.26 ◦C are slightly shifted from the literature values of cc = 0.28
and Tc ≈ 38.5 ◦C [131, 170, 181] due to the presence of salt [185, 186], which is
known to lower the phase separation temperature [187].

We show the scaling of the correlation length upon approaching the critical tem-
perature in Fig. 3.4(b). At the critical composition cc, the correlation length follows
the Ising power-law scaling, while for c 6= cc it deviates increasingly from this diver-
gence, as expected. Although the divergence at the critical composition was achieved
by construction (as explained in Section 3.3.1 and Appendix 3.6.2), nevertheless the
success of the method is still compelling since the hereby calculated correlation length
ξ(φ(hb, t), t) reproduces the full scaling behavior with respect to solvent composition.

To show this, we consider the correlation length ξ(φ, t) normalized by that at
the critical composition, Ξ̃(φ, t) = ξ(φ, t)/ξt; this ratio is analogous to the scaling
function Ξ(|Σ|) in Eq. (3.4), but with φ and t as independent variables. Note that
the relation Σ(φ, t), such that Ξ̃(φ, t) = Ξ(|Σ(φ, t)|), corresponds to knowing the
equation of state. In the linear form in Eq. (3.7), Σ depends only on X = t|B/φ|1/β .
By introducing the variable y = |φ|/|t|β given directly by the experimental state,
we recast this as X = ±|B/y|1/β , where the sign depends on t. This variable allows
us to approach the critical point along the two relevant thermodynamic paths: for
y → 0, i.e., |φ| � |t|β , the critical point is approached along the critical composition
(φ=0) by varying the temperature t→ 0; in this case one expects ξ(φ=0, t) = ξt and
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Ξ̃(y → 0) = 1. For y → ∞, where |φ| � |t|β , the critical point is approached along
the critical isotherm (t=0) through variations of composition φ → 0. One expects
that in this limit (see Eq. (3.7))

Ξ̃(y →∞) = |Σ|−1 = B̃ y−
ν
β F±

(
|B/y|1/β

)− ν
βδ

(3.28)

with the amplitude [153]

B̃ = (Rχδ/Q2)
− ν
β(δ−1)

(
Qcξ/Q

+
ξ

)
B νβ

that contains a combination of several universal amplitude ratios. We check these
predictions by plotting Ξ̃ as a function of y in Fig. 3.5, and find very good agreement
in both limits. While we cannot fully follow the limit y →∞ as this thermodynamic
path is not practical in the experiment, we find that already y > 0.1 is sufficiently
large for Ξ̃(y) to start approaching the linear approximation of |Σ|−1. The scaling
function F±(|B/y|1/β) in this approximation contains the non-universal amplitude
B, which we take as B = 0.6 as determined from the coexistence curve, indicating
the fundamental correspondence based on the EOS. For the amplitude B̃ we obtain
from simple fitting B̃ = 0.15, in good agreement with the value B̃ = 0.145 obtained
with B = 0.6 and the amplitude ratios given in Ref. [137].

3.4.2 Pair potential and virial coefficient
Building upon this consistent description of the bulk properties of the liquid mixture,
we now turn to the critical Casimir interactions between suspended particles. We
first focus on the critical composition. Particle pair correlation functions for various
temperatures are shown in Fig. 3.6. For this critical composition, we can fit all pair
correlations with a single parameter ∆Toff that accounts for the finite surface fields,
as explained in section 3.2.2. Best agreement with the dimensional approximation
model (solid lines) is obtained for ∆Toff = 0.55 K or a rescaling parameter s = 0.78,
corresponding to a value of hs ≈ 70 for the the scaling variable of the surface
field based on the short distance approximation described in Ref. [130]. Since this
approximation is valid for hs & 10 and the universality class of the surface boundary
conditions switches from the normal to the special transition for hs → 0, it appears
the observed particles are moderately weak and still adhere to the normal universality
class.

We now exploit the full solvent-composition dependence. For 3MP-rich composi-
tions (c > cc), the particles aggregate as far as 1 ◦C below the critical temperature,
indicating strong attraction, while for 3MP poor compositions (c < cc), this tem-
perature interval of aggregation is very small and diminishes until aggregation is no
longer observed. This is in agreement with the well-known fact that the attraction
is strong in solvents poor in the component preferred by the particles. To compare
with theoretical predictions, we take advantage of the internally calibrated correla-
tion length to compute the critical Casimir attraction, and we add the electrostatic
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Figure 3.6: Pair correlation function g(r) for solvent composition c = 28 %, close to
the critical composition, for different temperatures. The experimental results (symbols
and error bars) are compared to results of the pair potential model Eq. (3.15) using the
dimensional approximation for the scaling function Θ(d=3,Derj), and using Eq. (3.26)
to account for the experimental broadening (solid lines). A temperature offset of
∆Toff ≈ 0.55 K was used to account for the weak hydrophilic adsorption preference of
the particles.

repulsion obtained from pair correlation measurements sufficiently far from Tc. In
principle, there are no other remaining parameters in the case of strong adsorption.
To account for the weak hydrophilic adsorption preferences of our particles, we again
use the effective temperature offset toff, which depends on the solvent composition.
We find that even for off-critical compositions we can fit all pair correlation functions
for the different temperatures using the single parameter toff varying systematically
with composition. We show examples of measured and predicted pair correlation
functions for a composition to the left and right of the critical point in Fig. 3.7. In
both cases, good agreement is observed for all temperatures. The resulting predicted
pair potentials are also shown. Note the difference in horizontal scale between the ob-
served radial distributions and the predicted pair potentials due to the experimental
broadening.

The particle aggregation behavior provides an independent check of the validity of
the model based on the colloidal state not affected by any quantitative uncertainties
of particle tracking. Theoretically, we can predict where aggregation occurs from
the second virial coefficient B2 (see Sec. 3.2.3) following the argument in Ref. [153],
while experimentally, we can observe the onset of aggregation directly. We compare
the theoretical curve for the onset of aggregation, as obtained from the critical value
B∗2 = −1.2 of the sticky sphere model, with the experimental aggregation points
in Fig. 3.8. Very good agreement is observed. In particular, the asymmetry of the
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Figure 3.7: (a) and (b): Pair correlation function g(r) for the off-critical composi-
tions c = 26.5 % (with ∆Toff = 0.7 K) and c = 29.5 % (with ∆Toff = 0.18 K). The
experimental results (points) are compared to the dimensional approximation (solid
lines). (c) and (d) Theoretically predicted pair potentials U(r) = V (r)/kbT for the
same composition.

aggregation region is very well reproduced. We also indicate the aggregation region
predicted for the case of strong adsorption, i.e. for vanishing toff (black dashed
curve). As expected, it extends further below Tc, as strongly adsorbing particles
exhibit a stronger attraction. Yet, the shape of the aggregation region, especially its
pronounced asymmetry, does not change qualitatively.

We investigated particle pair interactions just below aggregation in more detail.
Taking advantage of the fact that the virial coefficient is unaffected by the experimen-
tal broadening as it is based on the integrated pair potential, we can compare virial
coefficients computed from the raw measured g(r) directly with theoretical predic-
tions without any need to account for experimental inaccuracy and particle polydis-
persity. In fact, one can show that any distorting influence described by normalized
symmetric distribution functions, such as the optical broadening, leaves the second
virial coefficient unchanged (see Sec. 3.3.3). We therefore compute experimental B2

values directly by numerically integrating the measured g(r). Specifically, we calcu-
late the reduced second virial coefficient B∗2 = B2/B

(hs)
2 (see Sections 3.2.3 and 3.3.3)
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Figure 3.8: Phase diagram showing the coexistence curve Tcx and the experimentally
observed aggregation points Ta, compared to the B2 isoline with the critical value
B2,crit = −1.2 of the sticky sphere model. The critical point is marked by a cross
symbol. Within the shaded area, colloids aggregate and the pair potential cannot be
measured experimentally. In the hatched part, B2 is determined based on a polyno-
mial extrapolation of toff beyond the experimental range, which may not resemble the
actual shape of the colloidal aggregation region. The black dotted curve indicates the
aggregation line predicted for strongly adsorbing particles.

in the low-density limit, by numerically integrating B2 = 2π
∫∞

0
dr r2 (1− g(r)). In

order to treat the limited experimental data range, we assume g(r < r0) = 0 below
the smallest distance r0 of the data set, and we apply a smoothing factor to g(r) for
large separations.

Experimental and theoretical values of B∗2 in the entire temperature-composition
plane are compared in Fig. 3.9(a). The color map indicates the theoretically pre-
dicted values, while colored dots along the experimental compositions (dashed lines)
indicate the measured values. Good qualitative agreement is observed. For quantita-
tive comparison, we plot B∗2 values as a function of temperature in Fig. 3.9(b). The
bottom panel shows B∗2 values superimposed for the different solvent compositions,
while the top panel shows the same data shifted vertically for clarity, providing a
perspective view of the B∗2 values above the temperature-composition plane. Exper-
imental data (dots) and theoretical predictions (lines) show very good agreement for
all compositions. The values B∗2 = 1 far below the critical temperature indicate the
system is dominated by a short-range repulsion, described by an effective hard-core
model. Starting from T − Tc ∼ 1 K at solvent compositions of around c ∼ 30 %, B∗2
quickly drops to negative values, indicating the rise of an attractive critical Casimir
interaction. This is in line with previous studies of the virial coefficient close to the
critical point [188, 189]. The comparison based directly on the raw measurements
provides good evidence that it is indeed the critical Casimir interactions that underlie
the colloidal attraction in the investigated solvent composition range. Hence, this di-
rect comparison suggests that not only at the critical composition, but also at these
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Figure 3.9: Composition and temperature dependence of the reduced second virial
coefficient from measured g(r) (symbols) and from theory (lines and colored surface).
(a) Color map in the temperature-composition plane indicates theoretically predicted,
and colored symbols experimental B∗2 values. Values B∗2 ∼ 1 depicted in blue indicate
a significant repulsion, while values B∗2 ∼ −1 depicted in red indicate strong attraction.
Yellow marks the crossover. Also indicated by arrows are the critical temperature Tc
and composition cc, and the critical point (cross symbol). (b, c) B∗2 values as a function
of temperature along the experimental solvent compositions (dashed lines in (a)).
Values in (c) are shifted vertically, providing a perspective view on the temperature-
composition plane in (a). Dashed yellow and red lines indicate isolines of B∗2 = 0 and
B∗2 = −1.2, marking, respectively, the crossover from repulsion to attraction, and the
critical value of the sticky spheres model.

off-critical compositions, the attraction is described in terms of a critical Casimir
force rather than by wetting effects. Yet, at even higher off-critical compositions,
wetting effects are expected to eventually take over and dominate the attraction as
clearly observed in Ref. [123].

We finally highlight the composition dependence of particle interactions by show-
ing the theoretically calculated pair potentials for two fixed temperatures in Fig.
3.10. As already observed for the virial coefficients, the strongest attraction occurs
for compositions c = 29.5 − 31 %, well above the critical composition cc = 27.7 %.
For ∆T = 1.0 K (Fig. 3.10(a)), the interaction is still small at c = 28 % ≈ cc and
below, whereas at higher composition c > cc, the critical Casimir force leads to a
notable attractive potential well. The depth of the potential minimum for c = 29.5 %
becomes close to −3 kBT , but no aggregation is yet observed (compare Fig. 3.8). For
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Figure 3.10: Pair potential U(r) = V (r)/kbT predicted by the dimensional approx-
imation, for different compositions at fixed temperature Tc − T = 1.0 K (a) and
Tc − T = 0.8 K (b).

∆T = 0.8 K (Fig. 3.10(b)), the depth of the potential minimum has increased con-
siderably, exceeding −3 kBT for c = 29.5 % and c = 31.0 %, leading to aggregation
in the experiment. For the critical composition c = 28 % and below, the attraction
is still small. We find that the criteria B∗2 . 1.2 of the sticky sphere model pro-
vides a quantitatively good estimate for the onset of aggregation, while the earlier,
simple criteria that the depth of the potential minimum exceeds −3 kBT [158], is
qualitatively in line with our findings, but may not provide a quantitatively reliable
estimate.

Furthermore, Fig. 3.10 reports the parameters ∆Toff for each composition for
which we have obtained the best agreement between the experimental g(r) and the
theoretical predictions. As discussed in section 3.2.2, ∆Toff is an effective rescaling
in the case of weakly adsorbing particles. Thus, the same systematic trend carries
over to the scaling parameter s(hs, hb). To our knowledge, the dependence of s
on hb has not been studied yet (see Ref. [130] for s(hs) = s(hs, hb = 0)). Our
measurements indicate a systematic dependence that itself is asymmetric around
the critical composition, i.e., the behavior depends strongly on the signs of hs and
hb. Further studies could focus on the dependence of colloidal aggregation on the
strength of the surface adsorption.

3.5 Conclusion
We investigated the interactions of colloidal particles in near-critical binary solvents
by internally calibrated measurements and theoretical modeling. Across the entire
solvent composition range investigated, we find good agreement between particle
pair correlation measurements and an effective theoretical model of critical Casimir
interactions using an offset temperature ∆Toff to account for the weak surface ad-
sorption of the particles. It is known that at the critical composition, the influence of
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weakly adsorbing surface fields amounts to a rescaling of the scaling function of the
potential. We thus expect that the rescaling holds also at off-critical concentrations,
albeit with a rescaling value s dependent on the composition of the system. We
find that within the experimentally accessible range, s and ∆Toff provide alternative
parameters that fit the experimental data equally well. The benefit of the effective
temperature offset ∆Toff is that it offers an intuitive interpretation of the experimen-
tal data. The good agreement between theory and measurements we observe here
for all temperatures with a systematically composition-dependent rescaling param-
eter suggests that it is indeed a critical fluctuation force, i.e. the critical Casimir
force, that dominates the particle attraction in the investigated near-critical regime.
Our results hence extend the validity of the critical Casimir description from critical
to off-critical compositions in the near-critical regime. The adsorption preference
dependence of the critical Casimir force highlighted here provides a powerful means
to realize attractive patchy particle systems, and binary or ternary particle systems.
Because the adsorption preference can be tuned by chemical surface modification
or the addition of salt, this allows tuning colloidal interactions A-A, A-B, B-B, etc.
between specific particle pairs (A,B) or between particle patch (A) and bulk (B), for
realizing and designing complex bonded colloidal materials.

3.6 Appendix

3.6.1 Choice of order parameter
There is a freedom of choice in the definition of the order parameter. For a bi-
nary liquid mixture, several closely related and equally measurable quantities can be
considered: mass, volume, molar and number concentration. In the analysis of the
experimental results, we employ mass fraction of 3MP, denoted by c(wt)a within this
appendix. From a microscopic point of view, the number fraction c(n)

a may appear
to be the more fundamental choice. One can convert between the latter two choices,
using the molar masses Ma and Mb of the two components a and b, via

c(wt)a =
c
(n)
a Ma

c
(n)
a Ma + c

(n)
b Mb

=
c
(n)
a Ω

c
(n)
a (Ω− 1) + 1

, (3.29)

with Ω = Ma/Mb. For the specific mixture of 3-methylpyridine and heavy water, one
has Ma = M3MP = 93.13 g/mol and Ma = MD2O = 20.03 g/mol, so that Ω = 4.65.
Note that the two choices for the order parameter are not proportional to each other.

For the OP, it is required that c(wt)a − c(wt)a,c = ±Bwt |t|β for t→ 0. Using this in
Eq. (3.29) we find

Ω(c
(n)
a − c(n)

a,c )

[(Ω− 1)c
(n)
a + 1][(Ω− 1)c

(n)
a,c + 1]

= ±Bwt |t|β for t→ 0. (3.30)
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Using the fact that c(n)
a − c(n)

a,c can also serve as the OP, it follows that c(n)
a − c(n)

a,c =
±Bn |t|β and

ΩBn|t|β

[(Ω− 1)(c
(n)
a,c ± Bn |t|β) + 1][(Ω− 1)c

(n)
a,c + 1]

= Bwt |t|β , for t→ 0. (3.31)

so that

lim
t→0
Bwt = lim

t→0

ΩBn
[(Ω− 1)c

(n)
a,c + 1]2 ± Bn |t|β [(Ω− 1)2c

(n)
a,c + Ω− 1]

=
Ω

[(Ω− 1)c
(n)
a + 1]2

Bn (3.32)

= Ω[1 + (Ω−1 − 1)c(wt)a ]2 Bn.

Thus, close to the critical point, the two non-universal amplitudes Bwt and Bn can
be still considered to be different normalizations of the OP.

We have checked that plotting the phase separation temperatures in terms of the
mole fraction and then fitting the coexistence curve (see Fig. 3.4) yields the value
for Bn that is in agreement with Eq. (3.32). Note that for concentrations far off the
critical one, the different choices for the OP would be reflected in the equation of
state Eq. (3.5). However, we consider it only in the linearized form, which is valid
in the vicinity to the critical point.

3.6.2 Extended discussion of the methods for deter-
mining the correlation length

Full expressions relating diffusion coefficient to correlation length

The crossover function H as worked out by Bhattacharjee et. al. [176] is given by

H(ξ, qD, qC) =
1

12
sin(3ψD)− 1

4 qC ξ
sin(2ψD) +

1

(qC ξ)2

(
1− 5

4
(qC ξ)

2

)
sin(ψD)

− 1

(qC ξ)3

[(
1− 3

2
(qC ξ)

2

)
ψD − |(qC ξ)2 − 1|3/2L(ω)

]
, (3.33)

with,

w =

∣∣∣∣
qC ξ − 1

qC ξ + 1

∣∣∣∣
1/2

tan

(
ψD
2

)
, and, ψD = arccos

(
1√

1 + q2
D ξ

2

)
, (3.34)

and,

L(ω) =

{
ln
(

1+ω
1−ω

)
, for qC ξ > 1

2 arctan(|ω|), for qC ξ < 1
(3.35)
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The crossover function H can be more conveniently expressed in terms of the ratio
Q0 ξ of the viscosity wave number in terms of the correlation length and qD/qC
indicating the strength of the background contribution (see Eq.(3.22)). From the
relation Q−1

0 = (1/2) e4/3
(
q−1
c + q−1

D

)
[176, 178, 179], the substitutions

qD ξ 7→
1

2
e4/3Q0 ξ

(
1 +

qD
qC

)
, (3.36)

qC ξ 7→
1

2
e4/3Q0 ξ

(
1 +

(
qD
qC

)−1
)

(3.37)

in terms of Q0 ξ and qD/qC follow.
Therefore, using Eqs. (3.20, 3.23) and (3.24), the full diffusion coefficient amounts

to

D(ξ, φ, T ;Q0, qD/qC) =
kBT

6π ηbg(φ, T ) ξ
×

[
R K(q ξ)

(
1 + b2(q ξ)2

)z/2

exp(z H(Q0 ξ, qD/qc))
+

1 + (q ξ)2

8
6π e

4/3Q0 ξ (1 + (qD/qC)−1)

]
(3.38)

Calculation of the correlation length

The computational task at hand is determining from Eq. (3.38) inversely the correla-
tion length ξ that yields the same diffusion coefficient as experimentally determined.
Apart from the known experimental state (φ, T ), the arguments Q0 and qD/qc are
unknown and need to be determined simultaneously. In order to find optimal values
for Q0 and qD/qc we implement an iterative approach inspired by Ref. [131]. In our
approach we assume Q0 and qD/qc to be independent of φ and T . This means that
the dependence of viscosity on the closeness to critical point is fully described by the
ξ. We then determine the optimal Q0 and qD/qc values as the ones that give the
best agreement of the resulting ξ with the power law ξt = ξ

(0)
t,+ |t|−ν for compositions

around c ≈ 0.28. More specifically, we minimize the least-square deviation of the
logarithmic values

∑

i

(
log ξi − log

(
ξ

(0)
t,+

∣∣∣∣
Tc − Ti
Tc

∣∣∣∣
−0.63

))2

,

for all {ξi, Ti} data points of the 27.25% and 28% samples. Note that we fix the
critical exponent ν = 0.63 but leave ξ(0)

t,+ to be optimized. Close to the critical
point, as the value of the diffusion coefficient drops, the relative experimental error
increases significantly; due to the sensitivity of our procedure to these errors, we
disregard samples with t < 10−4. One interesting observation is that the procedure
becomes more resilient against these experimental errors for R > 1, indicating that
the critical part of the diffusion coefficient as given in Eq. (3.23) is indeed more
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appropriate than a simple Stokes-Einstein relation (R = 1) (see Appendix 3.6.2).
As consistency checks, we have tested three variants: first, we have varied only Q0

for qD/qc = 0, i.e. for vanishing background, with the additional constrain that
Q0 ξ

(0)
t,+ = 0.15. This value was taken from Ref. [181] where it was found by fitting

to experimental data of the critical contribution to the viscosity. We find an optimal
fit with Q0 = 0.36nm−1 and ξ(0)

t,+ = 0.42 nm. In the second case, we have minimized
for both Q0 and ξ

(0)
t,+, still keeping qD/qc = 0. This yields Q0 = 0.22 nm−1 and

ξ
(0)
t,+ = 0.435 nm, so that Q0 ξ

(0)
t = 0.096. Lastly, we have allowed for a finite value

of qD/qc, yielding the best agreement with Q0 = 0.17 nm−1, ξ(0)
t,+ = 0.44 nm and

qD/qc = 0.235, so that Q0 ξ
(0)
t,+ = 0.075. In order to validate our approach we note

that the values for Q0 ξ
(0)
t,+ that we obtain in the second and third case are not

far removed from this in the first case; small changes can be expected because our
mixtures contain salt [131, 186].

Comparisons of viscosity values for three different fitting procedures

In this work, the primary purpose of the crossover function H(Q0 ξ, qD/qC) is to
determine the correlation length ξ from the diffusion coefficient. However, we want
to point out a further application as a means to indirectly measure the viscosity
ratio. This serves also as an consistency check for our fitting procedure.

Assuming the power law ξt = ξ
(0)
t,+ |t|−ν , the viscosity ratio in Eq. (3.22) depends

only on the fitting values Q0 ξ
(0)
t,+ and qD/qc.

The resulting viscosities for the present mixture, based on the three fitting vari-
ants discussed in Appendix 3.6.2, are shown in Fig. 3.11. Overall our estimates are
slightly below the viscosity data of Ref. [181] for the pure binary mixture 3MP-D2O.
Still, we find reassurance in the overall agreement, since estimating the viscosity is
not the primary focus of this procedure.

Critical Diffusion coefficient

Here, we argue why the expression given by Eq. (3.38), which is dominated by
the critical part in Eq. (3.23), reproduces the behavior of the measured diffusion
coefficient given in Fig. 3.2(b). In literature, Eq. (3.23) is often called a (pseudo-
)Stokes-Einstein relation, especially when setting R = 1 [179]. However, this is
more of an analogue than a rigorous statement, as the self-diffusion of the OP is not
governed by the same relation as the Brownian motion. If we naïvely assume the
Stokes-Einstein relation in which the radius of the Brownian particles is replaced
with the size of the correlated scattering features, i.e., the correlation length ξ, so
that

D =
kBT

6πηξ
, (3.39)

we obtain inconsistent results: as we know that ξ is a power law of t close to Tc, we
would then expect that D also follows a power law, i.e., a straight line in Fig. 3.2.
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Figure 3.11: Estimated viscosity of the present mixture 3MP / heavy water with 1mM
KCl at the critical weight fraction c ≈ 0.28, based on values from the fitting procedure
of the diffusion coefficient (see appendix). The experimental values of Ref. [181] are
for the pure binary mixture without salt.

However, we find that instead D flattens out and approaches a constant value upon
decreasing t. In contrast, saturation of D is captured correctly by Eq. (3.23). In
the critical limit x = q ξ � 1 one has K(x) ∝ x [190] and H(Q0 ξ → ∞, qD/qc) =
ln(Q0 ξ) [176], so that

lim
ξ→∞

Dc =
R kBT

6π ηbgQz0 ξ
1+z

bz(q ξ)1+z = const., (3.40)

leading to a saturation of the diffusion coefficient at T = Tc, as observed in the
experiments. Note that it is sufficient to look at Dc to explain this saturation
since the background Dbg given by Eq. (3.24) becomes negligible for large ξ. Dbg
contributes to the deviation from a power law that is observed for large t, due to
effects of the viscosity on a different, non-critical temperature scale.

For our fitting procedure, we have used newer estimates that give as the value
of the universal amplitude R = 1.05 [178, 179]. This slight deviation from 1 is of
significant importance. Since lim

ξ→∞
Dc = const., the diffusion coefficient becomes

insensitive to the actual value of the correlation length, but is still proportional to
the universal amplitude R. Conversely, in our procedure we find for R = 1 widely
varying results for the correlation length ξ, amplifying small experimental errors
of the diffusion coefficient. These issues are significantly reduced for R = 1.05,
supporting the finding that the universal amplitude R > 1. In consequence, there is
no particular limit in which the Stokes-Einstein relation in Eq. (3.39) can be obtained
from Eq. (3.23).





CHAPTER 4

Stochastic buckling of a chain
of isotropic colloids

The vast majority of soft and biological materials, gels and tissues, are made from
micrometer-size, slender structures such as bio filaments, colloidal and molecular
chains, which are believed to crucially control their mechanics. These constituents
show intriguing extreme mechanics, mechanical instabilities and plasticity, which be-
sides attracting significant theoretical attention, have not been studied experimentally,
and as such remain poorly understood. Here, we investigate, by experiments, simu-
lations and theory, the mechanical instabilities of a slender, self-assembled colloidal
structure, observing a novel form of stochastic buckling, where thermal fluctuations
and associated entropic force effects are amplified by the vicinity of a buckling in-
stability. We fully characterize how the persistence length and plasticity controls
the stochastic buckling transition, leading to intriguing higher-order buckling modes.
These results elucidate the interplay of geometrical, thermal and plastic interactions
in the nonlinear mechanics of thermal, self-assembled structures, crucial to the me-
chanical response and function of fiber-based soft and biological materials, as well as
the rational design of novel micro- and nanoscale architectures.
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4.1 Introduction
Due to recent advances in colloidal synthesis and interaction control, colloidal self-
assembly has become a promising platform for designer materials with controlled
internal architecture and tunable physical properties [28, 38, 191], such as unprece-
dented photonic [192], shape-changing [15, 55] and mechanical properties [193]. Self-
assembled colloidal structures also form excellent model systems to describe complex
and biological materials like gels [194, 195], biological cell membranes [196] and fil-
aments [197, 198], or flocking behavior [102]. To date, there has been an extensive
focus on the dynamical and structural aspects of self-assembly [65, 199], while the
mechanical instabilities of self-assembled objects have been experimentally much less
explored; yet, they play a crucial role in the response of soft materials [200–202] from
biological networks [68] to mechanical metamaterials [70]. Semi-flexible biofilaments,
polymers and biological shells have been shown to undergo signatures of mechanical
instabilities [203, 204], on which thermal excitations can have an important effect
[205–209]. However, experimental insight into these instabilities in synthetic archi-
tectures such as colloidal assemblies is lacking. In particular, potentially crucial
factors such as the effective elastic interactions, the role of geometric non-linearities,
stochastic noise and plasticity are virtually unexplored.

Here, we focus on the simplest and most widespread form of a mechanical in-
stability on the simplest form of a self-assembled structure: the buckling of an ini-
tially straight colloidal chain upon compression. Combining optical tweezer and
microscopy experiments, molecular dynamics simulations and theory, we observe
that such thermal chain undergoes an elastic buckling instability upon compression,
accompanied by divergence of thermal bending fluctuations. Molecular dynamics
simulations and continuum modelling allow identifying the critical exponents, and
exploring entropic effects in the full range of persistence length, from stiff to the freely
jointed chain. Finally, we show that plastic rearrangements lead to localized defor-
mation at higher compression that can lead to buckling into higher-order modes.
These results, uncovering the nature of mechanical instabilities in self-assembled
structures, provide a crucial step towards understanding the complex mechanics of
soft architectures, central to the mechanical function of biological materials and the
design of functional colloidal materials.

4.2 Methods

4.2.1 Experiments
Our system consists of copolymer particles [72] that we assemble into chains using
temperature-dependent critical Casimir attractions [82]. The attractive force arises
from the confinement of fluctuations of a binary solvent between the surfaces of the
colloidal particles. The particles have a radius of r = 1.25µm and are suspended in
a binary solvent of lutidine and water with lutidine weight fraction cL = 0.32 and
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with 5mM potassium chloride, in which they sediment into a quasi two-dimensional
layer. Salt (5mM potassium chloride) is added to screen the electrostatic repulsion.
By setting the temperature to ∆T = 5.5◦C below the critical temperature Tc =
33.6◦C, we induce an attraction with potential depth E ∼ 10kBT and range ∼ 0.01r
that causes assembly of the particles. We use optical tweezers to grab the ends of
assembled colloidal chains.

For the optical tweezers, laser light of 1064nm was used at a power of 20 ±
5mW. The trap constants were determined by tracking the Brownian movement
of a single colloidal particle in the trap and fitting its displacements from the trap
center with a gaussian distribution to obtain the standard deviation σtrap. We used a
long measurement time such that the out-of-trap displacements become Boltzmann
distributed. Assuming a harmonic trap, the trap constant is then determined by
k = kT/σ2

trap. We obtain k = 0.9 ± 0.2pN/µm, where the error is estimated based
on the locating accuracy of εtrack = 0.02µm. The partial absorption of the laser
light by the binary solvent causes a local heating of 0.5K at the trap. This was
determined by measuring the temperature at which phase separation occurs in the
laser focus and subtracting that from the phase separation temperature when the
laser is turned off. This temperature increase is expected to cause a slight increase
of the critical Casimir attraction close to the trapped bead.

We used two optical tweezers to push on the colloidal chain as follows: Starting
from a straight chain, we apply a compressive displacement u by moving one of the
optical tweezers at a constant rate of 27nm/s towards the other. We then image the
individual particles at a frame rate of 20s−1, and locate their centers in the image
plane with an accuracy of 20nm using particle-tracking software [122]. In addition,
we measure the force exerted on the chain from the bead displacement out of the
static trap using F = k(y−ytrap), where y and ytrap are the positions of the trapped
bead and trap center, respectively. We define L as the end-to-end distance of the
chain, and L0 = 24.7± 0.1µm as the end-to-end distance for vanishing force F = 0.

4.2.2 Molecular dynamics simulations
We support our experiments with molecular dynamics simulations of the buckling of
a colloidal chain. Colloidal particles with position ri in an assembled chain satisfy
the Langevin equation:

mr̈i = −kT
D

ṙ −∇riV +
√

2Dξ (4.1)

withD = kT/γ the diffusion coefficient, γ the viscous drag coefficient, ξ a normalised
stochastic force, and

V =
k

2
d2

0

N−1∑

i=1

(εi − 1)2 +
kθ
2

N−2∑

i=1

(θi − θi,0)2, (4.2)

where d0 is the equilibrium bond distance, θi,0 the equilibrium angle, εi = |ri+1 −
ri|/d0 − 1 and cos(θi) = (ri+2 − ri+1) · (ri+1 − ri)/|ri+2 − ri+1||ri+1 − ri|. On
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timescales ∆t > mD
kT the Langevin equation can be considered overdamped and

reduces,

ṙi = − D

kBT
∇riV +

√
2Dξ. (4.3)

These can be simulated by molecular dynamics simulations following the Ermak-
McCammon equation [31]:

ri(t+ ∆t)− ri(t) = − D

kT
∇riV∆t+

√
2D∆tξ, (4.4)

We simulate an infinitely stiff trap by fixing the positions of the two end particles.
Trap movement is then implemented by moving one end particle towards the other.

Time, length and energy were expressed in natural units such that tD = d2
0/D =

1tD, kT = 1kT, d0 = 1d0. In all simulations the timestep was set to ∆t = 2−16tD

which is small enough to have a stable integration. In order to compare with ex-
periments all quantities where later rescaled using the experimental values D =
0.138µm2/s, kT = 4.14× 10−21J corresponding to ∼ 0.004pNµm, and d0 = 2.74µm.

The experimental values of the bending and stretching stiffness as determined
from the experimental force are, respectively, kθ = 1048kT, and k = 14760kT/d2

0. To
simulate the compression experiment, we moved the trap in 128 steps of ∆u = 0.01d0

starting from ui = −0.3d0, with a waiting time of tstep = 32tD at each step. This
gives a similar total displacement as the experiment. The compression speed is much
lower than in the experiments in order to obtain better statistics. For the analysis,
we disregarded the first 8tD after each trap displacement to allow for equilibration.
In experimental units, this entire ramp translates to a total displacement of utot =
3.5µm over a time of 62 hours with each step taking 30 min, giving an effective speed
of vtrap = 0.9nm/min.

We further extended the simulations by incorporating elasto-plastic effects. In
these simulations, we allowed an instant plastic relaxation to occur at a threshold
angle θp, such that the new equilibrium bond angle becomes θ0,i = θc. We used the
same kθ and k value as for the previous elastic simulations. A continuously increasing
trap displacement was simulated for a total time of ttot = 1.9tD, increasing from
ui = −0.3d0 to uf = 2.5d0. This translates to a trap speed of vtrap = 37nm/s, close
to the actual experimental value. In order to estimate the critical bending angle,
we performed 50 simulation runs at a number of θc ranging from 0.1 to 0.2rad,
with steps of 0.01rad. The best fitting θc was determined by comparing the average
plastic compression up to the experimental value. This gave θc = 0.21rad.

4.3 Euler buckling
To investigate its buckling behavior, we subject the initially straight colloidal chain
to continuously increasing compression. We observe that the chain undergoes a
sharp buckling transition at a well-defined compressive displacement uc, as shown in
Fig. 4.1b. In the vicinity of uc, fluctuations significantly increase, in agreement with
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Figure 4.1: Buckling of a colloidal chain. (a) Sketch of the colloidal chain compressed
by optical tweezers (red dots). (b) Bright-field microscope images of the chain at
u = −0.45,−0.25, 0.2, 0.6, 0.8, 1.0µm, respectively from left to right, under a compres-
sive displacement. White bars indicate the position of the laser trap that is slowly
displaced and red bars the position of the static trap. The scale bar is 3µm. The
color code demarcates regions of the straight, elastically and plastically buckled chain,
bounded by uc and up, respectively. (c) Overlay of three reconstructed chains, one
corresponding to the still shown in panel (b), one taken 1.5 seconds earlier (light grey)
and one 1.5 seconds later (dark grey). (Video: https:// youtu.be/ iRoV5pJP3U4 )

recent predictions [210], as clearly visible in the superposition of three reconstructed
images in Fig. 4.1c; their analysis and effect on buckling is the key novelty of our
paper. Upon further compression, the fluctuations decrease again, and finally, a kink
appears at a well-defined large compressive displacement up.

To further elucidate this buckling behavior, we measure the force exerted by
the trap on the chain as a function of the compressive displacement u Fig. 4.2a.
We observe a linear increase up to a critical displacement uc beyond which the force
remains essentially constant. Such force-displacement curve is strongly reminiscent of
a classical Euler buckling problem [211–213]. To confirm the validity of this analogy,
we map our result onto that of a continuous beam. We use the Euler buckling
criterion for the critical force Fc = π2B/L2

0 and the critical displacement uc = Fc/S,
where B is the bending modulus and S the linear stiffness of the beam. Determining
the critical force Fc = 0.19 ± 0.02pN and displacement uc = 0.21 ± 0.02µm by
interpolation, we find that the bending rigidity of the chain is B = 11.9±1pNµm2 and
the linear stiffness is S = 0.9± 0.1pN/µm, corresponding to a persistence length of
Lp = B/kT = 2900±240µm, similar to microtubules [68]. Furthermore, this stiffness
value is consistent with that obtained from a linear fit to the pre-buckling slope

https://youtu.be/iRoV5pJP3U4
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Figure 4.2: Elastic buckling regime: bending force and first Fourier mode, experiments
(grey dots), simulations (blue dots) and continuum model (purple line) (a) Compres-
sive force F exerted by the tweezer on the chain versus displacement, u. Note that all
experimental data points are depicted, while the simulation data has been averaged
over fixed u. (b) Amplitude of the first Fourier mode M1 of the particle deflections.
Only positive mode amplitudes corresponding to positive deflection of the chain are
shown. The inset shows the same quantity squared. (c) Entropic force from simula-
tions, see text.

S = 0.8 ± 0.1pN/µm. Such an excellent agreement between a model for athermal
slender structures and our thermally activated colloidal chain is striking.

The validity of this mapping is further confirmed by the shape of the buck-
led state, which we quantify by the amplitude M1 of the first Fourier mode of the
beam deflection (see appendix for details) as a function of the compressive displace-
ment u Fig. 4.2b. While this amplitude is close to zero in the pre-buckling regime,
u < uc, it sharply departs from zero and increases as M1 ∝ (u − uc)

1/2 beyond
the buckling point, see Fig. 2b inset. Again, this result is qualitatively similar to
that of a macroscopic Euler buckling problem [211–213]. Note that such deflection-
displacement curve provides an independent measure of the critical displacement
uc = 0.21± 0.02µm, which is equal to the previous one within experimental errors.
These results are consistent with and rationalize previous studies reporting a bending
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Figure 4.3: Schematic of the model system used for the simulations and the analytical
model.

rigidity of linear assembled structures [69, 116, 214].
Numerical simulations.— We further rationalize the experimental findings by

molecular dynamic simulations of elastically coupled particles in two dimensions
subjected to thermal fluctuations, see Fig. 4.3. Specifically, we solve the overdamped
Langevin equation [215]:

ṙi = − D

kBT
∇riV +

√
2Dξ, (4.5)

where ξ a normalized stochastic thermal force, D = 0.138 ± 0.1µm2/s is the diffu-
sion coefficient measured experimentally by tracking diffusing colloids, and T the
temperature equal to the experimental temperature. The potential energy is given
by:

V =
k

2
d2

0

N−1∑

i=1

ε2i +
kθ
2

N−2∑

i=1

(θi − θi,0)2, (4.6)

with εi the extension of bond i, θi the angle between bonds i and i + 1, and θi,0
the equilibrium angles which vanish for the initially straight chain. The equilibrium
bond distance is determined from experiments as the average particles separation
d0 = L0/N − 1. We also take the bending rigidity and bond stiffness from the
experimental measurements k = S(N − 1) and kθ = B/d0 and assume an infinite
trapping potential. We then apply compression by moving the traps stepwise towards
each other with a displacement ustep = 0.01d0 and waiting time tstep = 32d2

0/D
between each step, yielding an average compression rate of 0.9nm/min, much slower
than the experiments, allowing us to acquire good statistics. Despite the simple
assumptions of the numerical model, the results are in good agreement with the
experiments, see Fig. 4.2. The force and deflection curves both predict the buckling
instability at uc and correctly describe the force behavior; the quantitative deviations
are likely due to (i) plastic effects, and the fact that (ii) the experimental boundary
conditions (laser traps) do not allow complete free rotations of the trapped colloids.

4.4 Fluctuations and entropic effects
We can use the simulations to extract the entropic contribution Fe to the compres-
sive force associated with the thermal fluctuations of the colloidal chain. We do
so by subtracting from the compressive force at room temperature the force at zero
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Figure 4.4: Fluctuations close to buckling. (a) Variance σ2
M1

of M1 above the mode
of its distribution versus the compressive displacement u. The inset shows a loglog
plot of σ2 versus |u − uc|/u. (b) Correlation time τ of M1. Inset: loglog plot of τ
versus |u − uc|/u. Experimental (numerical, continuum model) data is represented
by grey triangles (blue triangles, purple lines). Simulation and continuum model
values are divided by a factor of 3 to fit on the same axis. (c-e) MD simulations for
decreasing chain persistence length showing normalized first Fourier amplitudeM1 (b),
variance (c) and entropic force Fe versus normalized u shifted by the zero temperature
buckling compression u0

c = π2B/SL2
0. Blue, orange, green, red curves correspond

to respectively 1, 1/10, 1/100 and 0 times the experimental bending rigidity. The
variance was calculated over a limited time window of 1s.

temperature. Fe shows a characteristic signature of the buckling transition Fig. 4.2c:
It diverges and changes sign at the buckling transition (from compressive to repul-
sive), reflecting the change in the contour length of the chain upon buckling and the
associated change in the number of chain configurations. Yet, the magnitude of Fe
is just below the experimental resolution, and cannot be resolved experimentally.

Nevertheless, we can measure the fluctuations directly by monitoring the vari-
ance of the Fourier amplitudes. We focus on the first mode and compute its variance
σ2
M1

= 〈(M1 − |M̄1|)2〉M1≥|M̄1|. Upon approaching the buckling point, this variance
grows and diverges Fig. 4.4a. The double-logarithmic plot (inset) suggests a diver-
gence σ2

M1
∼ |u − uc|−ν with exponent ν = 1. We also measure the typical time
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Figure 4.5: Transition to low persistence length. (a) Scaling collapse of the first
mode amplitude, M1 versus normalized (u − uc) with uc the buckling displacement.
(b) Extracted normalized buckling point uc as a function of flexibility. Two scaling
regimes are evident: Exponent -1 associated with the chain compressibility for low
flexibility (high bending stiffness), and a regime with exponent +1 associated with the
loss of bending rigidity.

scale of fluctuations, τM1
, from exponential fits to the decay of the autocorrelation

function C(∆t) = 〈M1(t)M1(t+ ∆t)〉; this fluctuation time shows likewise a signifi-
cant increase upon approaching uc, see Fig. 4.4b. Yet, the uncertainty and limited
number of data points do not allow us to pinpoint the divergence of these growing
fluctuations quantitatively.

Continuum model.— This stochastic buckling transition is described in a simple—
analytically solvable— continuum limit of Eq. (2), known as the extensible elastica
[216]. In this limit, the energy can be decomposed into independent contributions
from each Fourier mode. To first order in u, the energy dependence on the first mode
amplitude M1 becomes a double-well, given by

V1 =
Sπ2

4L0
(uc − u)M2

1 +
Sπ4

32L2
0

M4
1 +O(u2) +O(M6

1 ), (4.7)

where uc = Bπ2/SL2
0, B the bending rigidity and S the stretching stiffness. Higher

modes exhibit a single harmonic energy dependence and equilibrate to zero (see ap-
pendix). Mechanical equilibria of this extensible elastica, prescribed by the condition
∂V1/∂M1 = 0, are given by M1,m = 0 in the pre-buckling regime (u < uc), and by
M1,m = ±2/π

√
L0(u− uc) in the post-buckling regime (u > uc). The corresponding

forces, are Fm = ku/2 for u < uc and Fm = Fc(1 + (u − uc)/2L0) for u > uc. Fur-
thermore, assuming bending energies obey a Boltzmann distribution in equilibrium,
one finds that both σ2

M1
and τM1 diverge with a power of −1, see appendix. These

predictions are in perfect agreement with the experiments and simulations as shown
in Figs. 4.2 and 4.4 (pink curves). A physically appealing picture emerges from
these results: once in presence of stochastic noise, the classical buckling transition
remains a supercritical bifurcation, but the vicinity of the bifurcation is associated
with fluctuations of diverging magnitude and timescale.
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This mean-field buckling behavior diminishes for higher fluctuations. We simu-
lated chains with lower bending rigidities exhibiting stronger fluctuations and find
that the buckling transition looses its sharp character and eventually vanishes Fig.
4.4c. Concomitantly, the divergence of buckling fluctuations broadens and eventu-
ally disappears Fig. 4.4d. This is associated with a striking change in the entropic
force Fig. 4.4e that looses its characteristic change of sign: the positive branch at
|u − u0

c | > 0 vanishes, indicating the gradual transition to the freely jointed chain
being always attracted to zero end-to-end distance. These results are in qualitative
agreement with the analytic results for a filament with decreasing bending rigidity
in [208]. Furthermore, other routes towards stronger fluctuations reveal a similar
loss of the buckling transition as shown by simulations of longer chains and higher
temperatures in the appendix. To fully elucidate the transition from rigid to flexible
chains, we collapse the buckling curves in Fig. 4.4c by plotting them versus u− uc,
where we subtract the critical buckling displacement, see Fig. 4.5a; the extracted
uc shows two scaling regimes: it first decreases and then increases with increasing
chain flexibility, see Fig. 4.5b. The initial decrease with exponent −1 is due to the
additional compressive component of the chain; the same decrease is observed for
vanishing temperature (blue data uT=0

c ), for which, according to Euler buckling, uc
is given by uT=0

c = Fc/S ∝ L−1
p , thus the exponent −1. Towards higher flexibility,

however, uc grows with exponent +1, reflecting the transition from a rigid beam to
a freely joint chain, for which uc becomes infinite. We thus find that the buckling
transition increases linearly with increasing flexibility of the chain. Thus, it grad-
ually diminishes as the energetic advantage of buckling in the lowest mode ceases
together with the bending rigidity.

4.5 Plastic buckling
We also explored plastic effects. At even larger displacements u > up, the chain
undergoes localized bending deformations as shown in Fig. 1b and c (utmost right
images), which we find to be irreversible upon releasing the applied compression. To
quantify this degree of localization, similar to plastic events in amorphous materials,
we calculate the inverse participation ratio (IPR), which varies between N − 2 for
fully localized deformations and 1 for distributed deformations, as defined by

IPR = (N − 2)

∑N−2
i=1 θ̂4

i

(
∑N−2
i=1 θ̂2

i )
2
. (4.8)

Here θ̂i = |θi| − 〈|θi|〉u<uc , i.e. the local angular deviation from the straight chain.
When the chain buckles elastically, the IPR remains small, see grey curve in Fig.
4.6a, while at larger compression u = up = 0.89± 0.02µm, when the chain develops
a kink, a clear spike appears. The value of about 6, which is only slightly smaller
than the maximum N − 2 = 8 indeed suggests very localized deformations. These
features can be easily reproduced in the simulations, when we augment our numerical
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Figure 4.6: Plastic buckling. (a) Inverse participation ratio (IPR) of the experimental
chain (grey), and of 50 independent MD simulation runs (blue shading) as a function
of continuously increasing compression. The simulations are performed with elastic
parameters as in Fig. 4.2 and θc = 0.21 rad. Vertical lines and colors distinguish
regimes of the straight, elastically and plastically buckled chain, and indicate two
plastic slippage events. Reconstructed snapshots show the experimental chain for
u = 0, 0.5, 1 and 1.5 µm, with snapped bonds highlighted in red. (b) The IPR
(black), M1 (blue) andM2 (yellow) versus time of a different compression experiment.
Here, the chain was shorter (N = 7), and the trap was moved stepwise, by δu = 0.1µm
every 60s. (Video: https:// youtu.be/R9IR5LIa1GU )

model with a simple elasto-plastic model. Beyond a threshold angle θp, an instant
plastic relaxation occurs such that the equilibrium bond angle becomes θ0,i = θp.
Taking a value θp = 0.21rad gives results qualitatively and quantitatively similar
to the experiment, see blue shading in Fig. 4.6a. By repeating 50 simulations we
obtain an average up,sim = 0.84±0.09mum, which indeed corresponds to the value up
observed in the experiments. Intriguingly, the combination of elasto-plastic dynamics
and thermal noise can further lead to higher-order buckling modes when the chain is
compressed at higher compression rates Fig 4.5b. We observe a sequence of buckling
transitions through mode 1, mode 2 and mode 3, that we interpret as a sequence
of plastic events, as clearly shown by the mode 1 and 2 amplitudes (blue and olive)
and IPR (black).

https://youtu.be/R9IR5LIa1GU
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4.6 Summary and Outlook
We have experimentally demonstrated the rich stochastic buckling dynamics for a
colloidal chain under uniaxial compression, and rationalized our experimental results
by simulations and analytic modelling. In the elastic regime, bending interactions
and stochastic noise lead to diverging bending fluctuations. With decreasing persis-
tence length, as higher-order modes are excited, this divergence smoothens, and the
buckling transition eventually vanishes. Important biological filaments have persis-
tence length of e.g. Lp = 5000µm for microtubules, of similar order as our colloidal
chain, while for actin filaments, Lp = 17µm, putting those already in the large fluc-
tuation regime, where the buckling transition smoothens [217]. These results have
important consequences for the mechanics of biological tissue [68] and colloidal gels.
Depending on the mesh size relative to the persistence lengths, filament buckling
interactions become important, and the observed divergence of fluctuations then
translates into an entropic contribution to the stress, which should manifest in the
rheology of such networks. Our results open up unique avenues for self-assembled
colloidal structures with advanced nonlinear mechanics of relevance for the under-
standing of the rheology of gels [195], the mechanics of living tissues [68] and of
designer colloidal architectures [70].
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4.7 Appendix

4.7.1 Mode definition and effective mode diffusion
constant

After locating the particles in the chain, a mode decomposition is performed in the
following manner: First, the out-of-line deflection of every non-trapped particle j is
calculated as the perpendicular distance xj from the line connecting the two trapped
particles at the ends. Next, a scaled discrete sine transform of type 1 is performed
on xj defined by:

Mi =
2

N − 1

N−2∑

j=1

xj sin(
π

N − 1
ji) i = 1, ..., N − 2 (4.9)

Here the normalization has been chosen such that:

xj =

N−2∑

i=1

Mi sin(ij
π

N − 1
) j = 0, ..., N − 1 (4.10)

Based on the overdamped Langevin equation of individual colloids, Eq. 4.2.2 in
the main text, we can derive an equivalent dynamical equation in terms of modes,
given by:

Ṁi = −DM

kBT
∇Mi

V +
√

2DMξ. (4.11)

Here DM is an effective diffusion coefficient. This coefficient is equal for all modes
and can be derived by inserting Eq. 4.10 in Eq. 4.2.2 of the main text. This gives
DM = 2D/(N − 1).

4.7.2 Theoretical model
We parameterize the shape of an extensible elastica by r(s) = (x(s), y(s)) with
s running from 0 to L0, the rest length. The compressive strain is defined as
γ(s) =

√
(dx/ds)2 + (dy/ds)2 and the orientation angle as φ(s) = arctan(dy/dx).

The energy functional of an elastica including elastic energy and work exerted by a
compressive force F is given by [32]

V =
B

2

∫ L0

0

(
dφ

ds

)2

ds+
L0S

2

∫ L0

0

(γ − 1)2ds+ F

(∫ L0

0

γ cos(φ)ds−R
)
. (4.12)

Here R = L0 − u is the end-to-end length, B is the bending rigidity and S the
stretching stiffness of the elastica. Minimizing V with respect to γ and F , we find

γ = 1− F

SL0
cosφ, F = SL0

∫ L0

0
cosφds−R

∫ L0

0
(cosφ)2ds

(4.13)
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Inserting these back into Eq. 4.12, we obtain an energy Vφ purely as function of the
orientation angle, given by

Vφ =
B

2

∫ L0

0

(
dφ

ds

)2

ds+
SL0

2

∫ L0

0
cos(φ)ds−R

∫ L0

0
(cosφ)2ds

This is the energy we will use to determine the equilibrium angles φ(s) and also
the size of thermal fluctuations in φ. Note that it is indeed correct to use Vφ to
determine the equilibrium. However, using Vφ to determine the size of fluctuations
disregards the effect of thermal fluctuations in γ and F . These fluctuations are not
uncoupled from fluctuations in φ, as can be seen from Eq. 4.12. Yet, we assume that
these fluctuations have negligible influence.

After a Fourier transform assuming Neumann boundary conditions

φ =

∞∑

n=1

αn cos(
nπ

L0
s), (4.14)

Vφ decomposes into Vφ = Su2/2+
∑
Vαn . It follows that up to a critical compression

uc all modes equilibrate to zero. After uc, the first mode becomes nonzero and the
chain buckles, which can be seen from

Vα1 =
SL0

4

(
u0
c +

u2

L0
− u
)
α2

1 +
S

32

(
L2

0 −
7uL0

2
− 2u2

)
α4

1 +O(α6
1), (4.15)

where u0
c = π2B/SL2

0. The buckling compression of the first mode is found by
determining the root of the term in front of α2

1, giving uc = L0

2

(
1−

√
1− 4u0

c/L0

)
.

In the regime that we probe experimentally, uc/L0 and u/L0 are small numbers.
Therefore, uc ≈ u0

c , and lowest order terms dominate in Vα1
, which reduces to

Vα1
=
SL0

4

(
u0
c − u

)
α2

1 +
SL2

0

32
α4

1 +O(u2
c) +O(u2) +O(α6

1) (4.16)

Minimizing this energy we see that the equilibrium first mode is given by

α2
1,m =

{
0 u < uc
4
L0

∆u+O(∆u2) u > uc,
(4.17)

with ∆u = u− uc.
To derive the compressive force up to first order in ∆u, care has to be taken

to solve α2
1,m from Eq. 4.15 one order higher in terms of uc/L0. Doing that and

inserting in Eq. 4.13 one obtains

F =

{
Su u < uc

Fc(1 + ∆u/2L0) +O(∆u2) u > uc.
(4.18)

where Fc = Suc.
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As a last step to obtain the double-well potential stated in the main text we
have to transform α1 to M1, defined by Eq. 7.1. Using that for small deflection and
compressions we have M1 = L0α1/π, and Eq. 4.16 becomes Eq. 4.7.

Furthermore, we can derive an expression for the variance σ2
M1

of the first-mode
amplitude. If we assume that in equilibrium, the bending energies given by Eq. (4.15)
obey a Boltzmann distribution, then the mode fluctuations around the average be-
come Gaussian distributed with variance

σ2
M1

=

{
2kTL0

π2S |uc − u|−1 u < uc
kTL0

π2S |uc − u|−1 u > uc.
, (4.19)

Note that this approach breaks down for u >∼ uc, in the post-buckling regime near
the buckling point, where the distribution becomes bimodal rather than a single
Gaussian as predicted by Eq. 4.19. For the fluctuation time, the overdamped dy-
namics for a harmonic-well predicts that τM1 = σ2

M1
/DM1 , where DM1 = 2D/(N−1)

is the effective mode diffusion.

4.7.3 Exploring the strong fluctuation regime
Here, we investigate the large-fluctuation regime in more detail. Specifically, we
address the effect of increasing fluctuations achieved by (i) increasing temperature,
(ii) decreasing the bending rigidity, and (iii) increasing the number of particles of the
colloidal chain in the MD simulations. Each of these routes increases the flexibility
f = L/Lp of the chain, where Lp = B/kT is the persistence length, and L the total
length of the chain. It has been predicted theoretically that for stiff to semi-flexible
compressible rods with persistence length Lp < L, thermal fluctuations contribute
an additional entropic force Fe (on top of the non-thermal compressive force F ,
Eq. 4.18) of O(T ) far away from uc and O(

√
T ) near uc [210]. Other theoretical

work, which assumes an incompressible semi-flexible rod in two dimensions, predicts
a critical entropic force increase Fe,c ∝ kT , [207, 208].

The simulation results for increasing temperature, decreasing bending rigidity,
and increasing number of particles are shown in Fig. 4.7, columns from left to right,
respectively. As a unique feature of the buckling transition, the entropic force (top
row) switches sign when crossing uc from negative (favoring compression) to positive
(favoring expansion). The negative (tensile) entropic force upon approaching uc
from the left reflects the driving force towards larger number of configurations with
decreasing end-to-end distance. At buckling, the force changes sign as the buckled
state (mode 1 fluctuation) again suppresses the number of accessible configurations
(higher-order fluctuations). The resulting positive (repulsive) entropic force leads
to an extra buckling force barrier increasing the buckling compression, such extra
force barrier was predicted by both theoretical groups [208, 210]. Furthermore, we
find, as predicted by [210] but contradicting [208], that for Lp < L the amplitude
of this positive peak goes as O(

√
T ), as can be seen by the collapse of peak height

when rescaling by
√
kT (second inset top left). Further away from uc the entropic
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force scales with O(T ), as can be seen by the collapse when rescaling by kT (first
inset top left), also inline with [210]. The discrepancy between the two theoretical
predictions, and our closer agreement with [210], could be explained by the fact
that our simulation assume a compressible chain, more closely agreeing with the
theoretical model of [210].

The entropic effects clearly increase with increasing flexibility f of the chain.
As fluctuations become more prominent at higher temperature, smaller bending
stiffness, and for longer chains, the amplitude of the negative (pre-buckling) entropic
force grows. The negative region also extends as uc drifts to the right. This can be
seen in the growing region in between the negative and positive peak of Fe. The
positive peak on the other hand decreases in amplitude (inset top left, top middle),
until it vanishes and Fe shows only attraction towards u = 0, reflecting the behavior
of a freely joint chain with a continuously increasing entropic tensile force upon
decreasing end-to-end distance. These effects are less visible in the data of the
increasing chain length (right column), which are limited to lower chain flexibilities
due to computational costs of equilibrating long chains.

As a result of this trend, uc disappears: very flexible chains lose the signatures of
the buckling transition. This is most clearly observed in the gradual disappearance of

Figure 4.7: MD simulation effect on Fe, σ2 of three different routes that increase the
flexibility of the system: first column increasing T , second column B, third column
N . Fe is calculated by subtracting the non-thermal F , Eq. 4.18, from the measured
Fsim. σ2

cut is the variance of the M1 over a time window of around 1s. σ2
>mode

is are fluctuations above the mode of the distribution as defined in the main text.
All simulations were run using the same protocol as described above for the elastic
simulation.



4.7 Appendix 83

the characteristic kink of the first-mode amplitude, as shown in the bottom row. At
the same time, the divergence of fluctuations (middle row) decreases and eventually
vanishes. Hence, the thermally activated buckling transition with its characteristic
diverging fluctuations as described by mean-field theory is observed only in a limited
range of small fluctuations, where the predominantly elastic chain (with flexibility
L/Lp < 1) has an energetic advantage of buckling into the lowest mode (opposed to
the excitation of higher modes).

4.7.4 Effective compressibility
The stretching stiffness S ∼ 1pN/µm of the chain that we obtained from the slope
of the F − u curve is unexpectedly low. A best guess of the interaction potential
of these particles, is shown in Fig. 4.8a. Though this theoretical potential is not
expected to be quantitatively accurate due to the binary system being realtively
far from critical, we can use it for an order of magnitude estimation of the bond
strength. From a harmonic approximation around the minimum of the potential we
expect a kexpect ∼ 104 pN/µm and thus a Sexpect ∼ 103 pN/µm. This two orders
of magnitude difference can be understood when looking at the time development
of the individual bond distance, see Fig.4.8b. The figure shows that only the bonds
at the end of the chain, close to the trap, appear compressible. In fact the bonds in
the middle do not systematically compress and only show a variation on the order of
10 nm, equal to the locating accuracy. This is consistent with a lower than locating
accuracy maximal compression of ∼ 5 nm that’s expected from kexpect over the
experimental force window. From this we conclude that the high compressibility
is not due to the interparticle potential but results from the boundary conditions
of the chain. One possible cause could be out of plane movement of the particles
close to trap. This would result in an apparent compressibility when looking at
projected coordinates. Because these effects are difficult to model we have decided
to treat the chain as having an effective compressibility. This deviation between
experimental and simulation conditions might explain the quantitative disagreement
in the fluctuation amplitude, Fig. 4.4. These are lower in the experimental case than
predicted by simulation. From Eq. 4.7 we indeed see that a lower S would decrease
the fluctuation amplitude.
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Figure 4.8: (a) Effective interaction potential based on chapter 3, for ∆T = 5.5K
(6.5k), top curve (bottom curve). As theoretical model input parameters the ex-
perimental parameters of our specific binary mixture were used, the particle surface
charged was taken to be −0.17 e/nm2 and the rwet = 1.38 which was fitted by match-
ing the aggregation temperature of theory and experiment. (b) The individual bond
distances di as a function of u, dots are all data points, lines are averages. The bond
number i is defined in (c).







CHAPTER 5

Critical Casimir self-assembly
of patchy colloids

Patchy particles are an attractive system to assemble via in and out-of-equilibrium
pathways in order to create functional designer materials. However, achieving spe-
cific single-bonded particle interactions remains challenging. Here we present a ver-
satile system showing single bond per patch interactions that are reversible and tun-
able using temperature dependent Critical Casimir forces. We assemble different
types of “colloidal molecules” using dipatch and tetrapatch particles and mixtures
thereof: Small clusters of dipatch particles form short chains, tetrapatch particles in-
troduce tetrahedral bond angles that result among others in zigzag chains and cyclic
structures. We categorize these small clusters using an analogy with aliphatic carbon
compounds such as butane and pentane. Larger number of dipatch particles form
analogues of polymers that can crosslink with the addition of tetrapatch particles and
we study their formation kinetics. Finally we show that, by decreasing particle size
to speed up growth kinetics, dipatch and tetrapatch mixtures form a percolated gel.
These results demonstrate the assembly control that patchy particles in combination
with the in-situ controllable critical Casimir interaction offer.
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5.1 Introduction
Continuous advances in synthesis have yielded sophisticated colloidal building blocks
with control over shape, composition and interaction [38, 41]. These building blocks
have been shown to self-assemble into various designer structures such as micelles,
tubes and shells [49, 50, 53], freely jointed mechanisms and chains [13, 43, 54], chi-
ral architectures [42] or shape-changing and activated filaments [15, 55]. However,
apart from lattice structures, which are global equilibrium states [16], these designer
assemblies are so far limited to a small number of particles not integrated in a larger
matrix. In order to create functional materials, multiple of these components need
to be structured hierarchically. This requires a detailed knowledge and control over
in and out of equilibrium self-assembly pathways [41, 63, 218]. A common ingre-
dient in many approaches to program self-assembly pathways are limited valence
particles with directional bonds. Patchy particles are an especially attractive system
to achieve limited valency and directional bonding as they use only a minimal ad-
justment, a heterogenous surface with well-defined patches of tunable size, to carry
considerable self-assembly information [219, 220]. Though simulations have thor-
oughly explored these systems [59, 221, 222], experiments so far have only achieved
patches that are large and form more than one bond [16, 49, 223], or assemblies that
are limited to a small number of particles [14]. However, small patches resulting in
a single bond per patch would lead to more deterministic structures and thus carry
more direct assembly information.

Here we present a versatile system showing single bond-per-patch interactions
that are reversible and tunable using temperature-dependent Critical Casimir forces.
Critical Casimir forces exploit the universal temperature dependence of solvent fluc-
tuations in near-critical binary mixtures to induce effective particle interactions that
can be finely adjusted via the temperature-dependent solvent correlation length.
Furthermore, Critical Casimir forces depend uniquely on the boundary conditions,
which are determined by the adsorption preferences of the mixture’s components at
the confining surface [96, 124, 224]. Selective bonding should result between particle
patches when they have the opposite adsorption preference as the particle matrix,
as has recently been demonstrated by grafting a hydrophobic polymer on a patch
surface of an elsewhere hydrophilic particle [223]. Here, we achieve an adsorption
contrast by adding higher valent ions (Magnesium Sulfate) to a binary solution (Wa-
ter/Lutidine) and using a recently developed patchy particle system with fine control
over patch size and a clear material contrast between bulk and patch [38]. We show
that upon addition of Magnesium Sulfate, patches become lutidine-philic, mean-
ing they have an adsorption preference for lutidine over water whereas the particle
bulk is water-philic. This adsorption contrast enables the patch-to-patch assembly
by critical Casimir forces in solvents with lutidine concentrations below the critical
concentration.

Using this system, we assemble dipatch and tetrapatch particles and show that
for small assemblies, these form colloidal molecules with structures analogous to
aliphatic carbon compounds such as butane and hexane. In addition, we show that
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larger assemblies of dipatch particles form colloidal polymers, and we find that these
colloidal polymers have an exponential size distribution. By including tetrapatch
particles, these polymers cross-link, forming branched clusters that instead show a
power-law size distribution, and approach a space-spanning network with a mesh
size tunable by the ratio of tetrapatch/dipatch particles. We characterize the assem-
bly kinetics and show how the aggregation speed is tuned by both concentration and
temperature. We further show two dynamic regimes, an initial linear regime followed
by a slower regime dominated by crowding. Finally, we achieve a true patchy per-
colated network by using smaller particles to speed up the growth kinetics, possibly
reflecting a true equilibrium gel.

5.2 Observation of patchy particle assembly

5.2.1 Methods
To investigate the effect of critical Casimir interaction between patchy particles and
to study the formation and structure of patchy clusters, dipatch and tetrapatch
particles were dispersed in the binary mixture either in pure form, or at the desired
ratio. In order to only have critical Casimir interactions between patches we used
the “optimized” binary mixture at a volume faction of 0.25 lutidine water and added
0.375mM MgSO4, see chapter 2. This salt concentration was chosen to be significant
enough to turn patches lutidine-philic yet be small enough to not de-stabilize the
system.

Various patchy particles were used to explore the system (see chapter 2 for syn-
thesis and characterization). We studied the effect of patch-size by comparing cluster
formation of particles TP-A and DP-B, with sizes of d = 3.7(2) µm and d = 3.1(1) µm
that have respectively the largest and smallest patch size. To study the effect of
mixing dipatch with tetrapatch particles, we used dipatch particles DP-A and tetra-
patch particles TP-B, with sizes of d = 3.2(1) µm and d = 3.7(1) µm, that have
approximately the same patch size and only differ in the number of patches, and are
expected to have the same interaction strength between patches. Finally, smaller
dipatch (d = 1.6 ± 0.1 µm) and tetrapatch particles (d = 1.8 ± 0.1 µm) were used
to study the effect of decreasing particles size. All the suspensions were filled into
capillaries, which were subsequently sealed using chemically resistant Teflon grease.
Owing to their size, particles quickly sediment to the bottom of the capillary forming
a single monolayer.

Small-scale structures. Initially the sample volume fraction ≈ 0.002 was kept
low, forming a monolayer with surface coverage φ ≈ 0.1, which was determined by
particle counting and using φ = Nπr2

part/A, with N the number of particle in field
of view with area A and rpart the particle radius. Such a low coverage prevents the
formation of continuous space-spanning structures, ideal for studying the formation
and structure of patchy clusters of a limited number of particles N . 20.

To study particle assembly, we used the temperature-controlled microscope setup
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as described in chapter 2. Critical Casimir forces were induced by quenching tem-
perature to a small temperature offset, ∆T = 0.1K, below the phase separation
temperature Tcx. In order to demonstrate the reversibility and study the break-
up dynamics, temperature was subsequently decreased, and we observed that the
structures that had formed split up and the particles redispersed. Such heating and
cooling cycles were performed multiple times varying the final low temperature be-
tween ∆T = 2K, for a strong decrease of interaction strength, and ∆T = 0.2K for a
minor decrease. To image the arrangement of patches we used epifluorescent imag-
ing. In addition, bright field imaging was used to identify the center of the patchy
particle.

Larger-scale structures. Next, we prepared samples of DP-A particles at two
higher volume fractions ≈ 0.005 and ≈ 0.01. After sedimentation, this resulted
in a monolayer with surface coverage φ ≈ 0.2% and φ ≈ 0.4%. Depending on
the sample concentration approximately 2000 − 4000 particles were in the field of
view. Furthermore, samples with additional amount of tetrapatch particles were
prepared by mixing the dipatch samples with tetrapatch particles TP-B, at well-
defined fractions of c4p = 0.1 and 0.2. Before each experiment, the exact surface
fraction was determined to account for sample density inhomogeneities due to a not
completely flat capillary.

Particles were left to assemble over a period of approximately 12 hours. During
the assembly process, images were recorded at a frame rate of 10−1fps. To study the
effect of interaction strength on the assembly, we performed different assembly runs
on the same samples varying ∆T from 0.18K to 0.05K. Below 0.18K no significant
bonding was observed. After each assembly experiment, the temperature was lowered
to ∆T = 0.5K in order to redisperse the sample. We then initiating aggregation again
through a quench to a different temperature , etc.

Bright-field microscopy was used for imaging and the particle centers were identi-
fied using particle tracking software [122]. We then performed a clustering algorithm
which connects particles that are bonded for a sufficient amount of time: The al-
gorithm works such that first, tentative particle bonds are identified using a first
distance criterium. Next, all bonds are tracked over time and we selected only
bonds that persist for sufficient time. This allows us to distinguish between real
bonds and temporary collisions between neighboring particles. These “true” bonds
are then clustered together with the original located particles. To do this we employ
a trick: the bonds are temporarily considered “particles” located in between the two
particles they bond. We then perform a second clustering algorithm on this bonds
plus particle dataset using a distance criterion approximately half that of the first
distance criterion. In this way particles that do not form a true bond will not be
considered part of the cluster. This algorithm allows us to successfully identify clus-
ters even at high particle concentrations, where the distinction between truly bonded
particles and merely colliding particles is difficult.

Smaller particles. Lastly we studied the effect of particle size on the assembled
structure by using smaller particles. We prepared a dipatch/tetrapatch mixture with
a 10% fraction of tetrapatch particles. The particles were dispersed in the same bi-
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nary mixture as before. Conveniently, the effect of volume fraction on the assembled
structure could be explored using only a single sample. This was possible, because
the capillaries used in our experiment (Vitrocom, 50x2x0.2mm) are not completely
flat rectangles, but are slightly bulged, with a centerline that is approximately 20µm
lower than the edges. By letting the particles settle for a sufficient amount of time,
this resulted in an equilibrium sedimentation profile with a maximal density in the
middle, gradually decaying towards the edges of the capillary.

Next, critical Casmir interactions were induced by quenching temperature to
∆T = 0.1K. After waiting ∼ 1 hours to allow for particle aggregation, we used
3d confocal imaging to image the fluorescently dyed particles. We used confocal
microscopy because the particles increased gravitational height resulted in structures
more properly explored using 3d imaging. In these images the particle centers also
fluoresce dimly because some of the patch fluorophore has migrated to the PS matrix
during synthesis. Similarly as the bigger particles, when temperature is increased to
∆T = 0.1, the smaller patchy particles form patch to patch bonds.

5.2.2 A reversible patchy bond
With MgSO4 salt, patches are more lutidine-philic and thus aggregate in lutidine-
poor solvents: The lutidine-philic patches localize lutidine-rich solvent fluctuations
in the gap between two patches, leading to attractive critical Casimir interactions
between di- and tetrapatch particles as shown in Fig. 5.1. Both tetra- and dipatch
particles form directional patch-to-patch bonds at temperatures close to Tc in binary
mixtures with lutidine concentration cL < cc, as shown by the microscopy images
in Fig. 5.1. This is evident from the fluorescently dyed patches merging to form
a single bond. In addition, the geometry of the assembled structure reveals the
specific direction of the interaction: The tetrapatch particles form kinked structures
with 2d projected bond angles θ ≈ 110◦, reflecting the tetrahedral patch positions,
Fig. 5.1(a). In this case, the 2d projected bond angles approximately correspond to
the actual 3d bond angles as the small gravitational height of the particles (∼ 0.5 µm)
causes the formation of a quasi 2d plane. Furthermore, the bonded patches reside
in the same plane in contrast to the out-of-focus free patches of the middle three
particles.

The figure also shows the aggregation and break-up behavior of the particles
as a function of temperature. We find that the critical Casimir induced bonding
is fully reversible and tunable with temperature. When lowering the temperature
T below the aggregation temperature Ta all bonds eventually break apart. The
breakup kinetics depend on how far below Ta the temperature is decreased. In the
case of the tetrapatch particles, we lowered the temperature far below Ta, resulting
in a short breakup time ∼ 1s of all bonds at the same time. For the dipatch chain,
on the other hand, we lowered the temperature only slightly below Ta. In that
case, bonds break only slowly over the time span of ∼ 10min and sequentially. This
shows qualitatively the continuous tunability of the interaction. Just below Ta the
interaction is not strong enough to permanently bond but still significant enough to
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Figure 5.1: Reversible patchy critical Casimir interaction (a) Epifluorescence mi-
croscopy stills of tetrapatch particle (TP-A) assembly showing fluorescently dyed
patches. Temperature is quenched from ∆T = 2C◦ to ∆T = 0.1C◦ (between red
and blue dot), and finally back to ∆T = 2C◦, time difference between first three
frames is 2 minutes and between two last frames 10s. (b) Epifluorescence microscopy
stills of dipatch particle (DP-B) assembly showing fluorescently dyed bright patches,
in addition low intensity bright field lighting shows particle centers. Temperature
was quenched similarly as for tetrapatch particles however upon return tempera-
ture was lowered to ∆T = 0.2C◦. Time between each frame is approximately 5
minutes. Scale bars are 3 µm, in both cases 63x magnification was used. (Video:
https:// youtu.be/ atY_CygObJk)

stay bonded for some time. Further below Ta no significant interaction is present.
Dipatch particles form straight chains, reflecting the position of patches at oppo-

site poles on the particle, Fig. 5.1(b). We also found that the formation kinetics of
dipatch particles is much slower and happens more sequentially than for tetrapatch
particles. Indeed, the five-particle dipatch chain takes ∼ 30min to form, whereas
the five-particle tetrapatch chain takes only ∼ 20s to form, a factor of ∼ 100 slower.
This can be understood as a direct consequence of the larger patch surface coverage,
σp, of the tetra-patches which are both bigger in diameter and number. The patch-
size measurements discussed in chapter 2, yielded a surface coverage of σTPp = 6.6%

for the tetrapatch particles used here and of σp = 0.7DP% for the dipatch particle.
For a sticky interaction, the aggregation speed, v, is expected to be approximately
proportional to the square of the patch coverage, v ∝ σ2

p, as two patches have to
meet each other for bonding. This predicts a factor (σTPp /σDPp )2 ∼ 100 faster ag-
gregation for the tetrapatch particles in agreement with observations. The exact
aggregation speed will also be influenced by a possible different interaction strength

https://youtu.be/atY_CygObJk
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and different initial volume fractions between the two samples. However these effects
are expected to be minor given the similar ∆T which determines the critical Casimir
strength and the similar volume fractions. This shows that patches not only control
the morphology of the formed structures but also strongly influence the formation
kinetics.

5.2.3 Colloidal molecules: A classification of small
patchy structures

By carefully analyzing the zig-zag structures, we find that these assemblies of a
small number of patchy particles form structures analogous to hydrocarbons with
the patchy particles taking the place of carbon atoms and the open patches the
place of hydrogen, see Fig. 5.2. In this mapping, tetrapatch assemblies are analo-
gous to saturated alkanes where each carbon is tetravalently coordinated. Beyond
linear assemblies such as a colloidal analog of butane, we observe cyclic compounds,
in particular cyclopentane and, rarely, cyclohexane, see Fig. 5.2(b). By including
dipatch particles we can extend our range of molecular structures to unsatured hy-
drocarbons by identifying a dipatch-dipatch bond in between two tetrapatch particles
as a triple carbon bond. This way we can observe the different structural isomers of
colloidal butyn, see Fig. 5.2(c). The images shown here are all 2d projections, while
in reality these structures have 3d conformations, which can for some images be seen
by the top and bottom patches being out of focus. The 2d projections provide quite
accurate representations of the actual structure because of their quasi-2d nature.
However, some of the structures shown here, such as colloidal butane and hexane,
likely have significant out-of-plane corrugation which would be better visible using
3d confocal imaging.

The colloidal analogues have their own properties not shared with molecules: For
instance, due to sedimentation the particles live in a quasi 2d plane and we observe
two non-equivalent forms of colloidal butane, Fig. 5.2(a). In one case subsequent
tetrapatch bonds form oppositely oriented bond angles creating a zigzag structure
(colloidal butane), in the other case bond angles are oriented in the same direction
forming a semi-circular structure (colloidal butane’). Transitions between these two
states are possible but involve rotation in the z-direction which costs significant
energy. Another difference is that the empty patches, which represent hydrogen
atoms, are too far away from each other to interact with each other whereas in
molecules they do. This increases the rotational freedom of especially the capping
patchy particles who only have a single bond.

Numerous assemblies are observed that don’t have a direct molecular analog. For
example Fig. 5.2(d), would correspond to the indicated structure, but because the
colloid does not form a double, it has on more (or multiple) free patches available
(highlighted in red). For instance, when one dipatch particle resides between two
tetrapatch particles the straight geometry suggests this should be mapped to two
double bonds. However, this results in non-physical carbon compounds with pen-
tavalent carbon atoms that have too many hydrogen atoms. Another source of dis-
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Figure 5.2: Colloidal analogues of hydrocarbon molecules (a) non-cyclic tetrapatch
structures and their molecular equivalents (b) cyclic tetrapatch compounds, (c) mix-
tures of tetrapatch (red) and dipatch particles (yellow) (d) Colloidal molecules that
have no molecular analogue, higher order hexapatch particle in blue

crepancy is that during synthesis sometimes higher order patchy particles are formed.
When those get incorporated in structures this also produces colloidal molecules with
no chemical equivalent.

Yet, in the cases where the mapping exists it respects geometry. Some of the
mechanical properties of a molecule might be related to their colloidal analogous,
especially those that are determined by morphology rather than interaction details.
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These might include vibrational modes or the switching of 3d conformations.

5.3 Colloidal polymers
So far, we focused on clusters of a small number of patchy particles. However, in
order to create functional self-assembling materials, control over larger structures
with more particles is necessary. With size, the number of degrees of freedom grows,
and thus the complexity. In order to keep this complexity manageable, we first focus
on the assembly of dipatch particles. As shown, their limited valency results in the
formation of solely linear structures, chains. In comparison, the possible structures
that can be formed by particles bonding with more than two neighbors grows expo-
nentially with cluster size, as shown above by the many molecular analogous formed
by the tetrapatch particles, or the multiple compact clusters of isotropic and Janus
particles [51, 199]. This strong structural reduction for dipatch particles allows us to
investigate detailed questions concerning formation kinetics and many-body steric
effects. In a second step, we add a limited number of tetrapatch particles to the
dipatch samples that act as branching points of chains, to tune structure formation
in a controlled way.

5.3.1 Colloidal polymers from dipatch particles
When temperature is increased close to Tc, dipatch particles polymerize into chains
of various length, see Fig. 5.3(a). Application of the clustering algorithm enables us
to identify individual chains, even in regions where these are located close to each
other, as can be seen by the coloring. Mostly linear straight chains form, which can
bend slightly when they get longer. However, we also see some kinks and branching
points, which we associate with the presence of particles of higher valency. To
explore the analogy with polymers, we define the concentration of chains of length x
as Px = Nx/N , with Nx the number of chains of length x and N the total number of
chains. Apart from an excess of singlets, the distribution of chain lengths shows an
exponential decay (Fig. 5.3a). Such a distribution can be described as a geometric
distribution Px = p(x−1)(1− p), where p is the probability that a particle is bonded
[225]. While polymerization progresses, p increases closer to 1, as can be seen from
the slope of the fitted red line, equal to log(p).

To study the growth kinetics in more detail, we characterize the evolution of chain
lengths. In analogy to polymer molecules, we define the number-average degree of
polymerization Xn, weight-average degree of polymerization Xw, and polydispersity
index PDI, given by [226]

Xn =

∑
xNx
N

, Xw =

∑
x2Nx∑
xNx

, PDI =
Xn

Xw
. (5.1)

The former, Xn, indicates the average chain length, while the second quantity, Xw,
describes the average length weighed by the mass of the chain. This second quantity
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Figure 5.3: (a) Experimental bright field microscopy images of dipatch particles
polymerizing in chains. At t0 interaction is turned on by a temperature quench to
∆T = 0.08K, t1 = 2hours t3 = 18hours. Overlain are circles centered at located par-
ticle coordinates and identified bonds, circles are colored identical if the particles and
bonds belong to the same chain, singlets are in white. Scale bar is 25µm (b) Chain
length distribution at t1, t2 and t3. (c) Decrease of monomer concentration versus
time (d) Number average degree of polymerization. Red dotted lines show saturation
value. (Video: https:// youtu.be/DmA70xEYrzY )

is less sensitive to small chains as they carry little mass, such thatXw > Xn. The last
quantity, PDI, is a measure for the polydispersity, the spread in the size distribution.
If all chains have the same length, Xw = Xn and PDI = 1, while for a geometric
distribution PDI = 1 + p.

As chains form, the number of monomers N1 decreases over time, see Fig. 5.3(b).
Chains do not only grow by monomer addition, oligomer bonding also occurs in which
two chains bond to form a single longer one. Such polymerization conditions are
similar to “step-growth polymerization” also known as “polyaddition polymerization”
[226]. The bonding of dipatch monomers and oligomers into chains is captured by
an increasing degree of polymerization Xn, see Fig. 5.3(c). Both the rate of decrease
of monomers and the rate of increase of polymerization gradually slow down over
time until they saturate at a constant value. Though bond dissociation occurs, it is
unlikely that an equilibrium steady state is reached given the low dissociation rate

https://youtu.be/DmA70xEYrzY
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associated with the high average bond lifetime which we estimate to be & 10h. This
estimation is based on observing that only around 5% of formed bonds dissociate
during the assembly experiment. We thus hypothesize that the observed saturation
is due to crowding effects.

Figure 5.4: Colloidal polymers at two different concentration, in all graphs blue
(black) circles (squares) correspond to a surface coverage φ = 0.41(3)%area and
φ = 0.24(3)%area. Samples were set to approximately the same interaction strength
at ∆T = 0.12 (blue) and ∆T = 013 (black). (a) Microscopy images of the two samples
at the end after 10 hours of assembly (b) Number average degree of polymerization,
red lines are linear fits of the initial growth rate, vertical bars indicate the time from
which growth rate becomes sublinear due to crowding. Inset shows a rescaling using
the slope of the linear fit vn (c) Similar for the weight average degree of polymeriza-
tion. (d) Initial polymerization growth rate vn and linear fit vn = 2kφ with reaction
rate k = 0.6 h−1%−1

surf (e) Critical polymerization Xc
n at the transition to sublinear

growth. (f) Polydispersity index versus degree of polymerization (g) Geometric chain
length distributions averaged over final frames

To investigate effects of dynamic frustration due to crowding we varied the sur-
face coverage, φ, while keeping the temperature (interaction potential) constant.
Upon decreasing the volume fraction, the polymerization process is initially slower,
see Fig. 5.4(b,c). Surprisingly, at later times, the less dense sample overtakes the
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denser samples. This is counterintuitive as the growth rate is expected to scale with
concentration, and suggests that indeed crowding effects are present. To extract the
initial polymerization rate before crowding, we fitted a linear growth model to the
data points that satisfy Xn < 2 given by:

Xn = vn(t− t0) + 1, (5.2)

where vn is a growth rate and t0 ≈ 0 is a small offset that was kept as a fitting
parameter to account for deviations from linearity at short times, for instance due
to thermal equilibration of the heating stage. A similar fit was done for Xw to obtain
a growth rate vw. The fits, indicated by red lines in Fig. 5.4(b,c), show that a linear
growth initially agrees well with the data. This is further shown by the data collapse
in the insets.

A linear growth as described by Eq. 5.2 is reminiscent of step-growth polymeriza-
tion, which predicts a growth rate proportional to the initial monomer concentration
vn = 2kφ, where k is the rate constant [225, 226]. By plotting vn as a function of
the concentration φ we indeed observe a linear trend, see Fig. 5.4(d). From the fit,
we extract a rate constant k = 0.6 h−1%−1

surf . We attribute this slow rate to the large
diffusion time τdiff and the small reactive surface portion of the patches. The self
diffusion time τdiff = d2/D = 260(5)s, where we have used the particle diameter
d = 3.2(2) µm, and the diffusion constant D = 0.035(5) µm2/s, which was measured
by tracking the diffusion of particles before bonding.

After the linear regime another growth regime is entered. The transition occurs
at a reasonably well-defined critical time tc and associated polymerization Xc

n where
a strong slope change occurs, most clearly visible in the weight averaged polymer-
ization Xw, see vertical bars in Fig. 5.4(b,c). We determined tc as the moment the
relative error is bigger than 10%, (Xfit

n −Xn)/Xn > 0.1. This criterium is somewhat
arbitrary but allows us to compare both experiments systematically, see Fig. 5.4(e).
It shows, that the transition for the less dense sample not only occurs at a later time
but also reaches a higher critical polymerization Xc

n. This means that this delay is
not simply a consequence of a lower linear growth rate but that the cause of the
transition is reduced for the less dense sample. We therefore interpret this transition
as due to dynamic frustration. While chains form, rotational diffusion gets more
frustrated making it more difficult for free binding sites to find each other. For lower
volume fraction, this frustration occurs later, as chains can grow larger before they
start hindering each other.

Nevertheless, the decreased growth rate and delayed crowding transition do not
appear to influence the size distributions. This is seen by the polydispersity index
that collapses if plotted versus Xn, Fig. 5.4(f). This is further confirmed by the final
distributions, which appear similar for both experiments, see Fig. 5.4(g). The PDI
saturates at a value approximately 2.5. This is higher than expected for a geometric
distribution and likely caused by a overabundance of unreactive monomers.

Another interesting dependence concerns the bond strength. The strength of the
critical Casimir interaction is directly controlled by temperature. We find that the
polymerization kinetics speed-up when approaching Tc, see Fig. 5.5(b). Rescaling
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Figure 5.5: Colloidal polymers at different temperatures, red (blue) circles (squares)
correspond to a distance to the critical temperature ∆T = 0.1 and ∆T = 0.13 at ap-
proximately the same volume fraction φ = 0.42 (red) φ = 0.41 (blue). (a) Microscopy
images of the two samples at the end after 10 hours of assembly (b) Number average
degree of polymerization, red lines are linear fits of the initial growth rate, vertical bars
indicate the time from which growth rate becomes sublinear due to crowding. Inset
shows a rescaling using the slope of the linear fit vn (d) Reaction constant obtained
from the initial polymerization growth rate via k = vn/2φ, shown as a function of tem-
perature with a linear interpolation (red dotted line), black and blue squares refer to
measurement with two different particle concentrations (e) Polydispersity index versus
degree of polymerization (f) Chain length distributions averaged over final frames

time with the initial growth rate vn obtained by fitting again collapses the growth of
Xn at early times. Using the previously established relation k = vn/2φ we can then
extract the dependence of k on ∆T . Combining all the experiments we obtain a clear
trend where the reaction constant increases with increasing interaction strength, see
Fig. 5.5(c). A heuristic fit k = α∆T + β (red dotted line) predicts no significant
assembly beyond ∆T ≈ 0.18, which agrees with observations.

Beyond the linear growth regime both temperatures show the breakdown of the
initial regime and a transition to a slower kinetics, Fig. 5.5(b). Interestingly, at
higher temperature the transition happens for slightly higher Xc

n. As these samples
have the same particle concentration this suggests that the slower kinetics is not
only influenced by crowding but also by interaction strength. An explanation could
be that the observed assembly slow down is not only caused by crowding but also by
break-up events. These are less frequent for higher interaction strength as the bond
life time increases.
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5.3.2 Crosslinked colloidal polymers from dipatch
tetrapatch mixtures

Figure 5.6: Including tetrapatch particles crosslinks colloidal polymers (a) Experimen-
tal bright field microscopy images of dipatch particles mixed with a fraction c4p = 0.1
of tetrapatch particles polymerizing into branched and crosslinked chains. At t0 inter-
action is turned on by a temperature quench to ∆T = 0.08K, t1 = 10 minutes t2 = 1
hours, t3 = 10 hours. Overlain are circles centered at located particle coordinates
and identified bonds, circles are colored identical if the particles and bonds belong to
the same chain, singlets are in white. (b,c) Number average degree of polymerization
and polydispersity index , for comparison also the previously studied samples without
extra tetrapatch particles c4p = 0 are shown. (d) Cluster size distribution on semi log
and log-log scale (inset) with a power law fit (red line).

By including a fraction c4p = 0.1 of tetrapatch particles with respect to dipatch
particles, kinked and highly branched chains assemble that form a crosslinked poly-
mer analog, see Fig. 5.6(a). In this growing network, tetrapatch particles act as
crosslinkers connecting linear strands made from dipatch particles. The singlet con-
centration N1/N0 and mean cluster size, Xn, show an initial linear growth regime
followed by a second slower regime, similarly as for dipatch assembly, Fig. 5.6(b).
However, as expected from the increased number of binding sites, the growth of the
structure happens significantly faster. Furthermore, the cross-linked polymer reaches
a much larger mean cluster size. In addition, a much higher polydispersity is reached
as shown in Fig. 5.6(c). This can be understood from the full cluster size distribu-
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tion, which starts off exponential but quickly develops a pronounced tail resulting
in a large PDI, see Fig. 5.6(d). This is markedly different from the purely linear
polymers that remained exponential throughout. The final distribution approaches
a power law Px ∝ xw, with a power w = 1.5(1), see inset of Fig. 5.6(d).

Figure 5.7: Tuning crosslinked polymer morphology by amount of tetrapatch particles
(a) Images of two different tetrapatch to dipatch fractions (b) Distribution of strand
length in between particles that are bonded with three or more particles.

Reducing the fraction of tetrapatch particles decreases the number of crosslinks
and results in longer chains of dipatch particles between branch points that act as
nodes in the network, see Fig.5.7. We can quantify this by first identifying the node
particles that have more than two neighbors, and running the clustering algorithm
without these particles, identifying only dipatch chains. The resulting distribution
of strand lengths connecting branching points shows an exponential decay, with a
characteristic length scale that is higher when less tetrapatch particles are present,
see Fig.5.7. We can thus tune the network morphology by the amount of tetrapatch
particles: Including more tetrapatch particles decreases the average mesh size.

5.4 Patchy colloidal gels
The previous results suggest that with increased aggregation time and at high enough
volume fraction, the branched dipatch-tetrapatch clusters can percolate to form a
space spanning network and reach a gel state. However, such long aggregation times
make these experiments tedious. To speed up the formation kinetics we used smaller
particles. These smaller particles, with sizes of d = 1.6 ± 0.1 µm (dipatch) and
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d = 1.8± 0.1 µm (tetrapatch) do not only diffuse faster, but they also have a larger
gravitational height zg ≈ 3 µm. Because in this case zg > d settled particles can
diffuse vertically over each other, avoiding being trapped.

The resulting network structures are shown in Fig. 5.8. The images suggest
the formation of a three-dimensional network. We observe that for low volume
fraction branched polymer structures form (a). When volume fraction increases,
these structures grow larger (b), after reaching a high enough volume fraction, a
percolated network forms (c,d): Higher valent tetrapatch particles connect dipatch
strands into an interconnected network. The dipatch strands vary in length, and
some have grown quite long, reaching maximally ∼ 15 particles. When strands meet,
they do so predominantly at preferred angles ∼ 110◦, a consequence of tetrahedral
symmetry of the tetrapatch particles. This is indicated using yellow wedges with
a fixed inner angle, overlaid for some example nodes. Some nodes deviate from
this angle which can be explained partially by a minor fraction of non-tetrahedral
symmetric patchy particles. Additionally, these deviations are explained by optical
artifacts. The images show only a single optical slice of a structure that extends
slightly in z. A more exact investigation would require 3d localization to determine
the bond angles.

Due to the fact that the increased gravitational height (zg = 3µm) is higher than
the particle diameter, these particles are not as much confined to a 2d sediment
as the previously used bigger particles. Instead, they form a layer that is around
three particle diameters thick. This has the interesting consequence that strands can
overlap, as can be seen by the side views (confocal z-slices), in Fig 5.8(e,f,g). These
images show dipatch strands, on the bottom of the capillary, being crossed by other
dipatch strands.
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Figure 5.8: Patchy colloidal gels made from smaller dipatch particles mixed with a
fraction of tetrapatch particles (10%), after 1 hour assembly at ∆T = 0.1 (a,b,c,d)
Confocal microscope slices of structures for increasing particle densities, (c,d) have a
high enough density to feature a percolated network. The z-focus is chosen close to the
capillary floor, at the height where most patches are in focus. The scalebar is 10 µm.
Yellow wedges in (c,d) measure 110◦. (e,f,g) Zoomed-in 3d stacks of area’s marked by
white rectangle in (c,d) that feature overlapping gel strands, each series shows 3 slices
with 1 µm in between. (h) Electron micrograph the small patchy particles. (Video:
https:// youtu.be/ zWmYgxifbU8 )

https://youtu.be/zWmYgxifbU8
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It is interesting to compare these patchy particle colloidal gels to a conventional
colloidal gel that arises through arrested phase separation. Though they are both
percolated disordered networks, the features of the patchy colloidal gel are markedly
different. First of all, conventional gel strands do not have a fixed width, but typically
are multiple particles wide and vary strongly in thickness throughout the network.
Here, the width cannot grow beyond single particle as the particles’ binding sites
fully occupied. This is clearly demonstrated by the overlaying gel strands that do
not bond, even though they are touching. Such behavior will be impossible in a
conventional gel where overlapping strands will connect to form a node. Another
interesting difference lies in the nodes: A conventional gel has nodes consisting of
dense closely packed particle regions, with a random number of strands meeting,
at random intersection angles. In the patchy gel, however, nodes consist of single
higher valent particles instead of close packed clumps. These higher valent particles
are tetrapatch particles, restricting the number of possible connecting branches to a
maximum of four and fixing the angle at which strands connect to tetrahedral angles
∼ 110◦.

Such structural differences will likely be accompanied by rheological differences
between conventional and patchy gels. For instance, the fact that all particle strands
are of unit width and nodes are single particles, will cause the mechanical stability of
the gel to be much more sensitive to the bending rigidity of the individual bonds. Put
in another way, due to the limited valence, f , of the dipatch (f = 2) and tetrapatch
(f = 4) particles, the connectivity of the patchy gel network is on average f = 2.2.
This is well below the Maxwell criterium, which states that an isostatic structures
needs a least 6 bonds per particle in order to obtain overall rigidity. However, this cri-
terium neglects the contribution of bending rigidity between bonds. Effects of shear
resistance and resulting bending rigidity of dipatch particle chains will be explored
further in the following chapters 6 and 7. If indeed such bonds possess significant
bending rigidity these gels are accurate analogues of semiflexible networks found in
biological gels such actin, collagen and fibrin network, with intriguing properties
owing to the competition between bending energetics and entropic elasticity [68].

Finally, it is interesting to think about the thermodynamic difference between
patchy particle and conventional gels. For patchy particle gels, gelation is simply
due to the energetic advantage of maximizing the amount of bonded patches, whereas
for conventional gels, a kinetic arrest needs to take place. The deeper consequence of
this difference, which has been shown by simulations, is that patchy gels are thermo-
dynamic equilibrium states and will not show aging [194, 221]. Such a fundamental
contrast has prompted researchers to exclaim that these equilibrium patchy gels can
be considered as a new disordered state of matter [59, 227]. In order to verify if the
patchy gel that was formed in our system is indeed an equilibrium gel, more extensive
characterization is required, involving a more quantitative structural determination
through particle locating and dynamic studies to study formation kinetics and aging.
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5.5 Discussion and conclusion
We demonstrated a new method based on the critical Casimir effect, to obtain re-
versible patch bonding between dipatch and tetrapatch particles using higher valent
salt to induce boundary condition contrast. This method eliminates the necessity of
often difficult secondary surface treatments during synthesis, potentially applicable
to other particles as well. We showed that we can mimic different types of molecules
using these patchy particles. Small clusters form analogues of carbon molecules.
Larger number of dipatch particles form analogues of polymers that can crosslink
with the addition of tetrapatch particles. In addition, we showed that smaller dipatch
and tetrapatch mixtures form percolated gel networks.

We observed exponential chain length distributions for the linear polymer system
in agreement with literature/theory on molecular polymers. Exponential distribu-
tions are expected for a variety of systems. For instance, reaction-limited step-growth
polymerization shows an exponential distribution [225, 226]. This kind of polymer-
ization is a non-equilibrium process. However, also in simulations of equilibrium
polymerization of two-patch particles, exponential distribution are observed [228].
Therefore, one cannot conclude on the mechanism of growth from the length distri-
bution alone.

It is interesting to compare the observed growth kinetics with colloidal poly-
merization for much smaller nanoparticles, in which Xn was likewise found to in-
crease linearly with time [225]. There, a description in terms of a reaction limited
step-growth process was found to apply which assumes a bond formation kinetics
independent of chain length [226]. This suggest the early regime in our case also
can be understood as step-growth polymerization. However, upon later times the
linear growth breaks down and a transition to slower growth is observed, leading
to a non-equilibrium steady state. We identified the main cause of this slow down
as frustration by crowding. By decreasing the particle concentration the degree of
frustration is lowered and the transition is delayed. In addition bond breakage is
observed. This also slows down the growth kinetics and could in principle lead to
an equilibrium steady state if crowding could be avoided by using low concentration
samples. However, due to the slow kinetics and associated long measurement times,
we are unable to conclude whether for lower concentration an equilibrium steady
state can be reached.

The results presented here establish the critical Casimir self-assembly of patchy
colloids, and open many new opportunities of colloidal assembly. The small-scale
colloidal molecules are designer colloidal structures on their own right, and it will
be interesting to explore their mechanical properties in a similar way as was done
for the simple chains in chapter 4. Furthermore, here we have not considered the
out-of-plane 3d conformation of some of these structures. For specifically the cyclic
compounds, colloidal pentane and hexane, these might show similar stable 3d confor-
mations as known from their molecular analogues, e.g. chair and boat conformations.
In that case, they would be examples of microscopic self-assembled structures with
mechanical multistability, which is a desirable property for the design of metamate-
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rials [70].
Going beyond small-scale structures, simulations have shown that patchy par-

ticles can show equilibrium gelation, forming disordered networks that are ther-
modynamically stable [194, 221]. The cross-linked clusters that we assembled using
mixture of dipatch and tetrapatch particles likely form space-spanning networks with
increased number of particles and aggregation time. In addition, using smaller par-
ticles, the faster formation kinetics allows the formation of gels on easily accessible
timescales. The increased gravitational height of these smaller particles makes it
feasible to density match particles and solvent. These are good potential candidates
for equilibrium 2d and 3d gels, of which experimental realizations exist, but only
using nanoscopic particles [229, 230]. The direct imaging available for equilibrium
gels of micron sized particles would provide an improved way to study not only their
structure, but also their mechanical properties. The mechanical properties of such
equilibrium gels have been recently shown to sensitively depend on the interplay be-
tween valence and network structure [231]. The control over these parameters using
patchy particles provides opportunities for tuning material elasticity.







CHAPTER 6

Mechanics of fluctuating
dipatch chains: tuneable

bending rigidity and internal
friction

Bending rigidity determines the stability and functionality of slender structures ubiq-
uitous in soft and biological materials such as colloidal gels and biopolymer networks.
We use critical Casimir bonded dipatch particles to create colloidal chains that act
as well-controlled analogues of such slender microscopic structures. By studying the
dynamics of thermally induced bending fluctuations we characterize the mechanics
of these chains. We show that they are well modeled as semiflexible filaments, with
a persistence length that is set by patch size and the strength of the critical Casimir
bond. We furthermore reveal visco-elastic effects on longer timescales that we at-
tribute to internal friction. Our results show that the critical Casimir force can not
only be used to in-situ rationally control the radial interaction strength between par-
ticles but, by using patchy particles, also the shear rigidity between bonded colloids.
This further extends to uses of this well controlled model system and paves the way
for using patchy particle assemblies as building blocks of colloidal architecture with
bending rigidity as a rational control parameter.
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6.1 Introduction

With the realization of a well controlled and patchy aggregating system, we reach a
stage were we can ask detailed questions about the physics of such assemblies. The
directed interaction causes the formation of geometrically reproduceable structures
such as straight chains or networks with specific bond angles, some of which have
molecular or biological analogues. Because patchy assemblies are more open, these
geometrically defined structures have interesting, distinct rheological properties, de-
termined by the local bonds and small scale structures that they form.

Aggregated colloids often form rigid bonds that can resist shear and develop
bending rigidity, [116, 214]. Bending rigidity is an important considerations for con-
trolled self-assembly of a desired colloidal architecture as it influences the formation
process and effects the final structural stability [232]. Bending rigidity can also have
interesting dynamic effects, for instance when coupled with activity flexible chains
diffuse markedly faster compared to their stiff counterparts [233]. As described in
chapter 4, also Critical Casimir aggregated colloids form rigid bonds, with the ad-
vantage that we can tune the attractive strength by changing the temperature w.r.t.
the critical point. The radial interaction strength increases as predicted from theory
and observed in experiment [123], further confirmed for off-critical compositions in
chapter 3. However it is so far not studied what the effect of temperature on bending
rigidity will be.

In this chapter, we explore in detail the mechanics of a chain of dipatch parti-
cles bonded with the critical Casimir interaction. We look at the thermally induced
fluctuations of a quiescent chain as a function of the distance to the critical point.
In analogy to biological filaments such as actin filaments and microtubules, we show
that the chain can be modeled as an semiflexible filament with well-defined bending
rigidity. We find that, like the interparticle radial interaction strength, the bending
rigidity increases as temperature is increased closer to the critical point. We further-
more perform an extensive dynamic analysis that reveals a rich visco-elastic behavior.
Fluctuation relax in a two-step dissipative processes, which we associate with exter-
nal drag friction and internal friction most likely due to slow conformational changes.
This strengthens the analogy with biological filaments, which also show significant
visco-elastic behavior [234]. These result pave the way for using patchy particle
assemblies as building blocks of colloidal architectures with bending rigidity as a
rational control parameter. Especially for low coordinated self-assembled structures,
such as the patchy colloidal gel described in the previous chapter, bending rigidity is
paramount in determining rheological behavior. Programmatic control over bending
rigidity could dramatically shift a materials response from rigid to floppy or from
bending dominated to stretching dominated [235, 236].
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Figure 6.1: Diffusion dynamics of dipatch particles (a) average mean square displace-
ment of 300 particles of batch A. Blue line is a fit to two d diffusion 〈∆r2〉 = 4D∆t.

6.2 Methods
We used spherical dipatch colloidal particles with two different patch sizes, see chap-
ter 2 for synthesis and characterization. The larger patch particles, referred to as
DP-A particles, have an average radius of r = 1.6± 0.05 µm, where the uncertainty
is the polydispersity, see table 2.1 in chapter 2. The smaller patch particles, referred
to as DP-B particles, have an average radius of 1.55 ± 0.05 µm. Their patch sizes
can be quantified in terms of the patch arc angle θp = 2 sin−1(dp/(d)), with dp the
patch diameter, finding for DP-A particles θp = 21◦(±2). Here the uncertainty is the
standard deviation of the measured patches and gives the patch size polydispersity.
Whereas DP-B particles had a patch size of θp = 14◦(±2).

In order to induce Critical Casimir interactions, particles were dispersed in a
binary mixture of water and lutidine with a lutidine volume fraction of clut = 25%.
Salt (0.375 mM Magnesium sulfate) is added to induce an adsorption preference
contrast between patch and particle bulk, such that lutidine preferentially adsorbs
to the patches whereas water to the particle bulk, as described in chapter 5. The
particular binary mixture and salt concentration was chosen to obtain optimal crit-
ical Casimir conditions with a largest temperature window of patch-to-patch at-
traction, as described in chapter 2. In addition the added salt screens the elec-
trostatic repulsion leading to a Debye length of λD = 4.5 nm. The phase sep-
aration temperature was measured to be Tcx = 33.75◦C. From now on, rather
than mentioning the absolute temperature of the system T , we refer to tempera-
ture mainly relative to this coexisting temperature by defining ∆T = Tcx − T . The
density of the binary mixture is ρs = 0.981 g/ml, and the density of the colloids
is ρpart ≈ ρPS ≈ 1.05 g/ml. Due to their size and higher density the particles
readily sediment into a quasi two-dimensional layer. This can be explained by their
gravitational height zg = kT/(∆mg), where ∆m = 4π

3 r
3(ρpart − ρs) is the buoyant

mass. For DP-A particles zg = 0.4 µm and for DP-B particles zg = 0.35 µm. These
heights are significantly smaller than the particles radii causing the particles to form
an effective monolayer once settled.
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Because these particles are so close to a wall their dynamics is significantly slowed
down due to hydrodynamics effects [237]. Before assembling the particles into chains
we did a careful characterization of single particle dynamics in the binary mixture
at ∆T = 2, where critical Casimir forces are absent. This has been done to later
compare single particle dynamics with the dynamics of chain bending fluctuations.
The average mean square displacement of sedimented DP-A particles is shown in
Fig. 6.1a. Fitting to a diffusive power law we obtain D = 0.035 ± 0.005 µm2/s,
and an effective drag coefficient γ = kT/D = (120 ± 20) mPasµm. The diffusion
coefficient is two times as low as expected from Deinstein = kT/6πrη = 0.074µm2/s.
Here we used that at T = 30 C◦ the viscosity η = 1.9mPas for the binary mixture
[238]. The difference between the measured D and Deinstein is not surprising given
the gravitational height of the colloids zg ≈ 0.4µm. For zg < r diffusion is expected
to slow down significantly due to hydrodynamic particle wall interactions, according
to [237]

D = Deinstein

(
1− 8

15
ln(1− β) + 0.029β + 0.04973β2 − 0.1249β3

)−1

, (6.1)

where β = r/h and h the height of the particle center. Fitting this equation we find
h− r = 0.2 µm, of the same order of magnitude as zg and a better estimation of the
actual height.

6.2.1 Experimental protocol and imaging
After the particle samples were prepared they were placed on a temperature con-
trolled microscope and let to sediment forming a homogeneous quasi 2d dispersion.
Next, dipatch chains were formed by heating the sedimented patchy colloids to a
∆T = 0.10 K below Tcx = 33.75◦C. At this temperature patches become attractive
whereas the particle bulk remains repulsive, as shown in chapter 5. Fine temper-
ature control is achieved using an objective collar and sample heater coupled to a
single water bath with a setting accuracy of 0.01 K and thermal stability estimated
at 0.02 K.

To evaluate thermally induced fluctuations, we used conventional light microscopy
to image chains conformations at a frame rate of 2 fps at various temperatures over
a time of 30 minutes at each temperature. We used bright field microscopy instead
of fluorescent microscopy in order to avoid artefacts due to bleaching during the
long measurement time. The particle density was chosen such that chains of signifi-
cant lengths could assembly yet be low enough to minimize steric interactions due to
crowding. In the field of view chains of different length N were present, with N rang-
ing from an effectively single dipolar bond N = 3 to a longest chain N = 15. This big
field of view allowed us to compare bending fluctuations of differently sized chains
using only a single recording. Most analysis was performed on the N = 15 chain,
but in order to investigate the effect of length we also looked at shorter chains. Tem-
perature was increased stepwise to a maximum ∆T = 0.05 K, with steps of 0.02 K,
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waiting at least 10 minutes before measuring to ensure thermal and mechanical equi-
libration at each step. By doing so we gradually increased the critical Casimir force
as we get closer the phase separation temperature. Next, temperature was similarly
decreased to ∆T = 0.2 K. When a temperature ∆T = 0.17 K was reached some
bonds of the chains broke. When decreasing temperature to ∆T = 0.2 K all bonds
disintegrated due to the reversibility of the critical Casimir interaction. Particle cen-
ters are located in the recorded image plane with pixel size 103 nm with a subpixel
accuracy of ε = 20 nm using particle-tracking software [122].

The above described procedure was used for the larger-patch DP-A particles.
To investigate the effect of patch size we performed similar fluctuation experiment
with the small-patch DP-B particles. These experiment were done at only a single
temperature. Chains were assembled at a fixed ∆T = 0.10 ± 0.05K. Fluctuating
chains were recorded at a frame rate of 20 fps. The slightly higher uncertainty
in temperature, and the higher recording frame rate with respect to the previous
measurements are because a different setup was used.

6.3 Results and discussion

6.3.1 Static analysis: elastic moduli tunable by tem-
perature

Images of the assembled chains are shown in Fig. 6.2. Fig. 6.2a shows a zoomed
out bright field image giving an overview of the assembled chains that were studied.
Fig. 6.2b shows an epifluorescent close up of a single chain, proving that only the
labeled fluorescent patches form bonds. The chains, though on average straight,
fluctuate due to thermal noise. With decreasing temperature (decreasing critical
Casimir interaction strength) the amplitude of these fluctuations increases. This
can be seen by comparing the amplitude of undulation between a chain at ∆T = 0.5
and ∆T = 0.15, see Fig. 6.2c. The amplitude of thermal fluctuations is expected
to scale inversely with chain stiffness. Therefor, these qualitative observations are
the first indications that show the tunability of bending rigidity with temperature.
Decreasing temperature further to ∆T = 0.17, causes chain breakup as the critical
Casimir interaction becomes to weak for the chain to remain fully bonded.

We define the tangent angle φi = arctan (yi+1 − yi)/(xi+1 − xi) of each bond
and the bending angle θi = φi+1 − φi as depicted in Fig. 6.3(a,b). We measure
the variation in bending angles at a fixed temperature over a time period of 30
minutes, Fig. 6.3(c,d). Over time these bending angles fluctuate around zero, as
can be seen by the density profiles of individual angles which are centered at zero,
shown for 3 representative cases in Fig. 6.3(e). This confirms the chain is straight on
average. We fit the density profiles to a gaussian distribution (black lines), to obtain
standard deviations σ(θi), a measure for the amplitude of fluctuation. Not each
angle shows the same deviation. To obtain a fluctuation measure for the whole chain
we average all angles and plot the density profile. Repeating the measurement at
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Figure 6.2: Chain assembly of dipatch particles and temperature dependent fluctua-
tions (a) Aggregated chains at ∆T = 0.1 ± 0.01K, scale bar 10 µm. Bigger blobs are
non-patchy remnants of the particle synthesis, that do not bind and only show steric
interaction. Big yellow arrow indicates the chain used for most analysis, smaller ar-
rows indicate some of the smaller chains that were analyzed to study the effect of size
(b) Epifluorescence overlay on a bright field microscopy image showing that only the
labeled fluorescent patches form bonds, scalebar 3 µm (c) Bright field image of particle
centers showing that a chain has higher amplitude fluctuations at lower temperatures
and breaks at ∆T = 0.17. In order to increase locating accuracy the image focus was
set slightly below conventional bright field focusing, this way a high contrast bright
center is obtained.

different temperatures, shows a clear systematic narrowing of this density profile with
increasing temperature, see Fig. 6.3(f). The density profile is well fitted by a gaussian
distribution (black) with standard deviation 〈σ(θi)〉. We obtain a clear decrease
of fluctuations with increasing temperature, as shown in Fig. 6.3(g). The exact
amount is reversible when we decrease the temperature again. We thus conclude
that, within accuracy, between going up and down in temperature: there is no aging
of the bonds. Note that these measured deviations are well above deviations that
could be attributed to the locating uncertainty ε = 20nm, which results in a bond
angle uncertainty εθ = 3ε/d ≈ 0.025rad. Thus, they represent true movement of the
particles.

As noted, at a single temperature not all bending angles of a single chain show
the identical amount of fluctuation, see Fig. 6.3(h). Interestingly, this variation in
flexibility is conserved over the different temperatures; bonds that are most flexible
at one temperature are also most flexible at another. This suggests that this vari-
ation is a characteristic of this particular chain and not measurement noise. For a
significant part such variation can probably be attributed to a polydispersity in the
exact patch size. Based on the AFM measurements (chapter 2) we estimated the
patch arc angle polydispersity to be on the order of 10%, giving a patch area poly-
dispersity of 20%. Given that interaction strength scales with patch area this could
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Figure 6.3: Fluctuating bending angles and their temperature dependence (a,b) defi-
nition of the tangent angle φi and bending angle θi (c) Time traces of each bending
angle at ∆T = 0.05 measured at 2 fps over 30 min (d) Zoom-in of one representative
bending angle θ9, red line is a rolling mean 10s (e) Density plot of three bending angles
at a single temperature ∆T = 0.05. Black lines are Gaussian fits. (f) Density plot
of the averaged bending angles along the chain for three different temperatures and
Gaussian fits (black lines) (g) The average standard deviation 〈σ(θi)〉 obtained by fit-
ting the Gaussian fit if the averaged bending angle density as a function of ∆T . Each
point corresponds to a 30 minute measurement, error bars give the variation in σ along
the chain. The star indicates the breaking temperature and amount of fluctuations
right before the breaking event. (h) Standard deviation σ(θi) along the chain at three
different temperature of the same chain. Stars indicate the position of the snapped
bonds. All data corresponds to the same N = 15 chain depicted in Fig. 6.2c

explain the flexibility variation, if flexible bonds are ones made from particles with
small patches. Another source of variation can be attributed to possible mechanical
coupling between bonds. In a strongly coupled chain, particles will not fluctuate
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independently from each other, but instead fluctuate along with global vibrational
modes. Such vibrational modes are not symmetric along the chain. For instance,
the expected lowest energy mode would be similar to a half sine wave which has
maximum bending at the middle of the chain and no bending at the ends of the
chain. This might explain the fact that particularly the bending towards the end of
the chain are measured to have a lower amplitude of fluctuation. In addition, we
point out that one of the two bonds that breaks first is associated with the bending
angle that shows highest fluctuations. This suggests that by identifying bonds with
highest bending fluctuations we can identify structural weak spots, which will break
first upon decreasing the attraction strength.

To explore mechanical coupling between the particles and to obtain effective
bending rigidities we analyzing the shape fluctuations using a Fourier decomposition
technique developed in previous studies of biofilaments and applied to colloidal chains
before [197, 234]. We express the tangent angles as a sum of cosines:

φi =

√
2

L0

N−2∑

n=0

αq cos (qnsi) , i ∈ 1, ..., N − 1 (6.2)

Here n is the mode number, αq is the mode amplitude of the n-th mode with wave
vector qn, where qn is defined as qn = nπ/L0, L0 is the contour length of the chain
and si = (i − 1/2)d the discrete arclength along the chain, with d = L0/(N − 1)
the average particle diameter. The number of particles is N , such that there are
N − 1 bond tangent angles along the chain. The zeroth-mode is merely a global
chain orientation, and will not be considered hence forth. Eq. 6.2 is similar to the
expression for continuous filament, with the only difference that we use a discrete
Fourier transform. The mode inaccuracy as a consequence of the locating error ε
follows the relation [217]

σ2
noise(αq) =

4

L0
ε2
[
1 + (N − 2) sin2 (nπ/2(N − 1)) .

]
. (6.3)

Fig. 6.4a shows time traces of the mode amplitudes of a chain at a fixed temper-
ature. The amplitude of all modes are centered around the y = 0 axis, confirming
the low intrinsic curvature of the chain. The amplitude of the mode fluctuations
contains information about the bending rigidity. To determine it quantitively, we
consider the worm-like chain Hamiltonian given by

U =
B

2

∫ L0

0

∂φ

∂s

2

ds, (6.4)

where B = kT Lp is the bending rigidity, proportional to Lp the persistence length.
If we assume that every mode is excited on average with the same thermal energy kT
(equipartition theorem), then the variance of the mode amplitudes, corresponding
to wave number q, is given by

σ2(αq) =
kT

Bq2
(6.5)
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Figure 6.4: (a) Time traces of mode amplitudes at ∆T = 0.05 K (b) Variance of
mode amplitude as a function of q for three different temperatures. Striped line is a
q−2 fit for midrange q ∈ [0.1, 0.6] at ∆T = 0.15. Noise floor is based on a tracking
accuracy of 20nm. (c) Fitted persistence length versus ∆T , star indicates the breaking
temperature. Inset shows Lp versus ξ = ξ0(∆T/Tc)

−0.63, with ξ0 = 0.19 nm. Black
line is a fit of Lp/ξ. (d) Lp versus N for different chains at ∆T = 0.1, red area and
dotted lines are guides to the eye. All data in (a,b,c) corresponds to the same N = 15
chain.

Fig. 6.4b shows the measured variance of the modes as a function of q at three
different temperatures. Indeed we observe a power-law decay with slope −2 over
a q-range of 0.1 µm−1 to 0.7 µm−1, which validates the mapping of the chain as
an elastic filament. Short wavelengths deviate upwards, which can be explained by
the discreteness of the chain. Short wavelengths are also more susceptible to noise,
however for a conservative estimate of ε = 20 nm, the noise floor remains well below
the measured variance. Deviations from the expected power law are also observed
for the longest wavelength, which we associate with a long relaxation time of these
long wavelength modes, which is of the order of the measurement time.

The temperature dependency shows that mode fluctuations increase when de-
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creasing temperature, like the fluctuations in bending angles. We can extract the
persistence length at each temperature by fitting to Eq. 6.5 for midrange wave-
lengths. The resulting values (Fig. 6.4c) show a clear decrease from Lp ∼ 1500µm
to Lp ∼ 500µm. Which, normalized by particle diameter, translates to Lp/d ∼ 470
and Lp/d ∼ 160, showing that these chains are in the semi-flexible regime, with
a finite persistence length that’s significantly longer than the particle diameter.
However a linear relation is recovered if we plot Lp against the correlation length
ξ = ξ0∆T/T−0.63

c , see Fig. 6.4c(inset). Here we approximated ξ by the correlation
length at the critical composition. Our composition deviates from the critical one
by 5% vol causing the real ξ to be slightly smaller. Making this assumption we can
fit a phenomenological slope LP /ξ = 24± 0.3.

We also investigated the size dependence of Lp by measuring chains of different
length at the same temperature. Fig. 6.4d shows that down to N = 10 Lp remains
constant with respect to the longest chain length we measured. For shorter chains
however, Lp starts deviating and becomes highly variable. This can be understood
both from the inappropriateness of a continuum description and the bigger sensitivity
to patch size polydispersity. The reproducibility of Lp for N ≥ 10 reassures that the
bending rigidity is not sensitive to a particular chain but a system property tunable
by temperature.

6.3.2 Dynamic analysis: two relaxation timescales
So far we have considered purely static properties by averaging quantities over to-
tal measurement time. However, already the deviation at low q (long wavelength)
suggested that dynamic effects may play a role. Here, we investigate the dynamic
effects of the fluctuating chain by monitoring the mean-square mode amplitude as a
function of lag time. A fluctuating elastic filament with energy given by Eq. 6.4 is
expected to satisfy the Langevin dynamics [234]

B
∂4u

∂s4
+ γ

∂u

∂t
= f(s, t), (6.6)

here u(s, t) is the transverse position related to the tangent angle φ = ∂u/∂s, f a
random thermal noise and γ is the drag coefficient per unit length of the filament.
It has been shown that to a good approximation the Fourier modes of Eq. 6.2 act
as normal modes [234]. In that case, the Langevin dynamics are solved in terms of
the mean-square mode amplitude that relaxes to the final static variance of Eq. 6.5
according to a single-exponential [234]:

1

2
〈(αq(t+ ∆t)− αq(t))2〉t = (1− e−∆t/τ )

kT

Bq2
(6.7)

where ∆t is the lag time between images, and τ the relaxation time of the mode.
The relaxation times τ are given by [234]

τ ' γ

Bq4∗
, (6.8)
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Figure 6.5: (a) Mean-squared amplitude versus lag time for modes n ∈ [1, 8] at ∆T =
0.05K. Blue (red) lines are exponential relaxation fits to the fast (slow) relaxation
processes. (b) Fitted relaxation times τfast (blue) and τslow versus q∗ (red) for three
different temperatures. Dotted slope corresponds to q−4

∗ fit of τfast at ∆T = 0.13K.
Red lower shading indicates to the minimum experimentally accessible ∆t = 0.5s
between frames. (c, left): Temperature dependence of fast bending rigidity and drag
coefficient from power law fit. (c, right): Saturation values of τslow determined from
averaging τslow for q∗ > 0.2µm−1, error bars are the standard deviation of those values.

where q∗ ≈ (n+ 1/2)π/L0.
Fig. 6.5(a) shows the mean-square amplitude of the different modes as a function

of lag time for a single measurement. Interestingly, except for the first two modes,
our data is not properly described by a single-exponential relaxation. This becomes
clear when looking at the higher order modes n > 3. The mean-square amplitude
relaxes in two steps. An initial exponential relaxation followed by a short plateau and
a second relaxation. The initial exponential relaxation indicates an elastic process.
We have separated it from the second, by performing a least-square fit with a linear
weighing favoring small ∆t, see Fig. 6.5(a, blue lines).

Fig. 6.5(b) shows that this initial fast relaxation time follows a clear q−4
∗ depen-

dence, as expected from Eq. 6.8, from the second mode up to the minimal lag time set
by the experimental acquisition rate. This gives confidence in our fitting approach
and confirms that this first relaxation is an elastic process. The deviation of this
dependence (see e.g. the first mode) is due to the fact that the second relaxations has
a similar relaxation time, thus mixing both processes. Fig. 6.5(b) also shows that
by increasing temperature the correlation times decrease. The extracted bending
rigidity divided by the drag coefficient, Bfast/γ is shown in Fig. 6.5(c,left panel).
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Figure 6.6: (a) Amplitude σ2
fast of the fast exponential relaxation fit versus q for

four different temperature. Open/closed markers or dashed/solid lines corresponde to
two independent measurement (b) (Blue,red,black) Lp from fitting a q−2 dependence
to (σ2

fast,σ
2
slow,σ

2
static). Inset: the transverse drage coefficient per unit length, γ,

determined by dividing Bfast with data from Fig. 6.5(c), line corresponds to mean γ
of ∆T ≤ 0.13

This consistent behavior further validates the analysis and forms an independent
demonstration of the elastic tunability of the system.

The second relaxation does not appear to be well-captured by an exponential
which indicates a non-elastic process. We have still performed a similar exponential
fit but with an opposite weighing (red lines). Strikingly, this second slow relaxation
time does not decay with q but tends to a constant τ cslow. Fig. 6.5(c,right panel)
shows τ cslow as a function of ∆T . The large error bars don’t allow for a resolvable
trend with ∆T . Averaging over all points we obtain a 〈τ cslow〉 = 30±10s. The highest
two temperatures seem to fall below this line, however for these temperatures the
timescales of the two regimes mix and the fitting procedure becomes inaccurate.

After having addressed the dynamics, we can get back to the amplitudes that
we obtain from the two exponential fits. We call them σ2

fast(αq) and σ2
slow(αq), as

they correspond respectively to mode variance after the first and second relaxation
times. The final slow amplitude σ2

slow follows closely the static variance (not shown).
Fig. 6.6(a) shows σ2

fast as a function of q and for multiple ∆T ’s. A remarkably clean
signal is recovered for the higher q values. The dependence on temperature becomes
very sharp. Indeed, disregarding the two longest modes, variances decrease for every
single q value upon decreasing ∆T . Maybe even more impressive is how well two
independent measurements at the same temperature overlap. It is interesting to
compare this with Fig. 6.4(a). There, higher q appeared noisy. Given the low
locating noise floor this was actually surprising. Now we can understand that this
apparent noise was due to the slow second relaxation. The effective persistence
length associated with the two relaxation processes by fitting with Eq. 6.5 is shown
in Fig. 6.6(b). The fast elastic response shows an approximately factor two higher
rigidity as the slow and static response. We can use this extracted Bfast to calculate
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Figure 6.7: Internal friction coefficient γ′ as a function of ∆T , determined by multi-
plying τ cslow with Bstatic

γ from their previously determined ratio. The inset shows that this drag coefficient
remains constant at least for the reliable lower ∆T ’s. Taking an average we obtain
γ = 63 ± 2 mPas. This value can be compared with a direct measurement of the
transverse drag coefficient of the center of mass of the chain, γTCOM = 31±3 mPas, see
appendix Fig. 6.9 and accompanying discussion. Though these values are reasonably
close to each other given the completely independent and indirect determination,
their is a significant discrepency. The transverse drag as determined from bending
is higher by a factor of 2. One potential source of this extra bending drag could
come from the rotational drag of the colloidal particles. When an excited bending
mode relaxes particles not only have to translate laterally, but also have to rotate,
which is not taken into account when equating the drag coefficient of Eq. 6.6 with
γTCOM . Given this and the reasonable agreement between γ and γTCOM , we find it
most likely that the source of the initial damping is indeed drag due to hydrodynamic
interactions between particles and solvent.

The secondary relaxation process on the other hand happens at a timescale too
long to be explained by drag, and furthermore doesn’t show the expected q−4

∗ de-
pendence. Constant relaxation times similar to what we observed in the second
relaxation process have been observed before in microtubules [234, 239, 240]. These
effects are attributed to extra energy losses from internal friction distinguished from
the external friction of drag. In microtubules these energy losses are attributed from
fluid flow through narrow pores, which are absent in our case. However, we can
use the same analysis strategies as used in these reference, which are generally valid
in the presence of internal friction [239]. In this case the Langevin dynamics of a
filament is modified with an additional dissipatory term:

B
∂4u

∂s4
+ γ

∂u

∂t
+ γ′

∂

∂t

(
∂4u

∂s4

)
= f(s, t). (6.9)

The third term represents internal friction. In this case, mode relaxations become
modified with respect to Eq. 6.8 such that

τ =
γ + γ′q4

∗
Bq4∗

, (6.10)

where η′ = γ′/a4, with a the filament diameter, can be considered an effective inter-
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nal viscosity. This equation implies that at wavevectors larger than qc ∼ (γ/γ′)1/4

internal friction will dominate and correspondingly the relaxation times become q∗-
independent and equal to τ c = γ′/B. The friction coefficient associated with the
slow relaxation γ′ = τ cslow Bstatic, is shown for different temperatures of our mea-
surements in Fig. 6.7(a). The error bars are large due to the like inappropriate
exponential fit, the longer, less equilibrated timescale and possible stochastic nature
of the source of internal friction. Averaging over temperatures we obtain an internal
dissipation γ′ ∼ 105mPasµm4 and an internal viscosity η′ ∼ 103mPas. Further-
more, using for γ the value determined from the fast relaxation we obtain a critical
wavevector of qc ∼ 0.2µm−1, above which internal friction will dominate.

From this we conclude that on short time scales < τ c ∼ 30s the chain is described
by an overdamped elastic process. It shows both the expected q−2 power law for
the fluctuation amplitude and the q−4

∗ dependence for the relaxation time. This
elastic behavior can be captured by a single elastic bending modulus Bfast, and
a drag coefficient γ. The former is in our case sharply tunable by temperature.
However on longer time scales a second more complicated relaxation process occurs.
This relaxation still shows a q−2 power law allowing us to extract a bending modulus
Bstatic that is also temperature tunable. However the non-exponential relaxation and
wavelength-independent relaxation time show that this is not a standard overdamped
elastic process. In line with previous work, we attribute this slow component to
relaxation occurring with a combination of both external and internal friction.

We furthermore show that this slow relaxation is also present between three
bonded particle, see appendix 6.5.2. This shows that the origin of the slow relaxation
is not a collective effect due to longer ranged coupling between colloids, nor an
artefact from the approximations in the mode analysis. Instead, the origin of the
internal friction has to lie in the contact mechanics of the bond between two particle
patches.

We can speculate about the origin of this internal friction. We envisage a stick-slip
like process where the point of contact between the two colloids moves on timescales
τ c. Such process seems likely given the plastic buckling of chains observed in chap-
ter 4. Below this timescale, the point of contact is essentially fixed giving rise to
an elastic bending constant Bfast. Beyond this time, the contact can diffuse, while
still being bounded by the finite patch size. This finite patch size gives rise to the
second elastic bending constant Bslow. A potential energy landscape that qualita-
tively captures such behavior is shown in Fig. 6.7(b). A valley represents a fixed
contact point, with a effective spring bending Bfast/d. Due to thermal energy kicks,
hopping between valleys can occur leading to contact slippage, which happens on
a timescale τc. This landscape has in addition a global curvature giving rise to a
long time effective bending constant Bfast/d. To further show that such a contact
point diffusion is in principle possible we note that the average patch size for these
particles has been measured directly to be given by a patch arc angle θp = 0.36rad.
The explored angle amplitudes are, even on long time scales smaller, ∼ 0.1rad, as
can be seen from fig. 6.3(h). If this were not smaller, another mechanism apart
from contact diffusion would have to be invoked. We speculate that the source of
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Figure 6.8: (a) atomic force microscope images zommed in on the patch of big dipatch
particles (left) and small (right). (b) mean square displacement of the lowest modes
of a N = 13 chain, with exponential relaxation fits on short (blue) and long (red)
timescales. (c) Fitted short time mode variance for an N = 9, N = 12 and N = 13
chain, dotted line is q−2 powerlaw fit. (d) Lp on short (blue open squares) and long
timescales (black open circles), in addition the big patch values are shown. (e) τfast
(blue) and τslow (red) obtained from the exponential fit, dotted line is a q−4

∗ fit

these stick-slip dynamics could be heterogeneities on the surface such as roughness
or charge, or due to the reptation of intertwined F108 polymer brushes present on
the surface.

6.3.3 Dependence on patch size

Fig. 6.8(b) shows the mode mean square displacements of particles B with smaller
patches. Also indicated are fits to two exponential relaxation processes. The higher
acquisition rate of these experiments with respect to particle A experiments allow to
probe smaller ∆t’s and show that also on these shorter timescales the fast relaxation
decay fits well. The resulting amplitude of the fast relaxation is shown for three dif-
ferent chains in Fig. 6.8(c). In all cases a q−2 power law is recovered for wavelengths
in an intermediate regime. The extracted persistence lengths Lslowp = 1500±250µm,
and Lfastp = 2420± 20µm are compared with the persistence length of the big patch
sample, in Fig. 6.8(d). Interestingly, both after short and long relaxation the small-
patch particle chains exhibit a factor of two higher rigidity.
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Fig. 6.8(e) shows that τfast follows a q−4 dependence from which we fit a drag
coefficient of γ = 73 ± 7cP, very close to the drag coefficient for big patch chains.
The slow relaxation time τslow is within accuracy independent of q with an average
of 12s, shorter than for the bigger patches. This is consistent with Eq. 6.10, given
the fact that Bslow is bigger. From τslow we extract an internal friction coefficient
γ′ = 0.8 · 105 mPasµm4. This value lies within the error margin of the internal
friction of the big patch chains.

These observations highlight the different control parameters in this system. Next
to temperature the mechanics of the chains are also tuned by the patch-size, with
smaller patches giving more rigid chains. This effects both the overdamped elastic
response on short timescales as well as the long time relaxation. The internal friction
coefficient however remains unaffected. This indicates that the secondary dissipation
mechanism is determined by features set at a length scale smaller than the patch
size. These features could be roughness or charge heterogeneities on a length scale
smaller than the patch size.

6.4 Conclusion
In this chapter we studied the conformation fluctuations due to thermal noise of
critical Casimir bonded dipatch chains. Decomposing these fluctuations in bending
modes results in a precise analytical tool. Using this, we showed that dipatch chains
are well modeled as semiflexible filaments, with a persistence length that is set
by patch size and the strength of the critical Casimir bond and can therefore be
reversibly varied using temperature. Further dynamical analysis revealed rich visco-
elastic behavior, in which chain fluctuations follow a two step relaxation process.
We have associated this to a combination of external friction due to drag and an
internal friction due to local conformational changes.

Similar internal friction effects have been observed for microtubules [234, 239–
242], the presence of them in our colloidal model system suggests that these type
of effects are quite general and could be expected in other filaments that consist of
segmented units, such as nanoparticles chains [225].

Our results show that the critical Casimir force can not only be used to in situ
control the radial interaction strength between particles but by using patchy particles
also the shear rigidity between bonded colloids. This further extends to uses of this
well controlled model system. For instance, it opens the way to investigate the effect
of bending rigidity on larger more dense assemblies of dipatch particles. These form
polymer like states, as shown in chapter 5, whose structure and rheology is expected
to have a non-trivial dependency on rigidity. Furthermore, by combining dipatch
particles with higher valent patchy particles more complex, potentially 3d, colloidal
architectures can be made. Such as the patchy gel shown in the previous chapter.
Bending rigidity will partly determine structural stability and an in situ control
of such rigidity could result in switchable mechanical states and shape changing
behavior [70, 243].
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Figure 6.9: Transverse (blue) and longitudinal (red) diffusion and associated drag
coefficient of dipatch chains (a) Snapshot of the N = 15 big-patch chain with center
of mass (white transparent dot) and the two diffusion directions (b) mean square
displacement and linear diffusive fits at different temperatures. (c,d) The extracted
drag coefficients per unit length as a function of temperature with fixed length N = 15
and length with fixed ∆T = 0.15K. (e) Ratio of transverse and longitudinal drag
coefficients as a function of chain length

6.5 Appendix

6.5.1 Transverse and longitudinal chain drag coeffi-
cients

The bending relaxation dynamics of a chain is expected to be, at least partly, con-
nected to the diffusion dynamics of the center of mass (COM) of the chain. We
can use the exact same data as was used to study the bending dynamics to also
determine the COM diffusion. For a semiflexible chain it is convenient to seperate
COM diffusion into two components: a transversal and a longitudinal diffusion, see
Fig. 6.9(a). To determine the mean square displacement in both directions, first
the coordinate system at each frame was rotated by the average tangent angle 〈φ〉i
at that frame. In this way the x-axis coincides with the longitudinal direction and
the y-axis with the transversal direction, such that MSDT

COM = MSDCOM,x and
MSDL

COM = MSDCOM,y. The resulting mean square displacement of the N = 15
chain used for most of the analysis in this chapter is shown in Fig .6.9(b). Good fits
are obtained with diffusive relationsMSDT

COM = 2DT∆t andMSDL
COM = 2DL∆t.

A significantly faster diffusion is obtained in the longitudinal direction which is to
be expected for a linear object. We extract the associated drag coefficients per unit
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Figure 6.10: (a) Model and experimental snapshot of three dipatch particles forming
effectively a single dipolar bond, scalebar 3µm. (b) Mean square displacement of bond
angle θ for temperature ∆T = 1.3, 1, 0.7, 0.5 from top to bottom. Blue line is best
fitted exponential relaxation on short timescales. (c) Temperature tuneability of fitted
bending rigidity on short (blue) and long (black) timescales, normalised to correspond
to the persistence length of a chain. (d) Fitted short relaxation time and extracted
friction coefficient (inset) with mean value as horizontal line.

length γTCOM = kT/(DTNd) and γLCOM = kT/(DLNd), where d is the particle
dameter, see Fig. 6.9(c). Note that we here normalise by the distance between the
two tips L′0 = N d of the chain rather than the distance between the centers of the
two end particles L0 = N d. No significant dependence on temperature is observed,
which also means the bending rigidity range that is explored here does not alter
diffusivity, in line with Ref. [233]. We average all temperatures to obtain the best
estimates γTCOM = 31 ± 3 mPas and γLCOM = 20 ± 1 mPas. From the absence of a
temperature dependence we further can conclude that there is no significant critical
Casimir attraction between particles and wall, which, if present, would give rise to
an apparent increase in the drag coefficient with increasing temperature.

We have likewise extracted the center of mass drag coeficients for chains of differ-
ent sizes and noralized by the chain length, see Fig. 6.9(d,e). These normalised drag
coefficients appear to be fairly consistent over different chain sizes though appear
to decrease for longer chains. In addition, a clear trend towards a larger constast
between transversal and longitudinal diffusion is observed, which is to be expected
due to the increased assymetry in length.

6.5.2 Secondary relaxation is present on single bond
level

To get deeper insight into the origin of the slow relaxation we look at three bonded
particles only. Three dipatch particles together form effectively a single dipolar bond
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parametrized by a single bending angle θ, see Fig. 6.10(a). An overdamped elastic
dipolar bond with energy U(θ) = kθθ

2/2 follows the dynamics

θ̇ = −kθ
γθ
θ +

√
2kT

γθ
ξ(t) (6.11)

where γθ is an effective angular friction coefficient. This equation is completely
analogous to a particle in a harmonic well with the lateral displacement replaced by
θ. It is thus similarly solved by the MSD [244]

〈θ2〉 = 2
(

1− e−t/τθ
) kT
kθ
, (6.12)

with τθ = γθ/kθ. We track the centers of a three-particle chain for different temper-
atures and follow the evolution of the bending angle.

Fig. 6.10(b) shows the MSD of θ. Interestingly, like the mode dynamics for longer
chains, also the dynamics of single bonds shows two relaxation processes. The initial
relaxation fits well with Eq. 6.12. The resulting fit parameter kθ divided by kT and
multiplied by the particle diameter d is shown in Fig. 6.10(c).This ratio dkθ/kT is
the persistence length a long chain consisting of a series of this single bond would
have. We first see that the bond rigidity is tunable with temperature similar to the
persistence length of Fig. 6.6. The absolute value is similar, but slightly lower as
before. This difference is not surprising given the variability of bond stiffnesses due
to particle polydispersity. The fitted relaxation time increases with ∆T , as shown
in Fig. 6.10(d). When we extract γθ we obtain an almost constant number. The
normalised average γθ/d3 = 16 ± 1 mPas is comparable to the drag found for free
diffusion and in the mode analysis. From this consistent behaviour we conclude that
at short timescales a single bond shows elastic overdamped dynamics.

On longer timescales a second relaxation occurs. This relaxation does not fit
well with an exponential relaxation (not shown). If we do attempt a fit we obtain a
relaxation time τslow = 15±5s, similar to the slow relaxation for chains. Fig. 6.10(c)
shows the effective bending rigidity after this second relaxation. Similar to the long
chain also this bending rigidity is temperature tuneable and on the order of a factor
two smaller than the short time scale rigidity.

From the overall similarity between long chain and single bond behaviour we
conclude that in particular the source of the secondary chain relaxation lies at the
single bond level. This allows us to exclude possible collective effects as the origin,
such as longer ranged interactions or hydrodynamic coupling. Furthermore it shows
that analysis artifacts due to approximations during the mode analysis are also not
the source. In particular the approximation of cosine modes as normal modes does
introduce a small mode mixing, with components of long wavelength, slowly decaying
modes, also being present in higher modes. Such an artefact could give rise to an
aparent second slow relaxation. However given that the secondary relaxation is also
present for the three chain, where no mode analysis is done, convincingly shows that
this mode mixing artefact is not dominant.





CHAPTER 7

Extreme mechanics of dipatch
chains under compression:

buckling, creep and snapping

Self-assembling patchy colloidal particles form a promising platform to create de-
signer soft materials. To dress such systems with mechanical functionality, one can
take inspiration from the cytoskeleton which consists of semi-flexible filaments, such
as microtubules, whose mechanical behavior give a cell it’s unique mechanical prop-
erties. Here we present mechanical experiments on analogues of biological fibers,
“colloidal polymers” made from dipatch colloidal particles. We use optical tweezers
to probe their extreme mechanics under increasingly high compressions and reveal a
rich non-linear mechanical response involving buckling, viscoelastic creep and stress
relaxation, and ultimately fracture. We characterize and model this response using
elastic and viscoelastic models involving Euler buckling and stress relaxation. This
allows us to relate the critical bending at fracture to the finite patch size of the col-
loids. These results demonstrate the crucial role of finite patch size in the mechanics
of self-assembled colloidal materials, and provide mechanical information essential
to design functional colloidal architectures inspired by nature.
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7.1 Introduction
Micrometer-size, slender structures are an integral part of many soft and biolog-
ical materials. They harbor rich mechanical behavior which crucially determines
the mechanical response and functionality of these soft architectures. For instance,
biological filaments such as microtubules, making up the cell cytoskeleton show non-
linear buckling instabilities [245–247], visco-elastic behavior [234, 248, 249], plastic
effects [250] and fracture [251]. Likewise, slender colloidal strands, prevalent in col-
loidal gels [214] and in recent colloidal designer structures [43, 51], are subject to a
similarly diverse mechanical response [115, 252]. Such colloidal structures are easier
to observe and have more controllable interparticle interactions than their biologi-
cal counterparts. This makes them excellent model systems and a promising plat-
form for designer materials with controlled internal architecture and tunable physical
properties [28]. Self-assembling patchy particles, which have tunable anisotropic in-
teractions, are a particularly promising route to achieve such designer architectures
and mimic the functionalities of biological matter [219, 220]. However detailed me-
chanical information of such patchy structures is still lacking, in particular their
non-linear extreme mechanics has so far been little explored.

In order to address such questions, we use dipatch colloidal particles that self-
assemble into colloidal chains using temperature-controlled critical Casimir inter-
actions, as described in chapter 5. These chains form semi-flexible filaments that
fluctuate due to thermal noise, as was studied in chapter 6. Here, we use optical
tweezers to probe their mechanics under extreme deformations, inducing buckling
and fracture. We perform a series of different compression tests, similar but ex-
tended in scope w.r.t. the ones described in chapter 4 These tests reveal a mechan-
ical response that resembles the richness of biological filaments, involving buckling,
viscoelastic effects and ultimately fracture upon a critical bending. We characterize
and model the elastic buckling and viscoelastic response and quantitatively relate the
fracture point to the patch size. These results provide insight into the mechanics of
assembled colloidal structures, essential to design functional colloidal architectures.

7.2 Methods

7.2.1 Chain formation and micromechanical com-
pression test protocols

Monodispersed dipatch particles, of diameter d = 3.1(1) µm, are assembled into
chains in a double optical tweezer setup using temperature-sensitive critical Casimir
interaction. The dipatch particles have small hemi-spherical patches of diameter
dp = 380nm, with patch arc-angle θp = 2 sin−1(dp/d) = 14◦(±2). These particles
are identical to the small-patch type DP-B particles described in chapter 5 and 6
to which we refer for more details concerning synthesis and characterization. We



7.2 Methods 131

use a binary mixture of water and lutidine with lutidine volume fraction cL = 0.25,
and 0.375mM Magnesium sulfate, in which the particles sediment to form a quasi
two-dimensional layer. This binary mixture was chosen to obtain optimal critical
Casimir conditions with a largest temperature window of patch-to-patch attraction,
as described in chapter 5. A custom-made objective and condenser lens heater were
used, to maintain the sample temperature, while imaging with an oil coupled high-
resolution objective with a precision of 0.1 C◦. Temperature stability however is
observed to be better than this and estimated as ∼ 0.05 C◦. When heating the
sample to ∆T = 0.10± 0.05 K below Tc = 33.75 C◦, linear chains form.

To study the effect of chain length on the mechanical response, we performed
experiments on chains consisting of N particles, where N varied from a smallest
chain N = 6 to a longest chain of N = 13. After chains were formed they were
pinned at either ends using optical tweezers. Often times we selected dipatch chains
from the sample that had monopatch particles capping the chains at both ends. Such
monopatch particles are present in minor fractions in the sample. These capped
chains were preferred as they had the advantage that during an experiment there
was no chance of another chain fusing with the chain under study. Furthermore, we
observed that the monopatch particles due to their slightly smaller size resulted in
a more stable trapping.

One (static) tweezer always remained fixed in position. A growing compressive
force is exerted by moving the other, mobile tweezer, by an amount ∆ towards the
other. To a good approximation, the tweezers form harmonic traps, with spring
constants ks and km. We can thus measure the force on the chain from the bead
displacement out of the static trap center, using F = ks(xs−x1), where xs and x1 are
the x-coordinates of the trap center and of the trapped particle. Here, the coordinate
system has been chosen to be in alignment with the chain. The linear compression
u is determined by the difference between the equilibrium total (contour)length and
the actual end-to-end distance u = L0 −L. Here, the end-to-end distance is defined
as L = xN − x1 and the equilibrium contour length as L0 =

∑
di, with di the

distance between two bonded particles when no stress is applied F = 0.
By varying the protocol with which we move the mobile trap we can perform

different micromechanical tests. We have performed three different tests: (1) A
cyclic buckling test, (2) a stress-relaxation test, and (3) a fracture test. Each test is
designed to probe different mechanical properties of the chains, respectively: elastic
buckling, viscoelastic/plastic deformation and ultimate fracture mechanics. During
a cyclic buckling test, the trap is moved with constant speed to a maximum dis-
placement ∆m and returned to its initial position in a triangular fashion. During a
stress-relaxation test, the mobile trap is moved similarly to a maximum ∆m where
it is kept fixed for a certain amount of time. During this time, the system can poten-
tially relax the stress, as measured by a reduction of the force exerted on the static
particle. During a fracture test, ∆ is increased continuously until a point of failure
is reached and the chain breaks. Each of these tests is done at compression speeds
around vtrap ≈ 0.01µm/s.

During each experiments the chains were imaged using bright field microcopy and
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recorded at a frame rate of 20fps with a pixel size of 87.7 nm. The in-plane centers
ri = (xi, yi) of each particle were located with a subpixel accuracy of ε = 10 nm using
particle tracking software [122]. Next, the bond distance di = ||ri+1 − ri|| and bond
tangent angles φi = arctan (yi+1 − yi)/(xi+1 − xi) are calculated. We note that this
2d representation of the particle chain is validated because their thermal height is
very small due to the small gravitational height of the colloids zg = 0.35 µm. To
measure bending we use identical definition as were introduced in chapter 4 and 6.
To measure local bending, we define the bending angle θi = φi+1 − φi. To study
non-local bending and to compare to theories of continuum elastic structures, such
as the Euler elastica, we perform a Fourier transform according to:

Mi =
2

N − 1

N−2∑

j=1

y⊥j sin(
π

N − 1
ji) i = 1, ..., N − 2 (7.1)

Here, y⊥i , is the deflection perpendicular to line connecting the two trapped particles,
i runs from 1 to N − 2 as the end two particles have zero perpendicular deflection
by construction. In our setup the perpendicular deflection is close to y, such that
y⊥i ≈ yi, however to account for a possible global tangent the perpendicular deflection
is used.

7.2.2 Optical tweezer details and calibration
The force and microscopy measurements were conducted on a setup which has been
described earlier [253]. Two laser beams with wavelength 1024 nm at a low inten-
sity of ∼ 5 mW were focused in narrow spots using the imaging objective. It was
important to use such low intensity in order to avoid phase separating the binary
mixture and to be able to exert the small forces involved in the mechanics of the
chains. The partial absorption of the laser light by the binary solvent causes a local
heating which we estimate to be 0.05K. This was measured by increasing the light
intensity until phase separation occurs in the laser focus at ∼ 10 mW. This happens
at twice the intensity of the actual tweezing experiment. Since the sample is kept
at a fixed temperature ∆T = 0.1K below phase separation, and assuming that the
local heating scales linearly with intensity, we estimate a local heating of 0.05K at
the trap during the tweezing experiments. This can have a local effect on the bond-
ing strength of particles close to the trap, but is small enough to cause no phase
separation of the binary mixture.

The focused laser spots form harmonic traps at the image focal plane [109]. We
checked that the trapped particles retained in-plane rotational freedom by using flu-
orescence microscopy in which only the dyed patches remain visible, Fig. 7.1. Indeed
in both traps the position of the patches and the associated particle orientation, φ,
rotates over time, Fig. 7.1(b). Interestingly, even though there is free rotation around
the z-axis of the trap, there is no free rotation around the x- and y-axis. This is
likely due to the difference in refractive index between patch and matrix. This effect
does not interfere with our measurement as we focus on in-plane deflection.
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Figure 7.1: Trap calibration of the static optical tweezer (a) Schematic of a dipatch
particle in an optical trap (b) one bright field picture that shows particle positions,
the three fluorescence images show the dyed patches diffusing over time (c) mean
square rotational displacement and diffusive power law fit 〈∆φ2〉 = 2Dr∆t (d) mean
square displacement of the center of a trapped particle and best fitting exponential
relaxation, imaging was done at 35 fps for 5 min (e) power spectral density and best
fitting Lorentzian. (f) histogram of the particle positions in x direction and gaussian
fit.

Using the fluorescence data of nonbonded trapped dipatch particles we measured
the rotational diffusion of the particles. To do so, we located the patch positions using
tracking software and calculated the particle orientation φ. We then determined the
mean square orientation displacement, 〈∆φ2〉, see Fig. 7.1(c). For both traps the
data fits well with a diffusive power-law 〈∆φ2〉 = 2Dr∆t with rotational diffusion
constant Dr. This further proves there is rotational freedom. From the best fit we
obtain a Dr = 0.05(5) rad2/s. This is a factor of two higher than the expected
Stokes-Einstein diffusion kT/8πr3η = 0.02, where the viscosity η = 1.9mPas for the
binary mixture [238]. This deviation could be from hydrodynamics effects due to
the vicinity of the capillary wall, the assumption of no-slip boundary conditions or
the composite nature of the particle [254].

We calibrated the traps by tracking the Brownian movement of a single colloidal
dipatch particle in the trap. Such calibrations were performed after each experi-
ment to account for slight differences in laser intensity between measurements. The
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overdamped dynamics of a trapped colloidal particle at position (x, y) from the trap
center is described by [109]:

ẋ = −k
γ
x+

√
2kT

γ
ξ(t), (7.2)

with k the spring constant of the trap, γ the drag coefficient and ξ(t) a normalized
Gaussian stochastic process. This equation is solved by the mean square displace-
ment (MSD) 〈∆x2〉

〈∆x2〉 = 2
(

1− e−∆t/τ
) kT
k
. (7.3)

Showing an exponential relaxation with time constant τ = γ/k where ∆t is the
lag time. Equivalently, Eq.7.2 can be solved in terms of the power spectral density
(PSD) P (f) as a Lorentzian [244]

P (f) =
kT

γπ2f2[1 + (fc/f)2]
(7.4)

where f is frequency and fc = 1/2πτ the roll-off frequency. Fig. 7.1(d,e) shows the
MSD and PSD of a dipatch colloidal particle in the static optical trap and a fit with
Eqs. 7.3 and Eqs. 7.4, respectively. The good quality of the fits proves that the
tweezers are well described by harmonic traps. From the best fits of both the PSD
and the MSD, we obtain a diffusion coefficient D = 0.03 ± 0.001 µm2/s and a trap
spring constant ks = 0.6 ± 0.01 pN/µm. This diffusion constant is consistent with
the diffusion constant for freely diffusing particles, D = 0.035±0.05 µm2/s that was
measured in the previous chapter. The spring constant also agrees well with simply
fitting a gaussian to the histogram of displacements to obtain σ = 0.08 µm, and
ks = kT/σ2 = 0.58 ± 0.02 pN/µm, see Fig. 7.1(f). Similar calibrations were done
after each experiment for the static trap with slight variations in the found trap
constants on the order of 0.1 pN/µm.

7.3 Buckling, creep and fracture
An overview of the micromechanical tests together with representative snapshots of
the colloidal chain, are shown in Fig. 7.2. These real-space images already highlight
the rich non-linear response of the colloidal chain, consisting of buckling, viscoelas-
tic relaxation and fracture present in this simple system. In all cases we observe
that above a critical compression ∆c the initially straight chain buckles. Upon un-
loading, the chain reversibly straightens out, as seen in the cyclic compression test
Fig. 7.2(b). This reversibility suggests an elastic response. Interestingly, at longer
times, viscoelastic effects are present. We observe that when the trap is kept fixed
at a certain maximum compression after buckling, the deflection keeps on increasing
further, see Fig. 7.2(c). This behavior is reminiscent of a creep response. Typically
creep is accompanied by stress relaxation, as can be seen by the trapped particles
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Figure 7.2: Micromechanical tests with optical tweezers: (a) sketch of a dipatch parti-
cle chain in two harmonic optical traps (b) Cyclic buckling test protocol and example
snapshots at times (A) before buckling, (B) maximum compression and (C) reversible
straightening. (c) Relaxation test protocol, snapshots when (B) trap movement is
stopped reaching ∆m, (C) after waiting 100s at ∆m. (d) Fracture test protocol, snap-
shots at (C) 1s before fracture (D) 1s after fracture (E) 7s after fracture. Red (white)
transparent lines in snapshots correspond to the x position of the fixed (mobile) trap.
Scale bar is 3 µm. (Video: https:// youtu.be/ZkhIux0PzjY )

moving closer to the trap center. Finally, if we keep increasing the compression far
beyond the initial buckling load we observe that at the fracture displacement ∆f , the
chain breaks at a single connection point and two bonded patches separate, as shown
by the snapshots in Fig. 7.2(d). This behavior is intimately linked to the limited
patch area and strikingly different from the chains assembled for isotropic particle,
which do not fracture, but instead show a continued folding through sequential plas-
tic kinking, as shown in chapter 4. After fracture, the two remaining ends quickly
release their elastic energy by straightening out, further showing the reversibility of
the remaining two chain segments. We note that the short end straightens markedly
faster, which makes sense given the faster dynamics of shorter bending modes.

7.4 Elastic Euler buckling
In order to better understand the buckling transition we perform various cyclic
buckling tests for different lengths of chains from N = 6 to N = 12. A typi-
cal force versus mobile trap displacement is shown in Fig. 7.3(b). Initially, during

https://youtu.be/ZkhIux0PzjY
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Figure 7.3: Reversible time-invariant elastic Euler buckling of dipatch chains (a) cyclic
buckling protocol (b) Force versus trap displacement of loading (black) and unloading
(red), data is smoothened by a rolling average over 100 frames. Dashed lines are fits to
an initial linear increase followed by a constant plateau. (c) Force versus strain, dot’s
are individual data points, black line is a binning performed by rotating the dataset
by 45◦, dashed line is the best fitting Fc for u/L0 > 0.005. (d) Normalized M1 versus
strain. Dashed line is perfect first mode deflection M1/L0 = 2/π

√
u/L0. All data

corresponds to a single typical experiment of a N = 11 chain recorded at 20fps with
∆m = 1µm at vtrap = 0.01µm/s.

the loading phase, the force increases linearly with trap displacement, Fig. 7.3(b).
The force starts out negative as chains are kept in a stretched state before start-
ing the experiment. The slope of this increase fits to k∆ = 0.25 pN/µm. Such
a spring constant agrees with the effective spring constant of the two traps, if
placed in series. Indeed, the traps were calibrated with ks = 0.58 pN/µm and
km = 0.45 pN/µm, such that, if placed in series, they create an effective trap with
constant keff = 1/ (1/ks + 1/km) = 0.25. Thus, in the pre-buckling regime, to first
order only the trap springs compress and the chain is incompressible within mea-
surement accuracy. However, at a critical trap displacement ∆c, the force no longer
increases, but saturates at a plateau Fc. Interestingly, upon unloading a mirrored re-
sponse occurs. by pinpointing the deflection points by interpolation, we obtain only
small difference of ∆c −∆′c = 0.1(±0.1)µm± (0.1µm), showing they are very simi-
lar. The small difference is explained partly by thermal noise. In addition the finite
trap-speed can also delay buckling during loading as the chain becomes temporarily
trapped in a non-equilibrium state. Nevertheless the reversible time-invariant behav-
ior indicates an elastic response on these timescales and stress amplitudes. Indeed
we can estimate the dissipated energy by integrating the fitted Force curves, using∮
Fd∆, which yields roughly 2kT. This is not significantly above thermal noise.

Plotting the force F versus strain u/L0, instead of the trap displacement ∆, we see
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Figure 7.4: Chain buckling is inline with Euler’s criterium (a) Buckling force versus
chain length of 11 experiments. Solid line is a fit to the Euler’s criterium Fc = π2B/L2

0.
(b) Persistence length, calculated by inverting Euler’s criterium for each measurement
separately. Blue (red) line corresponds to Lfastp = 2420µm (Lslowp =?µm), previously
obtained from analyzing thermal vibrations.

that the force transition coincides with a strong increase in strain, see Fig. 7.3(c).
The incompressibility of the chain is further confirmed by the steep slope before
buckling. The sharp transition at a critical force Fc to a constant force is strongly
reminiscent of the elastic response of classical Euler buckling [211–213]. The latter
states that a freely hinged elastic rod of bending rigidity B buckles out of its straight
configuration into the lowest order mode at a load F ec = π2B/L2

0. Indeed, the
dipatch colloidal chain buckles into the first mode, as confirmed by looking at the
first mode amplitude M1 versus strain, Fig. 7.3(d). It closely follows the theoretical
relation M1/L0 = 2

√
u/L0/π, as shown by the dashed curve through the data

points. Such agreement with an elastic model further indicates the chain exhibits an
elastic response. This behavior closely resembles the buckling response of the chain
of isotropic particles described in chapter 4. However, for the dipatch particle chain
the agreement with the continuum theory is even more precise. This is likely due to
the more perfect straightness of dipatch chains.

We performed similar buckling experiments for approximately 10 chains of dif-
ferent sizes and measured the force displacement curves. To get the most accurate
value of Fc for each experiment we average F in the plateau regime by selecting data
points with u/L0 > 0.005. Fig. 7.4(a) shows the obtained values of Fc for differ-
ent chain lengths. A clear trend for larger Fc with smaller chains is visible. The
power of this increase is difficult to determine from the noisy data. If we however
assume the Euler dependence L−2

0 , we obtain a best fit with the bending rigidity
B = 10 pNµm2, equivalent to a persistence length Lp = B/kT = 2400 µm. It
is interesting to compare this with the slow and fast relaxing bending rigidities,
Lfastp = 2420 and Lslowp = 1500 obtained from analysis of thermal vibrations with
free boundary conditions. The value obtained from buckling is remarkably close
to Lfastp . Fig. 7.4(b) shows Lp determined separately for each experiment from
the measured critical force, Fc, and compares them to Lfastp and Lslowp (blue/red
line). Here wee see that in fact there is quite some variation between the chains.
The variation is partly explained by the polydispersity in patch area of the dipatch
particles constituting the chains. Bigger patches will result in stronger bonds and
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longer persistence length. In addition the limited temperature stability and noise in
the measurement of Fc can produce variations between different measurement. It
is interesting though to see a trend towards lower rigidities for smaller chains. One
reason for this could be the larger stress involved with shorter chains, increasing
the likeliness of viscoplastic effects that reduce the effective rigidity. Another reason
could be a dynamic one: In order for large chains to buckle in the first mode, more
time is required due to the slower dynamics of these larger buckling modes, which
grows with L4

0, as shown in the previous chapter. As the speed of the trap move-
ment is not reduced for the longer chains, a deviation from a quasi-static situation
could occur. Therefore, for longer chains the trap movement is more likely to excite
higher-order modes which increases the stress, as similarly occurs for macroscopic
elastic slender filaments [255, 256].

We conclude that for moderate strains up to around 1% the chains show elastic
Euler buckling, reversible upon unloading and on average in line with the rigidity
found during fluctuation analysis on short timescales. However, a trend of growing
effective bending rigidity with chain length points to the occurrence of other effects.
This trend could be explained by the fact that shorter chains are more susceptible
to viscoplastic effects and longer chains to dynamic higher-mode excitations.

7.5 Creeping and stress relaxation
We obtain further insight into these viscoelastic effects by analyzing a single rep-
resentative stress-relaxation experiment in detail. This time, after moving the trap
with constant speed until after the buckling point, we stop and keep it at a fixed,
strained position. The mobile trap displacement and corresponding force, first-mode
amplitude and compression are shown in Fig. 7.5(a). At the trap displacement ∆c

the chain buckles as described before: Fc plateaus while M1 and u start increasing.
Indeed, this regime in the force-compression curve, Fig. 7.5(b), looks almost identical
to Fig. 7.3(c). This time, however, the plateau does not hold: Close to the point
of maximum trap displacement, indicated by the star, the force starts decreasing.
While the trap is held fixed, the force further relaxes to zero. At the same time the
strain and deflection continue to increase in a creep-like fashion. The resulting force-
compression curve (Fig. 7.5b) shows a pronounced shift to the right. To close the
circle, when the chain has fully relaxed, we quickly unload. Again, a delayed response
is observed with u and M1 decaying after trap movement has stopped. Fig. 7.5(c)
shows the first mode amplitude versus displacement. Interestingly, close to the point
where the force started yielding (indicated by star) the first amplitude deviates from
a pure first mode deformation (indicated by dotted line). This means that higher
bending modes are getting excited, deviating from the pure Euler buckling observed
before.

These observations indicate non-elastic effects, as most clearly shown by the
force strain curve, Fig. 7.5(b). The curve exhibits a loop with non-zero enclosed
area, indicating that energy is dissipated. The enclosed area corresponds to the
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Figure 7.5: Broken time-invariance due to viscoelastic dissipation (a) Time traces of
trap displacement, force, first mode amplitude and strain of aN = 13 chain undergoing
a stress relaxation protocol followed by a quick unloading. Red dot indicates buckling,
red star yielding. (b,c) Force, first mode versus strain. The colors and location of the
red star are consistent over the panels

amount of dissipated energy. By rough interpolation of the data we can integrate
and find ∆E◦u =

∮
Fdu = 21 kT , significantly higher than thermal energy. We can

alternatively integrate the force over the trap displacement ∆ (figure not shown),
and find ∆E◦∆ =

∮
Fd∆ = 78 kT . This is even higher because it includes dissipation

of energy that was stored in the trap springs on top of the elastic energy necessary
to bend the chain. The values are well above thermal noise, strikingly different than
obtained in the elastic experiments below ∆c.

In order to better understand this dissipative process, we focus on the period after
buckling at which the trap movement has stopped and the stress relaxes. Fig. 7.6(b-
d) shows zoom-in on this part of the test. The evolution of both the force and the
strain are well fitted by exponential relaxations,

F = Fie
−∆t/τF , u = uf − ucreepe−∆t/τu , (7.5)

where ∆t = t − t2, Fi = 0.13pN the initial stress, uf the final displacement and
ucreep = 0.46µm the total creep displacement. From these fits we obtain relaxation
times of τF = 13 ± 1s, and τu = 14 ± 1s, which agree with each other within error
bars. We also fit an exponential relaxation to M1 and find τM1

= 22 ± 1s. For a
pure first-mode deformation one expects M1 ∝

√
u, and τM1

= 2τu. The slightly
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Figure 7.6: (a) Zoom in on the stress relaxation test of the experiment (b,c,d) Stress
relaxation, deflection creep and strain creep, time starts at t2. Red lines are expo-
nential relaxation fits. (e) A macroscopic mechanical model for the trap plus chain
system. As a function of trap displacement the chain shows a different mechanical
response depending if it is straight, buckled or has yielded.

fast τM1
we observe is likely caused by additional relaxation of higher modes into

the first-mode, speeding up first-mode growth.

We propose a minimal mechanical model to interpret the viscoelastic response,
outlined in Fig. 7.6(e). Before buckling, the system can be thought of as two
springs in series, one representing both traps, with effective spring constant ktrap =

(1/ks + 1/km)
−1, and the other representing the chain in its straight state, with

kchain. As was shown, while loading only the traps compress since kchain � ktrap.
After buckling occurs (t1) the chain becomes compliant but resists with a constant
force Fc. At an even higher strain (time t2, and ∆ = ∆η), the chain yields and is
replaced by a dashpot with effective viscosity η′. This turns the trap-chain system
into a Maxwell material. Here we mean yielding in the sense that a transition occurs
from dominated by elastic behavior to dominated by viscous behavior. The me-
chanical response of the system can be summarized using the following constitutive
equations





F = ktrap(∆−∆0), u = 0 if ∆ < ∆c,

F = Fc, u = ∆−∆c if ∆c < ∆ < ∆η,

∆̇ = Ḟ
ktrap

+ F
γ′ , u̇ = F

γ′ if ∆η < ∆,

(7.6)

where ∆0 is the equilibrium trap length, γ′ is a drag coefficient, associated with
an effective viscosity γ′ = η′A/L0 via an area A. Fitting the loading and buckling
regime, we get a value of ktrap = 0.26 pN/µm, and Fc = 0.14 pN. If we assume ∆η
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coincides with ∆m, and ∆̇ = 0 in the viscous regime it follows that

F = Fce
−ktrapt/γ′ , u = − Fc

ktrap
e−ktrapt/γ

′
+ u(t = t2). (7.7)

This corresponds directly to the exponential relaxation fit, when Fc = Fi and ktrap =
Fi/ucreep = 0.3 pN/µm and γ′ = 4 Pasµm. The spring constant and Fc agree
well with the values obtained for the loading and buckling regime. Moreover the
small overestimation of ktrap with respect to the expected value (1/ks + 1/km)

−1
=

0.26 pN/µm, is likely due to the assumption that ∆η = ∆m. Yielding probably
occurred slightly earlier at the point where higher modes got excited. For such a
minimal model, the agreement is striking.

Though this effective model correctly describes the observed response it does not
give insight into the source of the drag coefficient γ′. This must be a consequence of
the bending as the viscous effect is only observed after buckling. Could the origin
of this effective drag coefficient be simply the viscosity of the fluid? From thermal
fluctuation measurements we extracted a drag coefficient forM1, γM1

= 50 mPasµm
(data, not shown). For a pure first-mode deformation close to a non-zero strain u0

and mode amplitude M0
1 , Ṁ1 =

M0
1

u0 u̇. Therefore, γ =
M0

1

u0 γM1
. In our experimental

case u0

M0
1
∼ 1, and γ ∼ 60 mPasµm. This is almost two orders of magnitude lower

than γ′. We conclude that the source of the drag cannot be the outside fluid and
therefore has to come from internal friction.

We found in chapter 6 (free fluctuation chain) that on timescale on the order of
10s, dissipative effects take place. This was then also associated with internal friction
with an effective viscosity of 1Pas. Associating the γ′ in the mechanical model with
a viscosity via the area A = d2, this yields η′ = γ′L0/A = 14Pas. The similarity
of timescales and effective viscosity values indicates that both effects have the same
origin. We speculated before that the origin of this dissipation is slow conformational
changes, specifically contact slippage. Using the buckling experiments we can get
some more insight in the microscopic origin of this friction. It is striking that at
the yielding point a strong deviation from a perfect first mode occurs. This suggests
indeed that conformational changes occur that excite higher modes. The real-space
snapshots suggest that the higher-order modes localize bending on a single bond,
indicating bond shear slip. For a while, this slip is localized on this particular bond
and grows in time. With increased strain this localization diminishes and now other
bonds also get more bend, until finally a pure first mode buckling is recovered. One
can understand this if slipping stops when a deeper local minimum is reached. This
would lead to a local strain hardening at this contact and instead lead to other bonds
bending further, effectively restoring the pure first-mode deflection.

7.6 From bending to snapping
At even larger strains, the dipatch particle chains show a transition from bending to
snapping, dramatically different from the behavior of the isotropic colloidal chains.
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Figure 7.7: Force and first-mode deflection of two representative fracture tests (a)
N = 12 chain, trap speed 0.015µm/s(b) N = 11 chain, trap speed 0.02µm/s Red dots
are post-fracture data points. Numbers mark corresponding microscopy images of the
chains before and after breaking. (Video: https:// youtu.be/ 2_anFaXxZzE)

To get more insight into this transition, we performed fracture tests on different
chains. The extracted force-strain curves and first-mode deflection curves of two
typical test are shown together with microscope images of the snapping chain in
Fig.7.7(a,b). The large applied strain, reaching about u/L0 ∼ 10%, causes a strong
chain bending. At a fracture strain uf/L0, the chain breaks at a single bond, after
which the average force reduces to zero (red data points). This quick stress release
together with the visible straightening of the chains, again indicates that there was
stored elastic bending energy in the chain. As is seen in these two examples a chain
does not always break in the middle where the highest curvature is expected to
be localized. This can be explained first of all as a consequence of thermal noise
which also excites higher mode bending which have a maximum curvature not in
the middle. A second explanation comes from the polydispersity in patch-size of the
particles, particles with smaller patch-size likely form weak spots that will break at
a lower bending angle.

Given the fact that we observe viscoelastic effects already for lower strain, it is
slightly surprising that, before breaking, the force and deflection curves on first in-
spection are very reminiscent of the elastic buckling behavior: The force curve shows
the characteristic buckling transition from incompressible increase to a plateau bend-
ing regime, and the mode deflection overlaps almost perfectly with the theoretical
one, as seen Fig. 7.7(a). Though we note that the chain of Fig. 7.7(b), shows an

https://youtu.be/2_anFaXxZzE
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Figure 7.8: Bending angles of bonded particles versus time showing rapid straightening
after the chains breaks (a) black line is the average of all bending angles 〈θ〉, red line
is the mean of the two bending angle next to the broken bond. Vertical dashed line
marks the time at which the chains breaks (b) zoom in on 10s after fracture. Data
comes from the same experiment as shown in Fig. 7.7(a)

especially large overshoot at the buckling compression. We attribute this to a dy-
namic buckling overshoot where the chain gets stuck in the straight state, causing
a force overshoot because the buckling of the elastic chain is delayed. This appar-
ent elastic response is surprising, given that at these large strains one expects to
overcome the viscoelastic yield strain. However, at the current loading speed, the
chain does not have time plastic relaxation. To estimate the plastic relaxation time
scale, we use Eq. 7.6 to determine the post-yielding creep rate as u̇ = F

γ′ ∼ 2.5µm/s,
where we have used the previously obtained value for the internal drag coefficient
γ′ = 4Pasµm and the force F ∼ 0.1pN. This speed is in the same order of magnitude
as the current loading speed of the trap such that the chain does not have time to
fully relax. Furthermore, we attribute the source of viscous effects to bond slippage
towards a new contact point with a new energy minimum. This could lead to strain
hardening when arresting in a deeper energy well and to stick-slip behavior upon
continued compression. Indeed, upon second inspection, the plateau region of the
force curve of particularly the chain shown in Fig.7.7(a), does show some signatures
of that. Instead of a constant force, a sequence of stress build ups and decays seem
to occur. This could be a sign of sequential stress relaxation due to internal friction
followed by strain hardening. However the noisy data due to thermal fluctuations
makes it difficult to be more quantitative about this point.

When the chain breaks, stress is released as is evident from the force dropping
to zero, further proving that there was bend energy stored in the chain. Fig.7.8(a)
shows the average bending angle (black) and the bending angle associated with the
bond that breaks (red). The average bending angle increases until the fracture point,
reaching a maximum 〈θ〉f . The bond that breaks has a higher than average bend
angle at the moment of breaking. Right after breaking, the average bend angle of the
two broken chain parts straightens out quickly and relaxes to zero. The timescale
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Figure 7.9: Fracture occurs at a critical bending angle (a) the maximum strain reached
right before fracture, blue line is a prediction based on a maximum bending criterium,
see text (b) the mean bending angle right before fracture versus chain length, black
line is the average (c) the maximum bending angle of the bond that snaps, black line is
the average (d) Geometric argument that the expected maximum bond bending angle
θ∗p equals the patch arc angle θp

of straightening is limited by solvent friction (rather than internal friction) and is of
the order of a few seconds, see zoom-in in Fig.7.8(b).

We performed many more fracture experiments, and plot their fracture strains
as a function of chain length in Fig. 7.9(a). A clear systematic increase is observed.
This is to be expected as longer chains show less local bending for the same strains.
Interestingly, the average bending angle right before fracture 〈θ〉f appears almost
insensitive with an average ¯〈θ〉f = 0.11(1)rad to chain length, see Fig. 7.9(b). This
suggests that 〈θ〉f is a critical bending angle that we can use as predictive criterium
for fracture. We also plotted an alternative bending angle, 〈θM1

〉f , corresponding
to the average bending angle in case of a pure first mode deformation, defined by,
〈θM1〉f = 2πdM1,f/L

2
0 (blue data points). These two quantities almost overlap,

further showing that deformation is close to a pure first mode and that 〈θM1
〉f

forms an equivalent critical bending criterium. We can use this criterium together
with the relation M1/L0 = 2

√
u/L0/π to obtain a prediction for the fracture strain

uf/L0 = (L0/d)2〈θM1
〉2f/16, which is shown Fig. 7.9(a, blue line). Given that there

are no fitting parameters in this prediction for the fracture strain the agreement with
experiment is striking.

These robust bending criteria can be evaluated with respect to the patch size. The
patch has a diameter of approximately dp = 0.38(5) µm, which translates to an arc
angle 2 sin−1(dp/d) = 0.14(2)◦ = 0.24(3)rad (see chapter 2). Here the uncertainty is
an estimation of the particle patch area polydispersity. We expect that the chain will
break when one bond angle reaches the patch arc angle, as is graphically explained
in Fig. 7.9(d). The critical bending criterium is in terms of the average bending
angle, but for a pure first mode deformation this can be translated to a maximum
bending angle max(θM1)f = π〈θM1〉f/2 = 0.17(1). This is indeed close to the patch
arc angle, yet is slightly smaller, which means chains break slightly earlier than this
limit. The difference can be explained by patch size polydispersity, but using the
estimation of polydispersity this would still be lower than expected. More important
is probably the thermal noise which can temporarily increase local bending, as can
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be seen in the red curve of Fig.7.8(a). Based on the fluctuation results in chapter
6 such fluctuations are indeed significant and on the order of ∼ 0.05rad. That
there is a higher local bending is also confirmed by the fact that actual measured
bending angle of the bond that snaps θ∗f , is typically higher than 0.17, as shown in
Fig. 7.9(c). Averaging over all the measurements yields θ̄∗f = 0.20(5)rad, consistent
within accuracy with the patch arc angle. From this correspondence we conclude
that the fracture transition arises from the limited patch size, which explains the
striking difference with the response of isotropic particle chains.

7.7 Conclusion
We have shown that chains of dipatch colloidal particles buckle elastically, showing
an ideal elastic Euler buckling behavior when strain is kept below the yield strain.
For larger strains, viscoelastic effects lead to stress-relaxation. Ultimately, if strain
is increased even further, the chains break. The elastic buckling agrees well with
macroscopic Euler buckling and we recover the Fc ∝ L−2 scaling of buckling load
with filament length. From the buckling load we, extracted a persistence length that
compared favorably with the independent fluctuation experiments reported in the
previous chapter. Viscoelastic effects occurring beyond the yield strain are attributed
to internal friction due to bond slippage. We used a simple linear viscoelastic model
that provided a good fit to the experimental stress-relaxation data. Finally, we
showed that chain fracture occurs at a critical maximum bending angle, the value of
which we could rationalize based on the size of the patch and thermal noise.

These results highlight the rich non-linear, viscoelastic and fracture mechanics
present in self-assembled patchy particle chains. They also show that we can model
and predict essential features of this mechanical behavior accurately. The elastic
loading, viscoelastic relaxation with apparent stick-slip dynamics, and final failure
of these chains strongly remind of the mechanical properties of bulk materials. The
finite patch size has been proven essential not only in determining the structures
formed through self-assembly, but also in determining the resulting mechanics of
these structures. In particular, they impart these structure with a breaking mech-
anism that is fully absent in non-patchy assemblies. These results show patchy
particle self-assembly are a promising route to achieve colloidal architectures with
designer mechanical properties, further extending the uses of dipatch chains as model
filaments.
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Summary

Colloids currently form one of the most exciting platforms for developing self-assem-
bling designer materials. Such materials mimic biological matter in their bottom-up
hierarchical organization, and in the way they derive function from dynamic mechan-
ical properties. Recent breakthroughs in synthesis have yielded colloidal building
blocks with precise control over shape and surface properties. However, their as-
sembly in functional architectures remains challenging, requiring interaction control,
fundamental understanding of in and out-of-equilibrium self-assembly pathways, and
a deeper knowledge of micromechanical behavior.

This thesis presents a colloidal system for directed and controlled self-assembly,
using temperature tunable critical Casimir forces and patchy particles, which have
a heterogenous surface with patches of tunable size. We show that these particles
self-assemble in different architectures ranging from various small scale well-defined
structures to sample-spanning networks. In addition, these architectures are put to
the test by a series of micromechanical studies on simple basic structures: Straight
colloidal chains. Using optical tweezers and thermally induced bending fluctuations,
a rich semiflexible mechanics is revealed, which involves stochastic buckling instabil-
ities, viscoplastic effects and fracture.

Chapter 2 starts with a description of the synthesis of dipatch and tetrapatch
particles. This synthesis was conducted according to a recently published technique
called colloidal fusion. After synthesis, the particle patch size and shape are precisely
characterized using AFM microscopy. This is followed by an introduction to the
critical Casimir interaction as a tool for self-assembly. Critical Casimir interactions
arise in near critical binary mixtures. This chapter shows how to obtain a boundary
condition contrast between the patch and bulk of a particle, essential to achieve pure
patch-to-patch attraction. One crucial element, it is found, is to use binary mixture
at slightly off-critical concentrations.

The critical Casimir interaction can be calculated using a combination of field-
theoretical techniques and Monte Carlo simulations. Specifically at the off-critical
conditions optimal for patchy assembly, these theoretical predictions had so far not
been compared to experiments. In Chapter 3, the critical Casimir interaction is
directly measured between two isotropic particles and found to agree with theoret-
ical models at these experimentally relevant conditions. Precise knowledge of the
interaction potential is essential to rationally design self-assembly pathways and to
interpret the behavior of assembled structures.

In Chapter 4, the focus is shifted to the mechanics of colloidal structures. In this
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chapter we do not yet use patchy particles and instead assemble a chain of isotropic
particles using critical Casimir forces. We investigate, by experiments, simulations
and theory, the mechanical instabilities of this slender, colloidal structure. Upon
compression the chain undergoes a novel form of stochastic buckling instability, for
which fluctuations become amplified and diverge in the vicinity of the critical buck-
ling transition. We fully characterize how the persistence length and plasticity con-
trols the stochastic buckling transition, leading to intriguing higher-order buckling
modes.

Chapter 5 is a pivotal chapter. The patchy particles are shown to undergo single
bond-per-patch interactions that are reversible and tunable using temperature de-
pendent Critical Casimir forces. We assemble different types of ‘colloidal molecules’
using dipatch and tetrapatch particles and mixtures thereof: Pure dipatch particles
form short chains, tetrapatch particles introduce tetrahedral bond angles that result,
among others, in zigzag chains and cyclic structures. Larger numbers of dipatch par-
ticles form analogues of polymers that can crosslink with the addition of tetrapatch
particles and we study their growth kinetics. Finally, by decreasing particle size to
speed up formation kinetics, dipatch and tetrapatch mixtures form a percolated gel.
These results demonstrate the assembly control that patchy particles in combination
with the in-situ controllable critical Casimir interaction offer.

With the realization of a well controlled and patchy aggregating system, the stage
is set to ask detailed questions about the physics of such assemblies. In Chapter 6,
we study the dynamics of thermally induced bending fluctuations in dipatch chains
to characterize their mechanics. We show that they are well modeled as semiflexible
filaments, with a persistence length that is set by patch size and the strength of the
critical Casimir bond. We furthermore reveal viscoelastic effects on longer timescales
that we attribute to internal friction. Our results show that the critical Casimir force
can not only be used to in-situ rationally control the radial interaction strength
between particles but, by using patchy particles, can also control the shear rigidity
between bonded colloids. This paves the way for using patchy particle assemblies as
building blocks of colloidal architectures with bending rigidity as a rational control
parameter.

The final Chapter 7 uses optical tweezers to probe the mechanics of dipatch chains
under extreme deformations, inducing buckling and fracture. Optical tweezers probe
their extreme mechanics under increasingly high compressions. This reveals a rich
non-linear mechanical response involving buckling, viscoelastic creep and stress re-
laxation, and ultimately fracture. We characterize and model this response using
elastic and viscoelastic models involving Euler buckling and stress relaxation. This
allows us to relate the critical bending at fracture to the finite patch size of the col-
loids. These results demonstrate the crucial role of finite patch size in the mechanics
of self-assembled colloidal materials.

With the fracture of these colloidal structures, this thesis has come to a symbolic
end. However, as all proper self-assembling systems do, when stress is released,
these chains patch up, and self-heal. The future looks bright for such versatile life-
like materials. It is my hope that, in the long run, colloids and other self-assembling
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systems blur the boundary between what is man-made and what is natural. Maybe
the engineer of the future will look more like a gardener, carefully nurturing his
creations, until they grow, by themselves, to the machines he envisioned.





Populaire Samenvatting

Van staal tot boter, en van diesel tot verf, alles in deze wereld is opgebouwd uit
kleinere bouwstenen. Deze bouwstenen, zoals atomen of colloïden, zijn op zichzelf
vrij eenvoudig, als de bakstenen van een huis. Het is de collectieve samenwerking,
meer dan de aard van individuele bouwstenen, die de eigenschappen van materialen
bepaalt. Dit eeuwenoude atomistische gegeven kan nog steeds verbazen. In het
bijzonder als je de adembenemende complexiteit van levende structuren beschouwt.
De diversiteit en functionaliteit van jouw lichamelijk weefsel komt uiteindelijk voort
uit een ontzettend geavanceerde aaneenschakeling van vrij eenvoudige atomen en
moleculen. Hoe kan zoiets complex en moois voortkomen uit zulke simpele bouw-
stenen? En hoe vinden al deze bouwstenen de juiste locatie, zonder dat er iets is dat
ze één voor één op hun plek zet?

Een belangrijk mechanisme van de natuur is het gebruik van ‘self-assembly’, dat
vertaald kan worden als ‘spontane samenstelling’ of ‘zelf-bouwing’. Self-assembly is
enigszins tegenintuïtief voor ons. Immers, we zien zelden een ontbonden object, zoals
een gebroken auto, zich spontaan met een beetje schudden weer in elkaar klikken.
Toch zijn er voorbeelden die je met het blote oog kunt zien (zie figuur 1 van de
introductie, blz. 3): In de herfst kunnen drijvende blaadjes soms in opvallend geor-
dende structuren samenkomen. Meer geavanceerd zijn de zogenaamde vuurmieren,
nomadische mieren die in tropische regenwouden leven. Door elkaar vast te grijpen
bouwen de mieren bruggen, en zelfs hele mobiele burchten van hun eigen lichamen.
In de onzichtbare, microscopische natuur is self-assembly wijdverspreid. Het stollen
van bloed bijvoorbeeld maakt gebruik van de self-assembly van fibrine netwerken.
Ook het vouwen van eiwitten, een proces dat aan de basis staat van het functioneren
van iedere cel, is niets anders dan een zeer precieze vorm van self-assembly.

Colloidal Design. In dit proefschrift heb ik de zelf-bouwende eigenschappen van
de natuur proberen na te bootsen met behulp van colloïden. Een colloïd is een tech-
nische naam voor stoffen die bestaan uit kleine deeltjes van ongeveer 1 micrometer
verspreid in een vloeibaar medium. Alledaagse voorbeelden van colloïden zijn melk,
verf en tandpasta. Sinds kort bestaan er ook synthetische colloïden waarvan de
deeltjes met hoge precisie ontworpen kunnen worden. Dit soort ‘designer’ colloïden
vormen een veelbelovend platform voor de ontwikkeling van zelf-bouwende, slimme
materialen.

Bouwen. De designer colloïden in dit proefschrift zijn zogenaamde ‘patchy’ deel-
tjes. Deze deeltjes hebben op hun oppervlak een aantal stippen. Deze stippen fun-
geren als een soort microscopische handen. Alleen als deeltjes met de stippen naar
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elkaar toewijzen voelen ze een aantrekkingskracht, dan grijpen de handen elkaar
beet. Wanneer er deeltjes met elk twee stippen samengevoegd worden, dan ontstaan
er kettingen. Net zoals een groep mensen een ketting vormt als de handen ineen
worden geslagen. Als er deeltjes met meer dan twee stippen worden toegevoegd, dan
kunnen die als vertakkingspunten fungeren waar meerdere kettingen samenkomen.
Met genoeg van dit soort vertakkingspunten ontstaat er een netwerk. Zo’n col-
loïdaal netwerk is artistiek weergegeven op de omslag van het proefschrift. In de
hoofdstukken 2,3 en 5, wordt beschreven hoe deze patchy deeltjes gemaakt worden,
hoe we de aantrekkingskracht tussen de deeltjes kunnen instellen met behulp van de
temperatuur, en hoe in dit systeem spontaan kettingen en netwerken ontstaan.

Buigen en Breken. Na het bouwen van deze structuren, wordt in de hoofd-
stukken 4, 6 en 7, hun mechanische eigenschappen onderzocht. Met behulp van
laser pincetten is het mogelijk om één deeltje vast te pakken, en naar gelieve te ver-
plaatsen. Een colloïdale ketting kan met behulp van twee van zulke pincetten bij de
uiteinden vast worden gepakt. Vervolgens oefenen we krachten op de ketting uit door
de uiteinden naar elkaar toe te duwen. Verassend genoeg blijken de kettingen zich
niet als flexibele kralenkettingen te gedragen maar meer als microscopische buigbare
latten. Dit resulteert in bijzonder mechanisch gedrag: Als een liniaal die knikt tussen
je handen, zo buigen de colloïdale kettingen onder voldoende compressie. Door de
compressie nog verder op te voeren wordt de buiging zo extreem dat de ketting zelfs
breekt.

Met het breken van deze colloïdale structuren bereikt het proefschrift een sym-
bolisch einde. Maar niet getreurd, zoals het elk zelf-bouwend systeem betaamt, kan
de breuk zichzelf helen als de spanning eraf is. Zulke materialen, geïnspireerd op
de levende natuur, lijken een veelbelovende toekomst te hebben. Ik hoop dat op
de lange termijn, colloïden en andere zelf-bouwende systemen het verschil vervagen
tussen wat natuurlijk en synthetisch is. In zo’n wereld lijkt een ingenieur misschien
wel meer op een tuinman, die zijn creaties zorgzaam voedt, zodat ze uit zichzelf
groeien tot machines naar zijn ontwerp.
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