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Simple protocols for oblivious transfer and secure identification in the noisy-quantum-storage model

Christian Schaffner*
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We present simple protocols for oblivious transfer and password-based identification which are secure against
general attacks in the noisy-quantum-storage model as defined in R. König, S. Wehner, and J. Wullschleger
[e-print arXiv:0906.1030]. We argue that a technical tool from König et al. suffices to prove security of the
known protocols. Whereas the more involved protocol for oblivious transfer from König et al. requires less
noise in storage to achieve security, our “canonical” protocols have the advantage of being simpler to implement
and the security error is easier control. Therefore, our protocols yield higher OT rates for many realistic noise
parameters. Furthermore, a proof of security of a direct protocol for password-based identification against general
noisy-quantum-storage attacks is given.

DOI: 10.1103/PhysRevA.82.032308 PACS number(s): 03.67.Dd, 03.67.Ac

I. INTRODUCTION

Throughout history, a main goal of cryptography has been
to provide secure communication over insecure channels. In
today’s internet-driven society, however, more advanced tasks
arise: People need to do business and interact with peers
they neither know nor trust. A simple example is secure
identification: Users Alice and Bob share a password P , and
when setting up a communication, Alice wants to make sure
she is really interacting with Bob—the only other person
who knows P . Simply announcing P is insecure, as any
eavesdropper can intercept P and use it later to impersonate
Bob. We need a method for checking whether two parties are
in possession of the same password, but without revealing any
additional information.

Secure identification is a special case of the more general
problem of secure two-party computation: Alice and Bob want
to perform a computation on private inputs in a way so that
they obtain the correct result but no additional information
about their inputs is revealed. An interesting example consists
of sealed-bit auctions where the winner should be determined
without opening the losing bids. Closer to everyday life, almost
any interaction with an automated teller machine can be seen
as an instance of secure two-party computation.

The techniques used in modern classical cryptography to
secure communication and provide secure two-party compu-
tation are based on unproven mathematical assumptions such
as the hardness of finding the prime factors of large integer
numbers (for example, in the widely used RSA scheme by
Rivest-Shamir-Adleman [1]). We do not know any practical
schemes which are provably infeasible to break and it is un-
likely that the currently known mathematical techniques allow
for such a scheme. In contrast, quantum cryptography, which is
based on transmitting information stored in the state of single
elementary particles, offers schemes with provable security.

The most prominent example is quantum key distribution
(QKD), which allows two honest parties to securely com-
municate. In 1984, Bennett and Brassard proposed a QKD
protocol [2] which was proven unconditionally secure [3–5].
In other words, security does not rely on any unproven

*c.schaffner@cwi.nl

assumptions but holds against any eavesdropper Eve with
unbounded (quantum) computing power. Such provably secure
key-distribution schemes cannot be achieved by any classical
means (without additional assumptions). It is important to
realize that the technical requirements for honest parties to
perform QKD protocols are well within reach of current
technology. As of today, the technology has even reached
commercial level: At least three different companies are selling
hardware for QKD [6–8].

After the discovery of QKD, researchers thought it was
possible to use quantum communication to implement more
advanced cryptographic primitives such as secure two-party
computation. However, it was shown in the late 1990s that
essentially no cryptographic two-party primitives can be
realized if only a quantum channel is available and no further
restriction on the adversary is assumed [9–11]. In other words,
secure two-party computation is more difficult to achieve
than key distribution. This is not completely surprising given
the generality of secure two-party computation. Nevertheless,
quantum cryptography might still help to achieve significantly
better schemes than purely classical constructions.

Indeed, in joint work with Damgård, Fehr, and Salvail,
we proposed in 2005 a realistic assumption for quantum
protocols under which provably secure two-party computation
becomes possible [12]. The basic idea is to exploit the
technical difficulty of storing quantum information. In this
bounded-quantum-storage model, security holds based on the
sole assumption that the parties’ quantum memory during
the execution of the protocol is upper bounded. No further
restrictions on the (quantum) computing power or the classical
memory size are assumed. Storing quantum information
requires keeping the state of very small physical systems such
as single atoms or photons under stable conditions over a long
time. Building a reliable quantum memory is a major research
goal in experimental quantum physics [13–17]. Despite these
efforts, current technology only allows storage times of at most
a few milliseconds.

Even though breaking the security of our protocols requires
a large quantum memory with long storage times, neither quan-
tum memory nor the ability to perform quantum computations
are needed to actually run the protocols; the technological
requirements for honest parties are comparable to QKD and
hence well within reach of current technology. Therefore,
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cryptographic schemes based on storage imperfections provide
potentially very useful solutions for secure two-party compu-
tation with the advantage of much stronger security guarantees
compared to classical technology.

A. Bounded- vs noisy-quantum-storage model

In the bounded-quantum-storage model, we assume that a
dishonest receiver can perfectly store the incoming photons
and perform perfect quantum operations under the sole
restriction that at a certain point of the protocol, the size
of his quantum memory is limited to a constant fraction
of the total number of received photons. Bounding the
size of the adversary’s quantum storage in this way is a handy
assumption to work with in security proofs. In a series of
works over the past years [12,18–22], it has been shown that
any type of secure two-party computation is possible in the
bounded-quantum-storage model.

On the other hand, simply limiting the adversary’s quantum
memory size does not capture correctly the difficulty one
currently faces when trying to store photons. A better formal-
ization of this difficulty is to assume that the dishonest receiver
uses the best available (but still imperfect) photon-storage
device. The imperfection of the storage-device is modeled as
a noisy quantum channel where the noise level of the channel
increases with the amount of time during which the quantum
information needs to be stored. With current technology, the
noise reaches maximum level (i.e., the quantum information is
completely lost) if a storage time on the order of milliseconds
is required [13].

First results in this noisy-quantum-storage model have been
established in joint work with Terhal and Wehner [23,24].
Assuming “individual-storage attacks”—where the adversary
treats all incoming qubits in the same way—the security
of oblivious transfer and password-based identification was
established using the original protocols from the bounded-
quantum-storage model [18,22].

The most general storage attacks were first mentioned
in [20], but addressed only recently by König, Wehner, and
Wullschleger [25]. In this most general model, the adversary
can for example try to use a quantum error-correcting code
in order to protect himself from storage errors. Concretely,
he is allowed to first perform an arbitrary perfect “encoding
attack” on the incoming quantum state, then he uses his (noisy)
quantum-storage device together with unlimited classical
memory and finally, he can again perform perfect quantum
computations.1 The authors of [25] show how the security of
protocols in this general model can be related to the maximal
rate of classical information that can be transmitted over the
noisy storage channel.

In more detail, [25] introduces the conceptual novelty of
splitting the security analysis of protocols for oblivious transfer
and bit commitment in two phases. In the first phase, the
players use the well-known BB84 quantum coding scheme to
achieve a (quantum) primitive which the authors call weak
string erasure. At the end of this phase, the sender has a

1A detailed description of the model of [25] is given in Sec. III
(see also Fig. 1).

classical n-bit string X and the receiver holds an “erased
version” of the string where a uniformly random half of the bits
of X have been erased. Note that this primitive is only classical
for honest players, as a dishonest receiver might hold quantum
information about the sender’s classical output string.

For the second (purely classical) phase, they propose
classical reductions to build bit commitment and oblivious
transfer based on weak string erasure. Their approach to realize
oblivious transfer is quite involved. It uses interactive hashing
[26], for which the standard classical protocol requires a lot of
communication rounds [27].2 The analysis is complicated by
the fact that the dishonest receiver holds quantum information,
but can be handled by techniques of min-entropy sampling
developed by König and Renner [29]. It was left as open
question how to build password-based identification based
on weak string erasure or in general, secure against noisy-
quantum-storage attacks.

B. Our results and outline of the article

The main contribution of this article is the insight that the
new technical tool derived in [25] already suffices to prove
secure the original protocols from the bounded-quantum-
storage model for bit commitment, oblivious transfer [18],
and password-based identification [19,22]. These original
protocols have the advantage that the classical postprocessing
is extremely simple. No communication-intensive protocols
such as interactive hashing are needed.

Comparing the protocol for oblivious transfer from [25]
with our protocol, it turns out that the highly interactive
protocol [25] can in theory be shown to be secure for less noisy
quantum-storage channels if infinitely many pulses are avail-
able, that is, security holds against a larger class of adversarial
receivers. However, the original protocols with the simpler
analysis presented here outperform the ones from [25] in terms
of the security error. Thus, for a fixed number of pulses and a
given security threshold, the simpler protocols and our analysis
yield oblivious transfer of longer bit strings most of the time.

We show the security against general noisy-storage attacks
of a direct protocol for password-based identification, answer-
ing an open question posed in [25].

From a theoretical point of view, our insight shows that
despite the generality of the noisy-quantum-storage model,
having the right tools from [18,25] at hand, the protocols and
security proofs do not need to be much more complicated than
in the conceptually simpler bounded-quantum-storage model.

C. Outline of the article

In Sec. II, we define concepts and notation and elaborate
on the essential tool of min-entropy splitting in Sec. II C.
We present the noisy quantum storage model and the key
ingredient from [25] in Sec. III. Sections IV, V, and VI contain
the security analyses for oblivious transfer and password-based
identification.

2A constant-round variant of interactive hashing has been proposed
in [28]. However, it is unclear how the weaker security guarantees
affect the security proof in [25]. The use of η-almost t-wise
independent permutations might render this variant “prohibitively
complicated to implement in practice” [26].
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II. PRELIMINARIES

We start by introducing the necessary definitions, tools, and
technical lemmas that we need in the remainder of this text.

A. Basic concepts

We use ∈R to denote the uniform choice of an element from
a set. We further use x|I to denote the string x = x1, . . . ,xn

restricted to the bits indexed by the set I ⊆ {1, . . . ,n}. For a
binary random variable C, we denote by C the bit different
from C.

1. Classical-quantum states

A classical-quantum (cq)-state ρXE is a state that is partly
classical, partly quantum, and can be written as

ρXE =
∑
x∈X

PX(x)|x〉〈x| ⊗ ρx
E. (1)

Here, X is a classical random variable distributed over the
finite set X according to distribution PX, {|x〉}x∈X is a set of
orthonormal states, and the register E is in state ρx

E when X

takes on value x. This notion extends to states with more than
two registers, either of which can be classical or quantum. For
example, a cqq-state ρXED has one classical register X and two
quantum registers E and D.

2. Conditional independence

We also need to express that a random variable X is (close
to) independent of a quantum state E when given a random
variable Y . This means that when given Y , the state E gives
no additional information on X. Formally, this is expressed by
requiring that ρXYE equals (or is close to) ρX↔Y↔E , which is
defined as3

ρX↔Y↔E :=
∑
x,y

PXY (x,y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρ
y

E. (2)

In other words, ρXYE = ρX↔Y↔E precisely if ρ
x,y

E = ρ
y

E for
all x and y. To further illustrate its meaning, notice that if
the Y register is measured and value y is obtained, then the
state ρX↔Y↔E collapses to (

∑
x PX|Y (x|y)|x〉〈x|) ⊗ ρ

y

E , so that
indeed no further information on x can be obtained from
the E register. This notation naturally extends to ρX↔Y↔E|E
simply by considering ρXYE|E instead of ρXYE . Explicitly,
ρX↔Y↔E|E = ∑

x,y PXY |E (x,y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρ
y

E|E .

3. Nonuniformity

We can say that a quantum adversary has little information
about X if the distribution PX given his quantum state is
close to uniform. Formally, this distance is quantified by the
nonuniformity of X given ρE = ∑

x PX(x)ρx
E defined as

d(X|E) := 1

2

∥∥∥∥∥1/|X | ⊗ ρE −
∑

x

PX(x)|x〉〈x| ⊗ ρx
E

∥∥∥∥∥
1

. (3)

3The notation is inspired by the classical setting where the
corresponding independence of X and Z given Y can be expressed
by saying that X ↔ Y ↔ Z forms a Markov chain.

Intuitively, d(X|E) � ε means that the distribution of X is ε

close to uniform even given ρE ; that is, ρE gives hardly any
information about X. A simple property of the nonuniformity
which follows from its definition is that it does not change
given independent information. Formally,

d(X|E,D) = d(X|E) (4)

for any cqq state of the form ρXED = ρXE ⊗ ρD .

B. Entropic quantities

Throughout this article we use a number of entropic
quantities. The binary-entropy function is defined as h(p) :=
−p log2 p − (1 − p) log2(1 − p).

1. (Conditional) smooth min-entropy

For a cq-state ρXE as introduced in (1), we define the
guessing probability of X given E as the success probability
of the best measurement carried out on E in order to guess X,

pguess(X|E) := max
{Mx }

∑
x

PX(x)Tr
(
Mxρ

x
E

)
,

where the maximization is over all positive operator-valued
measurements (POVMs) {Mx} acting on register E. The con-
ditional min-entropy of X given E is defined as Hmin(X|E) :=
− log2 pguess(X|E).

In case the adversary’s information E is described by a
classical variable Y , one can show that the guessing probability
becomes

pguess(X|Y ) :=
∑

y

PY (y) max
x

PX|Y (x|y) =
∑

y

max
x

PXY (x,y).

More generally, we define Hmin(XE |Y ) for any event E as
Hmin(XE |Y ) := − log2[pguess(XE |Y )], where4

pguess(XE |Y ) :=
∑

y

PY (y) max
x

PXE |Y (x|y)

=
∑

y

max
x

PXYE (x,y).

The conditional smooth min-entropy Hε
min(X|Y ) is then

defined as

Hε
min (X|Y ) := max

E
Hmin(XE |Y ),

where the max is over all events E with P [E] � 1 − ε.
Obviously, the unconditional versions of smooth and

nonsmooth min-entropy are obtained by using a constant
Y . Furthermore, conditional smooth min-entropy can also be
defined for quantum side information, we refer to [25,30] for
the formal definitions.

In this article, we will use the fact that smooth min-entropy
obeys the chain rule [30], Theorem 3.2.12]; that is for a
ccq-state ρXYE , we have

Hε
min(X|YE) � Hε

min(X|E) − log2 |Y|, (5)

where |Y| is the alphabet size of Y .

4pguess(XE |Y ) can be understood as the optimal probability of
guessing X and having E occur when given Y .
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C. Min-entropy splitting

The key ingredients for the security proofs of both the
1-2 oblivious transfer (OT) and the secure identification
schemes in [18,19] are uncertainty relations and variants of the
min-entropy splitting lemma. In this section, we present an
overview over the variants known and derived for the bounded-
quantum-storage model and point out how they can be applied
in the noisy-quantum-storage model.

If the joint entropy of two random variables X0 and X1

is large, then one is tempted to conclude that at least one of
X0 and X1 must still have large entropy, for example, half
of the original entropy. Whereas such a reasoning is correct
for Shannon entropy (it follows easily from the chain rule
and the fact that conditioning does not increase the entropy),
it is in general incorrect for min-entropy. There exist joint
probability distributions PX0X1 for which guessing X0 and X1

individually is easy, but guessing X0 and X1 simultaneously is
hard. Intuitively, for these distributions, guessing the value xi

with the highest probability is easy, because the probabilities
over the other variable X1−i are uniform, but still sum up to a
significant mass.

However, the following basic version of the min-entropy
splitting lemma, which first appeared in a preliminary version
of [31] and was later developed further in the context of
randomness extraction [29], shows that the intuition about
splitting the min-entropy is correct in a randomized sense.
This lemma (with a slightly different notion of min-entropy)
is used in the security proof of the 1-2 OT scheme in [18].

Lemma 1 (min-entropy-splitting lemma [18]). Let ε � 0,
and let X0, X1, and Z be random variables with
Hε

min(X0X1|Z) � α. Then there exists a random variable
D ∈ {0,1} such that

Hε
min(XD|DZ) � α/2 − 1.

In order to prove the security of the identification scheme
(see Sec. VI), a more refined version of the min-entropy
splitting lemma was derived in [22]. We reproduce it here
for convenience.

Lemma 2 (entropy-splitting lemma [22]). Let ε � 0.
Let X1, . . . ,Xm and Z be random variables such that
Hε

min(XiXj |Z) � α for all i �= j . Then there exists a random
variable V over {1, . . . ,m} such that for any independent
random variable W over {1, . . . ,m} with Hmin(W ) � 1,

H 2mε
min (XW |V WZ,V �=W ) � α/2 − log2(m) − 1.

D. Quantum uncertainty relation

At the very core of our security proofs lies (a special case of)
the quantum uncertainty relation from [18]5 that lower bounds
the (smooth) min-entropy of the outcome when measuring an
arbitrary n-qubit state in a random basis θ ∈ {0,1}n.

Theorem 1 (uncertainty relation [18]). Let E be an arbitrary
fixed n-qubit state. Let � be uniformly distributed over {+,×}n
(independent of E), and let X ∈ {0,1}n be the random variable

5In [18], a stricter notion of conditional smooth min-entropy was
used, which in particular implies the bound as stated here.

for the outcome of measuring E in basis �. Then, for any
δ > 0, the conditional smooth min-entropy is lower bounded
by

Hε
min(X|�) �

(
1
2 − 2δ

)
n,

with ε � 2−σ (δ)n and

σ (δ) := δ2 log2(e)

32[2 − log2(δ)]2
. (6)

E. Privacy amplification

We will make use of two-universal hash functions. A class
F of functions f : {0,1}n → {0,1}	 is called two universal, if
for all x �= y ∈ {0,1}n, we have Prf ∈RF [f (x) = f (y)] � 2−	

[32]. The following theorem expresses how the application of
hash functions increases the privacy of a random variable X

given a quantum adversary holding ρE , the function F , and a
classical random variable U :

Theorem 2 [18,30]. Let F be a class of two-universal hash
functions from {0,1}n to {0,1}	. Let F be a random variable
that is uniformly and independently distributed over F , and let
ρXUE be a ccq state. Then, for any ε � 0,

d[F (X)|F,U,E] � 2− 1
2 [Hε

min(X|UE)−	]−1 + ε.

III. THE NOISY-QUANTUM-STORAGE MODEL

The noisy-quantum-storage model has been established in
[23,24] for the special case where the dishonest receiver is
limited to so-called “individual-storage attacks”, that is, he
treats every incoming pulse independently (akin to individual
attacks in QKD).

The most general setting considered here is exactly the
one described in detail in [25], Secs. 1.3 and 3.3] (see Fig. 1
for an illustration). The cheating receiver is computationally
unbounded, has unlimited classical storage, and can perform

Noisy
quantum
storage

Unlimited
classical
storage

Encoding
attack

classical

quantum

Decoding
attack

emit emit

additional information

adversary's
information

FIG. 1. During waiting times 
t , the adversary must use his noisy
quantum storage described by the CPTP map F . Before using his
quantum storage, he performs any (error-free) “encoding attack” of
his choosing, which consists of a measurement or an encoding into
an error-correcting code. After time 
t , he receives some additional
information that he can use for decoding. Figure from [33].
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perfect quantum operations. If the protocol instructs parties
to wait for time 
t , a dishonest player has to discard
all quantum information, except for what he can encode
arbitrarily into his (noisy) quantum storage. This storing
process is formally described by a completely positive and
trace-preserving (CPTP) map F : B(Hin) → B(Hout).

As in [25], let

PF
succ(n) := max

{Dx }x ,{ρx }x
1

2n

∑
x∈{0,1}n

Tr[DxF(ρx)] (7)

be the maximal success probability of correctly decoding a
randomly chosen n-bit string x ∈ {0,1}n sent over the quantum
channel F . Here, the maximum is over families of code states
{ρx}x∈{0,1}n on Hin and decoding POVMs {Dx}x∈{0,1}n on Hout.

Intuitively, if the quantum channel F does not allow to
transmit enough classical information over it, we should be
able to prove security against a dishonest Bob with such
a storage channel. Indeed, the following two lemmas from
[25] formalize this intuition and are the key ingredients in
connecting the security of protocols in the noisy-storage
model for such channels with their ability to transmit classical
information.

Lemma 3 [25]. Consider an arbitrary cq-state ρXQ and a
CPTP map F : B(HQ) → B(Hout). Then Hmin[X|F(Q)] �
− log2 PF

succ(	Hmin(X)
).
Lemma 4 [25]. Consider an arbitrary ccq-state ρXT Q, and

let ε,ε′ � 0 be arbitrary. Let F : B(HQ) → B(HQout ) be an
arbitrary CPTP map. Then

Hε+ε′
min [X|TF(Q)] � −log2 PF

succ

(⌊
Hε

min(X|T ) − log2
1

ε′

⌋)
.

We are interested in channelsN which satisfy the following
strong-converse property: The success probability (7) decays
exponentially for rates R above the capacity; that is, it takes
the form

PN⊗n

succ (nR) � 2−nγN (R), where
(8)

γN (R) > 0 for all R > CN .

In [34], property (8) was shown to hold for a large class of
channels. An important example for which we obtain security
is the d-dimensional depolarizing channel Nr : B(Cd ) →
B(Cd ) defined for d � 2 as

Nr (ρ) := rρ + (1 − r)
1

d
for some fixed 0 � r � 1,

(9)

which replaces the input state ρ with the completely mixed
state with probability 1 − r . For d = 2, having storage channel
N⊗n

r means that the adversary can store n qubits which are
affected by independent and identically distributed noise. To
see for which values of r we can obtain security, we need
to consider the classical capacity of the depolarizing channel
as evaluated by King [35]. For d = 2, that is, qubits, it is
given by

CNr
= 1 + 1 + r

2
log2

1 + r

2
+ 1 − r

2
log2

1 − r

2
.

IV. 1-2 OBLIVIOUS TRANSFER

A. Security definition and protocol

In this section we prove the security of a randomized version
of 1-2 OT (Theorem 3) from which we can easily obtain
1-2 OT. In such a randomized 1-2 OT protocol, Alice does
not input two strings herself, but instead receives two strings
S0, S1 ∈ {0,1}	 chosen uniformly at random. Randomized OT
(ROT) can easily be converted into OT. After the ROT protocol
is completed, Alice uses her strings S0,S1 obtained from ROT
as one-time pads to encrypt her original inputs Ŝ0 and Ŝ1;
that is, she sends an additional classical message consisting
of Ŝ0 ⊕ S0 and Ŝ1 ⊕ S1 to Bob. Bob can retrieve the message
of his choice by computing SC ⊕ (ŜC ⊕ SC) = ŜC . He stays
completely ignorant about the other message ŜC since he
is ignorant about SC . The security of a quantum protocol
implementing ROT is formally defined in [18] and justified
in [36] (see also [37]).

Definition 1. An ε secure 1-2 ROT	 is a protocol between
Alice and Bob, where Bob has input C ∈ {0,1}, and Alice has
no input.

(i) (Correctness) If both parties are honest, then for any
distribution of Bob’s input C, Alice gets outputs S0,S1 ∈ {0,1}	
which are ε close to uniform and independent of C and Bob
learns Y = SC except with probability ε.

(ii) (Security against dishonest Alice) If Bob is honest and
obtains output Y , then for any cheating strategy of Alice
resulting in her state ρA, there exist random variables S ′

0 and S ′
1

such that Pr[Y = S ′
C] � 1 − ε and C is independent of S ′

0,S ′
1

and ρA.6

(iii) (Security against dishonest Bob) If Alice is honest, then
for any cheating strategy of Bob resulting in his state ρB , there
exists a random variable D ∈ {0,1} such that d(SD|SDDρB)
� ε.

We consider the same protocol for ROT as in [38,39].
Protocol 1 [38,39](1-2 ROT	).
1. Alice picks x ∈R {0,1}n and θ ∈R {+,×}n. At time

t = 0, she sends |x1〉θ1 , . . . ,|xn〉θn
to Bob.

2. Bob picks θ̂ ∈R {+,×}n at random and measures the
ith qubit in the basis θ̂i . He obtains outcome x̂ ∈ {0,1}n.
Both parties wait time 
t .

3. Alice sends the basis information θ = θ1, . . . ,θn to Bob.
4. Bob, holding choice bit c, forms the sets Ic = {i ∈

[n] | θi = θ̂i} and I1−c = {i ∈ [n] | θi �= θ̂i}. He sends I0,I1

to Alice.
5. Alice picks two hash functions f0,f1 ∈R F , where F

is a class of two-universal hash functions. She sends f0,f1 to
Bob. Alice outputs s0 = f0(x|I0 ) and s1 = f1(x|I1 ).7

6. Bob outputs sc = fc(x̂|Ic
).

In case any of the players sends incorrectly formed
messages, the other player aborts.

6The existence of the random variables S ′
0,S

′
1 has to be understood

as follows: Given the cq-state ρYA of honest Bob and dishonest
Alice, there exists a cccq-state ρYS′

0S′
1A such that tracing out the

registers of S ′
0,S

′
1 yields the original state ρYA and the stated properties

hold.
7If x|Ib

is less than n bits long, Alice pads the string x|Ib
with 0’s

to get an n bit string in order to apply the hash function to n bits.
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B. Security analysis

1. Correctness

First of all, note that it is clear that the protocol fulfills its
task correctly. Bob can determine the string x|Ic

(except with
negligible probability 2−n the set Ic is nonempty) and hence
obtains sc. Alice’s outputs s0,s1 are perfectly independent of
each other and of c.

2. Security against dishonest Alice

Security holds in the same way as shown in [18]. Alice
cannot learn anything about Bob’s choice bit from the index
information I0,I1 she receives, and Alice’s input strings can
be extracted by letting her interact with an unbounded receiver.

3. Security against dishonest Bob

Proving that the protocol is secure against Bob requires
more work. Our goal is to show that there exists a D ∈ {0,1}
such that Bob with noisy storage as described in Sec. III is
completely ignorant about SD . Since we are performing 1-out-
of-2 oblivious transfer of 	-bit strings, 	 corresponds to the
“amount” of oblivious transfer we can perform for a given
security parameter ε and number of qubits n.

Theorem 3. Fix 0 < δ < 1
4 and let

ε = 2 exp

(
− (δ/4)2

32
(
2 + log2

4
δ

)2 n

)
. (10)

Then, for any attack of a dishonest Bob with storage F :
B(Hin) → B(Hout), Protocol 1 is 2ε-secure against a dishonest
receiver Bob according to Definition 1 if n � 4/δ and

	 � −1

2
log2 PF

succ

[(
1

4
− δ

)
n

]
− log2

(
1

ε

)
.

Proof. We need to show the existence of a binary random
variable D such that SD̄ is ε close to uniform from Bob’s point
of view.

We can argue, as in the proof of the security of weak string
erasure for honest Alice (Sec. 3.3 in [25]), that

Hε/2
min (X0X1|�K) � n

2
− nδ

2
,

where K denotes Bob’s classical information obtained
from the encoding attack. Classical min-entropy splitting
(Lemma 1) then ensures that there exists a binary random
variable D ∈ {0,1} such that

Hε/2
min (XD|D�K) � n

4
− nδ

4
− 1.

One can now continue to argue as in the proof of
Theorem 3.3 in [25]; that is, we use Lemma 4 to get

Hε
min(XD|D�KQout) � − log2 PF

succ

(
n

4
− nδ

4
− 1 − log2

2

ε

)

� − log2 PF
succ

[(
1

4
− δ

)
n

]
,

where the last step follows in the same way as in [25] from the
monotinicity of the success probability PF

succ(m) � PF
succ(m′)

for m � m′ and the fact that log2
2
ε

� δ
2n � 3δ

4 n − 1.

The rest of the security proof is analogous to the proof
in [18]: It follows from the chain rule for smooth min-entropy
(5) that

Hε
min(XD|D�SDKQout) � Hε

min(XDSD|D�KQout) − 	

� − log2 PF
succ

[(
1
4 − δ

)
n
] − 	.

The privacy amplification Theorem 2 yields

d(FD(XD) | D�FDSDKQout) � 2−1
2 {−log2 PF

succ[( 1
4 −δ)n]−2	} + ε,

(11)

which is smaller than 2ε as long as

−1

2
log2 PF

succ

[(
1

4
− δ

)
n

]
− 	 � log2

(
1

ε

)
,

from which our claim follows. �

C. Tensor-product channels

Corollary 1. Let Bob’s storage be described by F = N⊗νn,
with ν > 0, where N satisfies the strong-converse property
(8), and

CN ν < 1
4 .

Fix δ ∈]0, 1
4 − CN ν[, and let ε be defined as in (10). Then, for

any attack of a dishonest Bob, Protocol 1 is 2ε secure against
a dishonest receiver Bob according to Definition 1, if n �
4/δ and

	 � γN
(

1/4 − δ

ν

)
νn

2
− log2

(
1

ε

)
.

Proof. We can substitute n with νn and R with R/ν in the
strong-converse property (8) to obtain

−1

n
log2 PN⊗νn

succ (nR) � νγN (R/ν).

The claim then follows from Theorem 3 by setting R :=
1
4 − δ. �

For the d-dimensional depolarizing channel,

Nr (ρ) = rρ + (1 − r)
1

d
, (12)

which preserves a d-dimensional input state with probability
r and depolarizes it completely with probability 1 − r , it has
been shown in [25,34] that

γN (R) = max
α�1

α − 1

α

{
R − log2 d + 1

1 − α

× log2

[(
r + 1 − r

d

)α

+ (d − 1)

(
1 − r

d

)α]}
.

We compare the parameters in terms of OT and error rate
of our approach to the ones in [25]. In Fig. 2, the regions of the
noise parameter r and storage rate ν from our approach (red)
and that used in [25] (blue) are shown. As the information
rate after min-entropy splitting in our approach is lower than
without min-entropy splitting, the range of noisy storage
channels for which security can theoretically be shown is
smaller in our approach. However, we will see in the following
that the error overhead due to the complicated postprocessing
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FIG. 2. (Color online) Possible regions of a depolarizing qubit
channel with noise parameter r and storage rate ν where security for
OT can be established for asymptotically many pulses. The approach
used in [25] yields the blue meshed region, whereas our simpler
approach gives the red subset of it.

with interactive hashing in [25] nullifies that advantage
again.

We investigate two scenarios, in both of which we are ready
to accept a security error of at most 10−8. In the first scenario,
we are given n = 1010 pulses to work with against an adversary
with depolarizing qubit channel (d = 2) with noise rate r and
storage rate ν = 1. In our approach, according to Corollary 1,
the security error is 2ε, where ε is defined in (10); thus, for
n = 1010, we can choose δ = 0.0106 to have the error small
enough. The resulting OT rate 	/n is the red line in Fig. 3
for different noise rates r and a storage rate of ν = 1. In the
approach used in [25], the security error is harder to control
as it also depends on other parameters such as the noise rate r

and a new parameter ω. In order to keep it below the required
10−8, we choose δ = 0.011 and ω = 2. The resulting OT rate
is plotted as a blue dashed line in Fig. 3. Note that this amount
of pulses is not sufficient to keep the security error below 10−8

for noise rates r above 0.21.
In Fig. 4, we investigate the same setting but with many

more pulses, namely n = 1015. With that many pulses, the
error is better to control in the approach used in [25] and leads
to higher OT rates than our approach for noise parameters
in the range 0.34 < r < 0.52. In all other cases, our simpler
approach makes it possible to get OTs of longer strings while
keeping the security error below 10−8.

To put these numbers of pulses into perspective, one can
think of a weak-coherent pulse setup which runs at 1 GHz and
emits single photons with Poisson distribution with parameter
µ = 1, that is, with probability e−µµ ≈ 0.3679 per pulse.
Hence, we have to wait approximately 27 s to obtain n = 1010

single pulses, whereas it takes 106e s, that is, roughly 30 days,
to generate n = 1015 single pulses.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.02

0.04
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0.08

0.10

0.12

r

FIG. 3. (Color online) The adversary’s storage is depolarizing
qubit noise F = N⊗n

r , with d = 2, ν = 1, and n = 1010. The
horizontal axis represents the noise parameter r , while the vertical
axis represents the OT rate 	/n. The rates are only plotted for
regions where the security error stays below 10−8. The red solid
line represents the OT rate obtained from our approach (Corollary 1,
with δ = 0.0106). The dashed blue line is the rate from the approach
used in [25], with optimized extra parameters δ = 0.011 and ω = 2.
For r > 0.21, the security error is above the allowed threshold 10−8.
For this many pulses, our approach provides a higher OT rate for
all possible noise parameters r while keeping the security error
reasonably low.

V. ROBUST OBLIVIOUS TRANSFER

In a practical setting, imperfections in Alice’s and Bob’s
apparatus as well as in the communication channel manifest
themselves in form of erasures and bit-flip errors. This setting
has been analyzed for individual attacks in [24] and for general
attacks in [33]. In the following, we present an upgraded
protocol for oblivious transfer along the lines of [33] but with
a much simpler and natural postprocessing.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.02

0.04

0.06

0.08

0.10

0.12

r

FIG. 4. (Color online) As in Fig. 3, but for many more pulses,
namely, n = 1015. The red solid line represents the OT rate obtained
from our approach (Corollary 1, with δ = 0.000 057 588). The dashed
blue line is the rate from the approach used in [25], with optimized
extra parameters δ = 0.0005 and ω = 10. For r > 0.47, the security
error is above the allowed threshold 10−8. For noise parameters in
the range 0.34 < r < 0.52, the approach used in [25] yields higher
OT-rates. For all other noise rates r , our simpler approach yields
higher rates.
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A. Protocol

We consider the same setup as in [33]. Before engaging in
the actual protocol, Alice and Bob agree on a security-error
probability ε > 0. The parameter ph

B,no click denotes the
probability that an honest Bob observes no click in his
detection apparatus and the corresponding parameter ζ h

B,no click
says how much fluctuation we allow. Typically, we use a
ζ h

B,no click of order
√

ln(2/ε)/(2n) such that the Chernoff
bound allows us to argue that ph

B,no click lies in the interval
[(ph

B,no click − ζ h
B,no click)n,(ph

B,no click + ζ h
B,no click)n] except

with probability ε.
Error-correction is done using a one-way (forward) error

correction scheme, for example, by using low-density parity-
check codes. The players agree on a linear code which can
correct errors in a k-bit string by announcing the syndrome of
the string. If each bit of the string is flipped independently with
probability ph

B,err, this procedure amounts to sending error-
correcting information of at most 1.2h(ph

B,err)k bits [40].
We assume that the players have synchronized clocks. In

each time slot, Alice sends one light pulse to Bob.
Protocol 2 [robust 1-2 ROT	(C,T ,ε)].
1. Alice picks x ∈R {0,1}n and θ ∈R {+,×}n uniformly at

random.
2. Bob picks θ̂ ∈R {+,×}n uniformly at random.
3. For i = 1, . . . ,n: In time slot t = i, Alice sends bit xi

encoded in basis θi to Bob. In each time slot, Bob measures
the incoming light pulse in basis θ̂i and records whether he
registers a click or not. He obtains some bit string x̂ ∈ {0,1}m,
with m � n.

4. Bob reports back to Alice in which time slots he recorded
a click.

5. Alice restricts herself to the set of m < n positions that
Bob did not report as missing. Let this set of bits be Sremain with
|Sremain| = m. If m does not lie in the interval [(1 − ph

B,no click −
ζ h

B,no click)n,(1 − ph
B,no click + ζ h

B,no click)n], then Alice aborts
the protocol.
Both parties wait time 
t .

6. Alice sends the basis information θ = θ1, . . . ,θm of the
remaining positions to Bob.

7. Bob, holding choice bit c, forms the sets Ic = {i ∈ [m] |
θi = θ̂i} and I1−c = {i ∈ [m] | θi �= θ̂i}. He sends I0,I1 to
Alice.

8. Alice picks two two-universal hash functions f0,f1 ∈R

F and sends f0,f1 and the syndromes syn(x|I0 ) and syn(x|I1 )
to Bob. Alice outputs s0 = f0(x|I0 ) and s1 = f1(x|I1 ).

9. Bob uses syn(x|Ic
) to correct the errors on his output

x̂|Ic
. He obtains the corrected bit string xcor and outputs s ′

c =
fc(xcor).
In case any of the players sends incorrectly formed messages,
the other player aborts.

B. Security analysis

1. Correctness

If both players are honest, Bob reports back enough rounds
to Alice. Therefore, in Step 5 the protocol is aborted with
probability at most ε. The error-correcting codes are chosen
such that Bob can decode except with probability ε. These facts
imply that if both parties are honest, the protocol is correct
except with probability 2ε.

2. Security against dishonest Alice

Even though in this scenario Bob does communicate to
Alice, the information about which qubits were erased is
independent of Bob’s choice bit c as this bit is only used in
Step 7. Hence, Alice does not learn anything about his choice
bit c. Her input strings can be extracted as in the analysis of
Protocol 1 (see [18]).

3. Security against dishonest Bob

In the previous section, we saw that the security analysis
for weak string erasure from [25] essentially carries over to
1-2 OT. Similarly, the security analysis for weak string erasure
with errors from [33] can be adapted to analyze Protocol 1 .

We use the following probabilities (see [33] for details and
some example parameters for concrete setups).

pd
B,no click Dishonest Bob observes no click in his detection

apparatus (due to imperfections in Alice’s apparatus)
ph

B,no click Honest Bob observes no click in his detection
apparatus (due to losses and imperfections of both
player’s apparatus)

p1
sent Alice sends exactly 1 photon

ph
B,err Honest Bob outputs the wrong bit

(due to misalignments and noise on the channel)

Theorem 4 (security against dishonest Bob). Fix 0 < δ < 1
4

and let

ε = 2 exp

(
− (δ/4)2

32
(
2 + log2

4
δ

)2 m1

)
. (13)

Then, for any attack of a dishonest Bob with storage F :
B(Hin) → B(Hout), Protocol 2 is 2ε secure against a dishonest
receiver Bob according to Definition 1, if m1 � 4/δ and the
length of the OT strings,

	 � −1

2
log2 PF

succ

[(
1

4
− δ

)
m1

]

− 1.2h
(
ph

B,err

)m

2
− log2

(
1

ε

)
,

where m1 := (p1
sent − ph

B,no click + pd
B,no click)n is the minimal

number of single-photon rounds remaining and m = (1 −
ph

B,no click)n is the total number of rounds remaining.
Proof. As in [33], we adopt the conservative viewpoint

that a dishonest Bob does not experience any bit errors or
losses on the channel. Furthermore, we assume that a dishonest
receiver can detect when multiple photons arrive and extract
the encoded bit without knowledge of the encoding basis.
These multiphoton rounds will thus not contribute to the
uncertainty of a dishonest Bob. He will also not keep any
quantum information about these bits.

The main complication in this more practical scenario is that
a dishonest Bob might falsely report back rounds as missing in
order to decrease the overall fraction of single-photon rounds
where he has uncertainty about the encoded bits.

Let ph
B,no click be the probability that honest Bob does not

register a click (due to losses in the channel and imperfect
apparatus of both players). On the other hand, let pd

B,no click
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be the probability that a dishonest Bob does not register a
click (due to imperfections in Alice’s apparatus). We assume
that a dishonest Bob will always report a round as missing
if he did not register a click (because there is no advantage
for him not doing so). We also assumed that Bob gets full
information when more than one photon was sent and, hence,
he will not report these rounds as missing. We conclude that
out of the n rounds, dishonest Bob will report the maximal
amount of (ph

B,no click − pd
B,no click)n single-photon rounds as

missing. That means that of the total m = (1 − ph
B,no click)n

rounds that Alice accepts, at least

m1 := [
p1

sent − (
ph

B,no click − pd
B,no click

)]
n (14)

are single-photon rounds.
It can be argued, as in [33], that these m1 single-photon

rounds are the (only) ones contributing to the uncertainty in
terms of min-entropy about the string X. Formally, we have

Hε/2
min (X0X1|�K) � m1

2
− m1δ

2
, (15)

where X0,X1 are the substrings of X formed according to
the index sets I0 and I1, 0 < δ < 1

4 is fixed, and the error
parameter ε is

ε = 2 exp

(
− (δ/4)2

32
(
2 + log2

4
δ

)2 m1

)
. (16)

Proceeding as in the proof of Protocol 1 (with m1 in-
stead of n), classical min-entropy splitting (Lemma 1) then
ensures that there exists a binary random variable D ∈ {0,1}
such that

Hε/2
min (XD|D�K) � m1

4
− m1δ

4
− 1.

Then we use Lemma 4 to get

Hε
min(XD|D�KQout)

� − log2 PF
succ

(
m1

4
− m1δ

4
− 1 − log2

2

ε

)

� − log2 PF
succ

[(
1

4
− δ

)
m1

]
,

where the last step follows in the same way as in [25] from the
monotonicity of the success probability PF

succ(k) � PF
succ(k′)

for k � k′ and the fact that log2
2
ε

� δ
2m1 � 3δ

4 m1 − 1.
Additionally, the dishonest receiver learns the two syn-

dromes syn(X0),syn(X1). As X0 and X1 are not necessarily
independent from dishonest Bob’s point of view, the two
syndromes reduce Bob’s min-entropy about XD by at most
1.2h(ph

err)m bits of information.
It follows from the chain rule for smooth min-entropy (5)

that

Hε
min(XD|D�SDsyn(X0)syn(X1)KQout)

� Hε
min(XD|D�KQout) − 	 − 1.2h

(
ph

err

)
m

� − log2 PF
succ

[(
1
4 − δ

)
m1

] − 	 − 1.2h
(
ph

err

)
m.

The privacy amplification Theorem 2 yields

d[FD(XD) | D�FDSDKQout]

� 2− 1
2 {− log2 PF

succ[( 1
4 −δ)m1]−2	−1.2h(ph

err)m} + ε, (17)

which is smaller than 2ε as long as

−1

2
log2 PF

succ

[(
1

4
− δ

)
m1

]
− 	 − 1.2h

(
ph

err

)m

2

� log2

(
1

ε

)
,

from which our claim follows. �
In the same way as Corollary 1, we can derive the following.
Corollary 2. Let Bob’s storage be given by F = N⊗νn for a

storage rate ν > 0, N satisfying the strong converse property
(8) and having capacity CN bounded by

CN ν <
(

1
4 − δ

) (
p1

sent − ph
B,no click + pd

B,no click

)
. (18)

Then Protocol 2 is 2ε secure against a dishonest receiver Bob
according to Definition 1 with the following parameters: Let
δ ∈]0, 1

4 − CN ν[ and m1 � 4/δ. Then the length 	 of the OT
strings is bounded by

	 � 1

2
νγN

(
R

ν

)
n − 1.2h

(
ph

B,err

)(
1 − ph

B,err

)m

2

− log2

(
1

ε

)
, (19)

where γN is the strong converse parameter of N [see (8)]
and m = (1 − ph

B,no click)n (the number of remaining rounds),
m1 = (p1

sent − ph
B,no click + pd

B,no click)n (the minimal number

of single-photon rounds), R = ( 1
4 − δ)m1

n
(the rate at which

dishonest Bob has to send information through storage), for
sufficiently large n. The error has the form

ε(δ) � 2 exp

(
− δ2

512(4 + log2
1
δ
)2

(
p1

sent − ph
B,no click

+ pd
B,no click

)
n

)
. (20)

VI. PASSWORD-BASED IDENTIFICATION

In this section, we show how the techniques for proving
security in the noisy-quantum-storage model also apply to
the protocol from [19,22] achieving secure password-based
identification in the bounded-quantum-storage model. This
answers an open question posed in [25].

A. Task and protocol

A user Alice wants to identify herself to a server Bob by
means of a personal identification number. This task can be
achieved by securely evaluating the equality function on the
player’s inputs: Both Alice and Bob input passwords wA and
wB from a set of possible passwords W into the protocol and
Bob learns as output whether wA = wB or not.

The protocol proposed in [19] is secure against an un-
bounded user Alice and a quantum-memory bounded server
Bob in the sense that it is guaranteed that if a dishonest player
starts with quantum side information which is uncorrelated
with the honest player’s password w, this dishonest player is
restricted to guess a possible w′ and find out whether w = w′
or not while not learning anything more than this mere bit
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of information about the honest user’s password w. Formally,
security is defined as follows.

Definition 2. We call an identification protocol between
user Alice and server Bob secure for the user Alice with error
ε against (dishonest) server Bob B′ if the following is satisfied:
Whenever the initial state of B′ is independent of W , the joint
state ρWEB′ after the execution of the protocol is such that there
exists a random variable W ′ that is independent of W and such
that

ρWW ′EB′ |W ′ �=W ≈ε ρW↔W ′↔EB′ |W ′ �=W .

The Markov-chain notation is explained in (2).
We consider the same protocol for password-based secure

identification from [19], in the more practical form presented
in [39], where the receiving party measures in a random basis.
Let c : W → {+,×}n be the encoding function of a binary code
of length n with m = |W| code words and minimal distance
d. c can be chosen such that n is linear in log2(m) or larger,
and d is linear in n. Furthermore, let F and G be strongly
two-universal classes of hash functions from {0,1}n to {0,1}	
and from W to {0,1}	, respectively, for some parameter 	.

Protocol 3 [19,39] [Password-based identification Q-ID
(w)].

1. Alice picks x ∈R {0,1}n and θ ∈R {+,×}n. At time t =
0, she sends |x1〉θ1 , . . . ,|xn〉θn

to Bob.
2. Bob picks θ̂ ∈R {+,×}n at random and measures the ith

qubit in basis θ̂i . He obtains outcome x̂ ∈ {0,1}n.
Both parties wait time 
t .
3. Bob computes a string κ ∈ {+,×}n such that θ̂ =

c(w) ⊕ κ (interpreting + as 0 and × as 1 so that ⊕ makes
sense). He sends κ to Alice and they define the shifted code
c′(w) := c(w) ⊕ κ .

4. Alice sends θ and f ∈R F to Bob. Both compute Iw :=
{i : θi = c′(w)i}.

5. Bob sends g ∈R G to Alice.
6. Alice sends z := f (x|Iw

) ⊕ g(w) to Bob.
7. Bob accepts if and only if z = f (x̂|Iw

) ⊕ g(w).
We note that this protocol can also be (nontrivially)

extended to additionally withstand man-in-the-middle attacks
[19,22].

B. Security analysis

Theorem 5 (security against dishonest Bob). Fix 0 < δ < 1
4

and let σ (δ) be defined as in (6). Then for any attack of a
dishonest Bob with storage channel F : B(Hin) → B(Hout),
Protocol 3 is an ε-secure identification protocol against a
dishonest receiver Bob according to Definition 2 if d �
4+4 log2(m)

δ
and

ε = 2− 1
2 {− log2 PF

succ[( 1
4 −δ)d]−	} + 2−[σ (δ/4)d−log2(m)−3].

To understand what the result on ε means, note that using
a family of asymptotically good codes, we can assume that
d grows linearly with the main security parameter n, while
still allowing m (the number of passwords) to be exponential
in n. So we may choose the parameters such that d

n
,

log2(m)
n

,
and 	

n
are all constants. The preceding result now says

that ε is exponentially small as a function of n if these
constants and the noisy channel F fulfill that for some 0 <

δ < 1
4 ,

− log2 PF
succ[( 1

4 −δ)d]
n

− 	
n

> 0 and σ (δ/4) d
n

− log2(m)
n

> 0.
See Theorem 7 for a choice of parameters that also takes
server security into account.

Proof. We use upper-case letters W , X, �, K , F , G, and Z

for the random variables that describe the respective values w,
x, θ , etc., in an execution of Q-ID.

Recall that in the noisy-storage model, we denote by K the
classical outcome of Bob’s encoding attack and Qin denotes
Bob’s quantum state right before the waiting time.

We write Xj = X|Ij
for any j . Note that dishonest Bob

starts without any knowledge about honest Alice’s password
W and hence, W is independent of X, �, K , F , G, and Qin.

For 1 � i �= j � m, fix the value of X, and correspondingly
of Xi and Xj , at the positions where c(i) and c(j ) coincide, and
focus on the remaining (at least) d positions. The uncertainty
relation (Theorem 1) implies that the restriction of X to these
positions has ( 1

2 − δ/2) d bits of ε′-smooth min-entropy given
�, where ε′ � 2−σ (δ/4)d . Since every bit in the restricted X

appears in one of Xi and Xj , the pair Xi,Xj also has ( 1
2 −

δ/2) d bits of ε′-smooth min-entropy given � and K . The
entropy splitting Lemma 2 implies that there exists W ′ (called
V in Lemma 2 such that if W �= W ′ then XW has ( 1

4 − δ/4) d −
log2(m) − 1 bits of 2mε′-smooth min-entropy given W and W ′
(and �,K); that is,

H 2mε′
min (XW |WW ′�K,W �= W ′)

�
(

1

4
− δ/4

)
d − log2(m) − 1.

By Lemma 4, it follows that for Qout = F(Qin), we get

H (2m+1)ε′
min (XW |WW ′�KQout,W �= W ′)

� − log2 PF
succ

[(
1
4 − δ/4

)
d − log2(m) − 1 − log2(1/ε′)

]
� − log2 PF

succ

[(
1
4 − δ

)
d
]
,

where the last inequality follows as in the OT case (proof of
Theorem 3) from log2(1/ε′) � δ

2d � 3δ
4 d − log2(m) − 1 and

the assumption on d.
Privacy amplification then guarantees that F (XW ) is

ε′′ close to random and independent of F , W , W ′, �,
K, and Qout, conditioned on W �= W ′, where ε′′ = 1

2 ·
2− 1

2 {− log2 PF
succ[( 1

4 −δ)d]−	} + (2m + 1)ε′. It follows that Z =
F (XW ) ⊕ G(W ) is ε′′ close to random and independent of
F , G, W , W ′, �, K , and Qout, conditioned on W �= W ′. The
rest of the argument is the same as in the original proof [22].

Formally, we want to upper bound the trace distance
between ρWW ′EB′ |W ′ �=W and ρW↔W ′↔EB′ |W ′ �=W . Since the
output state EB′ is, without loss of generality, obtained
by applying some unitary transform to the set of reg-
isters (Z,F,G,W ′,�,K,Qout), the preceding distance is
equal to the distance between ρWW ′(Z,F,G,�,K,Qout)|W ′ �=W and
ρW↔W ′↔(Z,F,G,�,K,Qout)|W ′ �=W . We then get

ρWW ′(Z,F,G,�,Qout)|W ′ �=W

≈ε′′
1

2	
1Z ⊗ ρWW ′(F,G,�,K,Qout)|W ′ �=W

= 1

2	
1Z ⊗ ρW↔W ′↔(F,G,�,K,Qout)|W ′ �=W

≈ε′′ ρW↔W ′↔(Z,F,G,�,K,Qout)|W ′ �=W,
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where approximations follow from privacy amplification and
the exact equality comes from the independency of W , which,
when conditioned on W ′ �= W , translates to independency
given W ′. The claim follows with ε = 2ε′′ and the (crude)
estimation 2(2m + 1) � 8m. �

Theorem 6 (security against dishonest Alice [19]). If
Hmin(W ) � 1, then Q-ID is secure against dishonest user Alice
with security error ε = m2/2	.

We call an identification scheme ε secure against imper-
sonation attacks if the protocol is secure for both players with
error at most ε in both cases. The following holds.

Theorem 7. If Hmin(W ) � 1, then the identification scheme
Q-ID (with suitable choice of parameters) is ε secure against
impersonation attacks for any unbounded user Alice and for
any server Bob with noisy storage of the form F = N⊗νn with
ν > 0, where N satisfies the strong-converse property (8), and

CN ν < 1
4 ,

and the security error is

ε = 2− 1
3 [γN ( 1/4−δ

ν
)νµn−6 log2(m)−1] + 2−[σ (δ/4)µn−log2(m)−4]

for an arbitrary 0 < δ < 1
4 , and where µ = h−1[1 −

log2(m)/n], and h−1 is the inverse function of the binary
entropy function: h(p) := −p log2(p) − (1 − p) log2(1 − p)
restricted to 0 < p � 1

2 . In particular, if log2(m) is sublinear
in n, then ε is negligible in n as long as γN ( 1/4−δ

ν
) > 0.

Proof. First of all, we have that − log2 PN⊗νn

succ [(1/4 −
δ)d] � γN ( 1/4−δ

ν
)νd.

We choose 	 = 1
3γN ( 1/4−δ

ν
)νd. Then security against dis-

honest Bob holds except with an error ε = 2− 1
3 γN ( 1/4−δ

ν
)νd +

2−[σ (δ/4)d−log2(m)−3], and security against dishonest Alice holds
except with an error m2/2	 = 2− 1

3 [γN ( 1/4−δ

ν
)νd−6 log2(m)]. Using

a code c, which asymptotically meets the Gilbert-Varshamov
bound [41], d may be chosen arbitrarily close to nh−1[1 −
log2(m)/n]. In particular, we can ensure that d does not
differ from this value by more than 1. Inserting d = µn − 1
in the expressions and using that γN ( 1/4−δ

ν
)ν � 1 yields the

theorem. �

VII. CONCLUSION

We have used the technical tool from [25] to prove the secu-
rity of the original protocols for oblivious transfer and secure
identification against adversaries performing general noisy-
quantum-storage attacks. The main advantage of our protocols
is the straightforward constant-round classical postprocessing
which makes them easier to implement in the laboratory
compared to the protocols from [25,33]. The security analysis
given here yields simpler expressions for the security error.
For a given number of pulses and a low security threshold, our
approach generally yields higher OT rates. Additionally, we
show the security of a password-based identification protocol
against general noisy-quantum-storage attacks.

This work leads to the question whether a similar result
as in QKD holds, namely, that general storage attacks are no
better than coherent (or individual) storage attacks for which
the best encoding attack is known [24].
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