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Geometries for black hole horizons
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The application of the blackfold effective theory to the perturbative construction of
black holes in higher-dimensions is reviewed. Several solutions with non-trivial horizon
geometry and topology are described, such as black helicoidal branes and helicoidal
black rings. This hints into a very rich phase diagram for higher-dimensional neutral
asymptotically flat black holes.
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1. Introduction

The interest in higher-dimensional gravity was spurred by the development of theo-

ries of (quantum) gravity which required being formulated in higher-dimensional

spacetimes, such as string theory. Following this line of thought, the higher-

dimensional version of the Kerr black hole - the Myers-Perry black hole - was

constructed
1
and later the first example of a black hole with non-trivial horizon

topology in five spacetime dimensions was found
2
. It was then realised

3
that by

taking the number of spacetime dimensions D as a parameter in Einstein equations,

gravity becomes richer, allowing for an elaborate phase space of black hole solutions.

As the number of spacetime dimensions increases, the problem of obtaining

higher-dimensional black hole solutions becomes increasingly complicated. In par-

ticular, for D > 5 there is no integrable sector of Einstein equations for asymptoti-

cally flat solutions and therefore, an absence of solution generating techniques. In

fact, in asymptotically flat spacetimes, the only known exact analytic uncharged

black hole solutions of Einstein equations are the Myers-Perry black hole and the

black ring.
a
In asymptotically Anti-de Sitter (AdS) spacetimes, higher-dimensional

versions of the Kerr-AdS black hole have been found
4
as well as black branes with

hyperbolic or flat horizon and black holes which are topologically spheres but with

two punctures
5
. On the other hand, for instance, in vaccum plane wave spacetimes

no exact analytic solution is known.

The difficulty of solving Einstein equations in higher-dimensions lead to the

development of perturbative methods such as the blackfold approach
6–8

. This ap-

proach exploits an interesting property of higher-dimensional black holes, namely,

that in certain regimes of parameter space, black hole horizons can be characterized

by two or more widely separated length scales. In these situations, the near-horizon

aIn D = 5 it is has been possible to find black hole solutions with disconnected horizons composed
of combinations of a Myers-Perry black hole and several black rings.
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geometry becomes brane-like and the near-horizon metric is that of a perturbed

boosted black brane metric. For neutral asymptotically flat spacetimes, this typ-

ically requires the black hole to be ultraspinning, i.e., its angular momentum per

unit mass must be very large. The blackfold effective theory then consists of locally

wrapping boosted black branes on arbitrary submanifolds and requiring stationary

equilibrium, as to avoid gravitational collapse.

In the remainder of this article, we will provide some of the basic elements for

constructing perturbative black holes using the blackfold approach and later we will

discuss its applications by analysing specific examples.

2. Elements of blackfold dynamics

In its simplest setting, the blackfold construction consists of bending neutral boosted

black branes with local horizon radius r0 on an arbitrary (p+ 1)-dimensional sub-

manifold Wp+1 with curvature scale R. To leading order, the metric near the

horizon, i.e. at distances r 
 R, is the boosted black brane metric in spacetime

dimensions D = n+ p+ 3,

ds2 =

(
γab +

rn0
rn

uaub

)
dσadσb

+
dr2

1− rn
0

rn

+ r2dΩ2

(n+1)
+ ... , (1)

where the induced metric γab on Wp+1, the horizon size r0 and the boost velocities

ua
are all functions of the local coordinates σc

on Wp+1. The ellipsis in (1) denote

higher-order corrections beyond the leading order and can be obtained by intro-

ducing small perturbations and solving Einstein equations. At distances r 
 r0,

to leading order the metric gμν(x
α
) can be freely chosen and can be, for instance,

Minkowski or AdS. In order to obtain higher-order corrections in flat spacetime in

the region r 
 r0, for example, in the form gμν = ημν + hμν + ..., one solves the

usual linearised equation

�h̄μν
= 8πGT μν , (2)

where h̄μν
= hμν − (1/2)ημνη

λρhλρ and T μν
is the spacetime stress tensor of the

(wrapped) black brane (1), which can be obtain from (1) in the region r 
 r0. Due

to the a priori assumed hierarchy of scales r0 
 R, the metric near the horizon (1)

can be matched to the metric obtained by solving (2) in the region r0 
 r 
 R

where the two metrics overlap.

From solving Einstein equations using this order-by-order procedure known as

a matched asymptotic expansion, one obtains two sets of constraint equations,

namely
9,10

∇aT
ab

= 0 , T abKi
ab = 0, (3)

where Ki
ab is the extrinsic curvature of the submanifold Wp+1 and the worldvolume

stress tensor is defined via

T μν
=

∫
Wp+1

√−γ T abuμ
au

ν
bδ

(D)
(xα −Xα

(σc
)), (4)
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with γ being the determinant of the induced metric, Xα
(σc

) is set of mapping

functions describing the position of the the submanifold in the ambient spacetime

and uμ
a = ∂aX

μ
is a set of projectors that project onto the tangent space to the

worldvolume Wp+1. Tangential directions are denoted by indices a, b, c, ... while

transverse directions to Wp+1 are denoted by i, j, k, ... .

The constraint equations (3) can also be derived by simply requiring ∇μT
μν

= 0

and, if the worldvolume has boundaries, in addition we also obtain the boundary

condition

T abηa|∂Wp+1
= 0. (5)

It turns out the worldvolume stress tensor for the metric (1) takes the perfect fluid

form

T ab
= Pγab

+ (ε+ P )uaub , ε+ P = T s, (6)

where the boost velocities ua
are now interpreted as fluid velocities, P , ε, T , s

are the fluid pressure, energy density, temperature and entropy respectively. In

particular, one has that

P = −Ω(n+1)

16πG
rn0 , ε + P = −(n+ 1)P , T =

n

4πr0
, (7)

where Ω(n+1) is the volume of the unit (n+1)-sphere. The constraint equations (3),

(5) therefore are the equations of motion of a fluid living on a dynamical surface.

Focusing on stationary configurations, which give rise to stationary black holes,

the first set of equations in (3) is solved by requiring the fluid velocities to be

aligned with a worldvolume Killing vector field ka
with modulus k and the global

temperature T to be the redshift of the local temperature such that ua
=

k
a

k
, T =

kT . In this simplified setting, the remaining equations of motion can be encoded

in a free energy functional of the form

F [X i
] = −

∫
Bp

dV(p)R0P, (8)

where Bp is the spatial part of the worldvolume and R0 is the modulus of the world-

volume Killing vector field ∂τ associated with worldvolume time τ translations. If

one is only interested in scanning the phase space of possible black hole solutions,

one may simply use (8) instead of the matched asymptotic expansion. The ther-

modynamic properties of these fluid configurations can be obtained in the usual

manner,

S = −∂F
∂T

, Ja = − ∂F
∂Ωa

, (9)

where S is the total entropy and Ja the angular momentum associated with the

angular velocity Ωa. The total energy M can be obtain using the fact that F =

M − TS − Ω
aJa. We will now discuss some specific configurations.
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3. Black hole horizons

We now apply the previous method and construct some fluid configurations which

are dual to certain black holes in asymptotically flat space. We note that using (6)

in (3) and (5) leads to the equations of motion in the form

Ki
= nuaubKi

ab , k|∂Wp+1
= 0. (10)

The second equation above states that if a neutral fluid has boundaries then it must

be moving at the speed of light there.

3.1. Black discs: Myers-Perry black holes

The simplest geometry to embedd in flat spacetime is a two-dimensional rotating

plane with an extra time-like direction in D ≥ 6. This is described by the induced

line element ds2 and Killing vector field

ds2 = −dτ2 + dρ2 + ρ2dφ2 , ka∂a = ∂τ +Ω∂φ. (11)

Since the plane is a minimal surface and embedded into flat spacetime it has Ki
=

Ki
ab = 0 and hence trivially solves (10). A priori, the coordinate ρ lies within the

range 0 ≤ ρ < ∞, however, the boundary condition (10) implies that there is an

upper bound ρ+ = Ω
−1

where the fluid must move at the speed of light. This cuts

the two-dimensional rotating plane into a two-dimensional rotating disc of size Ω
−1

.

Its horizon radius is given by

r0(ρ) = r+
√
1− ρ2Ω2 , r+ =

n

4πT
. (12)

Introducing coordinates cos
2 θ = 1 − ρ2Ω2

, one realises that r0 varies from a max-

imum size at the axis of rotation θ = 0 and decreases to zero at the edges θ = π.

The disc is non-trivially fibered over the S
(n+1)

. Therefore, it gives rise to the black

holes with horizon topology S
(D−2)

. Evaluating its free energy (8) we find

F =
Ω(n+1)

8G(n+ 2)

rn+
Ω2

. (13)

Indeed, this reproduces the well known properties of ultraspinning Myers-Perry

black holes in D ≥ 6
11
.

3.2. Black helicoidal branes

A non-trivial example of a blackfold configuration in D ≥ 6 is that obtained by

considering another well known minimal surface, namely, the helicoidal and adding

one extra time-like direction. In this case the induced line element and Killing

vector field take the form

ds2 = −dτ2 + dρ2 +
(
λ2

+ ρ2
)
dφ2 , ka∂a = ∂τ +Ω∂φ, (14)
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where λ is the pitch of the helicoid. Both coordinates ρ, φ lie within the range

−∞ ≤ ρ, φ < ∞ but the boundary condition (10) implies that there is a lower and

upper bound in the coordinate ρ, namely,

ρ
±
= ±

√
1− Ω2λ2

Ω2
. (15)

This geometry reduces to the disc geometry of the previous section when λ → 0.

This family of solutions have the topology of a black string R×S
(D−3)

and reduces

to the Myers-Perry solution when λ → 0. The two solutions are therefore connected

by a topology-change transition. The corresponding exact analytic solution is not

known. Its free energy takes the form
12

F =
V(n+2)

16πG

rn+
Ω

∫
dφλ(1 − λ2

Ω
2
)

n+1

2
2F̃1

(
−1

2
,
1

2
;
n+ 3

2
; 1− 1

λ2Ω2

)
, (16)

where V(n+2) = 2π
n+3

2 , and reduces to the Myers-Perry free energy in the limit

λ → 0 when making the coordinate φ periodic with period 2π.

3.3. Helicoidal black rings

The previous geometry is a boosted helicoidal string with boost velocity Ω and can

be bent into a helicoidal black ring with topology S
1×S

(D−3)
. This geometry can be

obtained from the helicoidal brane by making the coordinate φ periodic and setting

λ = R, with R now being the radius of the ring.
b
The free energy functional is then

F [R] =
V(n+2)

8G

rn+
Ω

λ(1−R2
Ω

2
)

n+1

2
2F̃1

(
−1

2
,
1

2
;
n+ 3

2
; 1− 1

R2Ω2

)
, (17)

and the resultant equations of motion are found by varying it with respect to R

reads
13

1− (n+ 2)Ω
2R2

(1− Ω2R2)
−

2F̃1

(
1

2
, 3
2
;
n+5

2
;− 1−Ω

2R2

Ω2R2

)
2Ω2R2

2F̃1

(− 1

2
, 1

2
;
n+3

2
;− 1−Ω2R2

Ω2R2

) = 0. (18)

This is a transcendental equation and cannot be solved analytically, though it can

easily be solved numerically
13
. One observes that helicoidal black rings, for a given

dimension, must rotate slower compared to the usual black rings.

4. Discussion

We have given examples that the blackfold approach easily used in order to find

novel black hole horizon geometries and topologies. It can moreover be applied to

spacetimes with non-trivial asymptotics. This was applied in
12

to vacuum plane

wave spacetimes and, despite their being no exact analytic solutions, many configu-

rations were found to exist leading to a very interesting phase diagram. We believe

bFormally, in order to obtain this geometry one has to first integrate out the finite line along the
ρ coordinate and then use the resulting effective theory to construct a ring .
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that we have only scratched the surface and many more configurations, besides those

found in
11–13

, can be constructed by, for example, considering higher-dimensional

minimal surfaces.
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