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ABSTRACT
We apply the general relativistic resistive magnetohydrodynamics code BHAC to perform a 2D
study of the formation and evolution of a reconnection layer in between two merging magnetic
flux tubes in Minkowski space–time. Small-scale effects in the regime of low resistivity most
relevant for dilute astrophysical plasmas are resolved with very high accuracy due to the
extreme resolutions obtained with adaptive mesh refinement. Numerical convergence in the
highly non-linear plasmoid-dominated regime is confirmed for a sweep of resolutions. We
employ both uniform resistivity and non-uniform resistivity based on the local, instantaneous
current density. For uniform resistivity we find Sweet–Parker reconnection, from η = 10−2

down to η = 10−4, for a reference case of magnetization σ = 3.33 and plasma-β = 0.1. For
uniform resistivity η = 5 × 10−5 the tearing mode is recovered, resulting in the formation of
secondary plasmoids. The plasmoid instability enhances the reconnection rate to vrec ∼ 0.03c
compared to vrec ∼ 0.01c for η = 10−4. For non-uniform resistivity with a base level η0 =
10−4 and an enhanced current-dependent resistivity in the current sheet, we find an increased
reconnection rate of vrec ∼ 0.1c. The influence of the magnetization σ and the plasma-β is
analysed for cases with uniform resistivity η = 5 × 10−5 and η = 10−4 in a range 0.5 ≤ σ

≤ 10 and 0.01 ≤ β ≤ 1 in regimes that are applicable for black hole accretion discs and jets.
The plasmoid instability is triggered for Lundquist numbers larger than a critical value of Sc

≈ 8000.

Key words: accretion, accretion discs – black hole physics – magnetic reconnection – MHD –
methods: numerical.

1 IN T RO D U C T I O N

Astrophysical plasmas, where the dynamics is dominated by strong
magnetic fields, are often a source of high-energy emission. Mag-
netic reconnection is generally acknowledged as the mechanism
powering this emission, through the dissipation of magnetic energy.
This process is conjectured to power high-energy emission in the
form of flares from magnetars, pulsar wind nebulae, and from black
hole accretion discs and jets.

The magnetized corona above a turbulent accretion disc can be
modelled as an ensemble of magnetic flux loops with footpoints tied
to the disc. These flux tubes are hypothesized to interact with one
another after which their energy is liberated in a reconnection event
(Tout & Pringle 1992; Goodman & Uzdensky 2008; Uzdensky &
Goodman 2008; Yuan et al. 2009). The reconnecting flux tubes

� E-mail: bartripperda@gmail.com

can drive the formation and ejection of energetic plasmoids. These
plasmoids can orbit the black hole and power flaring emission from
the inner accretion disc (see e.g. Broderick & Loeb 2005; Noble
et al. 2007; Marrone et al. 2008; Yuan et al. 2009; Younsi & Wu
2015). Such X-ray, infrared, and radio flares have been observed
from the accretion disc region of Sgr A∗, the supermassive black
hole in the Galactic Centre (Baganoff et al. 2001; Genzel et al. 2003;
Eckart et al. 2006; Meyer et al. 2008; Neilsen et al. 2013; Dexter
et al. 2014; Brinkerink et al. 2015; Gravity Collaboration 2018).

The global dynamics of the plasma in the accretion disc is
typically modelled within the fluid approximation of general rel-
ativistic magnetohydrodynamics (GRMHD). Within the GRMHD
description, reconnection of magnetic field lines occurs due to
the resistivity of the plasma breaking Alfvén’s frozen in theorem
(Alfvén 1942). This resistivity can be purely numerically sourced,
caused by insufficient grid resolution, or it can be explicitly
modelled within the set of general relativistic resistive magneto-
hydrodynamics (GRRMHD) equations. It is however unclear how
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a realistic resistivity should be modelled and how the model affects
the formation and structure of the reconnection layer, the efficiency
of the energy conversion, and the production and energization of
plasmoids.

The plasma in the aforementioned astrophysical environments
is often magnetically dominated, such that the magnetic enthalpy
density is larger than the thermal enthalpy density, i.e. such that the
magnetization

σ = B2/(4πhρc2) � 1, (1)

for a magnetic field with magnitude B and a plasma with mass
density ρ and specific enthalpy h and with c the speed of light. in In
a near stationary situation (Parker 1957; Sweet 1958; Lyutikov &
Uzdensky 2003; Lyubarsky 2005), the rate of reconnecting magnetic
flux (the ‘reconnection rate’) is proportional to the ratio of the
current sheet inflow velocity to the sheet outflow velocity vin/vout. If
the plasma can be assumed incompressible, it follows that vin/vout =
δ/L where δ is the sheet thickness and L its length along the large-
scale reconnecting field. The outflow speed can be estimated as
vout ∼ vA, where vA = c

√
σ/(σ + 1) is the typical Alfvén speed,

which becomes close to the speed of light for highly magnetized
plasma. According to the Sweet–Parker model, the width follows
from continuity of the ideal and resistive electric field across the
sheet, giving δ = η/vin, where η is the resistivity, or the inverse
conductivity, of the plasma. Hence the reconnection rate becomes
vin/vout = η/(Lvin). The Lundquist number of the plasma is defined
as the ratio of the typical advective time-scale, or Alfvén time τA

∼ L/vA, and the diffusion time-scale τD ∼ L2/η:

S = τD/τA = LvA

η
=

√
σ

σ + 1

cL

η
. (2)

The reconnection rate should then scale as vrec ∼ S−1/2. For astro-
physical plasmas, diffusion occurs on very small scales, resulting
in a slow diffusion time-scale compared to the Alfvén time (or light
crossing time τ c = L/c for vA ≈ c). Therefore the Lundquist number
is typically very large, resulting in Sweet–Parker reconnection rates
(Komissarov, Barkov & Lyutikov 2007) which are too small to
explain the observed high-energy emission.

Resistivity in astrophysical systems is however generally con-
sidered to be non-uniform and strongly enhanced in the current
sheet. The reconnection rate can be increased by a locally en-
hanced, non-uniform resistivity, that broadens the reconnection
layer thickness δ, but does not affect the ambient plasma. Non-
uniform resistivity typically depends on plasma variables like the
temperature, density, pressure, and current density (Kulsrud 1998).
Recently, non-uniform resistivity models have been developed for
collisional plasmas, based on non-relativistic kinetic modifications
to the classical Spitzer resistivity (e.g. Hirvijoki et al. 2016; Lingam
et al. 2017). In collisionless plasmas, the theory of anomalous
resistivity arising from turbulence driven by kinetic instabilities
has been developed by Coroniti & Eviatar (1977) and Bychenkov,
Silin & Uryupin (1988). In collisionless plasmas an appropriate
model for resistivity can also be determined from Particle-in-Cell
(PiC) simulations (e.g. Che 2017) or by directly integrating Vlasov’s
kinetic equation (Büchner & Elkina 2005; Büchner & Elkina 2006).
In non-relativistic plasmas the effects of anomalous resistivity
have been studied extensively, concluding that localized resistivity
can enable the fast Petschek (1964) reconnection mechanism (see
e.g. Sato & Hayashi 1979; Scholer 1989; Ugai 1992; Erkaev,
Semenov & Jamitzky 2000; Biskamp & Schwarz 2001; Kulsrud
2001; Uzdensky 2003). This conclusion has been extended by
e.g. Zenitani, Hesse & Klimas (2010), showing that non-uniform,

current-dependent resistivity can also enable fast reconnection in
relativistic collisional plasmas. Anomalous resistivity models are
extensively applied in magnetohydrodynamics (MHD) simulations
of astrophysical plasmas, e.g. by Schumacher & Kliem (1997) for a
setup of two coalescing flux tubes in non-relativistic plasma, or by
Ohsuga et al. (2009) for global black hole accretion disc simulations
in a pseudo-Newtonian gravitational potential.

From vrec ∼ δ/L, it is obvious that the reconnection rate also
increases for a decreasing length L of the layer. This can occur
if the current sheet is broken up into smaller pieces due to the
formation of plasmoids as a result of the tearing instability. A
stationary reconnecting current sheet is unstable to a fast tearing
instability, or plasmoid instability above a critical value of the
Lundquist number that is typically quoted as S� Sc = 104 (Loureiro,
Schekochihin & Cowley 2007), leading to a reconnection rate of
order 10−2vA (Bhattacharjee et al. 2009; Samtaney et al. 2009;
Uzdensky, Loureiro & Schekochihin 2010; Loureiro et al. 2012;
Huang & Bhattacharjee 2013; Murphy et al. 2013; Comisso et al.
2016; Loureiro & Uzdensky 2016; Uzdensky & Loureiro 2016;
Comisso et al. 2017; Tolman, Loureiro & Uzdensky 2018). Special
relativistic resistive magnetohydrodynamic (SRRMHD) simula-
tions have confirmed this critical value of the Lundquist number
in relativistic plasmas with a uniform resistivity (Komissarov et al.
2007; Zenitani et al. 2010; Zanotti & Dumbser 2011; Baty & Pétri
2013; Takamoto 2013; Pétri et al. 2015; Del Zanna et al. 2016;
Papini, Landi & Del Zanna 2018). Plasmoids formed by the tearing
instability can undergo mergers, bulk acceleration, and growth
within the reconnection layer (Guo et al. 2014; Sironi & Spitkovsky
2014; Sironi, Giannios & Petropoulou 2016; Petropoulou et al.
2018; Werner et al. 2018). These plasmoids are conjectured to power
flares, accounting for intense variability (Komissarov et al. 2007;
Giannios, Uzdensky & Begelman 2009; Giannios, Uzdensky &
Begelman 2010; Giannios 2013; Petropoulou, Giannios & Sironi
2016; Sironi et al. 2016).

Lazarian & Vishniac (1999) proposed that externally driven tur-
bulence can also enhance the reconnection rate in three-dimensional
(3D) non-relativistic plasma models. Loureiro et al. (2009) carried
out two-dimensional (2D) simulations showing that turbulence
can enhance reconnection and that the transition to the plasmoid-
dominated regime is enabled at Lundquist numbers that are smaller
than the classical critical value of Sc = 104. Beresnyak (2017) has
investigated reconnection in an initially laminar and thin current
sheet with 3D non-relativistic resistive MHD, which spontaneously
develops oblique tearing instabilities and becomes turbulent. Striani
et al. (2016) have shown that the kink mode, that is inaccessible in
2D, may loosen the restriction of the critical Lundquist number for
plasmoid formation to S � 103. Based on 3D resistive relativistic
MHD simulations, Takamoto (2018) recently claimed that turbulent
motions due to a small perturbation in the magnetic field breakup
the current sheet before the plasmoid regime is reached, resulting in
a smaller reconnection rate than in an equivalent 2D set-up. There
however, it is unclear whether numerical convergence is obtained in
these demanding computational regimes, and numerical resistivity
may play a role in the dynamics.

It remains a fundamental question how a semistationary current
sheet can form from a stable plasma equilibrium without breaking
up before the plasmoid regime is reached. For Sweet–Parker current
layers in MHD theory, the growth rate of the plasmoid instability
increases with the Lundquist number as ∝S1/4 (Loureiro et al.
2007; Samtaney et al. 2009). However, since the thickness of
a Sweet–Parker current sheet scales as S−1/2, very long current
sheets cannot realistically form for S 	 104. Pucci & Velli (2014)

MNRAS 485, 299–314 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/1/299/5308853 by U
niversiteit van Am

sterdam
 user on 26 M

arch 2020



Plasmoids in relativistic resistive reconnection 301

argued that for high, astrophysically relevant, Lundquist numbers,
the maximum growth rate γ max of the fastest growing mode of the
tearing instability can become independent of the Lundquist number
and it scales as γmax 
 0.6τ−1

A . This ‘ideal’ tearing mode takes over
and triggers plasmoid formation before the current sheet reaches a
thickness for which the slow Sweet–Parker scaling is valid. The non-
linear evolution of the ideal tearing mode in a pre-existing current
sheet has been shown to follow the asymptotic γmax 
 0.6τ−1

A

scaling by Landi et al. (2015) with non-relativistic resistive MHD
simulations. The ideal tearing mode in relativistic resistive MHD
has recently been studied by Del Zanna et al. (2016) and Papini et al.
(2018), confirming the growth rate of γmax 
 0.6τ−1

A , independent
of S for S � Sc ≈ 106. The aforementioned 2D and 3D resistive
MHD studies, however, do not include the formation phase of
the current sheet from a generic stable plasma equilibrium. The
current sheet is already present at the initial time, which may
affect the reconnection properties and the plasmoid formation
threshold.

To understand the complete process of reconnection it is re-
quired to model a developing current sheet starting from a non-
reconnecting, stable plasma equilibrium as has been pointed out by
Pucci & Velli (2014) and Uzdensky & Loureiro (2016). If a stable
plasma state is rearranged or compressed by a driving plasma flow,
a current sheet can form that gradually becomes unstable to the
tearing instability. In recent non-relativistic MHD simulations of
two repelling flux tubes, we found that the interaction between such
tubes can cause the formation of thin current sheets showing signs of
plasmoid formation in both 2D and 3D (Keppens, Porth & Xia 2014;
Ripperda et al. 2017a; Ripperda et al. 2017b). Multiple reconnection
layers form in between and at the boundaries of the tilting flux tubes.
A related and generic case of two stable, attracting flux tubes, with a
net zero total current, has recently been studied with a combination
of 2D relativistic force-free magnetodynamics, relativistic resistive
MHD, and PiC methods by Lyutikov et al. (2017). After the flux
tubes are driven towards each other by a small velocity perturbation,
a thin current sheet develops in between the coalescing structures.
This stage is then followed by a merger of the flux tubes, resulting in
fast reconnection. Due to the inclusion of the formation of the sheet
in the model, the details of reconnection and plasmoid formation
are not affected by the initial set-up. Based on PiC simulations,
Lyutikov et al. (2017) find that macroscopic large-scale magnetic
stresses lead to fast reconnection that is nearly an order of magnitude
faster compared to plane-parallel cases where the tearing mode is
triggered in a pre-existing current sheet. Yet, in their relativistic
resistive MHD models the Lundquist number remains too small to
trigger the plasmoid instability. PiC simulations have shown that
relativistic 2D magnetostatic equilibria known as the ‘ABC’ fields
can as well lead to the formation of thin current sheets and fast
reconnection (East et al. 2015; Nalewajko et al. 2016; Yuan et al.
2016; Blandford et al. 2017; Lyutikov et al. 2017).

In this work we extend the force-free magnetodynamics simu-
lations (i.e. in the limit of σ → ∞) of Lyutikov et al. (2017) to
SRRMHD for high Lundquist numbers in 2D Minkowski space–
time with the Black Hole Accretion Code (BHAC). BHAC is a
multidimensional framework that has been designed to solve the
GRMHD equations in arbitrary space–times (Porth et al. 2017)
making use of constrained transport adaptive mesh refinement
(AMR; Olivares, Porth & Mizuno 2018). The framework has
recently been extended to solve the GRRMHD equations (Ripperda
et al., in preparation). More details about the numerical methods
applied in this work are given in Section 3.

We explore a range of Lundquist numbers by setting a uniform
resistivity and compare reconnection properties and the plasmoid
formation threshold for the forming current sheets. The influence
of the magnetization is explored by varying the initial pressure and
density. We also utilize a spatiotemporally dependent non-uniform
resistivity model that depends on the current density, such that it
increases in the current sheet. This prescription is compared to a
fiducial case with uniform resistivity.

The regime of high Lundquist numbers and low resistivity is
very demanding for any resistive code and therefore serves as a
restrictive test for the methods implemented in BHAC. Exploring
large Lundquist numbers proves to be very difficult, even in
2D simulations, since the reconnection layer becomes narrower
for larger Lundquist numbers and the necessary time-step and
resolution to resolve the thinning current sheet become prohibitive.
If the resolution is too low, numerical resistivity may be dominant
over physically chosen resistivity. This is the same effect that causes
reconnection and plasmoid formation in ideal MHD simulations. To
study reconnection in high Lundquist number plasmas, it is essential
to include physical resistivity combined with extreme resolutions,
to assure that numerical resistivity is negligible. Diffusion due to
resistivity is however only important on small scales, where large
gradients of the electric and magnetic field may exist (Komissarov
et al. 2007). Therefore, AMR can greatly enhance the efficiency
of the simulation, by only resolving the small diffusion and
reconnection regions in and around the current sheet with extremely
high resolution. Our AMR approach allows us to effectively
resolve the plasmoid phase of the evolution with 163842 cells.
In previous numerical MHD studies of relativistic reconnection,
the non-linear phase at very late stages of the tearing instability
for very high Lundquist numbers was never resolved with such
high resolutions (Zenitani et al. 2010; Zanotti & Dumbser 2011;
Baty & Pétri 2013; Takamoto 2013; Pétri et al. 2015; Del Zanna
et al. 2016).

The paper is organized as follows: In Section 2 the set of
relativistic, resistive MHD equations in Minkowski space–time are
given and in Section 3 we briefly describe the numerical methods
that are used in this work. In Section 4 these methods are applied
to the coalescence of two magnetic flux tubes causing magnetic
reconnection, for a range of astrophysical conditions. We present
our conclusions in Section 5.

2 R ELATIVISTIC RESISTIVE
M AG N E TO H Y D RO DY NA M I C S

We solve the GRRMHD equations in Minkowski space–time in
3 + 1-split form (an extensive treatment of the implementation of
GRRMHD in BHAC will be provided in a future work). We follow the
derivation of the GRRMHD equations in Bucciantini & Del Zanna
(2012). For the remainder of this paper, we choose a (−, +, +,
+) signature for the space–time metric. We adopt geometrized,
dimensionless code units in which the vacuum permeability μ0 =
1, and vacuum permittivity ε0 = 1. Moreover we set the speed
of light c = 1 and we set all factors 4π = 1. In flat space–
time the evolution equations for a magnetized fluid are then
given by

∂tB + ∇ × E = 0, (3)

∂tE − ∇ × B = −J, (4)
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∇ · B = 0, (5)

∇ · E = q, (6)

∂tD + ∇ · (ρv) = 0, (7)

∂t τ + ∇ · (E × B + h2v
) = 0, (8)

∂tS + ∇ ·
(

−EE − BB + h2vv +
[

1

2

(
E2 + B2

) + p

])
= 0,

(9)

for electric field vector E, magnetic field vector B, and charge
density q. The conserved quantities, as conserved by equations (7)–
(9), are the density D, the energy density τ , and the energy flux
density S given by

D = ρ, (10)

τ = 1

2
(E2 + B2) + ρh2 − p, (11)

S = E × B + ρh2v, (12)

with the specific enthalpy h = 1 + γ̂

γ̂−1 p/ρ = 1 + 4p/ρ for a
relativistic ideal gas with adiabatic index γ̂ = 4/3, p the pressure,
and ρ the mass density as measured in the frame comoving with
the fluid. The fluid velocity as measured by an inertial observer is
given by v and  = (1 − v2)−1/2 is the Lorentz factor. The system
is closed by the resistive Ohm’s law

J = qv + Jc = qv + 1

η
 [E + v × B − (E · v) v] , (13)

for the current density J and conduction current Jc, with resistivity
η(x, t) depending on spatial coordinates x and coordinate time
t. Other non-ideal transport effects like viscosity and thermal
conduction are neglected in our model. In BHAC the GRRMHD
equations are actually solved, however we adopt a flat space–time,
where the lapse function is set to unity, the shift vector is a three-
vector equal to zero, and the spatial metric is the identity 3 × 3
matrix (Ripperda et al., in preparation).

2.1 Non-uniform resistivity

In its simplest form the resistivity is taken to be constant and
homogeneous. However, a more realistic expectation would be a
spatiotemporally varying description, depending on plasma param-
eters. In MHD, resistivity is considered as a macroscopic plasma
property, whereas it should actually be calculated from kinetic
physics. Spatiotemporal resistivity can for example arise via a
dependence on temperature (e.g. collisional Spitzer resistivity),
through collisionless processes (anomalous resistivity), or through
the emission or absorption of photons (radiative resistivity). Non-
uniform resistivity is generally thought of as a locally enhanced
resistivity in a relatively small, confined area in the current sheet,
compared to a smaller background value. It generally depends on
the plasma temperature and the density but may also depend on
other moments of the distribution function, like the current density

(Kulsrud 1998). In this work, we assume a non-uniform resistivity
model that depends purely on the current density J. The strength of
the dependence is set by the constant parameter �ei as

η(x, t) = η0(1 + �2
eiJ ) . (14)

We parametrize microscopic effects through �ei. In reality, �ei

should depend on the underlying kinetic physics (e.g. on the electron
pressure), and on the current density itself (Lingam et al. 2017). For
�ei � 1 the non-uniformity of the resistivity is considered unim-
portant, but when �ei ∼ O(1) or even higher, current-dependent
corrections in the resistivity become dominant. Such regimes are
typically reached in reconnection zones with extremely strong
and localized current density and length-scales below the typical
MHD cells. The non-uniform resistivity may strongly affect the
behaviour of magnetic reconnection (Sato & Hayashi 1979; Scholer
1989; Ugai 1992; Erkaev, Semenov & Jamitzky 2000; Biskamp &
Schwarz 2001; Kulsrud 2001; Uzdensky 2003; Zenitani et al.
2010). The exact form of the non-uniform resistivity in collisionless
plasmas can potentially be determined from kinetic simulations and
yield subgrid information for large-scale MHD simulations (see e.g.
Büchner & Elkina 2005; Büchner & Elkina 2006; Che 2017 for non-
relativistic plasmas). For collisional plasmas, Spitzer resistivity (or
further corrections such as e.g. Hirvijoki et al. 2016; Lingam et al.
2017 for non-relativistic plasmas) need to be used.

We will numerically study effects of current-dependent, spa-
tiotemporally varying resistivity in Section 4 by exploring a range
of �ei. For J (x, t) we take the magnitude of the current density in
relativistic plasmas as described by equation (13)

J (x, t) = ||qv + η−1
0 [E + v × B − (E · v) v] ||, (15)

such that the non-linear part of the resistivity does not depend
on η0 but solely on the parameter �ei and the fluid variables E,
B, and v. In future astrophysical applications, where a very small
base resistivity η0 is considered, the local resistivity η(x, t) can be
determined with an iterative method, instead of inserting η0 directly
into equation (15), or the non-relativistic current density J = ∇ ×
B can be used to determine the local resistivity in a comoving
frame. These options have been compared here and show negligible
differences for the chosen values of η0 and �ei.

3 N U M E R I C A L M E T H O D S

The hyperbolic equations with stiff source terms are solved with
either an implicit–explicit (ImEx) scheme (Palenzuela et al. 2009)
or a Strang split scheme (Komissarov 2007).

For the ImEx scheme, equations (3) and (7)–(9), not containing
any stiff source terms, are solved with an explicit second-order
Runge–Kutta (RK) step. The left-hand side of equation (4) is solved
with the same second-order RK scheme to obtain the intermediate
solution E*. The stiff right-hand side of equation (4) is added in an
additional implicit step, solving for

E = η

η + �t
(E* − qv�t)

− �t

η + �t

[
v × B − η

(E* − qv�t) · v
η + �t

v
]

, (16)

with the time-step �t from the explicit RK step. This implicit
inversion step is taken within a Newton–Raphson iteration to
transform the conserved variables into primitive variables v, ρ,
and p. The iteration is considered to be converged if both the error
on the primitive variables and on the electric field E are under a
tolerance of 10−13.
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In particular cases, the Strang split scheme is more robust and we
choose to apply this method. Here, equations (3) and (7)–(9), not
containing any stiff source terms, are solved with an explicit third-
order RK step. The left-hand side of equation (4) is solved with
the same third-order RK scheme to obtain the intermediate solution
E*. The stiff part of equation (4) is solved semi-analytically, by
assuming a reduced, linear Ampère’s law ∂t (E) = −J, such that

∂t (E‖) = −

η

[
E‖ − (v · E) v

] − qv, (17)

∂t (E⊥) = −

η
[E⊥ + v × B] , (18)

are solved to obtain the electric field at time t + �t

E = E‖* exp

[
−�t

η

]
− v × B

+ (E⊥* + v × B) exp

[
−�t

η

]
− qv�t, (19)

with E‖ the electric field vector parallel to the velocity field and E⊥
the electric field vector perpendicular to the velocity field, such that
E* = E‖* + E⊥* is the electric field at the intermediate solution
obtained from the explicit RK step. The velocity field v and the
magnetic field B are obtained from the explicit RK step as well.

In both cases we use a Total Variation Diminishing Lax–
Friedrichs scheme (TVDLF) and we employ a Cada reconstruction
scheme (Čada & Torrilhon 2009) to compute the fluxes, and we use
an RK integration with a Courant number of 0.4. The performance
and accuracy of the schemes is briefly compared in Section 4. The
magnetic field is kept solenoidal, obeying equation (5) to round off
error by means of the staggered constrained transport scheme of
Balsara & Spicer (1999) (see Olivares et al. 2018 for details on the
implementation in BHAC). The charge density (6) is obtained by
numerically taking either the central or the limited divergence of
the evolved electric field. For more details on the numerical aspects
we refer to Porth et al. (2017).

4 R ELATIVISTIC RECONNECTION IN
M E R G I N G FL U X TU B E S

We conduct simulations for a range of resistivities and resolutions.
We adopt a setup of two modified Lundquist tubes from Lyutikov
et al. (2017) where a flux rope is described by the magnetic field

B(r ≤ rj) = αtctJ1(αtr)eφ + αtct

√
J0(αtr)2 + C

(αtct)2
ez. (20)

The toroidal magnetic field Bφ is initialized from a vector potential

Az(r ≤ rj) = ctJ0(αtr), (21)

to keep ∇ · B = 0 using a staggered constrained transport scheme.
The boundary conditions are periodic in all directions. All scales
are given in terms of the radius of the rope rj = 1. Furthermore, we
set the constant C = 0.01 such that the minimum Bz component
remains positive. J0 and J1 are Bessel functions of the zeroth
and first kind, respectively, and the constant αt ≈ 3.8317 is the
first root of J0. The parameter ct = 0.262 is found such that the
maximum value of the max (Bz) = B0 field is unity. The solution
for each tube is terminated at r = rj = 1, corresponding to the
first zero of J1, and the field remains uniform at Bz(r > rj) =
Bz(rj) = αtct

√
J0(αt)2 + C/(αtct)2. The toroidal field vanishes at

the boundary of each rope where Az(r > rj) = Az(rj) = ctJ0(αt),
such that the total current in each flux tube is zero (and no surface
currents are present in the initial set-up). We exploit the modified
version of Lundquist’s force-free cylinders (including the factor
proportional to C) as suggested by Lyutikov et al. (2017), such that
the guide field in the out-of-plane direction does not change sign
inside the ropes. The equations are solved on a 2D Cartesian grid
(x, y), with x ∈ [−3, 3] and y ∈ [−3, 3]. Each flux tube has a profile
that can be described in polar coordinates (centred in the centre of
the tube) as (r, θ ) = (

√
(x ± 1)2 + y2, arctan(y/(x ± 1))), where

± corresponds to the right and left tube, respectively. Initially the
two tubes are just touching each other and their centres are located
at y = 0 and x ± 1. The tubes are perturbed by a small electric field
that pushes them towards each other

E = −vkick × B, (22)

with vkick = (±0.1, 0, 0), the kick velocity (normalized to c) with
the ± corresponding to the left and right rope, respectively. The
dynamical evolution is independent of the kick velocity, such that
the choice of vkick is not restricting the validity of the conclusions
(Lyutikov et al. 2017). The pressure p = p0 and density ρ = ρ0

are initially uniform such that the equilibrium is force-free. The
fluid obeys an equation of state for a relativistic ideal gas with
adiabatic index γ̂ = 4/3, such that the specific enthalpy h(ρ, p) =
1 + γ̂

(γ̂−1) p/ρ = 1 + 4p/ρ. For the reference cases the pressure is
set at p0 = 0.05 and the density at ρ0 = 0.1. The maximum of
the dimensionless initial magnetic field magnitude is set as B0 =
max (Bz) = 1 in all cases, such that plasma-β0 = 2p0/B

2
0 = 0.1

and σ0 = B2
0 /(h0ρ0) = 3.33 in the reference cases. We distinguish

two different Lundquist numbers; one at initialization of each case,
where it is assumed that the Alfvén speed approaches the speed
of light during reconnection, such that vA ≈ c = 1 and the half-
length of the sheet corresponds to the radius of the flux tube rj =
1, resulting in Sini = η−1; and an effective Lundquist number Seff =
LvA/η, where the half-length L of the current sheet is measured
during the evolution, and the Alfvén speed is determined for each
case as vA = c

√
σ0/(σ0 + 1) (where c = 1). Time is measured in

units of light crossing time of the flux tube radius tc = rj/c = 1.
The 2D domain is divided in a varying number of cells to assess

numerical convergence, both with and without AMR. We explore
the effect of resolution on the threshold for plasmoid formation
by varying the base resolution and the maximum AMR level. In
the AMR cases, the mesh is refined when there are steep gradients
in Bz, Ez, and ρ. These variables are chosen because they show
the largest variations during the non-linear phase of the evolution.
Furthermore we vary the resistivity η to determine a resistivity
threshold for plasmoid formation. The pressure and density are
then varied to determine the effect of magnetization and plasma-
β on the plasmoid instability. Finally, non-uniform resistivity
models are explored to determine how they affect the reconnection
rate.

All runs are listed in Table 1, where we catalogue the applied
numerical method to resolve the stiff source terms, the x-component
of the kick velocity vkick, x, the plasma-β0, magnetization σ 0, the
uniform resistivity η0, the non-uniform resistivity enhancement
factor �2

ei, the maximum resistivity in the domain measured over
the whole period of the evolution, whether or not the plasmoid
instability is triggered, the base resolution Nbase (total number of
cells on the lowest AMR level), and the effective resolution Neff

(total number of cells if all AMR levels are fully utilized).
In cases with β0 ≥ 0.5 we find it beneficial to use an ImEx

scheme, rather than a Strang split scheme, whereas for plasma-β �
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Table 1. The simulated cases and several characteristic parameters.

Run Method vkick β0 σ 0 η0 �2
ei Max (η) Plasmoids Nbase Neff

Al Strang 0.1c 0.1 3.33 5 × 10−5 0 5 × 10−5 yes 40962 40962

A Strang 0.1c 0.1 3.33 5 × 10−5 0 5 × 10−5 yes 5122 81922

Ah Strang 0.1c 0.1 3.33 5 × 10−5 0 5 × 10−5 yes 20482 163842

Am1 Strang 0.1c 0.01 3.33 5 × 10−5 0 5 × 10−5 yes 5122 81922

Am2S Strang 0.1c 1 0.476 5 × 10−5 0 5 × 10−5 no 5122 81922

Am2 ImEx 0.1c 1 0.476 5 × 10−5 0 5 × 10−5 no 5122 81922

Am3 ImEx 0.1c 1 0.497 5 × 10−5 0 5 × 10−5 no 5122 81922

Am4 ImEx 0.1c 0.1 0.833 5 × 10−5 0 5 × 10−5 no 5122 81922

Am5 ImEx 0.1c 0.01 0.980 5 × 10−5 0 5 × 10−5 no 5122 81922

Am6 ImEx 0.1c 0.5 0.909 5 × 10−5 0 5 × 10−5 no 5122 81922

Am7 ImEx 0.1c 0.5 0.990 5 × 10−5 0 5 × 10−5 yes 5122 81922

Am8 ImEx 0.1c 0.5 0.999 5 × 10−5 0 5 × 10−5 yes 5122 81922

Bll Strang 0.1c 0.1 3.33 1 × 10−4 0 1 × 10−4 yes 20482 20482

Bl Strang 0.1c 0.1 3.33 1 × 10−4 0 1 × 10−4 no 40962 40962

Bh Strang 0.1c 0.1 3.33 1 × 10−4 0 1 × 10−4 no 81922 81922

B Strang 0.1c 0.1 3.33 1 × 10−4 0 1 × 10−4 no 5122 81922

Bhl Strang 0.1c 0.1 3.33 1 × 10−4 0 1 × 10−4 no 10242 81922

Blh Strang 0.1c 0.1 3.33 1 × 10−4 0 1 × 10−4 no 5122 163842

Bhh Strang 0.1c 0.1 3.33 1 × 10−4 0 1 × 10−4 no 20482 163842

Bnr1 Strang 0.1c 0.1 3.33 1 × 10−4 1 404.7 × 10−4 no 5122 81922

Bnr2 Strang 0.1c 0.1 3.33 1 × 10−4 0.1 264.6 × 10−4 no 5122 81922

Bnr3 Strang 0.1c 0.1 3.33 1 × 10−4 0.01 6.7 × 10−4 no 5122 81922

Bnr4 Strang 0.1c 0.1 3.33 1 × 10−4 0.001 1.3 × 10−4 no 5122 81922

Bm1 Strang 0.1c 0.01 3.33 1 × 10−4 0 1 × 10−4 no 5122 81922

Bm2 Strang 0.1c 0.01 10.0 1 × 10−4 0 1 × 10−4 yes 5122 81922

C Strang 0 0.1 3.33 1 × 10−4 0 1 × 10−4 no 5122 81922

Ci Strang 0 0.1 3.33 0 0 0 no 5122 81922

D Strang 0.1c 0.1 3.33 1 × 10−3 0 1 × 10−3 no 5122 81922

E Strang 0.1c 0.1 3.33 1 × 10−2 0 1 × 10−2 no 5122 81922

0.5 the Strang split scheme is more robust, confirming the findings
of Palenzuela et al. (2009). The advantage of the Strang split scheme
lies in its ability to capture steep gradients more accurately than the
ImEx scheme, due to the stability constraint on the time-step that
depends linearly on the resistivity. This however results in a much
more expensive computation for low resistivity. The two schemes
are compared for cases Am2S and Am2, with η = 5 × 10−5, β0 =
0.5, and σ 0 = 0.476, confirming that they provide the same results
even after 20 light crossing times.

4.1 Dependence on resolution

In this section, we determine the resolution for which the results
converge numerically in the non-linear plasmoid regime. The
effective maximum resolution is repeatedly doubled up to a point
where the physics is independent of numerical resistivity. A higher
resolution allows for the current sheet to become thinner, and for
the current density and the electric energy density to become higher.
We claim converged results if the thickness of the current sheet and
the peaks of electric energy density no longer depend on resolution.
For too low resolutions, numerical resistivity can artificially trigger
the plasmoid instability, such that the electric energy density and the
reconnection rate are overestimated. In Fig. 1 the temporal evolution
of the maximum energy density in the electric field is shown for all
runs with η = 10−4 in the left-hand panel and for all runs with η =
5 × 10−5 in the right-hand panel, both with σ 0 = 3.33 and β0 = 0.1.
The maximum of the energy density in the electric field, max(||E||2)
is determined over the whole domain, at all time-steps, and it is a
very strict indicator for convergence of the MHD results at varying
resolutions. Low resistivity results in the most restrictive resolution

requirements, because the thickness of the forming current sheet is
proportional to the square root of the resistivity.

The initial exponential growth phase (left of the first vertical red
dotted line, t � 5tc) where the energy density grows as ∝exp (vAt/rj)
≈ exp (ct/rj) (indicated by the dashed black lines), is accurately de-
scribed by all considered resolutions. From t � 5tc, the coalescence
instability has saturated and the current sheet has fully formed in
between the flux tubes. The non-linear regime (in between the two
vertical red dotted lines), in which the current sheet gets thinner, is
reached at t ≈ 5tc for both resistivities, and for all resolutions. In
this period, the current sheet remains laminar and becomes thinner
and the resolution needs to be sufficiently fine to avoid numerical
resistivity to affect the evolution. During this stage no plasmoids are
formed. At t ≈ 17tc the simulation reaches a secondary non-linear
regime (right of the second vertical red dotted line), where a higher
variability of the electric field energy density and the current density
is observed, that is related to the onset of the plasmoid instability.

For η = 10−4 the plasmoid regime is reached for run Bll with
resolution 20482, but not for higher resolution runs. In run Bll the
electric energy density also increases significantly compared to the
higher resolution runs. This shows that by choosing a resolution
that is too low, reconnection and plasmoid formation is induced via
locally prevailing numerical resistivity. Resolution 20482 accurately
resolves the growth phase, where resistivity has little effect, but fails
to reproduce the higher resolution results in the non-linear phase
from t ≈ 10tc onwards. In all runs with N ≥ 40962 artificial plasmoid
formation is avoided and the results converge even in the far non-
linear phase at t � 17tc (i.e. our chosen resistivity is safely larger
than the numerical resistivity). We find that the base resolution is
unimportant for convergence, since for a (too) low base resolution,
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Plasmoids in relativistic resistive reconnection 305

Figure 1. Peak electric energy for all runs with uniform resistivity η = 10−4 (left-hand panel) and η = 5 × 10−5 (right-hand panel). The dashed black line
shows the Alfvénic growth rate ∝exp (vAt/rj) ≈ exp (ct/rj) of the electric energy density. The vertical red dotted lines separate the three different evolutionary
stages: The Alfvénic growth phase of the flux tube coalescence, the thinning of the current sheet, and the phase where the plasmoid instability is triggered for
η = 5 × 10−5. For η = 10−4, the plasmoid instability is only triggered by numerical resistivity if the resolution is not high enough, in run Bll.

the AMR level increases in a large part of the domain from the start
of the simulation, as confirmed in runs Ah, Bhl, and Bhh. The AMR
results have been confirmed by uniform resolutions up to 40962 in
runs Al, Bll, and Bl. The non-linear phase has been evolved until t =
9tc by run Bh with uniform resolution 81922 after which it quickly
became too expensive to continue without mesh refinement.

For η = 5 × 10−5 cases, 40962 is the lowest effective resolution
considered (corresponding to the highest refinement level). The
orange line for run Al, in the right-hand panel, shows that even for
this resolution, the maximum electric field is overestimated in the
far non-linear regime, even if it matches the higher resolution runs
before t ≈ 17tc. For resolutions N � 81922 convergence is obtained
up to the far non-linear regime. These resolutions are only attainable
by applying multiple AMR levels.

Fig. 2 presents a zoom of the magnitude of the out-of-plane
current density |Jz| in the current sheet of run Am8 (η = 5 × 10−5,
σ 0 = 0.999, β0 = 0.5), showing interacting plasmoids at t = 20tc.
The refined grid is plotted on top, showing all five AMR levels, with
the finest level (81922) accurately capturing the plasmoids and the
coarsest level (5122) in between the initial flux ropes. Two plasmoids
are expelled from the top and bottom outflow regions, and in the
middle of the current sheet two plasmoids have merged and formed
a secondary (horizontal) current sheet that is only captured with
the highest refinement level. Applying AMR results in a speed-up
between 10 and 100 times compared to uniform resolution runs at
the high refinement level, and a data reduction of close to 16 times.

4.2 Dependence on resistivity

In this section, we explore the dependence of the plasmoid insta-
bility on the (uniform) resistivity η and hence on the Lundquist
number Sini ∼ 1/η. We determine the resistivity threshold for which
the plasmoid instability is triggered and the reconnection rate is
enhanced. The resistivity is varied in a range of η = 10−2 (run E),
η = 10−3 (run D), η = 10−4 (run B), and η = 5 × 10−5 (run A) to
evaluate when the plasmoid instability occurs, while σ 0 = 3.33 and
β0 = 0.1 are kept constant and the resolution is set at Neff = 81922.
The Alfvén speed is determined as vA = √

3.33/4.33 ≈ 1 and the
typical length-scale L ≈ rj = 1, such that the Lundquist numbers

Figure 2. Zoom of the out-of-plane current density magnitude |Jz| in the
current sheet for run Am8 (η = 5 × 10−5; σ 0 = 0.999; β0 = 0.5) at t =
20tc. The AMR grid blocks containing 8 × 8 cells are plotted on top and the
base resolution 5122 is visible at the left and right image boundary. The grid
refines around the current sheet, where the maximum resolution 81922 is
visible at the plasmoids. The merger of two plasmoids and the formation of
a secondary (horizontal) current sheet are accurately captured by the refined
mesh. Previously formed plasmoids are expelled from the top and bottom
outflow regions. The colour scale is constrained to range from 0.05 and 50.

become Sini ≈ 1/η = 102, Sini ≈ 1/η = 103, Sini ≈ 1/η = 104, and
Sini ≈ 1/η = 2 × 104, respectively.

In Fig. 3 we compare the current density magnitude in the (x,
y)-plane at times t = 5tc, t = 10tc, t = 18tc, and t = 24tc (increasing
from top to bottom panels) for runs A (η = 5 × 10−5), B (η =
10−4), and the unperturbed (i.e. vkick = 0) run C (η = 10−4). The
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306 B. Ripperda et al.

Figure 3. Out-of-plane current density magnitude |Jz| in runs (from left to right) C, B, and A at (from top to bottom) t = 5tc (at the end of the exponential
growth of the peak current density due to the coalescence instability), t = 10tc, t = 18tc (at the start of the growth of the plasmoid instability in case A), and
t = 24tc (at the far non-linear regime for all cases except the unperturbed case C). The logarithmic colour scale is shown in the top-left panel and is constrained
to range from 0.05 and 50. The figures are cut to exclude the ambient plasma where |Jz| � 0.05. Plasmoids are visible for case A at times t = 18tc and t =
24tc, indicated by a strong localized |Jz|.

first column shows that the flux ropes do not (visually) coalesce on
the time-scales considered for unperturbed run C. In run B (middle
column) a thin current sheet forms but the resistivity is too large for
the plasmoid instability to be triggered. Run A (right-hand column)
shows an even thinner current sheet and plasmoids are observed
at t = 18tc and t = 24tc. Runs A and B serve as fiducial runs for
Sections 4.3 and 4.4, where we compare the effects of magnetization
σ , plasma-β, and non-uniform resistivity. High resistivity runs D
(η = 10−3) and E (η = 10−2) are not shown, since the magnetic
energy diffuses away before t = 5tc due to the high resistivity,
destroying the current sheet before it can stably form.

Plasmoids are detected by taking cuts along the axes x = 0 and
y = 0 in Fig. 4. For runs B (η = 10−4, left-hand panels in Fig. 4)
and A (η = 5 × 10−5, right-hand panels in Fig. 4) the current sheet
becomes notably thinner and the current density keeps growing on

the time-scales considered here. In run A (the right-hand panels),
plasmoids are detected at t = 18tc both in the cut along x (top panel),
indicated by the split of the peak in the out-of-plane current density
into two peaks, corresponding to the edges of the plasmoid that have
a higher current density than the plasmoid centre. These plasmoids
move either up or down along y and end up in the outflow regions
at y ≈ ±0.5.

In Fig. 5 we show the peak current density max(||J||), again
taken over the whole domain, for the highest resolution runs Ah
(η = 5 × 10−5), Bhh (η = 10−4), D (η = 10−3), E (η = 10−2) and
unperturbed runs C (η = 10−4) and Ci (η = 0). An Alfvénic growth
phase is visible at t� 5tc showing that the peak current density grows
as ∝exp (vAt/rj) ≈ exp (ct/rj) (indicated by the dashed line) for runs
Ah and Bhh, where the resistivity is small enough not to affect the
ideal MHD behaviour of the coalescence instability. In this stage of
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Plasmoids in relativistic resistive reconnection 307

Figure 4. Cuts along y = 0 (top panels) and x = 0 (bottom panels) for run B with η = 10−4 (left-hand panels) and run A with η = 5 × 10−5 (right-hand
panels). The evolution of the z-component of the current density Jz is shown at selected times. The colour scale indicates the time. For run B (η = 10−4), no
plasmoids are detected and the current sheet gets thinner in time (see the top-left panel), while the current density increases (see the bottom-left panel). For run
A (η = 5 × 10−5), the current sheet becomes even smaller and the current density is higher until t = 18tc. From that moment onwards, the current sheet breaks
up due to the ideal tearing mode, and plasmoids can be detected. At plasmoid locations, the current sheet broadens and the current density decreases (see the
top-right panel). The plasmoids are then advected and expelled in the outflow regions at y = ±1rj (see the bottom-right panel).

runs Ah and Bhh, the current density reduces to the non-relativistic
result J = ∇ × B, that is also valid for ideal relativistic MHD in
a comoving frame where the displacement current vanishes. The
trend for low resistivity runs Ah and Bhh follows the evolution of
the maximum electric field energy in Fig. 1. The maximum current
density depends inversely on the resistivity and a stable current
sheet forms after the initial growth of the coalescence instability (at
t � 5tc). Between 5tc � t � 17tc the semistationary current sheet
becomes thinner in runs Ah and Bhh and this stage corresponds to
the laminar Sweet–Parker reconnection regime. For run Ah, with
resistivity η = 5 × 10−5, the plasmoid instability is then triggered
at t ≈ 17tc as can be seen by the second exponential growth phase
of the current density. The second exponential growth phase grows
as γmax ∼ 0.6τ−1

A (as indicated by the black dotted line), resulting
in the tearing instability and the formation of multiple secondary
plasmoids. Note however that the non-relativistic scaling for the
ideal tearing instability γmax ∼ 0.6τ−1

A as found by Pucci & Velli

(2014) considers a current sheet that is still in the process of
formation and thinning, whereas in our simulations the plasmoid
instability is developing in a thin and long current sheet that has
reached a semistationary state in the interval 5tc ≤ t ≤ 17tc. For
run Bhh the secondary plasmoid regime is not attained after the
formation of a stable current sheet, due to a too large resistivity.
Runs E (η = 10−2) and D (η = 10−3) show that even higher
resistivity induces the diffusion of the current density before the
coalescence growth phase can finish and no stable current sheet can
form. Run C shows that for an unperturbed case (i.e. vkick = 0) the
current density remains constant and no current sheet forms. Run Ci
overlaps with run C, showing that for an unperturbed case in ideal
SRMHD the numerical resistivity does not affect the evolution on
the considered time-scales and the current remains constant. In case
Ci the current density is calculated as J = ∇ × B.

In the left-hand panel of Fig. 6 we show the inflow velocity
vin 
 vx, y = 0 (in units of c) into the current sheet. For case A
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Figure 5. Peak current density for high-resolution runs Ah, Bhh, E, D
with resistivity η = 5 × 10−5, η = 10−4, η = 10−3, η = 10−2, run C
without an initial perturbation and η = 10−4, and run Ci without initial
perturbation and in ideal SRMHD (η = 0). Run Ah, with lower resistivity, is
liable to the plasmoid instability and the other runs, with higher resistivity,
are not. Runs Ah and Bhh have equal effective resolution 163842, whereas
runs Ci, C, D, and E have effective resolution 81922. Runs C and Ci are
unperturbed (vkick = 0) such that the flux tubes do not coalesce on the time-
scale considered. This results in a constant peak current density, since no
current sheet forms in between the tubes. The dashed line shows the Alfvénic
growth rate ∝exp (vAt/rj) ≈ exp (ct/rj) of the peak current density for runs
Ah and Bhh until t ≈ 5tc. The dotted line shows the exponential growth rate
γmax 
 0.6τ−1

A for run Ah at t ≈ 17tc.

(η = 5 × 10−5), the inflow velocity is taken at time t = 18.5tc such
that no plasmoids are present in the current sheet, yet the plasmoid
instability has been triggered already (see Figs 3, 4, and 5 where
plasmoids are formed at t = 18tc for example). In all other cases,
where the plasmoid instability is not triggered, the inflow velocity
is taken at time where the peak current density has a maximum,
i.e. t = 18tc for case B (η = 10−4), t = 9tc for case D (η = 10−3),
and t = 4tc for case E (η = 10−2). To calculate the reconnection
rate vrec := vin 
 vx, y = 0 (for vout = c = 1), the inflow speed vin

is taken at a cut along the x-coordinate, at the point where vx, y = 0

has an inflection point, i.e. where the function changes from being
convex to concave, as exemplified by the coloured squares in the
left-hand panel. vrec is then determined by averaging the inflow
speed vin, over a vertical line y ∈ [−0.1, 0.1]. In the Sweet–Parker
regime, the reconnection speed is proportional to the ratio between
the resistivity and the thickness of the sheet vin ∝ η/δ. The thickness
δ is determined as the full width at half-maximum of the out-of-
plane current density Jz at y = 0 (see e.g. the top panels of Fig. 4 for
cases A and B) at the same time as the reconnection rate for each
case. In the right-hand panel of Fig. 6 we show the scaling of the
reconnection rate vin/c, the thickness δ, and the ratio η/δ in units of
c with the Lundquist number Sini 
 1/η for cases A, B, D, and E.
The dashed line depicts the Sweet–Parker scaling vrec ∼ S−1/2

ini . The
dash–dotted vertical line shows the critical resistivity η = 5 × 10−5

for the plasmoid instability to occur. The three high-resistivity cases
follow the slow Sweet–Parker scaling, but the lowest resistivity run
A, is liable to the plasmoid instability and diverges from the scaling
for all three quantifiers, confirming the occurrence of the ideal
tearing mode as observed in the peak current density in Fig. 5.
The rightmost blue square and magenta diamond indicate higher

Figure 6. Left-hand panel shows the flow velocity into the current sheet vx, y = 0 versus x-coordinate at y = 0, for high-resolution runs A, B, E, and D with
uniform resistivity η = 5 × 10−5, η = 10−4, η = 10−3, η = 10−2, respectively. All runs have equal effective resolution 81922. For case A, the reconnection
rate vrec = vin = vx, y = 0 is taken at time t = 18.5tc, after the first plasmoids have been formed (see Figs 3 and 5). This specific time has been selected such
that there are no plasmoids present in the current sheet, although the plasmoid instability has been triggered. In all other cases, the reconnection rate is taken at
time where the peak current density has a maximum (t = 18tc for case B, t = 9tc for case D, and t = 4tc for case E). The reconnection rate is determined at the
point where vx, y = 0 has an inflection point, i.e. where the function changes from being convex to concave (as indicated by the coloured squares in the left-hand
panel). The right-hand panel shows the reconnection rate vrec := vin (blue squares), vrec ∝ η/δ (magenta diamonds), and the thickness of the current sheet δ

(red circles), versus the Lundquist number Sini = η−1. The thickness δ is determined as the full width at half-maximum of the out-of-plane current density Jz

for each case (see e.g. Fig. 4 for cases A and B) at the same time as the reconnection rate. The dashed line in the right-hand panel represents the Sweet–Parker
scaling vrec ∼ S−1/2. The vertical dash–dotted line indicates the critical resistivity η = 5 × 10−5 for which the plasmoid instability is triggered.
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Plasmoids in relativistic resistive reconnection 309

Figure 7. Left-hand panel: Peak electric energy for all runs with uniform resistivity η = 5 × 10−5 and resolution 81922. Plasma-β and σ are varied. The
exponential growth phase of the electric field energy depends on the Alfvén speed as ∝exp (vAt/rj), such that a smaller σ 0, results in a slower growth rate.
The plasmoid instability is triggered for runs Am1 (σ = 3.33, β = 0.01), Am7 (σ 0 = 0.990, β0 = 0.5), Am8 (σ 0 = 0.999, β0 = 0.5) and fiducial run A. The
Strang split scheme and the ImEx scheme show strong visual agreement for run Am2 (red solid line) and Am2S (black dashed line), whose curves overlap.
Middle panel: The values of β0 and σ 0 that are explored in this work. The runs with σ 0 � 0.99 for η = 5 × 10−5 do not show the formation of plasmoids
(blue markers), whereas the red markers indicate runs A, Am1, Am7, and Am8 where plasmoids are observed. The maximum attainable plasma-β0 = σ−1/2
is indicated by the black dashed line. Right-hand panel: The diffusion time-scale τD = L2/η versus the Alfvén time-scale τA = L/vA, where L is the full width
at half-maximum of the out-of-plane current density Jz at t = 11tc for all cases (see e.g. Fig. 4). At this point a stable current sheet has formed in all cases
and no plasmoids have formed yet. Cases where the ratio between the time-scales τD/τA is large enough for plasmoids to form are indicated by red circles,
where cases τD/τA below the threshold for plasmoid formation are indicated by blue circles. By taking the minimum of this ratio for all cases with plasmoids
(A, Am1, Am7, Am8, Bm2), we determine a critical Lundquist number for plasmoid formation Sc = min (τD/τA) = min (LvA/η) ≈ 8000 in case Am7 (as
indicated by the black dashed line).

reconnection rates than expected for a Sweet–Parker scaling and
the rightmost red circle is lower than the expected thickness due to
the plasmoid instability. Note that indeed approximately vrec ∝ η/δ
for the runs without plasmoids.

4.3 Dependence on magnetization

In this section we explore the dependence of the plasmoid instability
on plasma-β and magnetization σ . The range of 0.01 ≤ β0 ≤ 1, 0.4
≤ σ 0 ≤ 3.33 considered in this section is particularly relevant for
black hole accretion discs where flux tubes continuously emerge
out of the disc due to magnetic buoyancy (Tout & Pringle 1992;
Goodman & Uzdensky 2008; Uzdensky & Goodman 2008; Yuan
et al. 2009), which is conjectured to result in magnetic reconnection
and flaring (Melzani et al. 2014; Ball et al. 2016; Rowan, Sironi &
Narayan 2017; Werner & Uzdensky 2017; Ball et al. 2018a; Ball,
Sironi & Özel 2018b; Werner et al. 2018;). Regimes with σ 0 ≥ 1
and β0 < 1 also have a direct relevance for outflows from black
holes and neutron stars, with a typically much larger magnetization.

The left-hand panel of Fig. 7 shows the evolution in time of the
maximum electric field energy for several runs. The resolution is
kept at 81922 and η = 5 × 10−5 for all cases. We compare all runs to
the fiducial run A, with σ 0 = 3.33 and β0 = 0.1 (the purple line in the
left-hand panel of Fig. 7), where we observed plasmoid formation
around t� 17tc (see e.g. the third column in Fig. 3). The dependence
on β0 and σ 0 is analysed by varying the pressure p0 and density ρ0.
Note that by adapting the density ρ0, only σ 0 = B2/(hρ0) is changed,
whereas varying the pressure p0, affects both β0 = 2p0/B2 and σ 0 =
B2/(hρ0) = B2/(ρ0 + 4p0) due to the change in enthalpy density h =
1 + 4p0/ρ0. The adiabatic index is set as γ̂ = 4/3 as appropriate for
a relativistically hot ideal gas. For cases with p0 � ρ0 the plasma is
initially not ultrarelativistically hot. Assuming γ̂ = 4/3 is clearly a
simplification on the thermodynamics and preferably the effect of
different equations of state should be considered. Here however, we
choose to only vary the pressure and mass density to stay consistent

between cases. In cases that are initially not relativistically hot (i.e.
case Am4 with p0/ρ0 = 0.05 and case Am5 with p0/ρ0 = 0.005),
we observe an increase to p/ρ ≈ 0.2 in the current sheet and outflow
region at the final stage of the evolution at t = 25tc.

When varying magnetization σ 0, the Alfvén speed vA =
c
√

σ0/(σ0 + 1) and half-length of the sheet L can significantly
alter the Lundquist number Seff = LvAη−1 between cases with
equal resistivity. For low magnetization the approximation vA ∼
c becomes invalid. The half-length of the current sheet enters the
Lundquist number as well, and can differ significantly between
cases. The Lundquist number can effectively drop below the
threshold for plasmoid formation when vA < c or L �= 1, compared
to fiducial case A. Therefore the approximation Sini ≈ η−1 can be
inaccurate and we determine the half-length L and the Alfvén speed
vA in each case specifically to obtain the effective Lundquist number
Seff = LvAη−1.

All runs in the left-hand panel of Fig. 7 show an exponential
evolution of the electric energy density during the coalescence
of the flux tubes, for all values of σ 0 and β0. In particular, the
exponential growth of the coalescence instability is proportional to
the Alfvén speed as ∝exp (vAt/rj), such that for runs with smaller
σ 0 and hence smaller Alfvén speed, exponential growth is slower.
After the initial growth phase, all runs reach a plateau in the electric
energy density. The value of the plateau depends on β0, σ 0, and
whether the plasmoid instability is triggered or not. The ImEx and
the Strang schemes are compared in runs Am2 and Am2S for η =
5 × 10−5, β0 = 1, and σ 0 = 0.476. Very good agreement is observed
up to the far non-linear regime (see the red solid line for run Am2
and black dashed line for run Am2S in the left-hand panel of Fig. 7).
Only minor differences are observed in the maximum electric field
energy density after t � 23tc in the far non-linear phase. For such
low resistivity the Strang scheme is extremely computationally
expensive, whereas the ImEx scheme is not. We find a factor ∼9
speed up for the ImEx scheme as compared to the Strang split
scheme.
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From the middle panel of Fig. 7 we can conclude that plasmoids
can only form when σ 0 � 1 for runs with resistivity η = 5 × 10−5

(indicated by the red circles). In all other cases the effective
Lundquist number Seff = LvA/η is too low to trigger the plasmoid
instability (indicated by the blue circles). Plasma-β0 has no directly
observable effect on the plasmoid formation threshold in the cases
explored here. In the non-relativistic resistive MHD regime, Ni
et al. (2012) and Baty (2014) numerically studied the dependence
of the onset of the plasmoid instability on plasma-β. They find that
the critical Lundquist number for the plasmoid instability slightly
decreases for higher plasma-β, with lower reconnection rates in
lower plasma-β systems. This can be explained by the fact that
magnetization σ and plasma-β are coupled (Ball et al. 2018b).
By taking the enthalpy density into account in the definition of
the magnetization as σ 0 = B2/(ρ0h0) = B2/(ρ0 + 4p0) = B2/(ρ0 +
2β0B2), we obtain a maximum value for plasma-β0 of βmax = 1

2 σ−1

(as indicated by the black dashed line in the middle panel of Fig. 7).
By raising β0, the magnetization effectively decreases, resulting in
a lower effective Lundquist number.

Comparing runs with η = 10−4 to runs with η = 5 × 10−5,
the Lundquist number Seff = LvA/η changes due to differences
in resistivity, magnetization (and thus Alfvén speed), and also the
typical length of the current sheet L. In the right-hand panel of Fig. 7,
we show the typical Alfvén time τA = L/vA versus the diffusion
time τD = L2/η for cases B (σ 0 = 3.33, β0 = 0.1), Bm1 (σ 0 = 3.33,
β0 = 0.01), and Bm2 (σ 0 = 10, β0 = 0.01) with resistivity η = 10−4,
and compare to cases A (σ 0 = 3.33, β0 = 0.1), Am1 (σ 0 = 3.33,
β0 = 0.01), Am2 (σ 0 = 0.476, β0 = 1.0), Am3 (σ 0 = 0.497, β0 =
1.0), Am4 (σ 0 = 0.833, β0 = 0.1), Am5 (σ 0 = 0.98, β0 = 0.01),
Am6 (σ 0 = 0.909, β0 = 0.5), Am7 (σ 0 = 0.99, β0 = 0.5), and Am8
(σ 0 = 0.999, β0 = 0.01) with resistivity η = 5 × 10−5. The full width
at half-maximum of the out-of-plane current density Jz is used to
determine the typical length L of the current sheet at t = 11tc when a
stable current sheet without plasmoids has formed in all cases. In this
way, the growth phase of the coalescence instability has a negligible
effect on the length of the sheet, and no plasmoids have formed yet in
cases liable to the tearing instability. We find plasmoids for runs A,
Am1, Am7, Am8, and Bm2 (as indicated by the red dots), showing
that for a high magnetization σ 0 � 10, and hence Alfvén speed
vA ≈ 0.95c, the Lundquist number can increase above the critical
threshold for lower resistivity of η = 10−4 as well. Cases Am2, Am3,
Am4, Am5, Am6, and cases B and Bm1 have a too small Lundquist
number for the plasmoid instability to be triggered (as indicated by
the blue dots). Cases where plasmoids can form have a typical ratio
between diffusion time and Alfvén time Seff = τD/τA = LvA/η that
is large enough for the secondary tearing instability to be triggered.
By comparing this ratio for these cases, we can determine a critical
Lundquist number Sc = min (LvA/η) = 8000 (as indicated by the
black dashed line in the right-hand panel), corresponding to case
Am7. By increasing the Alfvén speed, for example in the force-free
magnetodynamics simulations of Lyutikov et al. (2017) where vA =
c, plasmoids can form already for a resistivity η ∼ 10−3. Vice versa,
in non-relativistic MHD plasmoids can form, but a smaller resistiv-
ity is necessary to counterbalance the lower typical speeds vA � c.

In Fig. 8 we show the inflow velocity into the current sheet, giving
an indication of the reconnection rate, for all runs with uniform
resistivity η = 5 × 10−5 and varying plasma-β0 and σ 0 at t = 18tc.
This time corresponds to the onset point of the plasmoid instability
for run A, Am1, and Am8. For these cases, the reconnection rate
is clearly enhanced by the plasmoid instability. For case Am7
plasmoids only form very late in the evolution, after t = 23tc,
indicating that it is at the threshold for plasmoid formation. Case

Figure 8. The flow velocity into the current sheet vx,y = 0 versus x-
coordinate at y = 0, for runs with uniform resistivity η = 5 × 10−5, A
(β0 = 0.1, σ 0 = 3.33), Am1 (β0 = 0.01, σ 0 = 3.33), Am2 (β0 = 1, σ 0 =
0.476), Am3 (β0 = 1, σ 0 = 0.497), Am4 (β0 = 0.1, σ 0 = 0.833), Am5
(β0 = 0.01, σ 0 = 0.980), Am6 (β0 = 0.5, σ 0 = 0.909), Am7 (β0 = 0.5,
σ 0 = 0.990), and Am8 (β0 = 0.5, σ 0 = 0.999). All runs have equal effective
resolution 81922. The reconnection rate vrec = vin = vx,y = 0 is taken at time
t = 18tc where the plasmoid instability is triggered for fiducial run A (see
the left-hand panel of Fig. 7). When this time coincides with the formation
of a plasmoid at y = 0, we take the reconnection rate shortly before the
plasmoid formation.

Am7 therefore shows minimal differences with case Am6, where
no plasmoids form. Generally, a higher magnetization σ 0 results in
thinner and longer current sheets, higher Lundquist numbers, and a
higher reconnection rate.

4.4 Dependence on non-uniform resistivity

In this section we implement the non-linear, current-dependent
resistivity η(x, t) = η0(1 + �2

eiJ ) of Section 2.1, while σ 0 = 3.33
and β0 = 0.1 are kept constant and all runs are conducted with
a resolution of 81922. This description results in an enhanced
resistivity in reconnection regions, like the current sheet, and a low
base resistivity in the ambient. A non-uniform resistivity, which is
enhanced in the current sheet, may broaden the reconnection layer
and therewith enhance the reconnection rate.

The base resistivity is set to η0 = 10−4, for which no sign
of plasmoid formation or fast reconnection is observed in case
of uniform resistivity (see run B for �ei = 0, η = 10−4). The
asymptotically small parameter that represents the importance of
subgrid non-uniform effects is varied between �2

ei ∈ [0.001, 1]. The
maximum resistivity in each run is given in Table 1 and always
occurs in the current sheet forming in between the merging flux
ropes.

For run Bnr4, with small parameter �2
ei = 0.001, the resistivity is

only mildly enhanced ηmax ≈ 1.3 × η0. For run Bnr3 (�2
ei = 0.01),

the increase is still small with ηmax ≈ 6.7 × η0 and for runs Bnr2
(�2

ei = 0.1) and Bnr1 (�2
ei = 1), the non-uniform resistivity is two

orders of magnitude larger, resulting in ηmax ≈ 264.5 × η0 and ηmax

≈ 404.7 × η0, respectively.
In Fig. 9 the effect of the non-uniform resistivity on the evolution

(time increases from top to bottom panels) of the spatial distribution
of the current density magnitude is shown for runs Bnr1 (left-
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Figure 9. Out-of-plane current density magnitude |Jz| for runs with non-uniform resistivity 10−4(1 + �2
eiJ ) (from left to right) Bnr1 (�2

ei = 1), Bnr2
(�2

ei = 0.1), and Bnr3 (�2
ei = 0.01) at (from top to bottom) t = 5tc, t = 10tc, t = 18tc, and t = 24tc. The logarithmic colour scale is shown in the top-left panel

and is constrained to range from 0.005 and 50. Compare to run B with uniform resistivity 10−4 (middle column Fig. 3).

hand panels, �2
ei = 1), Bnr2 (middle panels, �2

ei = 0.1), and Bnr3
(right-hand panels, �2

ei = 0.01). For increasing �ei, the current
sheet thickness δ increases. For run Bnr3 (right-hand panels), the
broadening of the current sheet remains minimal, whereas for run
Bnr2 (middle panels) there is a clear broadening and a faster merger
of the flux tubes. The broadening is caused by the locally enhanced
resistivity in the reconnection layer where the current density is
very high. The thickness of the current sheet is limited by the lower
resistivity in the ambient, where the current density is less high.
This avoids the diffusion of the current sheet as can be seen in run
Bnr1. In run Bnr1 (left-hand panels), the evolution occurs on such a
fast time-scale, due to strong enhancement of the resistivity, that no
clear current sheet is observed and the flux tubes quickly merge and

diffuse. In run Bnr4, with �2
ei = 0.001, there is no observable dif-

ference with uniform resistivity run B and it is therefore not shown.
Fig. 10 depicts the evolution of the maximum electric energy

density in the domain over time for all non-uniform resistivity runs.
Run B (black line), with uniform (i.e. �ei = 0) resistivity η = 10−4

equivalent to the chosen base resistivity η0, run D (light-blue dashed
line), with uniform resistivity η = 10−3 and run E (purple dashed
line), with uniform resistivity η = 10−2 are also shown for compar-
ison. The current-dependent resistivity varies in time with current
density, hence it induces fluctuations of the current density itself,
resulting in a larger variability in the non-linear phase. The evolution
of max(||E||2) quantifies the results in Fig. 9, showing that run Bnr4
(pink line, �2

ei = 0.001) closely resembles uniform resistivity run
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Figure 10. Peak electric energy for all runs with non-uniform resistivity
η = 10−4(1 + �2

eiJ ) and resolution 81922. �2
ei is varied between 1 and 0.

For run Bnr4 with small �2
ei = 0.001, the behaviour of run B with uniform

resistivity η = 10−4 and �ei = 0 is retrieved. Non-uniform resistivity
clearly enhances the electric energy density in cases Bnr3 (�2

ei = 0.01)
and Bnr2 (�2

ei = 0.1), compared with uniform resistivity run B. For run
Bnr1 (�2

ei = 1), the resistivity becomes too high and the magnetic energy
diffuses before a stable current sheet can form. Runs with uniform resistivity,
E (η = 10−2) and D (η = 10−3) are shown, to compare to runs Bnr1
and Bnr2 with a maximum resistivity ηmax ≈ 10−2 and to run Bnr3 with
ηmax ≈ 10−3.

B (�2
ei = 0, η = 10−4) up to the far non-linear stage. This confirms

that for smaller �ei, the uniform resistivity limit is retrieved.
Run Bnr3 (blue line, �2

ei = 0.01) shows a similar evolution up to
t ≈ 13tc, after which the electric field energy density dramatically
increases. For comparison, we show run D (dashed light blue line

in Fig. 10), that has a uniform resistivity η = 10−3 comparable to
the maximum resistivity in run Bnr3, ηmax ≈ 0.67 × 10−3. The non-
uniform resistivity enhancement only starts to grow from t ≈ 14tc

onwards. At this time, the electric energy density in run D already
decreases.

In run Bnr2 (red line, �2
ei = 0.1), the increase of max(||E||2) due

to non-uniform resistivity occurs shortly after the Alfvénic growth,
at t ≈ 7tc. For comparison we show run E (dashed purple line), with
uniform resistivity η = 10−2, that is comparable to the maximum
resistivity attained in run Bnr2, ηmax ≈ 2.6 × 10−2. During the
secondary growth phase at t ≈ 7tc due to non-uniform resistivity
in run Bnr2, the electric energy density decreases strongly in run E
due to the diffusion of the current sheet.

In run Bnr1 (green line, �2
ei = 1), the diffusion occurs almost

instantaneously at t ≈ 1tc, due to the strongly enhanced resistivity,
such that no stable current sheet can form. Plasmoids are not
observed in any of the non-uniform resistivity cases.

The non-linear, current-dependent resistivity is mainly enhanced
within the current sheet, where the strongest current density occurs
(see Fig. 9). Due to the locally larger resistivity, the current sheet
broadens and the reconnection rate vrec ∝ δ, is expected to increase.
In Fig. 11 the reconnection rate vrec := vin 
 vx, y = 0 is determined
at times t = 2tc (run Bnr1), t = 10tc (run Bnr2), t = 18tc (runs Bnr3,
Bnr4, and B), where the current density has its peak for all non-
uniform resistivity cases. In the left-hand panel the inflow speed
vx,y = 0 is depicted in units of c for runs Bnr4, Bnr3, Bnr2, Bnr1,
and B. Compared to uniform resistivity run B (black line, η = 10−4,
�2

ei = 0), the inflow velocity is higher in the non-uniform resistivity
run Bnr2 (red line, η0 = 10−4, �2

ei = 0.1), due to the strongly
enhanced resistivity in the current sheet ηmax ≈ 264.6 × 10−4.
For runs Bnr4 (magenta line, η0 = 10−4, �2

ei = 0.001) and Bnr3
(blue line, η0 = 10−4, �2

ei = 0.01), the resistivity enhancement is
only minor and the inflow velocity does not significantly increase
compared to run B. In run Bnr1 (green line, η0 = 10−4, �2

ei = 1),

Figure 11. Left-hand panel shows the flow velocity into the current sheet vx, y = 0 versus x-coordinate at y = 0, for non-uniform resistivity runs B, Bnr4, Bnr3,
Bnr2, and Bnr1 with base resistivity η0 = 10−4, and �2

ei = 0, �2
ei = 0.001, �2

ei = 0.01, �2
ei = 0.1, and �2

ei = 1, respectively. All runs have equal effective
resolution 81922. The reconnection rate vrec = vin = vx, y = 0 is taken at times t = 2tc (run Bnr1), t = 10tc (run Bnr2), t = 18tc (runs Bnr3, Bnr4 and B) at the
point where vx, y = 0 has an inflection point, i.e. where the function changes from being convex to concave, e.g. where the dotted line crosses vx, y = 0 for run
Bnr3. The right-hand panel shows the reconnection rate vrec := vin (blue squares), vrec ∼ η/δ (magenta diamonds), and the thickness of the current sheet δ (red
circles), versus the inverse of the maximum of the non-uniform resistivity (max (η))−1 taken over the whole domain and over the whole simulation time, for all
non-uniform resistivity runs. The thickness δ is determined as the full width at half-maximum of the out-of-plane current density Jz for each case at the same
point in time as the reconnection rate. For comparison, runs with uniform resistivity B (η = 10−4), D (η = 10−3), and E (η = 10−2) are shown (indicated by
open symbols), where η−1

max = η−1 in this case. The dashed line shows a Sweet–Parker scaling vrec ∼ S
−1/2
min , where Smin = η−1

max. For clarity we only label the
reconnection rate (blue squares), and magenta diamonds and red circles correspond to the blue square at the same η−1

max.

MNRAS 485, 299–314 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/1/299/5308853 by U
niversiteit van Am

sterdam
 user on 26 M

arch 2020



Plasmoids in relativistic resistive reconnection 313

the resistivity is so large that a stable current sheet can never form
due to diffusion of the magnetic energy density.

In the right-hand panel of Fig. 11, the scaling of the reconnection
rate vin/c, the thickness δ, and the ratio η/δ in units of c is plotted
versus the minimum Lundquist number Smin 
 1/ηmax for all
non-uniform resistivity runs. The dashed line depicts the Sweet–
Parker scaling vrec ∼ S−1/2

min . Note that indeed the reconnection rate
increases for a larger resistivity ηmax, and hence for larger �ei, and
the sheet thickness grows accordingly.

Uniform resistivity runs B (η = 10−4), D (η = 10−3), and E (η =
10−2) are shown for comparison in the right-hand panel of Fig. 11.
Comparison to run B (with equivalent base resistivity η0 = 10−4

as all non-uniform runs) shows that the non-uniform resistivity has
the effect of increasing the reconnection rate and the current sheet
thickness δ. Comparing run E (η = 10−2) to run Bnr2 (with similar
maximum resistivity ηmax ≈ 2.6 × 10−2), shows that a non-uniform
resistivity results in a thinner current sheet (0.1rj versus 0.5rj for
run E) and a comparable reconnection rate of 0.1c. Comparing run
D (η = 10−3) to run Bnr3 (with similar maximum resistivity ηmax ≈
0.67 × 10−3), shows that for small values of �ei, the non-uniform
resistivity has small, albeit non-negligible effects, as is confirmed
by the electric energy density evolution in Fig. 10.

5 C O N C L U S I O N S

The GRRMHD equations are solved with the new resistive BHAC

code, to study relativistic magnetic reconnection in Minkowski
space–time. Reconnection is triggered by the coalescence instability
in an initially force-free 2D equilibrium of two Lundquist tubes
(Lyutikov et al. 2017). A reconnection layer forms in between
the merging flux tubes, such that the details of reconnection and
plasmoid formation are not affected by the assumption of a pre-
existing current sheet.

All results are confirmed to converge up to the non-linear plas-
moid regime. The convergence is determined based on the evolution
of the maximum electric energy density and the maximum current
density in the system while progressively doubling the resolution.
This strict convergence criterion is met for resolutions of N ≥ 81922

for all runs and is confirmed for different combinations of AMR
levels and base resolutions. We find that a too low resolution of N =
20482 causes the plasmoid instability to be artificially triggered due
to numerical artefacts. This effect disappears for higher resolutions
of N ≥ 40962.

We explored a range of Lundquist numbers S by changing η

and by varying plasma-β and σ in astrophysically relevant regimes
of the parameter space. We find that the plasmoid instability is
triggered for a Lundquist number larger than the critical value of Sc

≈ 8000. In these cases, secondary plasmoids form efficiently and
the reconnection rate is increased up to a maximum of vrec ≈ 0.03c,
compared to a slow Sweet–Parker scaling vrec ∼ S−1/2 ≈ 0.01c. For
smaller Lundquist numbers Seff � Sc, i.e. higher resistivities and
lower magnetization, we find a slow Sweet–Parker scaling. Current-
dependent non-uniform resistivity is implemented and compared to
cases with uniform resistivity. We find that non-uniform resistivity
can increase the reconnection rate up to vrec ∼ 0.1c versus vrec ∼
0.01c for the fiducial case with uniform resistivity η = 10−4. We
show that the resistivity model and magnitude have a large impact
on the reconnection rate and on plasmoid formation. Therefore,
realistic models for the resistivity in astrophysical systems are an
absolute necessity.

Our 2D findings for merging flux ropes in SRRMHD provide a
model for consistently forming current sheets and plasmoids and

we provide the necessary resolutions required to resolve relativistic
reconnection and the tearing instability in high-Lundquist number
plasmas. Regimes with small and spatiotemporally dependent
resistivity are extremely demanding for GRRMHD codes and both
schemes implemented in BHAC appear to be able to handle these
conditions well. With a combination of an ImEx scheme and AMR,
the required accuracy can also be obtained in large 3D domains,
relevant for high-energy astrophysics.

Recently, the first advances to analytically describe reconnec-
tion in Kerr space–time have been by made Asenjo & Comisso
(2017) and Comisso & Asenjo (2018). In Ball et al. (2018a) the
properties of reconnecting current sheets are determined with ideal
GRMHD simulations, purely based on numerical resistivity. They
find reconnection sites in black hole accretion discs with magnetized
plasma ranging from β = 10−2 to 103 and magnetizations of σ =
10−3 to 10, comparable to the range of β and σ used for the
interacting flux tubes considered in our work. Resolving magnetic
reconnection within GRRMHD simulations and accounting for a
physically motivated resistivity will provide a more realistic model
for plasmoid formation and subsequent flaring variability. With the
GRRMHD module in BHAC it will soon be possible to explore
general relativistic reconnection based on physical resistivity up to
a non-linear regime that is currently inaccessible both analytically
and with ideal GRMHD simulations.
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