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Convection in rotating spherical geometries is an important physical process in planetary
and stellar systems. Using continuation methods at a low Prandtl number, we find both
strong equatorially asymmetric and symmetric polar nonlinear rotating waves in a model
of thermal convection in thin rotating spherical shells with stress-free boundary conditions.
For the symmetric waves, convection is confined to high latitude in both hemispheres
but is only restricted to one hemisphere close to the pole in the case of asymmetric
waves. This is in contrast to what is previously known from studies in the field. These
periodic flows, in which the pattern is rotating steadily in the azimuthal direction, develop
a strong axisymmetric component very close to onset. Using stability analysis of periodic
orbits, the regions of stability are determined and the topology of the stable/unstable
oscillatory flows bifurcated from the branches of rotating waves is described. By means
of direct numerical simulations of these oscillatory chaotic flows, we show that these
three-dimensional convective polar flows exhibit characteristics, such as force balance or
mean physical properties, which are similar to flows occurring in planetary atmospheres.
We show that these results may open a route to understanding unexplained features of
gas giant atmospheres, particularly in the case of Jupiter. These include the observed
equatorial asymmetry with a pronounced decrease at the equator (the so-called dimple),
and the coherent vortices surrounding the poles recently observed by the Juno mission.

DOI: 10.1103/PhysRevFluids.4.074802

I. INTRODUCTION

The problem of thermal convection in rotating spherical geometries is of central importance in
planetary science and astrophysics. Planetary dynamos [1], zonal jets in giant planet atmospheres
[2,3], differential rotation of layers in solarlike stars [4], and convection driven by nuclear reactions
in the oceans of neutron stars [5], for example, all share the key ingredients of temperature
gradients, rotation, and spherical geometry. A widely used model that accounts for these factors
is the Boussinesq approximation of the Navier-Stokes and energy equations in a rotating frame
of reference [6]. The problem is then described by the aspect ratio η = ri/ro, where ri (ro) is the
radius of the inner (outer) spherical boundary, the Prandtl, Pr, and Taylor, Ta, numbers characterize
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the relative importance of viscous (momentum) diffusivity to thermal diffusivity and rotational to
viscous forces, respectively, and the Rayleigh number Ra is associated with buoyancy forces.

For small temperature differences between the boundaries (small Ra), heat is conducted to the
outer boundary and the fluid is at rest. At a critical Rayleigh number Rac convection sets in, and
its preferred mode pattern depends strongly on η, Pr, and Ta. In the case of the rapidly rotating
(Ta > 1010) thin shells (η = 0.9), which may be appropriate for modeling Jupiter’s atmosphere [7]
or stellar convective oceans [8], the convective pattern strongly depends on Pr: spiraling columnar
modes [9] in the bulk of the fluid for large Pr > 0.1; equatorial inertial modes [10] lying close to the
outer sphere and at low latitudes for moderate 10−3 < Pr < 10−2; and polar modes [8,11] confined
to large latitudes for both small Pr < 10−3 and moderate 10−2 < Pr < 10−1.

Inertial modes, characteristic of small Prandtl number Pr < 1, are explained in terms of solutions
of the inviscid problem described by the Poincaré equation [10,12,13]. By increasing the size
of the inner core [10], it was shown that equatorial inertial modes tend to be located at higher
latitudes, especially for low wave numbers m. For a sufficiently large radius ratio, these modes can
be interpreted as polar modes, as convection is restricted to high latitudes. With small but nonzero
viscosity (i.e., the small Pr number thermal convection problem), the situation is similar and inertial
modes located at high latitudes (polar modes) seem to be favored (instead of equatorial modes)
when the radius ratio is large [8,11]. Indeed, as with inertial modes of the Poincaré equation, the
onset of convection at small Pr can be antisymmetric with respect to the equator [8,11].

The large and moderate Pr number nonlinear regimes have been studied extensively [6,7,9]
but low-Pr fluids of most relevance to planetary and stellar systems have received less attention.
Very recently, numerical (Ref. [14] for a rotating plane layer or Refs. [15,16] for a full sphere)
and laboratory [17] (cylindrical container) studies have revealed immense complexity. Low Pr
convection can be strongly oscillatory even right at the onset, involving several modes, and without
the appearance of the steady drifting waves that are characteristic of large Pr. Convection can even
be subcritical [15] at sufficiently large Ta. The latter studies are devoted to the study of planetary
cores involving nonslip boundaries, and in the case of a full rotating sphere [15] convection sets in
via quasigeostrophic spiraling or equatorial modes, both being equatorially symmetric, as happens
in most of the studies in rotating spherical geometry.

Low-Pr number nonlinear flows in a regime where convective onset occurs via polar equatorially
antisymmetric modes have not been studied to date, and this is the main purpose of the present
study. These modes are characteristic of thin shells, and have application to both stellar oceans
(which may have very low Pr = 10−6 [8]) and Jupiter’s atmosphere, where they may be the
preferred form of onset [8]. Equatorial symmetry in three-dimensional deep convection models
(which allow strong zonal jets to extend from the surface towards the planet’s interior contrasting
with the shallow layer approach) is a very topical issue, because the antisymmetric component of
the flows is directly related to the odd gravity harmonics recently measured in Ref. [18] and used
to infer the interior structure of Jupiter’s atmosphere. Its strong positive jet, at around 25◦ latitude,
dominates the antisymmetric component of the measured flow [18]. Current deep convection models
of Jupiter [7] can reproduce the strong positive equatorial jet velocities and its latitudinal extend. By
incorporating the effect of radiative heating of the atmosphere and magnetic dissipation deep in the
atmosphere at high latitudes, Ref. [19] demonstrated that equatorial Rossby waves relate to positive
equatorial jets, and that radiative effects are responsible for jets at higher latitudes. The latter studies
([7,19]) however, reproduce neither the observed Jovian equatorial asymmetry [18] (traditionally
associated with the Great Red Spot [20]; see [21] for a review) nor the pronounced dimple. The
latter was discussed in Ref. [22] in the context of stratified anelastic models. The anticyclonic
coherent vortices observed in the giant planet’s jets have been only reproduced when considering a
combined shallow-water deep nonmagnetic approach [23], but again lacking equatorial asymmetry.
The very recent experiments of [3] provide strong support for deep rather than shallow-water
modeling. High latitude jets were obtained even when considering viscous dissipation, mimicking
the expected braking of the jets due to Lorentz forces [3]. Because the polar modes studied in this
paper naturally develop high latitude jets, and because the onset of convection may be of polar
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type when considering nonslip boundaries [11], our results are consistent with the experiments, and
provide evidence that equatorial asymmetry and high latitude jets and vortices could develop in deep
convection models of spherical geometry.

We use continuation techniques [24,25] to obtain nonlinear periodic flows (rotating waves)
bifurcated from the conductive motionless state, and we study their stability. This allows us to
describe the patterns of the perturbations giving rise to oscillatory flows, which are obtained by
means of direct numerical simulations (DNS). We adopt η = 0.9, Pr = 3 × 10−3, and Ta = 107,
with stress-free boundary conditions, and we consider Ra the control parameter for our study. We
emphasize that in this regime polar modes are linearly preferred [8] and the nonlinear saturation
of this recently discovered instability [8,11] is still unknown. Polar modes are preferred as well for
Ta > 1010, so the present study indicates the need for further research at larger Ta, which is the
relevant regime for Jovian atmosphere dynamics. The paper is organized as follows. In Sec. II we
introduce the formulation of the problem and the numerical method used to obtain the solutions.
A brief description of the continuation method and the stability analysis of the rotating waves is
provided as well (Sec. III). In Sec. IV the results are presented: the bifurcation diagrams and the
patterns of the waves and their eigenfunctions are described, the study of chaotic flows is undertaken,
and the application to gas giant planetary atmospheres and other physical contexts of the results is
discussed (tentatively). Finally Sec. V summarizes the results.

II. MODEL

Boussinesq thermal convection in a rotating spherical shell is considered. The fluid is homo-
geneous with density ρ and constant physical properties: thermal diffusivity κ , thermal expansion
coefficient α, and dynamic viscosity μ. The shell is defined by its inner and outer radius ri and ro, and
it is rotating with constant angular velocity � = �k about the vertical axis. A radial gravitational
field g = −γ r (γ is a constant and r is the position vector) is imposed and ρ = ρ0[1 − α(T − T0)]
is assumed in just the gravitational term. In the other terms, a reference state (ρ0, T0) is assumed
(see, for instance, [26,27]).

On the perfectly conducting boundaries, a temperature difference is imposed, �T = Ti − To,
T (ri ) = Ti, and T (ro) = To, and stress-free boundary conditions are used for the velocity field.
Stress-free conditions are appropriate for the study of planetary atmospheres [7] as well as stellar
convective zones [8]. The mass, momentum, and energy equations are derived in the rotating frame
of reference as in Ref. [6]. This frame of reference rotates westward, following the planetary
rotation. The equations are expressed in terms of velocity (v) and temperature (	 = T − Tc)
perturbations of the basic conductive state v = 0 and Tc(r) = T0 + ηd�T (1 − η)−2r−1, η = ri/ro

being the aspect ratio, d = ro − ri being the gap width, and T0 = Ti − �T (1 − η)−1 being a
reference temperature. With units d for the distance, ν2/γ αd4 for the temperature, and d2/ν for
the time, the equations are

∇ · v = 0, (1)

∂t v + v · ∇v + 2Ta1/2k × v = −∇p∗ + ∇2v + 	r, (2)

Pr(∂t	 + v · ∇	) = ∇2	 + Raη(1 − η)−2r−3r · v, (3)

where p∗ is a dimensionless scalar containing all the potential forces. We neglect centrifugal effects
by assuming �2/γ � 1, as is usual for geophysical and astrophysical applications. With the above
considerations, four nondimensional parameters—the aspect ratio η and the Rayleigh Ra, Prandtl
Pr, and Taylor Ta numbers—describe the physics of the problem. These numbers are defined by

η = ri

ro
, Ra = γα�T d4

κν
, Ta1/2 = �d2

ν
, Pr = ν

κ
.
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To solve the model equations (1)–(3) with the prescribed boundary conditions, a pseudospectral
method is used (see [28] and references therein). In the radial direction, a collocation method on a
Gauss-Lobatto mesh is considered, whereas spherical harmonics are used in the angular coordinates.
The incompressibility condition leads to the so-called toroidal/poloidal decomposition for the
velocity field [27]. The code is parallelized in the spectral and in the physical space using OpenMP
directives. We use optimized libraries (FFTW3 [29]) for the fast Fourier transforms (FFTs) in
longitude, and matrix-matrix products (dgemm GOTO [30]) for the Legendre transforms in latitude
when computing the nonlinear terms.

High-order implicit-explicit backward differentiation formulas (IMEX-BDF) [28,31] are used for
time-stepping the discretized equations. In the IMEX method, we treat the nonlinear terms explicitly
in order to avoid solving nonlinear equations at each time step. The Coriolis term is treated fully
implicitly to allow larger time steps. The use of matrix-free Krylov methods (GMRES in our case)
for the linear systems facilitates the implementation of a suitable order and time step-size control.
An accurate efficient time-stepper is necessary for successfully applying the continuation method
due to the high resolutions required for the present study.

III. CONTINUATION METHOD AND STABILITY ANALYSIS FOR ROTATING WAVES

The study of the patterns of rotating waves (RWs) and the analysis of their stability is important
because it characterizes the symmetry [32] of the oscillatory solutions (modulated rotating waves
[33,34]) bifurcated from the branches (see also [35]). Indeed, the interaction of solutions of a
different symmetry class (for instance, equatorial symmetry in low order models of rotating systems
[36]) gives rise to complex dynamics. These secondary oscillatory solutions might play a key role
in organizing the global dynamics [37] and thus chaotic flows close to the onset characteristic of
low-Pr fluids [14]. The relevance of unstable RWs for the understanding of turbulent flows [38]
makes their study of importance. Continuation methods are powerful as they allow the tracking
of curves of unstable RWs, which cannot be obtained by means of DNS. We note that for the
study of periodic, quasiperiodic, and chaotic flows (typical in thermal rotating systems [39]), mode
decomposition techniques [40,41] based on DNS are a powerful tool as well, as they allow the
identification of the relevant modes and patterns of the flow for very challenging problems. However,
since the pioneering experiments of Hide on rotating thermal convection [42] (see [43] for a review),
the scientific community has started to understand the origin of these patterns and the nature of
chaotic geophysical flows using bifurcation and dynamical systems theory [32,44,45]. Continuation
methods are a basic tool for their analysis [46,47], and a brief description is included in this
section. The interested reader is referred to [48], or the comprehensive tutorial [25], for a theoretical
description and implementation of this tool. An application of the method to thermal convection in
rotating spherical shells can be found in Ref. [49]. The continuation techniques used here rely on
time integrations of the Navier-Stokes plus energy equations [Eqs. (1)–(3)]. The discretized system
is of dimension n = (3L2

max + 6Lmax + 1)(Nr − 1), Lmax being the spherical harmonic truncation
parameter and Nr the number of collocation points in the radial direction, and it takes the form

L0∂t u = Lu + B(u, u), (4)

where u contains the spherical harmonic amplitudes of the toroidal, poloidal and the temperature
perturbation scalars at the radial collocation mesh. Here L0 and L are linear operators which include
the boundary conditions (see [28] for details). The operator L depends on Ra (the control parameter
of the present study) and includes all the linear terms and the bilinear operator B only contains the
nonlinear (quadratic) terms.

To study the dependence of an azimuthally rotating wave (see [33,35] and references therein for
a mathematical definition and theory of these waves), with frequency ω and with md -fold azimuthal
symmetry, on the parameter p = Ra, pseudo-arclength continuation methods for periodic orbits are
used [48]. They allow to obtain the curve (branch) of periodic solutions x(s) = (u(s), τ (s), p(s)) ∈
Rn+2, u being the rotating wave, τ = 2π/(mω) the rotation period, and s the arclength parameter.
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The method requires adding the pseudo-arclength condition

h(u, τ, p) ≡ 〈w, x − x0〉 = 0, (5)

x0 = (u0, τ 0, p0) and w = (wu,wτ ,wp) being the predicted point and the tangent to the curve of
solutions (〈., .〉 stands for the inner product in Rn+2), respectively, obtained by extrapolation of the
previous points along the curve.

The system which determines a single solution x = (u, τ, p) on the branch is

H (u, τ, p) =
⎛
⎝

u − φ(τ, u, p)
g(u)

h(u, τ, p)

⎞
⎠ = 0, (6)

where φ(τ, u, p) is a solution of Eqs. (1)–(3) at time τ = 2π/(mω) and initial condition u for fixed p.
The condition g(u) = 0 is selected to fix the undetermined azimuthal phase of the rotating wave with
respect to the rotating reference frame. We use g(u) = 〈u, ∂ϕuc〉, where uc is a reference solution (a
previously computed rotating wave, or the preferred mode at the onset). It is a necessary condition
for ‖u − uc‖2

2 to be minimal with respect to the phase (see [50]). For the computation of the inner
products 〈·, ·〉 between two functions expanded in spherical harmonics, we use the definitions of
[50].

To solve the large nonlinear system defined by Eq. (6), we use Newton-Krylov methods.
These are matrix-free methods that do not require the explicit computation of the Jacobian
D(u,τ,p)H (u, τ, p), but only its action on a given vector that consists of a time integration of a system
(of dimension 2n) obtained from the Navier-Stokes and energy equations. For the linear systems we
use GMRES [51]. Due to the particular form of the spectrum of D(u,τ,p)H (u, τ, p) for dissipative
systems, GMRES does not need preconditioning [48]. We note that periodic rotating waves can
also be obtained efficiently by Newton-Krylov continuation methods but as steady solutions of the
equations written in a reference frame that is rotating with the wave; see, for instance, Ref. [50] for
thermal convection in spherical geometries or Ref. [52] for pipe flow.

The stability of a periodic solution is determined following Floquet theory [53]. It requires the
computation of the dominant eigenvalues and eigenfunctions of the map δu −→ Duφ(τ, u, p)δu =
v(τ ), with v(τ ) being the solution of the first variational equation, obtained by integrating the system

∂t z = L−1
0 [L(p)z + B(z, z)],

∂tv = L−1
0 [L(p)v + B(z, v) + B(v, z)],

of dimension 2n, with initial conditions z(0) = u and v(0) = δu, over a rotation period τ , with
fixed p.

The ARPACK package is used to obtain the eigenvalues of the map with a larger modulus
corresponding to the dominant complex Floquet multipliers λ = |λ|ei Argλ. Once the dominant
Floquet multipliers cross the unit circle boundary (|λ| > 1), the rotating wave becomes unstable.
The marginal Floquet multiplier with associated eigenfunction v1 = ∂t u lying on the unit circle,
appearing due to the invariance under azimuthal rotations, is deflated by computing the eigenvalues
of the map δu −→ v(τ ) − 〈v(τ ), v1〉 v1 to avoid unnecessary computations.

We note that the method is computationally demanding because it requires the time integration
of an ODE system of dimension 2n over one rotation period, and thus an efficient time-stepper is
mandatory. Because the periodic orbit is a rotating wave there is a more efficient alternative to this
procedure [50,54] that consists of studying the stability as a fixed point of a vector field.

IV. RESULTS

Planetary atmospheres and convective stellar regions have low Pr and high Ta and are modeled
with thin spherical geometry η = 0.9 and stress-free boundary conditions. For a neutron star ocean,
Ta > 1020 and Pr < 10−3 [8], while for the Jovian atmosphere, Ta > 1030 and Pr � 10−1 [7]. In
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TABLE I. Spatial discretization study. Frequency ω, volume-averaged kinetic energy K , and dominant
complex Floquet multiplier λ = |λ|ei Argλ, vs the number of radial collocation points Nr and the spherical
harmonics truncation parameter Lmax. The dimension of the system is n = (3L2

max + 6Lmax + 1)(Nr − 1) for the
stability analysis and nd = [(3L2

max + 6Lmax)/md + 1](Nr − 1) when assuming md -fold azimuthal symmetry to
obtain the rotating waves.

md Nr Lmax Lmax/md Ra ω K |λ| Argλ n nd

19 30 114 6 310 169.57655 6.79415 0.996526 0.423632 1150517 60581
19 50 190 10 310 169.57656 6.79407 0.996523 0.423626 5362609 282289

addition, thermally driven liquid metal cores are not far from this regime, but the spherical shell is
thick and nonslip, as is Earth’s outer core [55]. According to the linear studies [8,11], equatorially
antisymmetric or symmetric polar modes are good candidates to be linearly dominant in such
regimes, but the nonlinear saturation of these modes has never been studied up to date. This is
the purpose of the present study, which numerically investigates the finite amplitude convection at
η = 0.9, Pr = 3 × 10−3, and Ta = 107. Although the latter value is still far from real applications,
it belongs to the parameter regime of equatorially antisymmetric polar modes, and thus explores an
exciting regime for astrophysical/planetary convection. The very large η and low Pr used lead to
very challenging small spatial scales and timescales, and thus a moderate, but still relevant, Ta is
considered to make the problem computationally feasible.

A. Bifurcation diagrams of polar rotating waves

According to the linear study [8], at η = 0.9, Pr = 3 × 10−3, and Ta = 107 the basic conductive
state is unstable to nonaxisymmetric perturbations with md = 19 azimuthal wave number and
equatorial antisymmetry located near the poles. The critical Rayleigh number is Rac = 3.056 × 102

and the critical frequency is ωc = −3225 (see Fig. 5 of [8]). Because the azimuthal symmetry of
the basic state is broken [56], a Hopf bifurcation gives rise to a rotating wave (also called a traveling
wave) drifting in the azimuthal direction with rotation frequency ω = −ωc/md . We recall that any
azimuthally averaged property of a rotating wave will be constant, or in other words, a rotating
wave is a steady solution in the system of reference rotating with frequency ω. Notice that at the
bifurcation the equatorial symmetry of the basic state is also broken, and the branch of rotating
waves is then equatorially asymmetric. From now on we will use the term AP RW to denote an
equatorially asymmetric polar rotating wave. In addition to the branch of AP RW that bifurcates
first from the basic state, we also trace a branch of an equatorially symmetric rotating wave (SP RW
from now on) associated with the second preferred md = 19 linear mode (with Rac = 3.25 × 102

and ωc = −3169).
The continuation method described in Sec. III is used to obtain the branch of AP RW as

a function of Ra. To start the continuation process, the eigenfunction provided by the linear
stability analysis [8] is used as an initial guess. We consider Nr = 30 radial collocation points and
Lmax = 114 spherical harmonics truncation parameters with time steps around �t = 5 × 10−6. An
(md = 19)-fold azimuthal symmetry is assumed to obtain a RW to speed up the computations in the
continuation process, but all of the spherical harmonics should be considered to study the stability,
since the symmetry of the RW’s dominant eigenfunction is unknown. The spatial resolution is
increased up to Nr = 50, L = 190 to check the computations, and a comparison of several outputs
of a RW at Ra = 3.1 × 102 is summarized in Table I. The values of the rotation frequency ω,
volume-averaged kinetic energy K = 1

2 〈|v|2〉V , and the value of the dominant complex Floquet
multiplier (from the stability analysis; see Sec. III) remain almost unchanged by increasing the
resolution. As an additional numerical test, we obtain a stable AP RW by means of DNS with
Nr = 30 and Lmax = 84, which is still well resolved, giving rise to less than a 5% difference
in the kinetic energy density and rotation frequency with respect to the AP RW computed with
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FIG. 1. Bifurcation diagrams of time- and volume-averaged quantities for varying Ra. Panels (a)–(c) are for
the AP RW branch, and (d)–(f) also include the SP RW branch. (a) Kinetic energy density of the equatorially
symmetric component of the flow K s and of the equatorially antisymmetric part Kas = K − K s. (b) Ratio
of the equatorially symmetric kinetic energy density over total kinetic energy density K s/K . (c) Ratio of the
equatorially symmetric kinetic energy density of the axisymmetric (m = 0) flow over total axisymmetric kinetic
energy density K s

a/Ka and the same ratio K s
na/Kna for the nonaxisymmetric (m > 0) flow. (d) Total kinetic

energy density K . (e) Ratios of the axisymmetric kinetic energy over the total kinetic energy density Ka/K .
(f) Rotation frequency. Solid (dashed) lines mean stable (unstable) RWs. The points (circles) of panel (f)
correspond to RWs shown in Figs. 2 and 3.

continuation methods. The results for the stability analysis of the waves are validated further by
filtering (i.e., time-stepping several rotation periods) the initial guess for the eigenvalue solver
to avoid spurious eigenvalues (see [57] for a discussion). The number of dominant eigenvalues
requested in the ARPACK package is usually 16, but we have increased the value up to 40 to check
the results. With these considerations, the present study constitutes a very large application of
continuation methods in fluid dynamics [58]: it investigates a large number of RWs in a regime with
a large number of degrees of freedom n = 1 150 517 (n = 5 362 609, when Nr = 50, L = 190) and
reveals immense complexity not explained by direct numerical simulations (DNS) but nonetheless
vital for understanding real systems. Although with DNS the different mode contributions of
the flow can be described, continuation techniques should be used to understand their origin.
According to [37,38,44,59], turbulent flows are described in terms of unstable solutions (periodic or
quasiperiodic) which cannot be captured by DNS.

Figures 1(a)–1(c) display bifurcation diagrams (of time- and volume-averaged data) for the AP
branch of RWs. The stability region in each branch of the RW is marked with a solid line. The
branches are started slightly above the point where they bifurcate from the conductive state [best
seen in Fig. 1(a)]. This is because the convergence of the GMRES in the Newton iteration degrades
when RWs are close to the onset (see [60] for an illustrative example). The kinetic energy density
contained in the equatorially symmetric flow KS increases from zero very sharply after the onset.
The equatorially antisymmetric kinetic energy density KAS = K − KS is larger in all of the branch
[see Figs. 1(a) and 1(b)], meaning that the flow is strongly equatorially asymmetric very close to
the onset. The axisymmetric m = 0 component of the flow abruptly loses its equatorially symmetry,
while by contrast the nonaxisymmetric (m > 0) component becomes more equatorially symmetric;
see Fig. 1(c). This is an unexpected result; a strong equatorially symmetric m = 0 flow component
was found in previous studies (see, for instance, [7,22,61]) mainly at larger Pr but also at the
low Pr regime [15]. Note that K s

a/Ka ∼ K s
na/Kna ∈ (0.3, 0.6). A strongly supercritical Ra regime

is needed to obtain flows with K s
na/Kna ∈ (0.3, 0.6) at larger Pr in thicker shells (see [61] covering
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a large dynamo and hydrodynamical database), contrasting to the present study near the onset. In
Figs. 1(d)–1(f), the SP RW branch is included. Its kinetic energy density is significantly larger
than the corresponding value on the AP branch [see Fig. 1(d)] because convection is nearly absent
in the southern hemisphere as a result of the strong equatorial asymmetry. For both AP and SP
RW, the axisymmetric component of the flow [Fig. 1(e)] rises strongly, reaching almost 80% at the
largest Ra explored. Strong zonal flows are characteristic of gas giants [62]. In addition, the Rossby
number Ro = Ta−1/2

√
2K < 2 × 10−2 is small [from Fig. 1(d)] on both branches, indicating the

importance of the Coriolis force compared to inertial forces, as occurs in Jupiter’s zonal flows [19].
Similar rotation frequencies (timescales) are obtained for all of the waves [Fig. 1(f)], but this is not
surprising as critical frequencies at the onset are very similar.

The stability analysis, summarized in Sec. III, allows us to obtain bifurcation points on the
branches. Rather than computing them accurately as in Refs. [49,50] by inverse interpolation using
several points on the branches, we roughly approximate the bifurcation point to be at the point
where |λ| > 1 (|λ| < 1) is satisfied for the first time. This choice makes sense, as the difference in
the parameters between the previous stable (unstable) RW is small and |λ| ≈ 1. The AP RW branch
emerges from the preferred linear mode via supercritical Hopf bifurcation at Rac = 3.056 × 102,
and is thus stable according to bifurcation theory [32,45]. The first bifurcation on the AP RW branch
is also of Hopf type at roughly Ra = 3.18 × 102. Surprisingly, the SP RW branch has a wider stable
region, from Ra = 3.26 × 102 to Ra = 3.75 × 102. The SP RW branch bifurcates unstable as it
comes from the second preferred linear mode with md = 19-fold azimuthal symmetry, although
this is not noticeable in Fig. 1 because SP RWs restabilize very close to the onset. This numerically
proves that nonpreferred linear modes (with the same md -fold azimuthal symmetry as the preferred
mode) contribute to stable flows, as is argued in the literature [11,63]. It is an important result as it
is usual to compute only the first preferred linear mode (with fixed md ) to determine the onset of
convection [15,64–66].

A branch of stable modulated rotating waves (MRWs), which are quasiperiodic flows (see
[33,34] for a theoretical description), emerges when RWs lose their stability via supercritical
Hopf bifurcations at Ra = 3.18 × 102 (AP RW branch) and Ra = 3.75 × 102 (SP RW branch).
In addition, stable or unstable MRWs could indeed be present near Ra = 3.26 × 102, i.e., where
RWs on the SP branch become stable, depending on whether the bifurcation is subcritical or
supercritical. The complex Floquet multipliers λk are quite clustered near the unit circle, for instance
at Ra = 3.73 × 102 on the SP RW branch, 0.88 < |λk| < 1 for the k = 1, . . . , 10 first dominant
multipliers. This leads to a large number of Hopf bifurcations, giving rise to oscillatory flows
that can be obtained with continuation methods following [49]. Because of the large number of
bifurcation points and the clustering of the eigenvalues, very long initial transients [O(102) diffusion
time units] are expected if DNS are used. Moreover, because RWs with azimuthal wave number
close to m = 19 are also expected to be stable near the onset (see [8,49]), multistability regions of
several RWs and MRWs involving different azimuthal as well as equatorial symmetries could be
found, giving rise to very rich nonlinear periodic, quasiperiodic, and even chaotic dynamics very
close to the onset (Ra/Rac < 1.7).

The azimuthal velocity vϕ patterns on the outer surface along the AP and SP branches of RW are
shown in the first and second rows of Fig. 2. Convection in the southern hemisphere is progressively
inhibited as Ra (i.e., nonlinearity) is increased from the onset on the AP branch. Around Ra � 3.2 ×
102 RWs are stable, with most convection confined near the north pole. With increasing Ra, positive
vϕ cells in the southern hemisphere increase their magnitude but remain significantly weaker than
the negative vϕ cells surrounding the north pole. Along all of the AP RW branch, the kinetic energy
density is concentrated near the north pole as well. This is quite an unexpected result since it is
widely assumed that finite amplitude convection develops in both hemispheres (see [7,15,67,68]
among many others). In the case of the SP RW, convection develops on both hemispheres as is
common and, like in the AP RW branch, vϕ is positive on a wide equatorial belt and negative near
the poles, the latter being stronger. Characteristic patterns of inertial waves studied in Ref. [69] can
also be identified in both classes of polar waves, best shown in the meridional sections of vϕ in
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FIG. 2. First and second rows: Contour plots of m = 19 RW on the AP branch at Ra = 3.057 × 102,
3.1 × 102, 3.25 × 102, 3.56 × 102, 3.63 × 102, 3.99 × 102 (from left to right). First row: Spherical sections
of vφ at ro. Second row: Spherical sections of v2/2 at ro. Third and fourth rows: Same as the previous rows but
for RW on the SP branch at Ra = 3.27 × 102, 3.33 × 102, 3.49 × 102, 3.78 × 102, 3.64 × 102, 3.56 × 102

(from left to right). All waves are marked with a circle in Fig. 1(f).

the fourth column (from left to right) of Fig. 3. These are structures elongated in the colatitudinal
direction, reflecting in both boundaries and connecting the flow within the tangent cylinder from
north to south latitudes. The connection of the vϕ vortices from north to south can be best identified
on the spherical sections of the fourth column (from left to right) in Fig. 2.

In Fig. 4 the same contour plots as in Fig. 2 are shown for different dominant eigenfunctions at
Ra = 3.2 × 102 on the AP RW branch (first row) and at Ra = 3.78 × 102 on the SP RW branch
(second row). These Ra are close to the bifurcations to stable MRWs. In both branches the patterns
of the first dominant eigenfunction are quite similar to that of the RW and thus similar patterns
are expected for the MRW. In contrast, other eigenfunctions behave quite differently, reflecting
the multimodal character of low-Pr number convection [17]. The eigenfunction patterns can be
equatorially symmetric of equatorial type, or in the form of strongly axisymmetric belts surrounding
the poles (see the three plots on the right). We note the good agreement of the polar belts of the
eigenfunction with those obtained in the experimental study of [3] in the context of zonal flows in
giant planets. In addition, this eigenfunction has convection confined within the 80◦ latitude circle,
toward the poles, as observed on the surfaces of Jupiter [70] or Saturn [71].

B. Chaotic flows from DNS

Like the very recent low-Prandtl number studies [14,17], we find very rich quasiperiodic and
even chaotic dynamics very close to the onset (Ra/Rac < 1.7) involving several basic modes of
convection and timescales. Two examples of these strongly oscillatory DNS, obtained from an AP
wave initial condition, are shown in Fig. 5 at Ra = 3.5 × 102 and Ra = 5 × 102. The left three plots
of Fig. 5 are instantaneous contour plots of the temperature perturbation 	, the azimuthal veloc-
ity vϕ , and the azimuthally averaged azimuthal velocity 〈vϕ〉, on a spherical slice at r ≈ ri + 0.5d and
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FIG. 3. Meridional sections of vφ through a relative maximum. First row: Contour plots of m = 19 RW on
the AP branch at Ra = 3.057 × 102, 3.1 × 102, 3.25 × 102, 3.56 × 102, 3.63 × 102, 3.99 × 102 (from left
to right). Second row: Same as the previous row but for RW on the SP branch at Ra = 3.27 × 102, 3.33 ×
102, 3.49 × 102, 3.78 × 102, 3.64 × 102, 3.56 × 102 (from left to right). All waves are marked with a circle
in Fig. 1(f).

r = ro, respectively, for the DNS at Ra = 3.5 × 102. The flow is strongly equatorially asymmetric
and located in polar regions, recalling an AP RW. In contrast, convection at larger Ra = 5 × 102

(right group of three plots) also develops in the equatorial region taking the form of vertical columns.
The latter resemble the patterns of the equatorial eigenfunction shown in Fig. 4. Notice that 〈vϕ〉 is
positive in a wide band showing a strong dimple (relative minimum) near the equator.

The pattern of these DNS seems to resemble a superposition of the RW mode and the
eigenfunctions shown in Fig. 2. This is not surprising, as unstable RWs and MRWs define the
framework of the phase space and thus drive chaotic and turbulent dynamics [37,38,58,59]. Clearly,
the flow at Ra = 5 × 102 is strongly axisymmetric and multimodal [14,17]. Figure 6(a) displays

FIG. 4. First row: Contour plots of the 1st, 4th, 6th, 7th, 9th, and 13th (from left to right) dominant
eigenfunctions on the AP RW branch at Ra = 3.2 × 102. Spherical section of vφ at ro. Second row: Same
as the first row but for the 1st, 2nd, 7th, 8th, 9th, and 10th dominant eigenfunctions on the SP RW branch at
Ra = 3.78 × 102.
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FIG. 5. Instantaneous contour plots of DNS at Ra = 3.5 × 102 (left group of three plots) and Ra = 5 × 102

(right group). For each group the spherical sections (from left to right) are of 	 (at r ≈ ri + 0.5d), vϕ , and 〈vϕ〉
(at r = ro), respectively.

the time series of the convective heat transport Nu − 1 at the outer boundary in time rotation
units t

√
Ta/2π (t is the dimensionless diffusion time). This figure, and its detail in Fig. 6(b),

reveals the chaotic and strongly oscillatory character of the flow involving timescales from less
than 1 to around 300 planetary rotations. Figure 6(b) contains the time span of the supplementary
movie [72]. The time-averaged kinetic energy wave number spectrum is shown in Fig. 6(c),
together with the corresponding theoretical Rhines’ scaling [73] for the strongly axisymmetric flows
relevant to planetary atmospheres. This scaling has been confirmed with a recent laboratory model,
including viscous dissipation, of high latitude jets on Jupiter’s surface [3]. Regarding the weakly
supercritical Ra, the spectrum has a peak at the most unstable mode m = 19 at the onset and roughly
approximates the Rhines’s scaling for the larger wave numbers. The good qualitative agreement with
the experimental spectrum shown in Fig. 3 of [3] is noticeable. This provides supporting evidence
for the turbulent character of the DNS for the low Pr and thin shell. At higher Pr and thicker shells,
corresponding to the linear stability region of equatorial or spiraling modes, higher supercritical
conditions must be reached for the onset of turbulence [74,75].

C. Equatorially asymmetric zonal winds

In this section, we qualitatively analyze the equatorial symmetry of the zonal wind and describe
some interesting properties of flows studied in previous sections. The study of zonal wind is of
fundamental importance for the understanding of the dynamics of giant planet atmospheres [77],
particularly in the case of Jupiter [7]. The Taylor number of the present study, Ta = 107, is moderate
and thus far from real applications. However, it is interesting to investigate basic properties of
nonlinear flows arising from the onset of polar convection, as this is common in thin shells, η = 0.9
[8], which is believed to be a good geometry approximation for modeling the convective envelope
of Jupiter or Saturn [77]. In thin shells, polar modes are linearly preferred also at Ta = 1011 and
Pr = 10−2, very close to Ta = 1011 and Pr = 10−1 of [7], which successfully explained the number
of azimuthal jets and their width in the Jovian atmosphere.

FIG. 6. (a) Time series of convective heat transfer at the outer surface Nu − 1 and (b) a detail of
(a) including the time span of the supplementary movies [72]. (c) The kinetic energy spectrum Km vs the
azimuthal wave number m and the theoretical [73] Rhines’ scaling (dashed line).
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TABLE II. Time- and volume-averaged properties for DNS at Pr = 3 × 10−3, Ta = 107, and η = 0.9, with
Ra close to the onset of convection. The Reynolds number Re, the Rossby number Ro, the convective Rossby
number Roc, the Peclet number Pe, and the ratio of axisymmetric (m = 0) over total rms kinetic energies Ka/K ,
and the rms of force integrals FI (inertial), FC (Coriolis), and FV (viscous) are tabulated.

Ra Ra/Rac Re Ro Roc Pe Ka/K FC FI FV

3.5 × 102 1.15 37 0.012 0.34 1.1 0.04 1.2 × 105 1.8 × 104 9.5 × 102

5 × 102 1.64 142 0.045 0.41 4.3 0.64 6.3 × 105 1.2 × 105 3.6 × 103

Flows in planetary atmospheres are turbulent and strongly axisymmetric. Some basic parameters
for their study are the Reynolds number Re = √

2K as a measure of convection, the Rossby number
Ro = Ta−1/2Re to quantify the relevance of Coriolis force [7], the convective Rossby number Roc =
(1 − η)−1/2√Ra/(TaPr) (the factor 1 − η is due to our definition of Ra) to determine the transition
between positive and negative equatorial jets [4], and the Peclet number Pe = (1 − η)−1Pr

√
2K

used to define the boundary (Pe = 10) between weak and strong flows [15]. Flows in gas giant
atmospheres have small Ro (for instance, Ro = 0.01–0.04 given in Ref. [77]) and Roc less than
unity (Roc = 0.22 from the simulations of [77]) as their equatorial jets are positive. In addition, Pe
should be large as Jupiter’s and Saturn’s atmospheric flows are vigorous. Table II summarizes these
mean physical properties from the DNS at Ra = 3.5 × 102 and Ra = 5 × 102. Both DNS have a
noticeable Pe > 1 and thus convection is getting stronger, although they are close to the onset,
as happened for similar Pr numbers in a full sphere at large Ta [15], this reflects on a relatively
large Re. The Coriolis force is relevant as it indicates the small value of Ro. For Ra = 5 × 102

the ratio of axisymmetric to total kinetic energy density is relatively large, meaning the DNS
is mostly axisymmetric and the equatorial zonal wind belt is positive with Roc = 0.41 < 1, in
reasonable agreement with [4] (at Pr = 0.27). Following [78] the rms force, integrals FI (inertial),
FC (Coriolis), and FV (viscous) are computed. The balance FC > FI � FV , satisfied for the
DNS, is believed to operate in Jupiter’s convective atmosphere [19]. It is noticeable how the
DNS properties detailed above are in reasonable agreement with those of giant planets, despite the
fact that the parameter values are far from those objects. Larger Taylor numbers and supercritical
regimes, as in Ref. [7], should be attained to study the nonlinear saturation of polar modes, which
could be of interest for planetary atmospheres, as the results of Table II suggest.

Instantaneous latitude profiles of Rov = 〈vϕ〉/�ro at the outer surface for an AP and SP RW,
and two examples of eigenfunctions (properly scaled), are shown in Fig. 7(a) for a qualitative
comparison. Both classes of RW have off-equatorial (around 60◦) negative and positive equatorial
zonal bands, but the profile for the AP RW is strongly asymmetric, being positive around −60◦.
An eigenfunction of equatorial type gives rise to a large number of bands, with two strong relative
minima and maxima for latitudes in (−20◦, 20◦). All of these characteristics can be identified in the
equatorially asymmetric zonal wind profile of the chaotic DNS at Ra = 5 × 102; see Fig. 7(b). A
suitable superposition of the profiles shown in Fig. 7(a) at lower Ra bears a reasonable resemblance
to the profile of the chaotic DNS at Ra = 5 × 102, both showing a strong dimple (decrease of
positive velocity) at the equator, as observed in Fig. 5. This is reasonable as branches of RWs
described in this study (and secondary MRWs arising from unstable Floquet modes) may extend up
to Ra = 5 × 102. The magnitude of the zonal wind clearly differs from that measured in the Jovian
atmosphere. We note, however, that the decrease at the equator is larger than 50% and qualitatively
comparable to the decrease observed in the Jovian atmosphere [see Fig. 7(c), revealed by Hubble
Space Telescope observations [76]]. In anelastic models [22], it was argued that the dimple was
related to the existence of a change in the dynamic behavior with two different flow dynamics
within the shell. In our case, the situation seems to be similar, the flow being more influenced by
Coriolis forces in the interior of the shell. Figure 8 (right panel) contains an equatorial section of
the axial vorticity, as in Ref. [22] for the anelastic models, and displays the situation. A dashed line
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(a) (b)

(c) (d)

FIG. 7. Rov = 〈vϕ〉/�ro vs latitude in degrees. (a) Asymmetric polar rotating wave uas at Ra = 3.98 × 102

(solid line), its eighth dominant eigenfunction (dotted-dashed line), symmetric polar rotating wave us at Ra =
3.78 × 102 (dashed line), and its u2nd second dominant eigenfunction (dotted line). The eigenfunctions are
scaled for comparative purposes. (b) DNS at Ra = 5 × 102 (solid line) and the linear superposition uas + 4us +
1.5 × 104u2nd of the curves of Rov shown in (b) (dashed line). (c) Hubble data for Jupiter [76] (solid line) and
DNS of (b) scaled by a factor of 6.3 (dotted line). (d) Hubble data for the antisymmetric Jupiter zonal flow and
the eighth dominant eigenfunction of the asymmetric polar rotating wave scaled by a factor of 6.5 (dotted line).

is drawn to mark the boundary between two different dynamical behaviors. Finally, Fig. 7(d) shows
the Hubble Space Telescope data for the asymmetric component of the flow, compared to a selected
(properly scaled) eigenfunction of an AP RW. The qualitative similarities between both profiles
are noticeable, which invites further research of asymmetric modes such as those described in the
present study, but at larger Ta, to see if they are relevant for understanding the equatorial asymmetry
of the Jovian atmosphere [76].

Figure 8 displays instantaneous contour plots of the radial vorticity, at the outer surface in
different views, of the chaotic DNS at Ra = 5 × 102. It shows the existence of large coherent
vortices in the equatorial belt, but also at very high latitudes, even within the 80◦ circle (dashed line)
toward the poles. In the Jovian atmosphere, large vortices develop in the equatorial region, as found
numerically in Ref. [23] at higher Ta = 1011 with a stratified model in thin shells. Large coherent
cyclonic vortices, surrounding the poles, have recently been observed in Jupiter’s atmosphere [70].
Our simulated vortices at high latitudes are quite elongated in the meridional direction and obtained
at moderate Ta and thus not representative of the real situation. In addition, the ratio between the
number of cyclonic and anticyclonic vortices is not as large as for the Jovian atmosphere. However,
our results provide evidence that cyclonic coherent vortices might be obtained at high latitudes as
well as at larger Ta, since they are strongly related to AP or SP linear modes, which are preferred at
relevant Ta > 1010 as well. As commented before, this makes the regime of polar modes interesting,
and further challenging simulations are thus required to see if this type of convection is relevant for
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FIG. 8. Radial vorticity at r = ro (viewed from the north pole, the equator, and the south pole) and axial
vorticity on the equatorial plane (from left to right). Cyclonic (anticyclonic) radial vorticity is red (blue) on the
northern hemisphere and blue (red) on the southern hemisphere. A supplementary movie [72] for each panel is
included.

074802-14



POLAR WAVES AND CHAOTIC FLOWS IN THIN …

the basic understanding of the appearance of large-scale coherent structures at high latitudes in
spherical shell convection models.

V. SUMMARY

A numerical study of thermal convection in rotating spherical shells is presented. The parameter
values η = 0.9, Ta = 107, and Pr = 3 × 10−3 are selected to study the unexplored regime when
convection begins from equatorially antisymmetric and nonaxisymmetric polar modes [8,11].
This contrasts the regimes studied widely for many years [6,7,15,67] (among many others) in
which convection starts from an equatorially symmetric and nonaxisymmetric perturbation, either
equatorially attached [10,74] or spiraling [9].

As with most studies in the field [6,7,15], the numerical study is based on using DNS to obtain
chaotic flows. However, there exist very few studies [50,79] in which continuation techniques and
the stability analysis of periodic orbits (Floquet theory) are employed to track the curves and
determine the regions of stability of rotating waves (RWs) bifurcated from the conductive state.
Tracking these unstable branches is of fundamental importance for a deep understanding of the
origin of chaotic and turbulent flows [37,38,44,59].

We have obtained stable equatorially asymmetric polar (AP) as well as symmetric polar (SP)
RWs, the latter associated with the second dominant linear mode with m = 19-fold azimuthal
symmetry. In this case, nonpreferred linear modes—with the same azimuthal symmetry as the
preferred mode—can give rise to stable flows and should be computed in linear studies. This is
relevant, as most studies have relied on the computation of the first preferred linear mode [15,
64–66] and this mode is usually used to initialize DNS with parameters close to the onset.

The patterns of the AP/SP RW are steadily rotating in the azimuthal direction, with the
flow developing a strong axisymmetric component and confined at high latitudes. Surprisingly,
convection is almost hemispherical in the case of AP RWs, in contrast to what has been found
in previous studies. In addition, in our simulations, RWs (i.e., steadily azimuthally drifting periodic
flows) are obtained at the low Pr regime and Ta = 107: it is not clear if they are still present when
Ta is increased; see [15] for a full sphere or the rotating convection experiments of [17].

By means of DNS at Ra/Rac < 1.7, oscillatory chaotic flows are obtained, in agreement with
low-Prandtl number studies [14,15,17]. Their dynamics are strongly influenced by unstable RWs
and quasiperiodic flows (modulated rotating waves), related to the eigenfunctions of the RWs, as
our numerical results suggest. Computation of stable/unstable waves then provides a useful tool to
understand the dynamics of turbulent flows [38,44].

In addition, these oscillatory flows reveal physical regimes that share qualitative characteristics
with those occurring in the Jovian atmosphere. They have strong zonal and equatorially asymmetric
components, including the presence of polar coherent vortices [70] and the characteristic dimple
[76]. Although the value Ta = 107 of our models is still small, the force balance of the simulations
is in concordance with that believed to operate in the planetary atmospheres, and the flow physical
properties such as the Rossby number [7] or the convective Rossby number [4] are not so far from
their estimated values. Our study indicates the need for further research at more relevant Ta > 1010,
as polar convection is linearly preferred also in this regime.

Our results may also be relevant in explaining the coherent structures without equatorial
symmetry, vortices, observed on Saturn’s polar surface in late 2012 by the Cassini spacecraft
[71]. The polar convection is known to grow in strongly nonlinear regimes [62], but we have
shown the existence of polar flows at very low Rayleigh numbers. Our results may also help with
the understanding of planetary core dynamos, as AP modes may be preferred at the onset with
nonslip conditions [11]. According to [61], equatorially asymmetric flows favor the appearance
of multipolar magnetic fields, which have been shown to be characteristic of thin shells [80,81].
Understanding the equatorial symmetry breaking of the flow and its associated transitions is then of
importance in planetary dynamo numerical models.
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Because very low Pr and large η are common in stellar convective zones [8], our results are also
of importance for the astrophysical community. A transition between positive and negative zonal
flow profiles was found in Ref. [4] in the context of stellar magnetohydrodynamic flows, such as
those appearing in the Sun. In the case of accreting neutron star oceans, convection [82], zonal
flows [83], pattern formation, and coherent structures [5] are key issues for a deeper understanding
of thermonuclear x-ray bursting phenomena.
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