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Summary. A data set from a Belgian telematics product aimed at young drivers is used to iden-
tify how car insurance premiums can be designed based on the telematics data collected by a
black box installed in the vehicle. In traditional pricing models for car insurance, the premium
depends on self-reported rating variables (e.g. age and postal code) which capture character-
istics of the policy(holder) and the insured vehicle and are often only indirectly related to the
accident risk. Using telematics technology enables tailor-made car insurance pricing based on
the driving behaviour of the policyholder. We develop a statistical modelling approach using
generalized additive models and compositional predictors to quantify and interpret the effect of
telematics variables on the expected claim frequency. We find that such variables increase the
predictive power and render the use of gender as a rating variable redundant.

Keywords: Compositional predictors; Generalized additive models; Pay as you drive
insurance; Risk classification; Structural 0s; Usage-based insurance

1. Introduction

For a unique Belgian portfolio of young drivers in the period between 2010 and 2014, tele-
matics data on how many kilometres are driven, during which time slots and on which type of
roads were collected using black box devices installed in the insured drivers’ cars. Our aim is
to incorporate this information in statistical rating models, where we focus on predicting the
number of claims, to set premium levels adequately on the basis of individual policyholder’s
driving habits.

Determining a fair and correct price for an insurance product (also called rate making, pric-
ing or tarification) is crucial for both insured drivers and insurance companies. Car insurance
is traditionally priced on the basis of self-reported information from the insured person, most
importantly age, licence age, postal code, engine power, use of the vehicle and claims history.
However, these observable risk factors are only proxy variables, not reflecting current driving
habits and driving style. Telematics technology—the integrated use of telecommunication and
informatics—may fundamentally change the car insurance industry. The use of this technology
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in insured vehicles enables the transmission and receipt of information that allows an insurance
company to quantify the accident risk of drivers better and to adjust the premiums accord-
ingly through usage-based insurance (UBI). By monitoring their customers’ motoring habits,
underwriters can increasingly distinguish between drivers who are safe on the road from those
who merely seem safe on paper (Economist, 2013). Young drivers and drivers in other high
risk groups, who typically face hefty insurance premiums, can be judged on the basis of how
they really drive. Regulation also plays a role as the use of indirect indicators of risk is being
questioned by the European Court of Justice. In 2012, a European Union (EU) ruling came into
force, banning price differentiation based on gender (http://europa.eu/rapid/press-
release IP-11-1581 en.htm). Through telematics, women may be able to confirm that
they really are safer drivers.

The use of telematics risk factors potentially enables an improved method for determining
the cost of insurance. Because of more refined customer segmentation and greater monitoring
of driving behaviour, UBI addresses the problems of adverse selection and moral hazard that
arise from the information asymmetry between the insurer and the policyholders (Filipova-
Neumann and Welzel, 2010). Closer aligning insurance policies to the actual risks increases
actuarial fairness and reduces cross-subsidization compared with grouping drivers into too
general actuarial classes (Desyllas and Sako, 2013). Telematics insurance gives a high incentive to
change the current driving pattern and stimulates more responsible driving (Parry, 2005; Litman,
2015; Tselentis et al., 2016). Users’ feedback on driving behaviour and game design elements in
UBI can further enhance the customer experience by making it more interactive, gratifying and
even exciting (Toledo et al., 2008). Less and safer driving is encouraged, leading to improved
road safety and reduced vehicle travel with less congestion, pollution, fuel consumption, road
cost and crashes (Greenberg, 2009).

Usage-based insurance (Tselentis et al., 2016) includes pay as you drive and pay how you drive
schemes. The pay as you drive scheme focuses on the driving habits, e.g. the driven distance,
the time of day and how long the insured person has been driving. Pay how you drive also
considers the driving style, e.g. the speed, harsh or smooth braking, aggressive acceleration or
deceleration, cornering and parking skills.

Telematics insurance started as a niche market when the technology first surfaced more than
10 years ago. Early adopters of UBI were seen in the USA, Italy and the UK. On April 28th,
2015, the European Parliament voted in favour of eCall regulation which forces all new cars in
the EU from April 2018 onwards to be equipped with a telematics device that will automatically
dial 112 in the event of an accident, providing precise location and impact data (Regulation
(EU) 2015/758 of the European Parliament and of the Council of April 29th, 2015, concerning
type approval requirements for the deployment of the eCall in-vehicle system based on the 112
service and amending Directive 2007/46/EC).

These potentially high dimensional telematics data, collected on the fly, force pricing actuaries
to change their current practice, both from a business as well as a statistical point of view. New
statistical models must be developed to set premiums adequately on the basis of an individual
policyholder’s driving habits and style and the current literature on insurance rating does not
adequately address this question. In this paper, we take a first step in this direction. We use
a Belgian telematics insurance data set with in total over 297 million km driven. On the basis
of how many kilometres the insured person drivers, on which kind of roads and during which
moments in the day, we quantify the effect of individual driving habits on expected claim
frequencies. Combined with a similar predictive model for claim severities, which is outside the
scope in this paper, this enables tailor-made car insurance pricing. We first discuss how a car
insurance policy is traditionally priced and relate this to the literature investigating the effect of
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Car Insurance Pricing 1277

vehicle usage on accident risk in Section 2. The data set is described in Section 3, along with
the necessary preliminary data processing steps to combine the telematics information with
the policy and claims information. By constructing predictive models for claim frequency, we
compare the performance of different sets of predictor variables (e.g. traditional versus purely
telematics) and unravel the relevance and influence of adding telematics insights. In particular,
we contrast the use of time and distance as exposure-to-risk measures. The novel methodological
contribution of this paper (Section 4), incorporates the divisions of the driven distance by road
type and time slots as compositional predictors in the regression framework of generalized
additive models (GAMs) and constructs a new way to interpret and visualize their effect on the
average claim frequency. We develop both a conditioning and a projection approach to handle
structural 0s in one or more components of a compositional predictor. We present the results
in Section 5 whereas Section 6 concludes.

Accompanying R code which illustrates how to apply the methods on data with a similar
structure can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Statistical background and related modelling literature

Insurance pricing is the calculation of a fair premium, given the policy(holder) characteristics,
as well as information on claims reported in the past (if available). Pricing relies on regression
techniques and requires a data set with policy(holder) information and corresponding claim
frequencies and severities, where severity is the ultimate total impact of a claim. The claim
frequency and severity components are typically modelled separately by using regression tech-
niques (Frees, 2014). The current state of the art (see Denuit et al. (2007) and de Jong and
Heller (2008) for an overview) uses generalized linear models (GLMs) (McCullagh and Nelder,
1989), with typically a Poisson GLM for the claim counts and a gamma GLM for the claim
severities. In car insurance, the duration of the policy period during which coverage is provided
is referred to as the exposure to risk. The expected number of claims is in practice modelled
directly proportional to the exposure, to make the premiums proportional to the length of cov-
erage. From a theoretical point of view, this can be motivated by the probabilistic framework of
Poisson processes (Denuit et al., 2007). It is, however, suggested (see for example Butler (1993))
that every kilometre travelled by a vehicle transfers risk to its insurer and hence the number of
driven kilometres (car-kilometres) should be adopted as the exposure unit instead of the policy
duration (car-years). Statistical studies show how claim frequencies significantly increase with
kilometres (Bordoff and Noel, 2008; Ferreira and Minikel, 2010; Litman, 2011; Boucher et al.,
2013; Lemaire et al., 2016). Most of these studies show a relationship between claim frequencies
and the number of driven kilometres which is less than proportional. One of the focus points in
our study (Section 3.2) is to investigate the relationship between the expected number of claims
and both exposure-to-risk measures (i.e. time and distance).

Using models involving both policy and telematics predictors, Ayuso et al. (2014, 2016a)
studied the travelled time and distance to the first accident by using Weibull regression models.
Paefgen et al. (2014) investigated the relationship between accident risk and driving habits by
using logistic regression models. Their case–control study design does not allow for inference on
the probability of accident involvement. The difference in time exposure between the vehicles
with accident involvement (6 months before the accident) and the control group (24 months)
was, however, only used to obtain a per-month distance exposure but was further neglected
in the study. Traditional risk factors were not accounted for, since that information was not

http://wileyonlinelibrary.com/journal/rss-datasets
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available, and the compositional nature of the telematics predictor variables constructed was
ignored. In contrast (Section 3.2), the main focus points in our research are

(a) combining the new telematics variables with traditional policy(holder) information
through a careful model and variable selection process and

(b) incorporating the compositional structure of the telematics variables in the analysis.

3. Telematics insurance data

We consider data from a Belgian portfolio of drivers with motor third-party liability (MTPL)
insurance. MTPL insurance is the legally compulsory minimum insurance covering damage to
third parties’ health and property caused by an accident for which the driver of the vehicle is
responsible. The special type of MTPL product that we are considering is specifically aiming
for young drivers who traditionally face high insurance premiums. Insured drivers were offered
a substantial discount on their premium if they agreed to install a telematics black box device
in their car. The telematics box collects statistics on driving habits: how often one drivers, how
many kilometres, where and when. Information on the driving style (such as speeding, braking,
accelerating, cornering or parking) is not registered. The telematics data did not have an effect
on the (future) premium levels of the drivers and did not induce any restrictions on how much
or where they can drive.

3.1. Data processing
The unstructured telematics data, which were collected by the telematics box that was installed
in the vehicle, are first transmitted to the data provider who structures and aggregates these
data each day and then reports them to the insurance company as a comma-separated-values
file (Fig. 1(a)). Only the structured, aggregated telematics information is available to us. Each
daily file contains information on the daily driven distance (in metres) for each policyholder.
This number of metres is split into four road types (urban, other, motorways and abroad) and
five time slots (6h-9h30, 9h30-16h, 16h-19h, 19h-22h and 22h-6h). The nature of the data does
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Fig. 1. (a) Schematic overview of the flow of information and (b) number of registered kilometres on
each day on an aggregate, portfolio level for the telematics data observed between January 1st, 2010, and
December 31st, 2014: outliers by the turn of the year 2014, corresponding to a technical malfunction
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not allow for a classification of a driven metre by road type and time slot simultaneously. The
number of trips, measured as key-on–key-off events, is also reported. This is a typical set-up (see
Paefgen et al. (2014)). In this study, we analyse the telematics data that were collected between
January 1st, 2010, and December 31st, 2014.

The telematics data are linked to the policy(holder) and claims information of the insurance
company corresponding to the portfolio under consideration (see Table 1 for a complete list).
Policy data, such as age, gender and characteristics of the car, are directly reported by the insured
driver to the insurer at underwriting (see Fig. 1(a)). They are updated over time which enables
us to link the claims occurring at a specific moment in time to the correct policy information.
Each observation of a policyholder in the policy data set refers to a policy period over which
the MTPL insurance coverage holds and contains the most recent policy information. For most
insured drivers, this coverage period is 1 year; however, it can be smaller for several reasons. If for
instance the policyholder decides to add comprehensive coverage, buys a new vehicle or changes
his residence during the term of the contract, the policy period will be restricted to the date of
the policy modification and an additional observation line will be added for the subsequent
period. A policy period can also be split when the coverage is suspended for a certain time.

Using the policy number and period we first merge the telematics information at daily level
with the policy data set. Next, we adjust the start and end date of the policy periods on the

Table 1. Description of the variables contained in the data set arising from the various sources of information

Variable Description

Claims information
claims Number of reported MTPL claims at fault during the policy period

Policy information
policy period Duration in days of the policy period (minimal 30 days and at most 1 year)
age Age of the least experienced driver listed on the policy at the start of the policy

period, measured as the number of years between the date of birth and the start
of the policy period

experience Experience of the least experienced driver listed on the policy, measured as the
number of years between the date when the driver’s licence was obtained and the
start of the policy period

gender Gender of the least experienced driver listed on the policy (male or female)
material damage cover Indicator whether the insurance policy also covers material damage (yes or no)
postal code Belgian postal code where the policyholder resides
bonus-malus Bonus–malus level of the policy, reflecting the past individual claims experience,

between −4 and 22 with lower values indicating a better history
age vehicle Age of the vehicle, measured as the number of years between the date when the car

was registered and the start of the policy period
kwatt Horsepower of the vehicle, measured in kilowatts
fuel Fuel type of the vehicle (petrol or diesel)

Telematics information
distance Distance in metres driven during the policy period
yearly distance Distance in metres driven during the policy period, rescaled to a full year by

dividing by the duration in days of the policy period and multiplying by 365
trips Number of trips (key-on, key-off ) during the policy period
average distance Distance in metres driven on average during one trip, obtained by dividing the

distance by the number of trips
road type Division of the distance into 4 road types (urban, other, motorways and abroad)
time slot Division of the distance into 5 time slots (6h-9h30, 9h30-16h, 16h-19h, 19h-22h

and 22h-6h)
week/weekend Division of distance into week (Monday–Friday) and weekend (Saturday and

Sunday)
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basis of the first and last day at which telematics data are observed for each policy period of
each insured person. This ensures that the adjusted policy periods reflect time periods over
which both the insurance coverage holds and telematics data are collected. On the basis of
Fig. 1(b), where we plot the evolution of the driven distance on each day by all drivers of the
portfolio, we suspect that technical deficiencies of the data provider can cause under-reporting
of the number of metres driven at an aggregate level. The outliers indicated as triangles by
the turn of the year 2014 could be linked to a serious technical failure preventing telematics
information from being reported for a significant part of our portfolio. We dealt with this by
removing this period of roughly 1 month from the policy periods of all the insured drivers. In
the remainder of the observation period between January 1st, 2010, and December 31st, 2014,
clear causes of under-reporting could not be identified and hence we did not take any other
corrective action. However, this illustrates that data reliability forms a challenge for this new
telematics technology. We further removed those observations with a policy duration of less
than 30 days to avoid senseless observations of only a couple of days and retained only the
complete observations with no missing policyholder information.

Next, we aggregate the telematics information by policyholder and period. This means that
we sum the distance driven, their divisions into four road types and five time slots, and the
number of trips made. Finally, we use the claims information to extract the number of MTPL
claims at fault that occurred between the start and end date of the adjusted policy periods for
each policy record.

Over the time period of this study, we end up with a data set of 33259 observations. Table 1
gives an overview of the available variables coming from the three sources of data (claims, policy
and telematics). These observations correspond to 10406 unique policyholders, who are followed
over time, have jointly driven over 297 million km during a combined insured policy period of
17681 years and reported 1481 MTPL claims at fault. Hence, on average, there were 0.0838
claims per insured year or 0.0499 claims per 10000 driven km. For over 95% of the observations
no claim occurred during the corresponding policy period, whereas for 52 observations two
claims occurred and for a single observation even three during the same policy period.

3.2. Risk classification using policy and telematics information
The goal of this research is to build a rating model to express the number of claims as a function of
the available covariates. Two sources of information are combined which are described in detail
in Table 1. First, there is the self-reported policy information which contains all rating variables
that are traditionally used in car insurance pricing. The second source of information is derived
from the telematics data. The main objective is to discover the relevance and influence of adding
the new telematics insights by using flexible statistical modelling techniques in combination
with appropriate model and variable selection tools. One of the key questions is whether the
risk that is transferred from the policyholder to the insurer is proportional to the duration of
the policy period or the driven distance during that time. Telematics technology allows a shift to
be made from time as exposure to distance as exposure. This would lead to a form of pay as you
drive insurance, where a driver pays for every kilometre driven. Histograms of both potential
exposure variables are contrasted in Figs 2(a) and 2(b).

To investigate the influence and explanatory power of the telematics variables in predicting
the risk of an accident, we compare the performance of four sets of predictor variables used to
model the number of claims; see Fig. 2(c). The classical set contains only policy information and
uses time as exposure to risk. The telematics set contains only telematics information and uses
the distance in metres as exposure to risk. The two other models, time hybrid and metre hybrid ,
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both contain policy and telematics information. Whereas the first uses time as an exposure
measure, the second uses distance. These four predictor sets contrast on the one hand the use
of traditional policy rating variables and telematics variables and on the other hand the use of
policy duration versus distance as exposure measures in the assessment of the risk.

The main predictors based on the policy information besides the duration of the policy period
include the age of the driver, the experience as measured using the driver’s licence age, the gender,
characteristics of the car and the postal code where the policyholder lives. In the case of multiple
insured drivers (around 18% of the observations), we select (in consultation with the insurer) the
age, gender, experience and postal code belonging to the driver with the most recent permit and
hence the lowest experience. This is in line with the strategy of the insurer who offers this type of
insurance contract to young drivers. The bonus–malus (BM) level is a special kind of variable that
reflects the past individual claims experience. It is a function of the number of claims reported in
previous years with values between −4 and 22 where lower levels indicate a better history. The
insurer uses a slightly modified version of the former compulsory Belgian BM system, which all
companies operating in Belgium have been obliged to use from 1992 to 2002, with minor refine-
ments for the policyholders occupying the lowest levels in the scale. Despite the deregulation,
many insurers in the Belgian market still apply the former mandatory system (Denuit et al.,
2007). Even though the BM scale level is not a covariate of the same type as the other a priori
variables, we keep it in the analysis to have an idea of the information that is contained in this
variable (as was also done in, for instance, Denuit and Lang (2004)). From a statistical point of
view, it tries to structure dependences between observations arising from the same policyholder.
An overview of the policy predictor variables and their sample distributions is given in Fig. 3.

In the telematics information set we use the distance driven during the policy period as a
predictor but we also create two additional telematics variables: the yearly and average distance
driven; see Table 1. Histograms of these variables are shown in Fig. 4. The divisions of the driven
distance by time slot, road type and week or weekend are highly correlated with the total distance
driven as they sum to this amount. To distinguish the absolute information that is measured
by the driven distance in a certain policy period from the compositional information of the
distance split into different categories, we consider boxplots of the relative proportions in Fig.
4. These relative proportions sum to 1 for each observation. To stress this interconnectedness
in the different splits, we show the compositional profiles of a sample of 100 drivers on top of
the marginal boxplots. Another important point to stress is that not all components of a certain
division of the distance are present for each observation. For instance, if an insured person does
not drive abroad during the policy period, the relative proportion of the distance driven abroad
will be 0. The use of such compositional information as predictors in statistical modelling is a
key issue in this research.

4. Model building and selection

We model the frequencies of claims by constructing Poisson and negative binomial (NB) regres-
sion models. We denote by Nit the number of claims for policyholder i in policy period t with
i = 1, : : : , I and t = 1, : : : , Ti. The model is denoted by Nit ∼ Poisson.μit/ or Nit ∼ NB.μit , φ/,
where μit =E.Nit/ represents the expected number of claims reported by policyholder i in policy
period t and φ is the parameter of the NB distribution such that var.Nit/=μit +μ2

it=φ, allowing
for overdisperion. A log-linear relationship between the mean and the predictor variables is
specified by the log-link function. This means that we set μit = exp.ηit/ where ηit is a predictor
function of the available explanatory factors. The probability mass functions for the Poisson
and the NB models are respectively expressed as
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P.Nit =nit/= exp.−μit/μ
nit
it

nit !

and

P.Nit =nit/=
(

φ

φ+μit

)φ Γ.φ+nit/

nit ! Γ.φ/

(
μit

φ+μit

)nit

:

For each of the predictor sets in Fig. 2(c) we construct the best model by using the allowed
information based on the Akaike information criterion AIC; see Section 4.3. Additionally, we
identify the best models under the restriction that the risk is proportional to the time or metre
exposure. This is accomplished by incorporating the logarithm of the exposure to risk, either
duration of the policy period or total distance driven during the policy period, as an offset term
in the predictor, i.e. a regression variable with a constant coefficient of 1 for each observation.
In the most general case, the predictor has the form

ηit =β0 +offset+ηcat
it +ηcont

it +η
spatial
it +ηre

i +η
comp
it , .1/

where β0 denotes the intercept, the categorical effects are bundled in ηcat
it , the term ηcont

it con-
tains the effects of the continuous predictors, η

spatial
it represents the geographical effect, ηre

i the
policyholder-specific random effect and the term η

comp
it embodies the effects of the composi-

tional predictors. Under the offset restriction, the continuous effect of the exposure to risk,
either the duration of the policy period (time-based rating) or the distance driven (metre-based
rating), is replaced by the logarithm of the exposure to risk as an offset.

Zero-inflated variants of these models are not considered because of interpretability reasons.
Such models cannot capture the effect of a varying exposure to risk in a transparent and intuitive
way.

4.1. Generalized additive models
The model framework that we work that with in this study is that of GAMs, introduced by Hastie
and Tibshirani (1986). GAMs enable us to incorporate continuous covariates in a more flexible
way compared with the traditional GLMs that are used in actuarial practice (see for example
Klein et al. (2014)). From a standpoint of accuracy, GAMs are competitive with popular black
box machine learning techniques (such as neural networks, random forests or support vector
machines), but they have the important advantage of interpretability. In insurance pricing it is
of crucial importance to have interpretable results to understand the premium structure and to
explain this to clients and regulators. Using a semiparametric additive structure, GAMs define
non-parametric relationships between the response and the continuous variables in the predictor
in the following way:

ηcat
it +ηcont

it =Zitβ+
J∑

j=1
fj.xjit/,

where Zit represents the row corresponding to policyholder i in policy period t of the model
matrix of the categorical variables with parameter vectorβ and fj represents a smooth function
of the jth continuous predictor variable. To estimate fj, we choose cubic spline basis functions
Bjk, such that in our models fj.x/=Σq

k=1γjkBjk.x/. The knots are chosen by using 10 quantiles
of the unique xj-values. Cardinal basis functions parameterize the spline in terms of its values
at the knots (Lancaster and Salkauskas, 1986). For identifiability, we impose constraints by
centring each smooth component around zero; thus ΣI

i=1Σ
Ti

t=1fj.xjit/ = 0 for j = 1, : : : , J: To
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avoid overfitting, the cubic splines are penalized by the integrated squared second derivative
(Green and Silverman, 1994), which yields a measure for the overall curvature of the function.
For each component, this penalty can be written as a quadratic function:∫

f ′′
j .x/2 dx=

q∑
k=1

q∑
l=1

γjkγjl

∫
B′′

jk.x/B′′
jl.x/dx=γT

j Sjγj,

with .Sj/kl =
∫

B′′
jk.x/B′′

jl.x/dx. Given these penalty functions for each component, we define
the penalized log-likelihood as

l.ψ/− 1
2

J∑
j=1

λjγ
T
j Sjγj, .2/

where l.ψ/ denotes the log-likelihood as a function of all model parametersψ= .β,γ1, : : : ,γJ /T

and λj denotes the smoothness parameter that controls the trade-off between goodness of fit
and the degree of smoothness of component fj for j =1, : : : , J . Different smoothing parameters
for each component enable us to penalize the smooth functions differently.

The model parametersψ are estimated by maximizing expression (2) by using penalized itera-
tively reweighted least squares (Wood, 2006). For the Poisson model, the smoothing parameters
λ1, : : : , λJ are estimated by using an unbiased risk estimator criterion, which is a rescaled ver-
sion of Akaike’s information criterion AIC (Akaike, 1974). For the NB model, we estimate
the smoothing parameters and the scale parameter φ by using maximum likelihood. Alterna-
tively, the smoothing parameters can also be estimated by using restricted maximum likelihood
(Krivobokova and Kauermann, 2007; Reiss and Ogden, 2009; Wood, 2011).

In addition to categorical and continuous covariates, the data set contains spatial information,
namely the postal code where the policyholder resides. Insurance companies tend to use the
geographical information of the insured person’s residence as a proxy for the traffic density and
for other unobserved sociodemographic factors of the neighbourhood. We model the spatial
heterogeneity of claim frequencies by adding a spatial term η

spatial
it = fs.latit, longit/ in the

additive predictor ηit , using the latitude and longitude co-ordinates (in degrees) of the centre
of the postal code where the policyholder resides. We use second-order smoothing splines on
the sphere (Wahba, 1981) to model fs. This enables us to quantify the effect of the geographic
location while taking the regional closeness of the neighbouring postal codes into account.

In our data set, many policyholders i = 1, : : : , I are observed over multiple policy periods
t = 1, : : : , Ti. This longitudinal aspect of the data can be modelled by including policyholder-
specific random effects ηre

i in the predictor. The GAM considered thus far is extended in this
way by exploiting the link between penalized estimation and random effects (see for example
Ruppert et al. (2003)). We assess whether such random effects are needed to take the correlations
between observations of the same policyholder into account by using the approximate test for
a zero random effect that was developed by Wood (2013).

4.2. Compositional data
The divisions of the total driven distance into the various categories—road types (four), time
slots (five) and week or weekend (two) (see Table 1)—are highly correlated with and sum to
the total distance driven. Hence in Fig. 4 we divided all components of each split by the total
distance driven. Incorporating these divisions, either in absolute or relative terms, in a predictor
also containing the total distance leads to a perfect multicollinearity problem. The most straight-
forward way to deal with this would be to leave one component out, but this approach is not
permutation invariant and the statistical inference will depend on which component is removed,



Car Insurance Pricing 1287

making interpretations misleading. The standard regression interpretation of a change in one
of the components of the distance when the other components are held constant is not possible
because of the sum constraint. We introduce and further develop the necessary statistical tools
to model such predictors.

In the literature, data which quantitatively describe the parts of some whole and provide only
relative information between their components are called compositional data (van den Boogaart
and Tolosana-Delgado, 2013; Pawlowsky-Glahn et al., 2015). Typical examples include mineral
compositions, molar concentrations and household budgets. In our setting, the divisions of the
distance driven are compositional. Scale invariance is a key property: if a composition is scaled
by a constant, the information that is carried is completely equivalent. Therefore compositional
data can be represented by real vectors with positive components that sum to 1. The space of
representations of compositions is called the simplex of D parts, defined by

SD ={x = .x1, : : : , xD/T : xi > 0,
D∑

i=1
xi =1}:

When data are considered compositional, classical statistics, that do not take the special ge-
ometry of the simplex into account, are not appropriate. Section 4.2.1 revises the necessary
geometrical concepts to work with compositional data. Extending the current literature, we
propose a new way of quantifying and interpreting the effect of the compositional explanatory
variables on the outcome in Section 4.2.2. Section 4.2.3 introduces two approaches to accom-
modate structural 0s in regression with compositional predictors.

4.2.1. The Aitchison geometry of the simplex
Aitchison (1986) introduced operations between compositional data vectors which define a vec-
tor space structure on the mathematical simplex known as the Aitchison geometry of the simplex.
Perturbation plays the role of addition on the simplex and is defined as a closed component-
wise product x ⊕y =C.x1y1, : : : , xDyD/T, where the closing operation C ensures a total sum of
1, i.e. the closure of x is C.x/ = x=ΣD

i=1xi. The product of a vector by a scalar is called pow-
ering and is defined as the closed componentwise powering of a composition by a scalar, i.e.
α�x =C.xα

1 , : : : , xα
D/T, for α∈R. The Aitchison inner product for compositions,

〈x, y〉a = 1
2D

D∑
i=1

D∑
j=1

ln
(

xi

xj

)
ln

(
yi

yj

)
=

D∑
i=1

ln.xi/ ln.yi/− 1
D

{
D∑

i=1
ln.xi/

}
D∑

j=1
ln.yj/

is proportional to the scalar product of the vectors that is formed by all possible pairwise log-
ratios of the two compositions and induces the norm ‖x‖a =√〈x, x〉a and distance da.x, y/ =
‖x � y‖a, where ‘�’ represents the opposite operation of ‘⊕’, i.e. �y =⊕{.−1/ � y}, a closed
componentwise division. The simplex along with these operations then forms a .D − 1/-
dimensional Euclidean vector space .SD, ⊕ , � , 〈·, ·〉a/. Given this Euclidean structure, we can
measure distances and angles, and define related geometrical concepts. Elementary statistical
notions involving the metrics of the sample space can be adapted to the Euclidean structure of
the simplex.

Compositional data are analysed by using a log-ratio approach and compositions x from the
simplex can be represented in the real space by using the centred log-ratio transformation clr:

ui = clri.x/= ln
{

xi

g.x/

}
, i=1, : : : , D, g.x/=

(
D∏

i=1
xi

)1=D

.3/



1288 R. Verbelen, K. Antonio and G. Claeskens

where g.x/ denotes the geometric mean of the components. The clr-transformation defines an
isometry between SD and the .D−1/-dimensional subspace of RD of vectors whose components
add to 0, denoted by HD ={u ∈RD|ΣD

i=1ui =0} and called the clr-plane. Using matrix notation
we can write the clr-transform and its inverse as

u = clr.x/= ln{x=g.x/},

x = clr−1.u/=C{exp.u/},
.4/

where the logarithmic and exponential function apply componentwise. An orthonormal basis of
SD can be obtained from an orthonormal basis of HD by using the inverse clr-transformation.
A transformation between SD and RD−1 that provides the co-ordinates of any composition
with respect to a given orthonormal basis is called an isometric log-ratio transformation ilr. The
transformation that was originally defined by Egozcue et al. (2003) maps a compositional data
vector x in a .D−1/-dimensional real vector z = .z1, z2, : : : , zD−1/T with components

zi = ilri.x/=
√(

D− i

D− i+1

)
ln

{
xi

D−i

√(
D∏

j=i+1
xj

)
}

, i=1, : : : , D−1: .5/

By arranging the corresponding orthonormal basis vectors in HD by columns, we obtain a
D× .D−1/ matrix V with elements

Vij =

⎧⎪⎪⎨
⎪⎪⎩

D− j√{.D− j +1/.D− j/} for i= j,

−1√{.D− j +1/.D− j/} for i>j

and 0 otherwise, for which it holds that V TV = ID−1 and VV T = ID − .1=D/1D1T
D, where ID is

the identity matrix of dimension D and 1D is a D-vector of 1s (Egozcue et al., 2011). Then we
can write the ilr-transform and its inverse as

z = ilr.x/=V T ln.x/=V T clr.x/,

x = ilr−1.z/=C{exp.V z/}:
.6/

The clr- and ilr-transformations reflect how all relevant information of a composition is conveyed
by the component log-ratios. In the case D=2, the ilr-transformation (5) is proportional to the
logit function, which is used in logistic regression to transform the probability 0 < p < 1 of a
binary response into unrestricted log-odds.

As the clr- and ilr-transformations are isometric, all angles and distances are preserved. This
means that, whenever compositions are transformed into co-ordinates, the metrics and opera-
tions in the Aitchison geometry of the simplex are translated into the ordinary Euclidean metrics
and operations in real space. For instance, the Aitchison inner product of two compositions is
equal to the real inner product of their clr- or ilr-transformed vectors:

〈x, y〉a =〈clr.x/, clr.y/〉=
D∑

i=1
clri.x/ clri.y/=〈 ilr.x/, ilr.y/〉=

D−1∑
i=1

ilri.x/ ilri.y/:

Even though the simplex SD is a subset of the real space RD, Aitchison (1986) showed that the
geometry is clearly different. Ignoring the compositional nature of the data in a statistical context
can lead to incompatible or incoherent results. The principle of working on co-ordinates (Mateu-
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Figueras et al., 2011) is first to express the compositional data with respect to an orthonormal
basis of the underlying vector space with Euclidean structure, next, to apply standard statistical
techniques to the vectors of co-ordinates and, finally, to back-transform and describe the results
in terms of the simplex. Final results do not depend on the basis chosen.

4.2.2. A new interpretation for compositional predictors
In our framework, the total distance in metres is used as a continuous predictor in the telematics
models and its effect is modelled by using a smooth function. In addition, we propose to treat the
divisions of the driven distance by road types, time slots and week or weekend as compositional
data covariates in the claim count regression models. In this way, the effects of the absolute
information of the total distance driven and the relative information that is contained in the
different divisions can be structured and interpreted separately.

In the context of linear regression, Hron et al. (2012) proposed first to apply the isometric
log-ratio transform (5) to map the compositions in the D-part Aitchison simplex to a D − 1
Euclidean space before including them as explanatory variables. More generally, in any regres-
sion context involving a predictor, we can add a compositional predictor term ηcomp by using the
ilr-transformed variables, i.e.

ηcomp =β1z1 + : : :+βD−1zD−1: .7/

The model fitted does not depend on the choice of the orthonormal ilr-basis since the co-
ordinates of x with respect to different orthonormal bases are orthogonal transformations of
each other. Using the ilr-transformation the model parameters can be estimated without con-
straints and the ceteris paribus interpretation of altering one zi without altering any other be-
comes possible. A drawback is that only the first regression parameter, β1, has a comprehensible
interpretation since z1 explains relevant information about x1. The remaining coefficients are
not straightforward to interpret. Also the suggestion by Hron et al. (2012) to permute the indices
in formula (5) and to construct D regression models, each time with a different component first,
is undesirable. This is especially so in our case where we have more than one compositional
predictor and each model fit is computationally intensive because of smooth continuous, spatial
and random effects.

Hence, we develop a new way to interpret and visualize the effect of a compositional predictor
(7) without the need to refit the model. Following van den Boogaart and Tolosana-Delgado
(2013) and Pawlowsky-Glahn et al. (2015), we start by using the inverse ilr-transform on the
model coefficients, i.e. set b = ilr−1.β/ where β= .β1, : : : , βD−1/T, such that we can rewrite the
compositional predictor as

ηcomp =
D−1∑
i=1

βizi =
D−1∑
i=1

ilri.b/ ilri.x/=〈b, x〉a:

The composition b ∈ SD can be interpreted as the simplicial gradient of ηcomp with respect
to x (Barceló-Vidal et al., 2011) and is the compositional direction along which the predictor
increases fastest. In particular, if we perturb x by a unit vector b=‖b‖a in the direction of b, i.e.
x̃ =x ⊕b

/‖b‖a, then the predictor becomes

η̃comp =〈b, x̃〉a =
〈

b, x ⊕ b
‖b‖a

〉
a
=〈b, x〉a + 1

‖b‖a
〈b, b〉a =ηcomp +‖b‖a:

When D=3, the estimated regression model can be visualized as a surface on a ternary diagram
(van den Boogaart and Tolosana-Delgado, 2013). For D > 3, a graphical representation is not
straightforward.
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Further, we propose to perturb the composition in the direction of each component. This
offers a new interpretation for the effect of altering the composition on the predictor. For
example, a relative ratio change of α > 1 (increase) or α < 1 (decrease) in the first component
of x with constant ratios of the remaining components can be achieved by perturbing the
composition x by C.α, 1, : : : , 1/T, i.e. x̃=x⊕C.α, 1, : : : , 1/T =C.αx1, x2, : : : , xD/T. This leads to
a change in the predictor given by

〈b, C.α, 1, : : : , 1/T〉a = ln.α/

{
ln.b1/− 1

D

D∑
i=1

ln.bi/

}
= ln.α/ clr1.b/, .8/

which is independent of the original composition x. The effect of a relative increase in any of
the components can hence best be understood by considering the clr-transform of b, of which
the elements sum to 0 and indicate the positive or negative effect of each component on the
predictor. The difference in the predictor level between any two compositional data vectors x
and y can be computed as

〈b, x �y〉a =
D∑

i=1
ln

(
xi

yi

)
clri.b/,

which is a linear combination of the clr-co-ordinates of b with weights given by the component-
wise log-ratios. A graphical representation of the effect of a compositional predictor can be made
by visualizing clr.b/ and comparing the elements with 0. Since β= ilr.b/=V T ln.b/=V T clr.b/

and VV T = ID − .1=D/1D1T
D, the clr-transform of b can be written as clr.b/=Vβ. Confidence

bounds can thus be constructed by using the corresponding covariance matrix V Σ̂V T where
Σ̂ is the estimated covariance matrix related to estimating β. To quantify the influence of the
compositional predictor on the level of the expected outcome in the Poisson and NB models, we
exponentiate equation (8). The effect of a relative ratio change of α in component i= 1, : : : , D

on the response scale is then given by αclri.b/.

4.2.3. Dealing with structural 0s in compositional predictors
An additional difficulty when incorporating the compositional information as predictors in
the analysis of the claim counts is the presence of proportions of a specific component that
are exactly 0. In the division of the driven distance by road type, for instance, many insured
drivers did not drive abroad during the policy period observed. Since compositional data are
always analysed by considering log-ratios of the components (see Section 4.2.1), a workaround
is necessary.

In the compositional data literature, different types of 0s are being distinguished (Pawlowsky-
Glahn et al., 2015). Rounded 0s occur when certain components may be unobserved because
their true values are below the detection limit (cf. geochemical studies). Count 0s refer to zero
values due to the limited size of the sample in compositional data arising from count data. In our
setting, the zero values are truly 0 and are not due to imprecise or insufficient measurements. Such
0s are called structural 0s. The structural 0s patterns in the data set are listed in the appendix
A of the on-line supplementary material. The presence of 0s is most prominent for splitting
distance by road types as 40% of the drivers did not go abroad. 0s are most often dealt with by
using replacement strategies (see for example Martı́n-Fernández et al. (2011), for an overview),
which do not make sense for structural 0s. A general methodology is still to be developed
(see for example Aitchison and Kay (2003) and Bacon Shone (2003)). In particular, a method
does not exist that deals with compositional data with structural 0s as predictor in regression
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models. Applying the ilr-transform to the compositional data x and using the transformed z as
explanatory variables in the predictor as discussed in Section 4.2.2 is no longer possible.

For an observation with structural 0s, we can only consider the subcomposition of non-zero
components. We let M ⊂{1, 2, : : : , D} denote the set of indices of the structural 0s of a composi-
tion x. The subcomposition xMc of non-zero components Mc ={i1, : : : , im}={1, 2, : : : , D}\M

of x is then obtained by applying the closure operation to the subvector .xi1 , : : : , xim/ of x,
i.e. xMc = C.xi1 , : : : , xim/ = .xi1 , : : : , xim/=Σi∈Mc xi. The set of all possible structural 0 patterns
M is denoted by M. In the most general situation, 2D − 1 possible 0 patterns can occur when
dealing with compositional data with D components (a structural 0 for every component being
excluded). To indicate the 0 pattern of a composition x we introduce dummy variables

dM.x/=
{

1 if the set of indices of the structural 0s of x is equal to M,
0 otherwise

for all M ∈M. We propose two approaches to accommodate structural 0s in a regression con-
text with compositional predictors, either via conditioning on the structural 0 pattern or via
projection onto the orthogonal complement of the structural 0 parts.

4.2.3.1. Conditioning approach. We treat observations with different structural 0 patterns
as qualitatively different subgroups within the data and model the effect of the compositional
predictor conditional on the 0 pattern. The compositional predictor term ηcomp of the regression
model specifies a distinct effect b|Mc for each 0 pattern:

ηcomp = ∑
M∈M

dM.x/〈b|Mc , xMc〉a = ∑
M∈M

dM.x/〈ilr.b|Mc /, ilr.xMc /〉:

Conditionally on the 0 pattern M of the compositional data vector x, the contribution to the
predictor is given by the Aitchison inner product of the subcomposition xMc of non-zero compo-
nents of x and a subcompositional simplicial gradient b|Mc of the same dimension. The notation
b|Mc is used to indicate that the model parametersβ|Mc = ilr.b|Mc / differ by structural 0 pattern.
Fitting this term requires us to compute for each compositional observation the ilr-transform
ilr.xMc / of the subcomposition of non-zero parts and to model the compositional predictor
effect separately by 0 pattern. In the case of only one non-zero component, the Aitchison inner
product is 0 and there is no contribution to the linear predictor. If deemed necessary a categorical
effect based on the 0 pattern can be added to ηcomp.

4.2.3.2. Projection approach. The compositional regression coefficients in the condi-
tioning approach are different for each structural 0 pattern and hence only estimated by using
observations with that particular 0 pattern. Instead of modelling the compositional predictor
effect separately by 0 pattern, we alternatively propose a parsimonious simplification in which
the regression parameters are shared across patterns.

For this, we regard a subcomposition xMc as an orthogonal projection of x that preserves the
relative information that is contained in xMc and, simultaneously, filters out all the relative infor-
mation involving parts in xM (Pawlowsky-Glahn et al., 2015). The clr-plane HD is spanned by
the non-orthogonal, non-basis vectors wi = .−1=D, : : : , −1=D, .D−1/=D, −1=D, : : : , −1=D/,
for i=1, : : : , D, where the component equal to .D−1/=D is placed at the ith component. The
subcomposition xMc of the non-zero parts can be represented by an orthogonal projection PM

of the clr-transformed vector clr.x/ onto the null space of {wi, i ∈ M}, corresponding to the
indices of the structural 0s of x. van den Boogaart et al. (2006) showed that the projection PM

onto the orthogonal directions to M can be computed as
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.PMclr.x//Mc = clr.xMc /

and 0 otherwise. Hence, the subvector of PM clr.x/ that is related to the non-zero parts of x
equals the clr-transform of the subcomposition xMc and the remaining elements of PM clr.x/

that are related to the structural 0s of x equal 0. We can express this projected clr-vector with
respect to the chosen orthonormal ilr-basis and define z=V TPM clr.x/ as a generalized isometric
log-ratio transformation from the simplex (allowing for 0 components) to RD−1. In the case that
x has no structural 0s, the generalized ilr-transform coincides with the regular ilr-transform (6).
We suggest using these generalized ilr-co-ordinates in the compositional predictor and rewrite
the term as

ηcomp =
D−1∑
i=1

βizi = clr.b/TVV TPM clr.x/=〈clr.b/, PM clr.x/〉=〈.clr.b//Mc , clr.xMc /〉

=〈clr.bMc /, clr.xMc /〉=〈bMc , xMc〉a, .9/

where we used the fact that the elements of a clr-transform sum to 0 and that .clr.b//Mc , the
subvector of clr.b/ that is related to the non-zero parts of x, and clr.bMc /, the clr-transform of the
subcomposition of b related to the non-zero parts of x, differ only by a vector of equal elements.
Equation (9) shows that the compositional predictor in the projection approach is equivalent
to the Aitchison inner product of the subcompositions of both b and x corresponding to the
non-zero components of x. In general, we can write

ηcomp = ∑
M∈M

dM.x/〈bMc , xMc〉a:

Compared with the conditioning approach where the compositional regression coefficients
b|Mc are conditional on the 0 pattern, the projection approach is more parsimonious. The
effect of each subgroup defined by the structural 0 patterns is obtained from the same model
parametersβ, using subcompositions bMc of the corresponding compositional coefficient vector
b = ilr−1.β/. This simplifying assumption entails that leaving out the 0 components does not
change the relative riskiness of the remaining components. Given an observation with structural
0s, the interpretation of the effect of a change to a non-zero component remains similar to be-
fore: if the relative ratio of the ith component of xMc changes by α, then the predictor changes
by ln.α/ clri.bMc /. The clr-transformed subcomposition clr.bMc / can be obtained by recentring
the parts of clr.b/ corresponding to Mc around 0, i.e.

clr.bMc /= .clr.b//Mc −
{

1
m

∑
i∈Mc

clri.b/

}
1m,

where m=|Mc| is the number of non-zero parts in x. Therefore, using the projection approach,
a single graphical representation of clr.b/ suffices to visualize and understand the effect of the
compositional predictor term for each structural 0 pattern.

4.3. Model selection and assessment
Using the same form as Akaike’s information criterion, AIC for a GAM is defined as

AIC=−2l̂+2EDF .10/

where l̂ is the log-likelihood, evaluated at the estimated model parameters obtained by using
penalized likelihood maximization, and the effective degrees of freedom EDF are used instead
of the actual number of model parameters. For details about the calculation of EDF see Wood
et al. (2016). We used the implementation as available in the R package mgcv version 1.8-18.
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As such, equation (10) measures the quality of the model as a trade-off between the goodness
of fit and the model complexity.

For each of the four predictor sets (see Fig. 2(c)) variables are selected by AIC using an ex-
haustive search over all the possible combinations of variables given in Table 1. In our analysis,
model selection is done without involving policyholder-specific random effects. All model spec-
ifications are estimated under both the Poisson and the NB framework. We restrict ourselves to
additive regression models (i.e. no interactions) such that an exhaustive search is still feasible
and the marginal effect of a single variable can be easily assessed, interpreted and visualized.
Even though the 2011 EU ruling prohibits a distinction between men and women in car insur-
ance pricing, we allow gender to be selected as a categorical predictor in the model. For the
compositional predictors based on the different divisions of the distance driven, 10 structural
0 patterns occur for the road types, 20 for the time slots and three for week or weekend; see the
appendix A of the on-line supplementary material. The model selection is performed separately
for the conditioning and projection approach to the structural 0s. Following the projection ap-
proach, the three compositional predictor terms that we allow to be selected in the hybrid and
telematics models are

η
comp
it = ∑

M∈Mroad
dM.xroad

it /〈broad
Mc , xroad

it,Mc〉a + ∑
M∈Mtime

dM.xtime
it /〈btime

Mc , xtime
it,Mc〉a

+ ∑
M∈Mweek

dM.xweek
it /〈bweek

Mc , xweek
it,Mc〉a:

Following the conditioning approach, the effect of the compositional predictor is modelled
separately conditionally on the structural 0 pattern. However, on the basis of the relative fre-
quencies of the 0 patterns in the data set, we allow only an additional compositional predictor
term for the distinction by road type in the case that a car was not driven abroad, which occurs
for 40% of the observations. All remaining 0 patterns are bundled into one residual group and
their effect is modelled by using a categorical effect b0; see Table A.4 of the on-line appendix A.
Using the symbolic structural 0 pattern notation of the appendix A, the most comprehensive
compositional predictor term in the conditioning approach can be denoted as

η
comp
it =d1111.xroad

it /〈b|road
1111, xroad

it,1111〉a +d1110.xroad
it /〈b|road

1110, xroad
it,1110〉a +{1−d1111.xroad

it /

−d1110.xroad
it /}b|road

0 +d11111.xtime
it /〈b|time

11111, xtime
it,11111〉a +{1−d11111.xtime

it /}b|time
0

+d11.xweek
it /〈b|week

11 , xweek
it,11 〉a +{1−d11.xweek

it /}b|week
0 :

Predictive performance of these models is assessed by using proper scoring rules for count data;
Table 2 (Czado et al., 2009). Scoring rules assess the quality of probabilistic forecasts through a
numerical score s.P , n/ based on the predictive distribution P and the observed count n. Lower
scores indicate a better quality of forecast. A scoring rule is proper (Gneiting and Raftery, 2007)
if s.Q, Q/�s.P , Q/ for all P and Q with s.P , Q/ the expected value of s.P , ·/ under Q. In general,
we define by pk = P.N = k/ and Pk = P.N � k/ the probability mass function and cumulative
probability function of the predictive distribution P for count variable N. The probability mass
at the observed count n is denoted as pn. The mean and standard deviation of P are written as
μP and σP respectively, and we set ‖p‖=Σ∞

k=0p2
k.

We compare the predictive performance of the best models according to AIC under the four
predictor sets, with or without offset in the predictor (1), and using a Poisson or NB distribution.
We apply the proper scoring rules to the predictive count distributions of the observed claim
counts. We adopt a K -fold cross-validation approach (Hastie et al., 2009) with K=10 and apply
the same partition to assess each model specification. Let κit ∈{1, 2, : : : , K} be the part of the
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Table 2. Proper scoring rules for count data

Score Formula

Logarithmic logs.P , n/=− log.pn/
Quadratic qs.P , n/=−2pn +‖p‖
Spherical sphs.P , n/=−pn=‖p‖
Ranked probability rps.P , n/=Σ∞

k=0{Pk −1.n� k/}2

Dawid–Sebastiani dss.P , n/=
(n−μP

σP

)2 +2 log.σP /

Squared error ses.P , n/= .n−μP /2

data to which the observed claim count nit of policyholder i in policy period t is allocated
by the randomization. Denote by P̂

−κit

it the predictive count distribution for observation nit

estimated without the κitth part of the data. The K -fold cross-validation score CV.s/ is then
given by

CV.s/= 1
I∑

i=1
Ti

I∑
i=1

Ti∑
t=1

s.P̂
−κit

it , nit/,

where s is any of the aforementioned proper scoring rules and smaller values of CV.s/ indicate
better forecasts.

5. Results

All computations are performed with R version 3.4.1 (R Core Team, 2017) and, in particular, R
package mgcv version 1.8-18 (Wood, 2011) is used for the parameter estimation in the GAMs
and compositions version 1.40-1 (van den Boogaart et al., 2014) to compute the transforma-
tions of the compositional data. For brevity and clarity of this presentation, we show only the
results (tables and figures) for the Poisson models using the projection approach for the struc-
tural 0s and highlight differences from the NB models and the conditioning approach, if any. As
supplementary material, we provide accompanying R code which illustrates how to apply the
methods that are presented in this work on simulated data with a similar structure. Following
either the conditioning or the projection approach to handle structural 0s, we demonstrate how
to include a compositional predictor in a GAM and how to visualize the effect.

5.1. Model selection
The variables that were selected for each of the predictor sets were identical for the Poisson and
NB models; Table 3. The functional forms of the best models selected are given in the appendix
B of the on-line supplementary material. The offset versions of the classical and time hybrid
model replace the term f1.timeit/ by ln.timeit/, without any regression coefficient in front. This
causes the expected number of reported MTPL claims, μit =E.Nit/=exp.ηit/, to be proportional
to the duration of the policy period. In the offset versions of the metre hybrid and telematics
model, the flexible term related to distance is replaced by an offset ln.distanceit/, imposing the
risk to be proportional to the distance.

The models which are allowed to use the policyholder information prefer the use of experience,
measured as the years since obtaining the driver’s licence, instead of age to segment the risk in
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Table 3. Variables contained in the best Poisson model for each of the predictor
sets by using the projection approach for structural 0s†

Predictor Classical Time hybrid Metre hybrid Telematics

Policy
time × Offset × Offset
age
experience × × × × × ×
gender × ×
material × × × × × ×
postal code × × × × × ×
bonus-malus × × × × × ×
age vehicle × × × × × ×
kwatt × × × ×
fuel × × × ×
Telematics
distance × Offset × Offset
yearly distance × ×
average distance × × × × × ×
road type × × × × × ×
time slot × × × × × ×
week/weekend ×

†The second column of each predictor set refers to the model with an offset for either
time or metre. The best NB models were identical to the best Poisson models.

young drivers. Gender is selected as an important covariate in only the classical models, not in
any of the hybrid models, indicating that the telematics information renders the use of gender
as a rating variable redundant. In the offset variants of both hybrid models the fuel-term is
dropped. The newly introduced telematics predictors road type and time slot are selected in
both the hybrid and the telematics models. The week/weekend-term is selected in only the offset
variant of the telematics model.

The second-best models, with only a slightly higher AIC-value, show that adding kwatt to the
classical model gives a comparable model fit and the same holds for adding week/weekend to
the hybrid and telematics models. Furthermore, fuel can easily be left out of the hybrid models
without deteriorating the fit.

Using the conditioning approach for structural 0s as opposed to the projection approach, the
main difference in the selection of variables is that the compositional predictor week/weekend
is always included in the hybrid and telematics models. Both the 1111 and the 1110 0 patterns
of road type are selected. Stepwise adding more 0 patterns of road type to the predictor did
not improve AIC, and similarly for the division by time slot and week/weekend. The variables
selected were again identical under the Poisson and NB model specification.

For each of these best model formulations, we added a policyholder-specific random effect
in predictor (1) to account for possible dependence from observing policyholders over multiple
policy periods. However, none of the added random effects were deemed necessary at the 5%
level of significance by using the approximate test of Wood (2013).

5.2. Model assessment
Table 4 reports AIC and all six proper scoring rules obtained by using tenfold cross-validation
for each predictor set under the Poisson model specification using the projection approach for
structural 0s. These performance tools unanimously indicate that the time hybrid model without
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Table 4. Model assessment of the best models according to AIC for each of the four predictor sets under
the Poisson model specification and using the projection approach for structural 0s†

Predictor set Offset EDF AIC logs × 10 qs × 10 sphs × 10 rps × 102 dss ses × 102

Value Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value Rank

Classical No 32.15 11896 6 1.790 6 −9:1858 6 −9:5822 6 4.224 6 −2.206 5 4.535 6
Yes 27.27 11995 8 1.804 8 −9:1838 8 −9:5816 8 4.234 8 −2:129 6 4.547 8

Time hybrid No 34.11 11734 1 1.766 1 −9:1909 1 −9:5837 1 4.196 1 −2:266 1 4.502 1
Yes 30.41 11811 3 1.777 3 −9:1891 3 −9:5831 3 4.205 3 −2:212 4 4.512 3

Metre hybrid No 34.32 11743 2 1.767 2 −9:1907 2 −9:5836 2 4.197 2 −2:259 2 4.503 2
Yes 30.37 11866 5 1.785 5 −9:1884 4 −9:5829 4 4.209 4 −2:007 7 4.517 4

Telematics No 15.05 11862 4 1.784 4 −9:1871 5 −9:5826 5 4.216 5 −2:226 3 4.526 5
Yes 11.43 11989 7 1.803 7 −9:1850 7 −9:5820 7 4.228 7 −1:965 8 4.538 7

†The second row of each predictor set refers to the model with an offset for either time or metre. For each model
we list the effective degrees of freedom EDF, Akaike information criterion AIC and six cross-validated proper
scoring rules: logarithmic, logs, quadratic, qs, spherical, sphs, ranked probability, rps, Dawid–Sebastiani, dss, and
squared error scores, ses. For AIC and the proper scoring rules, the first column represents the value and the
second column the rank.

offset scores best. The metre hybrid model is a close second. Their respective versions with an
offset and the telematics model without offset conclude the top five according to all criteria
except for the Dawid–Sebastiani score. This demonstrates the significant influence of telematics-
constructed variables on the predictive power of the model. In addition, the telematics model
without offset outperforms the classical models across all assessment criteria. Hence, using only
telematics predictors is considered to be better than the use of the traditional rating variables.

Across all predictor sets, the use of an offset for the exposure to risk, either time or metre, is
too restrictive for these data. From a statistical point of view, the time or metre rating unit cannot
be considered to be directly proportional to the risk. However, from a business point of view, it
is convenient to consider a proportional approach because of its simplicity and explainability.

Similar results are obtained under the NB model specification and using the conditioning
approach for structural 0s. The rankings of the predictor sets according to AIC are the same as
in Table 4 under the NB model specification and/or using the conditioning approach. The AIC-
values for each predictor set under the NB model specification compared with their Poisson
counterpart were slightly higher for the classical and hybrid models and slightly lower for the
telematics models, indicating that only the telematics predictor sets benefit from the additional
parameter to capture overdispersion. The model assessment using proper scoring rules led to
the same conclusions as before.

Beside an exhaustive search among additive terms, we have explored the use of interactions
between categorical, between continuous, between categorical and continuous, and between
categorical and compositional predictors. Slight marginal improvements in AIC could only be
achieved in the classical model by further refining the effects of experience, age vehicle and
material by gender without changing the rankings of the best models in Table 4.

5.3. Visualization and discussion
The effects of each predictor variable in the best time hybrid model without an offset are graph-
ically displayed in Fig. 5 for the policy variables and in Fig. 6 for the telematics variables. By
exponentially transforming the additive effects, we show the multiplicative effects on the ex-
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pected number of claims for each categorical parametric, continuous smooth or geographical
term in the fitted model. For the categorical predictors we quantify the uncertainty of those esti-
mates by constructing individual 95% confidence intervals based on the large sample normality
of the model parameter estimators. Bayesian 95% confidence pointwise intervals are used for
the smooth components of the GAM and include the uncertainty about the intercept (Marra
and Wood, 2012). For the compositional data predictors, we visualize the clr-transform of the
corresponding model parameters with 95% confidence intervals along with a reference line at
zero (see Section 4.2.2). In the on-line supplementary material, similar graphs for the other three
predictor sets (see Fig. 2(c)) are shown in the appendix C and the relative importance of these
predictors is quantified and visualized in the appendix D of the on-line supplementary material.
In the remainder of this section, we discuss the insights and the interpretations for both the
policy and the telematics variables in each of these models.

5.3.1. Policy variables
The rating unit policy period in the classical and time hybrid models always has a monotone
increasing estimated effect. The longer a policyholder is insured, the higher the premium amount,
ceteris paribus. Using the fact that the level of the non-linear smooth component is not uniquely
identifiable (see Section 4.1), we vertically translated the estimated smooth term to pass the
point (365, 0) on the predictor scale (and hence (365, 1) on the response scale) for ease of
interpretation.

The smooth effect of experience embodies the higher risk that is posed by younger, less
experienced drivers. The increased risk is more outstanding in the first two years for the hybrid
models compared with the classical model.

In the classical model, the significant effect of gender indicates that women are 16% less
risky drivers than men. However, when telematics predictors are taken into account in the
hybrid models, the categorical variable gender is no longer selected as a predictor. Nor did any
interaction term between gender and a categorical, a continuous or a compositional predictor
improve AIC. The perceived difference between women and men can hence be explained through
differences in driving habits. In particular, female drivers in the portfolio drive significantly
fewer kilometres yearly compared with men (15409 versus 18570 km on average, with a p-value
smaller than 0.001 by using a two-sample t-test). Similar findings were reported in Ayuso et al.
(2016a, b). In light of the EU rules on gender neutral pricing in insurance, this shows how
moving towards car insurance rating based on individual driving habits and style can resolve
possible discrimination of basing the premium on proxies such as gender.

The smooth effects of BM in the classical and hybrid models are non-linear and somewhat
counterintuitive. Given the lack of a lengthy claim history of the young drivers of this portfolio,
the BM levels of the insured drivers are not yet fully developed and stabilized. The majority of
the drivers have a BM level between 4 and 12 for which the effect on claim frequency is increasing.
For the highest BM levels, however, the effect is declining, albeit with a high uncertainty due to
a lack of observations in this region. Furthermore, the effect does not decrease for the lowest
BM levels. This can be explained by an improper use of the BM scale as a marketing tool to
attract new customers. By lowering the initial value of the BM scale, the insurer can reduce the
premium that a potential new policyholder must pay.

When it comes to characteristics of the car, insured drivers driving older vehicles have an
estimated higher risk of accidents. The smooth effect of age vehicle is estimated as a straight
line on the predictor scale in the classical and hybrid models. The effect of kwatt in the hybrid
models also reduced to a straight line on the predictor scale. When the insured vehicle has
more horsepower, the estimated expected number of claims is lower. The categorical predictor
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fuel shows that vehicles using petrol have an estimated lower risk of accidents compared with
diesel vehicles. This difference is, however, smaller and no longer statistically significant in the
hybrid models compared with the classical model, where it serves as a proxy variable for the
distance driven. Indeed, vehicles using diesel as opposed to petrol are driven significantly more
kilometres in our portfolio (18940 versus 13267 yearly on average).

In both the classical and the hybrid models, the policies without material damage cover have
a 20% lower estimated expected number of claims. This may be explained by the reluctance of
some insured drivers without additional material damage coverage to report small accidents.
Because BM mechanisms are independent of the claim amount, filing a claim leads to premium
surcharges which may be more disadvantageous for policyholders than for them to defray the
third-party costs. This phenomenon is known as the hunger for bonus (Denuit et al., 2007).
Insured drivers with an additional material damage cover are less inclined to do so since their
own, first-party costs are also covered, making it more worthwhile to report a claim at fault.
Including telematics variables in the model does not affect this discrepancy.

The geographical effect (postal code), plotted on top of a map of Belgium for the classical
and hybrid models, captures the remaining spatial heterogeneity based on the postal code where
the policyholder resides. For the classical model, the graph shows higher claim frequencies for
urban areas like Brussels in the middle, Antwerp in the north and Liège in the east and lower
claim frequencies in the more sparsely populated regions in the south. The geographic variation,
however, decreases strongly in the hybrid models because of the inclusion of telematics predictors
that are not taken into account in the classical model. The EDF corresponding to the spatial
smooth reduced from 15.8 in the classical model to 4.1 and 4.4 in the time and metre hybrid
model respectively. This is satisfactory as it means that, instead of overrelying on geographical
proxies, the hybrid models are basing the insurance premium on actual differences in driving
habits, which are more closely related to the accident risk.

5.3.2. Telematics variables
In the metre hybrid and telematics models, distance is used as the rating unit. Similar to the
time effect in the classical and time hybrid model, the effect of the risk exposure is estimated as a
monotone increasing function. The accident risk, however, does not vanish for insured drivers
who drive hardly any kilometres during the observation period.

The yearly distance is used in the time hybrid model, which uses time as exposure, to differ-
entiate between drivers who travel many versus few kilometres yearly. In this way, the distance
driven is rescaled yearly (see Section 3.2) and used as an additional risk factor having a weaker
effect on the claim frequency compared with the metre hybrid and telematics models where
distance is used as a rating unit. In both hybrid models and the telematics model, the estimated
average distance effect shows lower claim frequencies for insured drivers who on average drive
long distances.

Our modelling approach using compositional predictors separates on the one hand the effect
of an overall increase in the driven distance and on the other hand the effect of a change in
the division of the driven distance into different categories. This allows us qualitatively and
quantitatively to interpret and visualize the effect of individual driving habits on the expected
claim frequencies.

The clr-transforms of the model coefficients related to the compositional road type predictor
in the telematics model show how insured drivers who drive relatively more on urban roads
have higher claim frequencies and insured drivers who drive relatively more on the ‘other’
road type have lower claim frequencies. In the hybrid models, these effects head in the same
direction with the exception that motorways are perceived as riskier. The elevated accident risk
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Fig. 7. Representations in the ilr-, simplex and clr-space of the estimated regression parameters in the
time hybrid model with respect to the compositional predictor term road type (with components urban, other,
motorways and abroad ) and the average compositional data vector without structural 0s

for insured drivers driving more on urban roads is in line with Paefgen et al. (2014), where the
driven distance is divided over ‘highway’, ‘urban’ and ‘extra-urban’ road types. They, however,
neglected the compositional nature of this predictor in the analysis and did not incorporate any
of the classical policy risk factors in the logistic regression model. In Ayuso et al. (2014), the
percentage of urban driving was considered an important variable to predict either the time or
the distance to the first accident, although percentages driven on different types of road were
not considered. Using either a quadratic effect or a categorical effect (urban driving > 25%) in
Weibull regression models shows how increased percentages of urban driving reduce both the
expected time and the distance to the first accident.

The estimated model coefficients βroad of the compositional road type predictor and the
corresponding simplicial gradient broad and clr-transform clr.broad/ are presented in Fig. 7.
On the basis of the latter we can quantitatively interpret the effect of road type in the time
hybrid model. For instance, a relative ratio increase of 50% to the ‘other’ road type compo-
nent, with constant ratios of the remaining components, results in a multiplicative decrease of
1:50−0:104 = 0:959 for the expected number of claims. Applied to the compositional road type
data vector x = .0:442, 0:282, 0:252, 0:024/ of Fig. 7, this relative ratio increase to the ‘other’
road type component would change the compositional vector to x̃ = x ⊕ C.1, 1:50, 1, 1/T =
.0:387, 0:371, 0:221, 0:021/T. On the basis of our projection approach for structural 0s, the in-
terpretation is similar for a relative ratio change to a non-zero component of observations with
a certain 0 pattern. In particular, for someone who did not drive abroad we base the interpre-
tation of the effect on the clr-transform of the related subcomposition, i.e. clr.broad

1110/= .0:038,
−0:099, 0:061/T, obtained by recentring clr.broad/ without the abroad component near zero.

The compositional time slot predictor in the hybrid and telematics models indicates that
policyholders who drive relatively more in the morning have lower claim frequencies and pol-
icyholders who drive relatively more in the evening and during the night have higher claim
frequencies. For instance, the multiplicative response effect of a relative ratio increase of 50% in
the evening component (between 7 p.m. and 10 p.m.) is equal to 1:500:155 = 1:065. In Paefgen
et al. (2014), the accident risk is considered to be lower during the daytime (between 5 a.m.
and 6 p.m.) compared with the evening (between 6 p.m. and 9 p.m.), based on the estimated
coefficients of linear model terms of the log-transformed percentages of the distance driven in
these time slots. Ayuso et al. (2014) reported how a higher percentage of driving at night reduces
the expected time to a first accident, where the effect was modelled linearly, with no further
distinction in time slots.

6. Conclusion

Telematics insurance offers new opportunities for insurers to differentiate drivers on the basis
of their driving habits and style. By aggregating the telematics data at the level of the policy
period by policyholder and combining them with traditional policy(holder) rating variables, we
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construct predictive models for the frequency of MTPL claims at fault. GAMs with a Poisson
or NB response are used to model the effects of predictors in a smooth, yet interpretive way. The
divisions of the driven distance into four road types and five time slots forms a challenge from
a methodological point of view that has not been addressed in the literature. We demonstrate
how to include this information as compositional predictors in the regression and formulate a
new way of how to interpret their effect on the average claim frequency.

Our research reveals the significant influence of the use of telematics data through an exhaus-
tive model selection and an assessment of the predictive performance. The time hybrid is the
best model according to AIC and all proper scoring rules, closely followed by the metre hybrid
model. The model using only telematics variables is ranked higher than the best classical model
using only traditional policy information.

The compositional predictors show that a further classification of the distance driven based
on the location and the time is relevant. Our contribution indicates that driving more on urban
roads or motorways and in the evening or at night contributes to a riskier driving pattern. The
best hybrid models highlight that certain popular pricing factors (gender, fuel and postal code)
are indeed proxies for the driving habits and part of their predictive power is taken over by the
distance driven and the splits into different categories. Hence, we demonstrate by using careful
statistical modelling how the use of telematics variables is an answer to the EU regulation on
insurance pricing practices that bans the use of gender as a rating factor.

In the case of multiple insured drivers, it is unclear which characteristics (such as age, experi-
ence and gender) the insurer must use to determine the premium. We proceed, in consultation
with the Belgian insurer who provided the data, by identifying the driver with the lowest experi-
ence as the main driver and use his policyholder information as predictors in the regression for
tarification purposes. In practice, when a parent adds a child as a driver in the policy, a premium
surcharge is often waived to prevent the policyholder from lapsing. By shifting towards pricing
based on telematics information as we do in this research, this tarification issue becomes less of
a problem because the premium will be usage based.

Pricing using telematics data can be seen as falling in between a priori and a posteriori pricing.
The driving habits and style are not traditional a priori variables since they cannot be determined
before the policyholder starts to drive. Insurers now reason that available UBI products are
purchased only by drivers who consider themselves to be either safe or low kilometre drivers.
This potential form of positive selection, which could not be quantified on the basis of the
studied portfolio alone, validates an upfront discount on the traditional insurance premium.
On the basis of the telematics data collected over time, insurers can set up a discount structure
to adapt the premium in an a posteriori way. The discount structure can depend on the actual
distance driven, with a further personalized differentiation based on the riskiness of the profile
as perceived from the driving habits of the insured person. The insights that are provided in
this paper reveal which elements can be adopted in such a structure, for instance, by making
kilometres driven on urban roads, or in the evening or at night more expensive.

In conclusion, telematics technology provides means to insurers to align premiums with risk
better. Pay as you drive insurance is a first step in which the number of driven kilometres, the
type of road and the time of day are combined with the traditional self-reported information
such as policyholder and car characteristics to calculate insurance premiums. A next step is pay
how you drive insurance, where on top of these driving habits also the driving style is considered
to assess how risky someone drives by monitoring for instance speed limit infringements, harsh
braking, excessive acceleration and cornering style. The ideas and statistical framework that
were presented can be extended to incorporate such additional pay how you drive predictors if
they are available.
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