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Abstract
1.	 GPS-tracking devices have been used in combination with a wide range of ad-

ditional sensors to study animal behaviour, physiology and interaction with their 
environment. Tri-axial accelerometers allow researchers to remotely infer the be-
haviour of individuals, at all places and times. Collection of accelerometer data is 
relatively cheap in terms of energy usage, but the amount of raw data collected 
generally requires much storage space and is particularly demanding in terms of 
energy needed for data transmission.

2.	 Here, we propose compressing the raw accelerometer (ACC) data into summary 
statistics within the tracking device (before transmission) to reduce data size, as a 
means to overcome limitations in storage and energy capacity.

3.	 We explored this type of lossy data compression in the accelerometer data of 
tagged Bewick's swans Cygnus columbianus bewickii collected in spring 2017. Using 
software settings in which bouts of 2 s of both raw ACC data and summary sta-
tistics were collected in parallel but with different bout intervals to keep total 
data size comparable, we created the opportunity for a direct comparison of time 
budgets derived by the two data collection methods.

4.	 We found that the data compression in our case yielded a six times reduction in 
data size per bout, and concurrent, similar decreases in storage and energy use of 
the device. We show that with the same accuracy of the behavioural classification, 
the freed memory and energy of the device can be used to increase the monitoring 
effort, resulting in a more detailed representation of the individuals’ time budget. 
Rare and/or short behaviours, such as daily roost flights, were picked up signifi-
cantly more when collecting summary statistics instead of raw ACC data (but note 
differences in sampling rate). Such level of detail can be of essential importance, 
for instance to make a reliable estimate of the energy budgets of individuals.

5.	 In conclusion, we argue that this type of lossy data compression can be a well-con-
sidered choice in study situations where limitations in energy and storage space 
of the device pose a problem. Ultimately, these developments can allow for long-
term and nearly continuous remote monitoring of the behaviour of free-ranging 
animals.
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1  | INTRODUC TION

The use of biologging has increased enormously in ecology and 
allows for remote observation of wild animals (Cooke et al., 2004; 
Wilmers et al., 2015). GPS-tracking devices have been used in com-
bination with heart rate measurements (Duriez et al., 2014; Wascher, 
Kotrschal, & Arnold, 2018), temperature sensors (Ryan, Petersen, 
Peters, & Grémillet, 2004; Sala, Pisoni, & Quintana, 2017), magne-
tometers (Laplanche, Marques, & Thomas, 2015; Noda, Kawabata, 
Arai, Mitamura, & Watanabe, 2014), accelerometers (Brown, Kays, 
Wikelski, Wilson, & Klimley, 2013; Nathan et  al., 2012) and even 
cameras (Patel, Stocks, Fisher, Nicolls, & Boje, 2017; Watanabe, 
Mitani, Sato, Cameron, & Naito, 2003) to learn about animal be-
haviour and the interaction of individuals with their environment. 
The remote tracking of individual animals has solved many questions 
that were previously beyond reach (e.g. Mansfield, Wyneken, Porter, 
& Luo, 2014; Williams et al., 2014) and the observations, objective 
and undisturbed by the observer, are valuable for both fundamental 
(Watanabe, Ito, & Takahashi, 2014) and applied ecological research 
(Wilson, Wikelski, Wilson, & Cooke, 2015). Technological develop-
ments have made the devices increasingly smaller (Kays, Crofoot, 
Jetz, & Wikelski, 2015) so that nowadays almost any mammal, bird 
or reptile species, and even amphibians and invertebrates can be 
remotely observed to answer research questions about their biol-
ogy (Cagnacci, Boitani, Powell, & Boyce, 2010; Kissling, Pattemore, 
& Hagen, 2014). Although this development has also reduced the 
effects of a tracking device on the survival and behaviour of the ani-
mal, this can never be completely excluded and should be monitored 
closely (Lameris et al., 2018). Practical limitations regarding battery 
weight (and thus device weight) were reduced by the development 
and usage of solar energy to recharge the battery while attached 
to the animal (Bouten, Baaij, Shamoun-Baranes, & Camphuysen, 
2013; Tomkiewicz, Fuller, Kie, & Bates, 2010). This reliable and 
predictable power source elongated deployment time of devices 
in many environments apart from, for example, the marine domain 
(Adoram-Kershner et  al., 2017), under dense canopy cover (Kays 
et al., 2011), or in winter at high latitudes (Therrien, Gauthier, & Bêty, 
2012). Moreover, the use of remote download techniques such as 
Bluetooth, radio- and GSM networks made re-catching of the indi-
vidual redundant, allowing for increased data yield per device de-
ployment (Bouten et al., 2013; Tomkiewicz et al., 2010) and allowing 
more species to be tracked (e.g. those that die during deployment or 
that do not return to accessible places for tag retrieval). With these 
practical limitations being addressed, the road is paved for longer 
deployment time and high(er) frequency measurements to answer 
more detailed research questions about individual animal behaviour 
(Allan et al., 2018; Wilmers et al., 2015). For example, due to long 

deployment it was shown that migratory performance of Black Kite 
Milvus migrans increases with age through a combination of individ-
ual improvement and selective mortality of poor performers (Sergio 
et al., 2014). And thanks to frequent measurements the extraordi-
nary locomotor dynamics of hunting cheetahs Acinonyx jubatus were 
described (Wilson et al., 2013).

The high frequency required for answering detailed research 
questions comes at the cost of storage space and energy use for data 
collection and transmission. The use of multiple sensors or intensive 
use of a single sensor then becomes a trade-off: if additional sensor 
data are collected, fewer fixes can be stored on the memory of the 
tracking device (Bouten et al., 2013; Wilson et al., 2015). For devices 
that need to be retrieved to get the data, often storage space can be 
limiting so that the research is restricted in either deployment time 
or frequency of sampling, for example many seabird studies use tags 
in which individuals are followed for only several days (Dean et al., 
2012; Shaffer et  al., 2017). Remote data download, on the other 
hand, mainly puts pressure on the energy balance of the device since 
making connection with the download system and data transmission 
requires a considerable amount of energy. In this case, the speed of 
the network and energy available for uploading become limiting with 
high-frequency data collection.

With respect to the limitation in data transmission, there are, 
broadly speaking, two kinds of solutions: (a) increasing the capac-
ity of the network and (b) decreasing the amount of data that need 
to be transferred by clever data compression. The first solution is 
aimed at the bandwidth of a certain system, that is, the amount of 
data that can be transmitted per time interval through the network. 
Improvements of this kind have indeed been implemented, for ex-
ample in the Global System for Mobile communications (GSM). 
Technological developments have advanced the communication via 
this network from analogue radio signals (1G) to digital radio sig-
nals (2G) and then step-wise increased the bandwidth enormously 
(3G, 4G and consecutively 5G networks) so that it can now support 
global telecommunication (Tondare, Panchal, & Kushnure, 2014). 
Although great profit can be achieved from this type of advance-
ment, changing the bandwidth of the network used for biologging 
devices is often beyond the researcher's control. In case of the GSM 
network, for example, it depends on the availability of the network 
at the location of the animal. The second solution, on the other hand, 
is within control, and already widespread in many aspects of digi-
tal modern life. Files that are too big to send as an attachment are 
often compressed and then extracted (e.g. in the ZIP file format), and 
for images, size can be reduced by storing it as a Portable Network 
Graphic (PNG). These are both common examples of ‘lossless’ data 
compression techniques, referring to the fact that no information is 
lost by the data compression.

K E Y W O R D S
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An alternative is the so-called ‘lossy’ data compression, when 
some data are lost. A popular lossy compression method for im-
ages is JPEG, where the image visualization is stored as block-wise 
quantized discrete cosine transform coefficients (Fridrich, Goljan, 
& Du, 2015). This reduces the quality of the image, but the content 
is mostly still clear enough for its purpose. Losing information may 
sound unwanted, but often there is quite some redundant infor-
mation in a large data file that can be lost without compromising 
the output. For example in a video, background features shot by 
the same camera often do not change for the duration of a scene. 
These less complex ‘chunks’ of the video, in terms of motion and 
detail, can be encoded separately and with a lower bitrate, thus 
reducing the data size of that part. This ‘chunk-based’ encoding 
allows for high-quality video streaming even in low-bandwidth 
internet connections (De Cock, Li, Manohara, & Aaron, 2016; 
Norkin, Cock, Mavlankar, & Aaron, 2016).

Similar solutions of lossy data compression could be advanta-
geous in biologging. In the challenging marine environment of the 
Antarctic, in terms of tag retrieval and data transmission, such solu-
tions have already been applied to study behaviour in seals. To be 
able to collect data on prey catch dives in these animals, an abstract 
from peaks in acceleration indicative of rapid head movements was 
calculated on-board the data logger (Cox et al., 2018; Heerah, Cox, 
Blevin, Guinet, & Charrassin, 2019). Also in a less challenging environ-
ment, compressing acceleration data can be advantageous to over-
come storage and bandwidth limitations. Liechti et al. (2018) recently 
showed that only storing a summary of acceleration data in the z-axis 
enabled the collection of data on the full migratory journey of small 
trans-Saharan migrants, something that was not possible before. One 
example of lossy data collection is a conditional sampling regime, 
where the frequency of sampling is not continuously the same. The 
exact frequency of sampling can then, for example, be determined 
by the researcher (Bouten et  al., 2013), based on the energy level 
of the device (Dokter et al., 2018; see Appendix A), or the inferred 
behaviour of the focal animal (e.g. flight detection, based on GPS-
ground speed [Harel, Horvitz, & Nathan, 2016] or the overall activity 
level [Brown et al., 2012]). Although this can reduce the data size over 
the study period, it is still a compromise as continuous and high fre-
quency long-term sampling is not achieved, and one has to choose 
beforehand which time periods or behaviours will be monitored with 
high frequency and which are of less interest (and thus ‘lost’).

A biologging sensor that may be particularly suitable for data 
compression is the accelerometer (ACC) as has recently been sug-
gested in the technological literature (le Roux, Wolhuter, Stevens, 
& Niesler, 2018). Tri-axial accelerometer sensors are becoming an 
increasingly common addition to GPS-tracking devices. Tri-axial 
accelerometers measure the rate of change in directional speed 
along three orthogonal axes, traditionally called x or ‘surge’, y or 
‘sway’ and z or ‘heave’ (Yoda et al., 2001). The first reported use 
of accelerometer data in ecology was in Adélie penguins Pygoscelis 
adeliae, where ACC data enabled the researchers to distinguish 
seven types of behaviour (Yoda et al., 1999). ACC data have been 
measured in two ways, either continuously for short deployments 

of several days (Chimienti et al., 2016; Wilson, Shepard, & Liebsch, 
2008) or for longer deployments up to several years, in short 
bouts (Flack, Nagy, Fiedler, Couzin, & Wikelski, 2018; Yoda et al., 
1999). Collection of ACC data is relatively cheap in terms of en-
ergy usage; however, the storage of the data requires a lot of 
space and the data are particularly demanding in terms of energy 
needed for data transmission (Wilson et al., 2008). For example, 
if the ACC sensor collects tri-axial data at a resolution of 1 byte 
with a duration (referred to as bout length in the remainder of this 
study; for a full explanation of terms see Figure 1) of 2  s, and a 
signal frequency of 20 Hz, it means that 120 bytes are stored in 
the device (2 s × 20 Hz × 3 axes) per bout. For species that live in 
remote areas and are therefore not easy to reach or observe, and 
that one would like to follow long term (preferably year-round, if 
not multiple years, Wikelski et al., 2007), this amount of data can 
altogether easily become problematic and compromise either de-
ployment time or the number of measurements taken.

In ecology, there is reluctance towards the idea of lossy data 
compression because of the loss of raw data and potentially im-
portant information in the process. Here we propose and test a 
method for lossy data compression by reducing the raw ACC data 
to summary statistics per ACC bout and discuss its advantages and 
disadvantages. This type of data compression reduces the amount 
of data that need to be stored, and thus the amount of bytes that 
need to be transmitted by the device. Using this type of data com-
pression, the monitoring coverage of data collection (either by re-
ducing the bout interval between measurements, increasing the 
frequency or increasing the bout length) can be greatly improved, 
by enabling higher frequency monitoring or longer tracking periods.

This study presents a methodological approach to compress the 
raw accelerometer data within the device to summary statistics and 
simultaneously decrease the bout interval between sampling bouts. 
We calculated and compared time budgets of free-ranging Bewick's 
swans Cygnus columbianus bewickii derived from both raw and sum-
mary statistic ACC data collected in parallel.

2  | MATERIAL S AND METHODS

2.1 | Study species

The Bewick's swan is a long-distance migratory bird, which in the 
western part of its range, winters in North-Western Europe and 
breeds at the European Russian tundra (Rees, 2006). The migration 
route and breeding area of this population is well known due to ex-
tensive tracking efforts with PTT transmitters and GPS loggers in the 
past (Beekman, Nolet, & Klaassen, 2002; Nuijten et al., 2014). In the 
summer of 2016 and 2017, observations were carried out in three 
zoos of captive Bewick's swans equipped with GPS/GSM-tracking de-
vices to ground-truth the accelerometer data and build a behavioural 
classification model (R.J.M. Nuijten, E.F. Prins, J. Lammers, C. Mager, 
& B.A. Nolet, unpubl. data). In the winter of 2016–2017, 30 free-
ranging Bewick's swans were equipped with these tracking devices in 
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the province of Noord-Brabant (The Netherlands). Tracking data from 
spring 2017 (1 February–31 May) of 10 individuals in which both raw 
ACC and ACC summary statistics were collected at high rate was used 
to apply the behavioural classification model and create individual 
time budgets (this study).

2.2 | Device and settings

We used custom designed, 3D-printed GPS/GSM neck-collars with 
a weight of 70 g, an inner diameter of 51 mm and a height of 80 mm. 
The weight of the collar (including the tag with sensors) repre-
sented 1.1% and 1.2% of the average weight of adult and non-adult 
Bewick's swans, respectively, based on a dataset of 295 Bewick's 
swans caught in the Netherlands between 2005 and 2017. During 
previous observations of captive Bewick's swans with such collars, 
the swans with the collars preened more at first but no effect on 
the behaviour of the swans was found after 4 weeks (Nuijten et al., 
2014). The collar contained, apart from the GPS sensor, a tri-axial 
accelerometer and a water sensor, and sent its data remotely via 
the GSM network. The accelerometer collected data with a bout 
length of 2 s and a frequency of 20 Hz (Figure 1).

The accelerometer and water sensor sampling were pro-
grammed separately rather than simultaneously with the GPS 
fixes, to be able to maintain a fixed sampling scheme for the water 
sensor, while the GPS and accelerometer settings were made 
dependent on battery voltage of the device (see Appendix A for 
an overview of all settings). In the spring season, the period of 
which we used the data in this study, GPS fixes were collected 
every 15 min (Appendix A). Raw ACC data were stored also every 
15  min, and ACC data summarized to summary statistics every 
2 min (see Section 2.3). The water sensor recorded water (1) or no 
water (0) every second. The collar connected to the GSM network 
once a day to transmit the data. The settings could not be changed 
after deployment.

2.3 | Raw ACC and summary statistics 
data collection

The accelerometer, as mentioned before, is a very demanding sensor 
in terms of energy needed for transmission of the data. Combining the 
frequency, the axes and bout length for the raw ACC data in this study, 
every bout adds up to 120 bytes per bout (20 Hz × 3 axes × 2 s). In our 

F I G U R E  1   Generic example of accelerometer output with time (min:sec) on the horizontal axis and rate of change (Amplitude) in speed, in 
the three acceleration axes (x, y and z), on the vertical axis. The three coloured data series represent the data from the three orthogonal axes 
of the accelerometer: x (blue), y (red) and z (green). Bout length and bout interval represent the duration of the measurement and the interval 
between the accelerometer (ACC) measurements, respectively, and are graphically represented in the figure just above the horizontal axis. In 
our study, bout length was 2 s and bout interval 1.58 min for the summary statistic measurements (thus one measurement of 2 s was taken 
every 2 min), and 2 s and 14.58 min, respectively, for the raw ACC measurements (one measurement of 2 s every 15 min). On the x-axis in 
the figure ‘mm’ equals ‘02’ for the SS method and ‘15’ for the raw ACC method. Frequency (graphically represented just below horizontal 
axis) and Resolution (graphically represented left of the vertical axis) depict the settings for the accelerometer sensor as they were used in 
this study. Frequency refers to the sampling frequency in Hertz, in this case 20 Hz. Resolution refers to the level of detail of each x, y or z 
measurement within a bout in bits (b). Resolution in this study is 8 b, which corresponds to 1 byte and results in 28 = 256 different potential 
‘levels’ for every measurement of x, y and z between −3 and 3 g. One bout of 2 s and 20 Hz thus comprises of 120 bytes (see main text). For 
graphical purposes, we did not visualize all 256 levels here, therefore each unit on the Resolution scale in the figure represents 32 levels. 
For the summary statistics, the recorded x, y and z values within a bout are summarized to statistics in the device before being stored and 
transmitted
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study (i.e. 1 bout every 15 min) this equals 480 bytes per hour and 
11,520 bytes per day for the raw acceleration data only. That is exclud-
ing metadata such as date, time, individual ID, column labels, etc.

Compressing the amount of data already within the tracking de-
vice by reducing the raw ACC numbers to summary statistics (SS) 
such as average × or Overall Dynamic Body Acceleration (ODBA; see 
Appendix B for an overview of all SS used in this study) over the bout 
length reduces the amount of data that need to be stored and trans-
mitted per bout. Here we used 20 summary statistics to compress the 
raw ACC data per ACC bout, which equals 20 bytes per bout (excluding 
metadata), a reduction of (120/20) six times when compared to a raw 
ACC bout. To keep the total amount of data approximately the same 
between the two data collection methods (for the purpose of com-
parison), we increased the number of ACC bouts per time unit for the 
SS method accordingly. We therefore programmed the ACC sensor of 
each collar to collect SS ACC every 2 min (excluding the time points 
when raw ACC was collected), to be able to compare two datasets 
collected with the same storage and energy capacity of the device.

2.4 | Behavioural classification and 
statistical analysis

We used an ensemble learning decision tree method (random for-
est, Liaw & Wiener, 2002) to build a classification tree from the 

annotated acceleration data obtained in the zoo, complemented 
with flight data from free-ranging Bewick's swans as flapping 
flight is very easy to distinguish from other behaviours (Bishop 
et  al., 2015; R.J.M. Nuijten, E.F. Prins, J. Lammers, C. Mager, & 
B.A. Nolet, unpubl. data; Shamoun-Baranes, Bouten, Loon, Meijer, 
& Camphuysen, 2016). When working with raw ACC data, it is a 
common practice to reduce this data to classifiers (i.e. summary 
statistics) before applying the classification model (Bom, Bouten, 
Piersma, Oosterbeek, & Gils, 2014; Shamoun-Baranes et al., 2012). 
We used 21 statistics (20 ACC summary statistics + the informa-
tion from the water sensor) to classify the behaviours in this study 
(Appendix B). The same 20 summary statistics were calculated in 
the SS and raw ACC bouts, the sole difference between the data-
sets being the moment of calculation (i.e. before and after trans-
mission respectively; cf. Figure 2a,b). Five-minute aggregates of 
the water sensor data (i.e. 300  s) were aligned to the ACC data 
based on the satellite timestamps of both measurements. If for 
≥30 s within this 5-min aggregate water was recorded, the over-
lapping bouts were assigned a ‘1’, otherwise a ‘0’.

The behavioural classification for both the raw ACC data and the 
SS data from the free-ranging individuals was performed with the 
same classification tree which had an overall classification accuracy 
of 91% (recall: 0.89; precision: 0.92) and included the behaviours 
sleeping, resting, terrestrial active (combination of terrestrial for-
aging and preening behaviour), swimming, aquatic foraging and 

F I G U R E  2   Graphical representation of data collection schemes in this study. (a) Raw accelerometer (ACC) data scenario. Raw acceleration 
data are collected by the biologging device and sent via the network to a server. The raw data represent a large amount of data and transmission 
is costly in terms of energy usage. Only after transmission, the ACC data will be summarized and classified to behaviour. (b) Summary statistics 
scenario. Raw acceleration data are collected by the biologging device and summary statistics per bout from these ACC data, such as average 
x or Overall Dynamic Body Acceleration (ODBA) are calculated on-board. The summary statistics comprise less data and thus take less energy 
to be transmitted to the server. From the summary statistics, behaviour can be classified for further analysis. (c) Behaviour indicator scenario. 
Raw acceleration data are collected by the biologging device, summary statistics are calculated and the behaviour is classified on-board. This 
results in only a single indicator being sent via the network to the server, using only very little energy for transmission. Scenarios (a) and (b) are 
compared in this study, scenario (c) represents a next step in the developments of accelerometer research
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flying (R.J.M. Nuijten, E.F. Prins, J. Lammers, C. Mager, & B.A. Nolet, 
unpubl. data). The classified data were used to visualize daily time 
budgets for free-ranging individual swans in spring, once for the 
raw ACC and once for the SS dataset over the same time period. 
Additionally, proportions of each behaviour per day were calculated 
for both the raw ACC and the SS data. Sample sizes for the daily pro-
portions were maximally 96 per day for the raw ACC data (one ACC 
bout every 15 min) and 672 per day for the SS data (one ACC bout 
every 2  min, excluding the time points when raw ACC data were 
collected).

To assess whether the different datasets yielded different time 
budgets, we calculated the mean difference between raw ACC and 
SS-based daily proportions per behaviour, and calculated the prob-
ability of this observed mean difference originating by chance using 
a non-parametric permutation test. We did this by randomizing of 
the sign of the difference between raw ACC-based proportions and 
SS-based proportions per day, and taking the mean of these differ-
ences. By repeating this 10,000 times, we created a distribution of 
randomized mean differences between raw ACC and SS proportions 
against which the observed mean difference was tested.

3  | RESULTS

On-board calculation of summary statistics greatly reduced the 
amount of data per bout to be transmitted by the biologging devices. 
Concerning the accelerometer data only, we reduced our data size per 
2 s bout six times from 120 bytes (2 s × 20 Hz × 3 axes) to 20 bytes, by 
storing 20 summary statistics on-board the biologgers rather than the 
raw tri-axial accelerometer data. Including metadata such as individual 
ID and timestamp, we realized a 4.7× reduction in the amount of data 
per bout (127 vs. 27 bytes, respectively). This resulted in a similar de-
crease in energy needed for transmission of the data. Transmission of 
the raw ACC data over the network took approximately 5  min and 
2,639 µWh for all data of 1 day. Transmitting the SS data took roughly 
1 min and required 528 µWh from the collar. The extra energy needed 
for the calculation of the SS within the device was only 0.239 µWh 
by which 672 SS bouts of 27 bytes were created (i.e. 1 day worth of 
SS data). So by ‘paying’ 0.239 µWh as a cost for calculation, and with 
similar circumstances in terms of bandwidth and connection with the 
network for both data collection methods, a 5× reduction (=2639/
(528 + 0.239)) in energy use for transmission was realized.

Both the raw ACC and SS data were used to create time budgets 
for each individual (see Figure 3 for an example). Within individuals, 
the difference in bout interval between the two methods is clearly 
visible in the time budget graphs (Figure 3). This difference in bout 
interval resulted in some biologically relevant behaviours to be bet-
ter represented by the SS compared to the raw ACC-based data. For 
instance, roost flights, a twice-daily behaviour of relatively short 
duration that Bewick's swans perform to travel between sleeping 
and foraging areas in the morning and evening, was detected on sig-
nificantly more occurrences (paired t test: N = 14 days; t = 4.8963; 
p = .001) in the SS data than the raw ACC data at the end of the winter 

season (i.e. the first 14 days of our study period; SS: 20.11 ± 2.1 and 
raw ACC: 10.6 ± 2.2 days [M ± SE]) when the swans are known to 
perform this behaviour.

We found a significant difference between the raw ACC and SS-
based average daily proportions for all behaviours over the study 
period (p ≪ .0001). All permutation tests had a sample size of 1,200 
(120 days × 10 individuals). The proportion of flying (observed mean 
difference −0.007), standing (−0.011), terrestrial active (−0.056) and 
aquatic foraging (−0.001) was higher when based on SS data when 
compared to raw ACC data, while the proportion for swimming 
(observed mean difference 0.068) and sleeping (0.007) was lower 
(Figure 4).

4  | DISCUSSION

We explored the use of lossy data compression in biologging de-
vices as a solution to overcome limitations in energy capacity of 
the device, specifically with regard to the accelerometer sensor. 
Using ACC data collected in free-ranging Bewick's swans as an ex-
ample we show that lossy data compression reduces the size of the 
ACC data that need to be stored and transmitted by the tracking 
device without loss of biological information. The exact reduction 
factor depends on the settings of the accelerometer (bout length, 
frequency, amplitude and resolution; Figure 1) and the number of 
SS stored (Appendix D). The freed capacity of the device using 
the SS data collection method instead of raw ACC can be used 
to decrease bout interval (as was done in this study), or increase 
the frequency or resolution of the ACC measurements during the 
setup of the study which will lead to an increased level of detail 
in the output data (see e.g. Bom et al., 2014; Broell et al., 2013). 
Alternatively, the freed capacity can be used to increase the fre-
quency or resolution of another sensor, to elongate the deploy-
ment time of the device or by including other (data-rich) sensors 
such as a heart rate sensor or sensors that measure features from 
the environment. These latter scenarios were not considered in 
this study, but can have huge advantages in studies where ACC 
data transmission is currently limiting.

Both the raw ACC and SS data were classified with the same 
behavioural model that was built based on the zoo observations 
(R.J.M. Nuijten, E.F. Prins, J. Lammers, C. Mager, & B.A. Nolet, un-
publ. data). In such a supervised classification model, raw ACC data 
are commonly reduced to summary statistics before classification 
can be done (Bom et al., 2014; Shamoun-Baranes et al., 2012), so our 
method does not differ from classical ACC analyses in that respect. 
In the classification, we used the same summary statistics as were 
calculated for the SS bouts within the device as these represent such 
a broad range of statistics that all behaviours should be represented 
by one or a combination of several of them. This was confirmed by 
the high performance of the model (91% correct classification over-
all). Also, our final behavioural classification model only used four 
out of the 21 statistics that were collected (ODBA, maximum z-
value, mean z-value and the water sensor; R.J.M. Nuijten, E.F. Prins, 
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J. Lammers, C. Mager, & B.A. Nolet, unpubl. data), so the selection 
of summary statistics before deployment of the devices could have 
been more restrictive, resulting in a more than 10-fold reduction in 
data size per bout. This shows that the use of SS in accelerometer 
data collection can even increase the biologging capacity of this sen-
sor more than we demonstrate in this study.

Application of the model on both SS and raw ACC datasets yielded 
the classified datasets that were used to create the time budgets for 
the individual swans for spring 2017. Although it is generally assumed 
that a discontinuous but structured ACC sampling can be used validly 
as a proxy for continuous measurement of behaviour (Brown et  al., 
2013), we found a small but statistically significant difference for all 
behaviours when testing for differences between raw ACC and SS-
based daily proportions of behaviour. Although both methods collect 
the same type of data every bout (20 Hz ACC data of 2 s duration), 
there are two differences that could have caused the differences that 
we found. First, the SS method takes more samples of ACC data in the 
same time interval (raw 1: SS 7 bouts in 15 min; Figure 1). This leads 
to a higher monitoring coverage in the SS method. Second, due to this 
higher monitoring coverage, the SS bouts are taken at different time 

points than the raw ACC bouts. The differences in the proportions are 
not unidirectional (i.e. that SS is always higher or always lower than 
raw ACC), and cannot be, because the behaviours are proportional 
and thus not independent from each other (Appendix E). For example, 
when a swan increases the time spent foraging, there is less time for 
other activities (e.g. sleeping). This is a property of proportional data, 
as all proportions together must sum to 1. We found that especially 
both foraging behaviours were negatively correlated (so when more 
time was spent on aquatic foraging, less time was spent on terrestrial 
foraging [classified as terrestrial active in this study]; Pearson correla-
tion coefficient −0.58; Appendix E). Due to the higher monitoring cov-
erage of the SS bouts (i.e. more samples to represent the continuum 
of an animal's behaviour), we believe that the proportions and time 
budgets calculated based on these data give a better representation of 
the real behaviour of the swans than the proportions and time budgets 
based on the raw ACC. And although significantly different, the actual 
differences between the two datasets is so small that it can be ques-
tioned whether this implies a biologically relevant difference.

The added value of the SS ACC collection method, through 
a decreased bout interval in our case, is especially visible in rare 

F I G U R E  3   Example of a daily time budget for the spring migration of individual 233E with time on the y-axis and date (1 February–31 
May) on the x-axis. (a) is based on the summary statistics data, collected every 2 min, (b) is based on the raw accelerometer (ACC) data, 
collected every 15 min. The different colours indicate the following behaviours: sleeping (blue-grey), resting (grey), terrestrial active (green), 
aquatic foraging (aqua), swimming (dark blue) and flying (red). The black dots represent the latitudinal location of the swan on that specific 
day as collected by the GPS of the neck-collar. For reference, the trajectory of the swan, for the same period, is plotted in the map adjacent 
to the time budget graph (in green). Dotted lines connect the latitudinal location of the swan on the graph to that on the map. Time budgets 
for all 10 individuals are presented in Appendix C
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behaviours or short duration behaviours, since a sensor with a lon-
ger bout interval is more likely to miss these behaviours. Five of 
the behaviours tested here are not considered rare nor of short 
duration (aquatic foraging, terrestrial active, swimming, standing 
resting and sleeping). Flight, however, might be considered rare, 
especially in non-migratory seasons, when flight is mainly used to 
get to and from the roost site (i.e. roost flights), a behaviour that 
tends to last less than 10 min (Nolet, Bevan, Klaassen, Langevoord, 
& Heijden, 2002). We indeed found a significant difference be-
tween the two methods in the number of days that these roost 
flights were detected. For such an important behaviour in terms 
of energy expenditure (Nolet et al., 2002), even small differences 
in duration can have important consequences. Because flight is a 
biologically relevant and expensive behaviour in terms of energy 
use, accurate estimation of its occurrence and duration is valu-
able. For detailed questions with potential management implica-
tions, an underestimation of flight behaviour can have important 
consequences. For example, geese that are ‘scared’ five times a 
day as part of a damage control management, fly more and need to 
compensate for this extra energy expenditure by eating 12%–16% 
more grass (Nolet, Kölzsch, Elderenbosch, & Noordwijk, 2016). 
This compensational feeding could cause more damage to agricul-
tural fields while the scaring was actually meant to decrease the 
damage (Nolet et  al., 2016). To obtain accurate model input for 
such predictions and link them to the feeding and reproductive 
ecology of the species, it is important to be able to estimate the 
time spent on each behaviour as precise as possible.

Reductions of ACC data size, such as using summary statistics as 
we show here, can be advantageous for future biologging studies. 
For example in a study of migratory dark-bellied brent geese Branta 
b. bernicla, the short bouts of raw ACC data that was collected within 
the limits of collar storage and data transmission only allowed for 
a very rough behavioural classification into the categories ‘active’ 

and ‘inactive’ (Dokter et al., 2018). Although this yielded interesting 
results in combination with the GPS data of the same tags, more 
ACC measurements could have increased the understanding of the 
behavioural patterns of these geese in their fuelling and migration 
periods.

Despite the clear advantage of a decrease in data size and the 
accompanying possibility to elongate the deployment time or reduce 
the interval of measurements to obtain a more detailed dataset, the 
method described here might not be suitable for all study systems. 
Proper use of summary statistics requires a thorough understanding 
of the study system and a priori annotation of the behaviour so that 
the summary statistics can be chosen wisely. Only then will these 
predictors be useful in classifying the behaviour of interest after col-
lection of the data. When no prior knowledge on behavioural pat-
terns is present, or the behaviour of interest is difficult to capture 
with commonly used summary statistics or might differ significantly 
among individuals, it is recommended to collect raw ACC data.

If the data compression is used to increase the monitoring cov-
erage (this study), the level of detail obtained using SS opens up the 
opportunity to study specific research questions that are out of 
reach with the data yield from raw ACC, such as the example of the 
roost flights in this study. Using lossy data compression as a means 
to elongate deployment time, one could answer a whole different 
set of questions by potentially tracking individuals for several years 
and compare their time budgets or (migratory) performance (see 
Harel et  al., 2016; Sergio et  al., 2014) across seasons or develop-
mental or life-history stages. A higher monitoring coverage using SS 
not only means a more accurate representation of the time budgets 
but also allows for a more in-depth study of causal factors and driv-
ers of change. However, the data on these (ecological) drivers then 
also need to be very fine-scale which is often not available (Wilmers 
et al., 2015). A solution is to use the animals themselves to collect 
valuable data on their environment by including extra sensors in 
the tracking devices (Kays et al., 2015). This is already successfully 
done in some marine animals (Evans, Lea, & Patterson, 2013; Fedak, 
2004; Sala et al., 2017). For example, elephant seals Mirounga leon-
ina equipped with oceanographic sensors collected data on ocean 
structure and salinity that enabled researchers to map the ice front 
south of 60°S and calculate the sea ice formation rate from upper 
ocean salinity levels on rarely observed sites (Charrassin et  al., 
2008). Collection of environmental data by animal-borne sensors is 
providing very time- and space-specific information that can be de-
pendent on preferences of the animal, but at the same time this gives 
a very accurate look inside the lives of these animals and the condi-
tions they encounter. The collection of environmental variables by 
tracking devices is facilitated using SS to store the data from the 
ACC sensor, since the freed storage space and bandwidth can be 
used for this purpose.

The field of biotelemetry is continuously developing. Just as 
computational developments for the processing of large amounts 
of biologging data produced by sensors like the accelerometer (see 
e.g. Wilson et al., 2008), the methodology in this study can be seen 
as a part of this development. Especially in a well-studied system, 

F I G U R E  4   Daily proportions per behaviour for spring 2017 
(1 February–31 May), M ± SE, N = 1,200. Bars with diagonal lines 
represent the data based on summary statistic data (i.e. the short 
bout interval), bars with dots represent the data based on the 
raw accelerometer (ACC) data (i.e. the long bout interval). For 
all behaviours, the difference between the proportions of both 
methods were statistically significant (p ≪ .0001, indicated by * in 
the figure)
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the behaviours of importance are generally known and these can be 
reliably classified using familiar summary statistics. A next step is to 
use all known information to not only summarize but also to classify 
behaviour on-board already (Figure 2c). This might not be possible 
for all behaviours, but for some very common or easily recognizable 
behaviours such as sleeping or flying in this study it is feasible. The 
biologging device could be programmed in such a way that it would 
attempt to recognize the behaviour performed through time-series 
classification of raw sensor output (see e.g. Wilson et al., 2018). If it 
does recognize the behaviour, it can suffice with storing and trans-
mitting a single number or letter for that bout, indicating the specific 
behaviour. The device could even be programmed in such a way that 
settings (bout interval and bout duration for example) are dependent 
on which behaviour is performed (see Harel et al., 2016 for an exam-
ple of flight detection). If the algorithm does not recognize the be-
haviour, either the SS or the raw ACC data can be stored and (later) 
sent to the researcher (combination between Figure 2b,c). Often the 
behaviours that can be classified with very high accuracy together 
make up a large part of the daily time budget, so this can poten-
tially yield large reductions in data size. With such a ‘smart’ sampling 
schedule, prior knowledge about the species is used optimally and 
the storage space and available bandwidth are used for collecting 
new information about the study species and behaviours of interest. 
This makes the proposed lossy data collection method a very lucra-
tive way of reducing data size. Because the behaviours, classification 
and summary statistics will vary greatly per species and research 
question, a close collaboration with system developers is necessary 
to make the proposed progress in remote animal observation. These 
developments can pave the way for continuous remote monitoring 
of animal behaviour in the future.
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