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and Monte Carlo simulations. Our focus is on the average energy as function of the angle

with the jet axis (the jet shape), and the energy and transverse momenta of hadrons in

a jet (TMD fragmentation). We find that the dependence on the angle (or transverse

momentum) is governed by a power law, in contrast to the double-logarithmic dependence

for the standard jet axis. The effects of the jet radius, jet algorithm, angular resolution and

grooming are investigated. TMD fragmentation is important for constraining the structure

of the proton through semi-inclusive deep-inelastic scattering. These observables are also

of interest to the LHC, for example to constrain αs from precision jet measurements, or

probe the quark-gluon plasma in heavy-ion collisions.
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1 Introduction

The jet axis is aligned with the total momentum of the particles inside the jet, for standard

jet algorithms like Cambridge/Aachen [1–3] and anti-kT [4]. This makes the direction of the

axis sensitive to the recoil of soft radiation, see figure 1, which is undesirable for measuring

the angular distribution of energetic radiation in a jet. Experimentally, it introduces an

unnecessary sensitivity to soft radiation, causing the picture of the jet to be “blurred” by

all kinds of contamination. Theoretically, it complicates calculations due to e.g. non-global

logarithms [5], that arise because the jet axis is sensitive to soft radiation inside but not

outside the jet [6, 7].

We avoid these complications by using a recoil-free axis, that follows the energetic

radiation. Our main focus will be on the winner-take-all (WTA) axis [8, 9], which modifies

the recombination step in clustering algorithms. Specifically, the (massless) momenta pµ1 =

E1(1, n̂1) and pµ2 = E2(1, n̂2) are recombined into the massless momentum pµ = (E1 +

E2)(1, n̂), where n̂ = n̂1 if E1 > E2 and n̂ = n̂2 otherwise. From this definition it is clear

that the effect of soft radiation is limited to its contribution to the energy, which is small.

We will also discuss the broadening axis [10], which is another recoil-free axis. However, we

find that even at LL accuracy the calculation of its cross section is much more complicated

than for the WTA axis. (Correspondingly, the broadening axis is also more difficult to

implement in experimental studies.)

In this paper we perform a phenomenological study of the transverse momentum dis-

tribution (TMD) of energetic hadrons with respect to a recoil-free axis. The theory and

phenomenology of fragmentation to hadrons in jets has been studied extensively [11–29],
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Figure 1. The standard jet axis (black) is along the total jet momentum, making it sensitive to the

recoil of soft radiation (orange). By contrast, a recoil-free axis (red) tracks the energetic collinear

radiation (blue).

but the extension to TMDs was discussed only recently for the WTA axis [6] (and concur-

rently for the standard jet axis [30–32]). The transverse momentum ~k⊥ is defined as

~k⊥ =
~ph⊥
zh

, (1.1)

where zh = Eh/EJ is the fraction of the jet energy carried by the hadron and ~ph⊥ its

transverse momentum. This ensures that ~k⊥ is a partonic variable and thus calculable for

|~k⊥| � ΛQCD. We also show results using the angle θ between the hadron and the axis,

which is related to ~k⊥ by

k ≡ |~k⊥| = EJ sin θ ≈ EJθ . (1.2)

Much of the time we will consider the average energy due to all hadrons as function of

θ or k, rather than considering the zh spectrum of an individual hadron species h. This

corresponds to the jet shape [7, 33–36] but defined with respect to the WTA axis instead

of the standard jet axis.

To obtain analytic predictions, we use the formalism for TMD fragmentation with

the WTA axis, that was recently developed by some of us in ref. [6]. We will compare

our predictions to parton and hadron-level predictions obtained with Pythia 8.2 [37] and

Herwig 7.1 [38], finding good agreement. We will also use Monte Carlo predictions to

explore properties for which we did not (yet) perform an analytical calculation, such as

grooming.

Briefly highlighting some of our main findings: the dependence of the cross section on

k and θ is given by an (approximate) power law for the WTA axis, see figure 2, in contrast

to the Sudakov double logarithms that appear for the standard jet axis. This remains

true when taking into account the limited angular resolution, as long as θ is larger than

the angular resolution scale. Furthermore, this also persists when restricting to charged

particles, which allows one to exploit the finer angular resolution of the tracker. At small

angles the distribution is rather sensitive to nonperturbative physics. For the standard jet

axis these features are washed out due to smearing from soft radiation, so this provides

a new opportunity to constrain nonperturbative collinear dynamics experimentally. The

choice of jet algorithm is only visible in the region close to the jet boundary, θ = R, as it

affects which particles are inside or outside of the jet and not the axis.

– 2 –
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Figure 2. The energy distribution in a jet, see eq. (3.1), is a power law as function of the angle

θ with the winner-take-all axis. Our analytic predictions agree with those obtained from Pythia

and Herwig, except for very small angles where nonperturbative effects are important.

We envision several applications of our results: first of all, TMD fragmentation is of

interest to the nuclear physics community in determining the structure of the proton, since

the cross section in semi-inclusive deep-inelastic scattering involves a TMD parton distribu-

tion function and a TMD fragmentation function [39]. Furthermore, these observables look

promising for constraining αs, since they only involve collinear physics and can in principle

be calculated to high orders in perturbation theory. As discussed above, they are also in-

teresting for studying nonperturbative physics and could be used to improve hadronization

models. Finally, the robustness of recoil-free axes makes them very interesting for probing

the quark-gluon plasma through medium modifications.

The outline of this paper is as follows: in section 2 we briefly review the framework

for TMD fragmentation with the WTA axis in ref. [6], rederiving the main results using

a parton-shower picture. The broadening axis, threshold resummation, and details of our

numerical implementation are also discussed. We present our results in section 3, and

conclude in section 4.

2 Framework

We start in section 2.1 with reviewing the framework for TMD fragmentation with the

winner-take-all axis of ref. [6], addressing the factorization and resummation of logarithms

arising from hierarchies between the center-of-mass energy Q, jet scale EJR, transverse

momentum k = |~k⊥| and the scale ΛQCD of nonperturbative physics. A short rederivation

of these equations at leading logarithmic (LL) accuracy using a parton shower picture is

presented in section 2.2. In section 2.3 we investigate the broadening axis, finding that

the corresponding cross section is much more complicated than for the WTA axis, even

at leading logarithmic accuracy. We then describe the connection between TMD fragmen-

tation and the jet shape in section 2.4, discuss the resummation of threshold logarithms

– 3 –
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near the endpoint in section 2.5, and provide details on our numerical implementation in

section 2.6.

2.1 TMD fragmentation

The cross section for producing a hadron h with energy fraction zh and transverse momen-

tum ~k⊥ = ~ph⊥/zh inside a jet with energy EJ and radius R is given by

dσh

dEJ d2~k⊥ dzh
=
∑
i

∫
dx

x
Hi

(
EJ
x
, µ

)
Gi→h(x,EJR,~k⊥, zh, µ)

[
1 +O(R2)

]
. (2.1)

Here the collinear approximation R � 1 was exploited to factorize the cross section into

a partonic cross section H, that describes the hard scattering, and the fragmenting jet

function G, that captures the formation of the jet. Specifically, the parton i with energy

EJ/x produced in the hard scattering emits radiation, resulting in a jet with energy EJ
that contains the hadron h. When the hadron is produced close to the center of the jet,

i.e. k ≡ |~k⊥| � EJR, we can furthermore separate the effects of the jet boundary B from

the fragmentation,

Gi→h(x,EJR,~k⊥, zh, µ) =
∑
j

∫
dy

y
Bij

(
x,EJR,

zh
y
, µ

)
Dj→h(~k⊥, y, µ)

[
1+O

(
k2

E2
JR

2

)]
.

(2.2)

This requires the effect of the measurement at angular scales θ ≈ k/EJ and R to factorize,

which was argued to hold for the Cambridge/Aachen and anti-kT with the WTA axis in

ref. [6]. Finally, for k � ΛQCD, the transverse momentum dependence can be calculated,

Dj→h(~k⊥, zh, µ) =
∑
k

∫
dz

z
Cjk

(
~k⊥,

zh
z
, µ
)
dk→h(z, µ)

[
1 +O

(
Λ2

QCD

k2

)]
, (2.3)

where dk→h(z, µ) are the standard fragmentation functions [40–42].

We will also consider the case EJR ∼ k � ΛQCD, where the hadron is produced fairly

close to the jet boundary. The corresponding factorization theorem is given by

Gi→h(x,EJR,~k⊥, zh, µ) =
∑
k

∫
dz

z
Jik

(
x,EJR,~k⊥,

zh
z
, µ
)
dk→h(z, µ)

[
1 +O

(
Λ2

QCD

E2
JR

2

)]
.

(2.4)

The coefficients Jik were also computed in ref. [6]. When k � EJR, they factorize as

Jik(x,EJR,~k⊥, z, µ) =
∑
j

∫
dz′

z′
Bij

(
x,EJR,

z

z′
, µ
)
Cjk(~k⊥, z

′, µ)

[
1 +O

(
k2

E2
JR

2

)]
,

(2.5)

as required by consistency with eqs. (2.2) and (2.3). By using Jik when k ∼ EJR, instead

of the factorized form on the right-hand side, we capture the k2/(E2
JR

2) corrections that

are crucial in this region.

– 4 –
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The logarithms in the cross section in eq. (2.1) become large when there are hierar-

chies between the scales of the hard scattering Q, the jet energy EJR and the transverse

momentum ~k⊥. They can be resummed by evaluating each ingredient at its natural scale

µH ∼ Q , µB ∼ EJR , µC ∼ k , (2.6)

and using the renormalization group evolution (RGE) to evolve them to a common scale.

The RGEs are [6, 27, 43]

d

d lnµ
Gi→h(x,EJR,~k⊥, zh, µ) =

∑
j

∫
dx′

x′
γij

( x
x′
, µ
)
Gj→h(x′, EJR,~k⊥, zh, µ) ,

d

d lnµ
Di→h(~k⊥, zh, µ) =

∑
j

∫
dz

z
γ′ij

(zh
z
, µ
)
Dj→h(~k⊥, z, µ) ,

d

d lnµ
di→h(zh, µ) =

∑
j

∫
dz

z
γij

(zh
z
, µ
)
dj→h(z, µ) , (2.7)

with anomalous dimensions

γij(z, µ) = Pji(z, µ) ,

γ′ij(z, µ) = θ

(
z ≥ 1

2

)
Pji(z, µ) . (2.8)

Here P denote the time-like DGLAP splitting functions [44–46]. The θ
(
z ≥ 1

2

)
is due to

the winner-take-all axis, and will be rederived at LL in the next section. Details on our

numerical implementation of the above equations are given in section 2.6.

2.2 Leading-logarithmic derivation

We now rederive the results of ref. [6], which we summarized in section 2.1. We will use

a parton shower picture which is valid to LL accuracy. Specifically, the radiation emitted

by the parton produced in the hard interaction is described by a binary tree, see figure 3,

where each mother splits into two daughters with (relative) momentum fractions zi and

1 − zi and angle θi between them. The tree is angular ordered, i.e. angles of subsequent

emissions are (parametrically) smaller.

Let us first consider fragmentation in a jet before addressing TMD fragmentation with

the WTA axis. At LL order, the corresponding fragmenting jet function (which differs

from G in eq. (2.1)) reduces to the fragmentation function

Gi→h(x,EJR, zh, µ) = δ(1− x) di→h(zh, µ) , (2.9)

evaluated at µ ∼ EJR to minimize higher-order corrections. In terms of a parton shower

this would be described by

A = dh(zh, R0)+

∞∑
n=1

(
n∏
i=1

∫ 1

0
dzi P (zi)

∫ θi−1

R0

dθi
θi

)∫ 1

0
dz′ dh(z′, R0) δ

zh−z′ n∏
j=1

zj

 .

(2.10)

– 5 –
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Figure 3. The parton shower picture for fragmentation in a jet. At LL accuracy the splittings

are strongly ordered in angle, causing the shower tree and clustering tree of the jet algorithm to

coincide.

To keep the discussion simple, we have ignored parton flavors. The first term corresponds

to the case where the initial parton does not undergo any perturbative splitting. We then

sum over n emissions, and for each emission integrate over its splitting fraction zi and angle

θi, with a probability described by the splitting function P . This follows from a repeated

application of the collinear approximation, with splitting probability∫ 1

0
dzi P (zi)

∫
dθi
θi

. (2.11)

The upper bound on the θi integration follows from the angular ordering, which for the

angle θ1 of the first splitting is the jet radius R. We regulate the collinear singularity at

small angles with a cutoff R0 and describe subsequent (nonperturbative) splittings by the

fragmentation function dh. Note that instead of traversing all branches of the binary tree,

we follow the branch with splitting fraction zi (rather than 1−zi), since the other branches

are effectively included because we integrate over zi. The observed momentum fraction is

the product of all zi and z′, as described by the measurement delta function.

We now show that eq. (2.10) reproduces eq. (2.9). The angular integrals simply yield

n∏
i=1

∫ θi−1

R0

dθi
θi

=
1

n!
lnn

R

R0
. (2.12)

Since µ = EJR in eq. (2.9), we can use d lnµ = d lnR to obtain,

dA

d lnµ
=

∫ 1

0
dz

∞∑
n=1

(
n−1∏
i=1

∫ 1

0
dzi P (zi)

)
1

(n−1)!
lnn−1 R

R0

∫ 1

0
dz′ dh(z′, R0) δ

z−z′ n−1∏
j=1

zj


×
∫ 1

0
dzn P (zn) δ(zh−zzn)

=

∫ 1

zh

dz

z
P
(zh
z

)
A(z) , (2.13)

– 6 –
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Figure 4. The parton shower picture for TMD fragmentation with the WTA axis. At each splitting

the axis (purple/red) follows the largest momentum fraction. The angular ordering implies that

the hadron must follow the same branch (purple) until the splitting angle drops below k/EJ , after

which it can take a different branch (blue).

where on the first line we separated out the integral over zn to recognize the remainder

as A. This shows that A satisfies the DGLAP evolution. Furthermore for R = R0, A is

simply equal to the fragmentation function, so the boundary condition is also correct.

We now extend this to TMD fragmentation with the winner-take-all axis. We can split

the parton shower into three segments, see figure 4:

(a) θi > R: all branches yield separate jets and are summed over, since we consider an

inclusive jet sample. Splittings modify x = 2EJ/Q but don’t affect zh because it is

defined relative to the jet energy.

(b) R ≥ θi > k/EJ: splittings take place inside the jet and thus do not modify x but will

affect zh. Because θi > k/EJ and the strong ordering in angles, the WTA axis and

fragmenting hadron must at this point in the shower still follow the same branch.

(c) k/EJ ≥ θi: the first splitting sets the angle (or equivalently ~k⊥) between the WTA

axis and the hadron. Subsequent splittings modify zh but cannot change this angle

due to the strong angular ordering. All of these emissions are summed over.

We can directly repeat the above parton shower analysis in eqs. (2.10) and (2.13), from

which it follows that in (a) there is a DGLAP evolution in x from µ = Q down to µ = EJR,

and in (c) there is a DGLAP evolution in zh from µ = k to the initial scale µ ∼ ΛQCD of

the fragmentation functions. For (b) we note that strong ordering in angles implies that

the clustering tree of any jet algorithm of the kT family (not just Cambridge/Aachen and

anti-kT ) coincides with the parton shower tree. For R ≥ θi > k/EJ we only follow the

branch that will yield the winner-take-all axis and produce the hadron, which corresponds

to imposing zi >
1
2 , leading to the modified anomalous dimension γ′ in eq. (2.8). Thus we

have justified the evolution equations in eqs. (2.7) and (2.8) and the scales in eq. (2.6).

2.3 Broadening axis

We now investigate the broadening axis, which is the other well-known recoil-free jet axis.

It is defined by minimizing the broadening, i.e. it is the unit-vector n̂ that minimizes the

– 7 –
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Figure 5. Parton shower picture for the broadening axis. Here all momentum fractions are relative

to the parton initiating the jet. When the branch along which the axis lies (green) splits, the energy

fractions zL and zR of the left (red) and right (blue) affect which daughter (black) gets the axis.

scalar sum of transverse momenta in the jet [10].

b = min
n̂

(bn̂) , bn̂ =
1

EJ

∑
i∈jet

Ei

∣∣∣∣2 sin
ϑi,n̂
2

∣∣∣∣ ≈ ∑
i∈jet

zi |ϑi,n̂| . (2.14)

When the jet consists of two particles, the broadening axis is along the most energetic

one, just as the WTA axis. However, we will show that the resummation of logarithms of

k/EJR takes on a much more complicated form than for the WTA axis, because the axis

finding does not have a simple recursive picture as for the WTA in section 2.2, even at LL

accuracy.

For simplicity, we first consider the case where all the particles lie in a plane. In this

case n̂ is parametrized by an angle ϕ,

b(ϕ) =
∑
i

zi|ϑi − ϕ| . (2.15)

Since this function is piecewise linear, its minimum coincides with the direction of one of

the particles, ϕ = ϑi. In the parton shower picture, we want to track the axis along the

showering tree. To determine for a given splitting which of the two daughters takes control

of the axis, requires comparing

bl = zr(ϑl − ϑr) +
∑
i∈L

zi(ϑi − ϑl) +
∑
i∈R

zi(ϑl − ϑi) ,

br = zl(ϑl − ϑr) +
∑
i∈L

zi(ϑi − ϑr) +
∑
i∈R

zi(ϑr − ϑi) . (2.16)

Here L and R identify the subset of particles to the left and to the right of the splitting,

see figure 5. Subtracting the two lines in eq. (2.16) from one another gives

bl < br ⇔ zl + zL > zr + zR , (2.17)

where zL and zR are the energy fractions of L and R. In contrast to the WTA axis, it is

thus not sufficient to compare zl and zr, as the other branches still enter in eq. (2.17). It is

still possible to determine the broadening axis with a recursive procedure, as long as one

also keeps track of the total energy on the left/right of the axis. The algorithm reads:

– 8 –
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1. Start at the root of tree with initial condition (zL, z, zR) = (0, 1, 0), where z denotes

the momentum fraction of the branch that tracks the axis.

2. For the splitting z = zl + zr:

• If zL + zl >
1
2 , axis is along left daughter and (zL, z, zR)→ (zL, zl, zR + zr).

• Otherwise, broadening axis is along right daughter and (zL, z, zR) → (zL +

zl, zr, zR).

3. Repeat step 2 until there are no further splittings.

This is thus described by a DGLAP evolution with two variables (one of the three can be

eliminated, since zL + z + zR = 1).

We now move on to the non-planar case and consider the simplest non-trivial con-

figuration of three particles, arising from two splittings. We will show that even in the

strongly-ordered angular limit, the position of the broadening axis generically depends

sensitively on the energy fraction of the initial splitting. This is in contrast to the WTA

axis, where as long as the initial splitting is not with exactly balancing energy fractions, the

axis will be stationary for any small perturbations of the initial energy fraction.1 Thus, the

broadening axis does not behave in a Markovian manner with respect to a history in the

strongly ordered angular limit. This is not the case for the WTA axis, whose position in the

strongly ordered angular limit only depends on the branching that is currently occurring in

the history. Without the Markovian condition, we do not expect the transverse momentum

with respect to the broadening axis to have a simple leading logarithmic resummation.

After the first splitting, the broadening axis simply is along the particle with energy

fraction z1 >
1
2 . We consider the case that this splits into a pair of particles with energy

fractions z2z1 and (1− z2)z1, and choose the coordinate system in figure 6. Using that for

narrow jets the angular-separation measure of two particles is flat, dΩ ≈ dϑ2 + dϕ2, the

broadening for the axis along (ϑ, ϕ) is

b(ϑ, ϕ) = z2z1

√
(ϑ− ϑ∗)2 + (ϕ− ϕ∗)2 + (1− z2)z1

√
(ϑ+ ϑ∗)2 + (ϕ+ ϕ∗)2

+ (1− z1)
√

(ϑ− ϑ̄)2 + ϕ2. (2.18)

We now search for a local minimum by taking derivatives, exploiting strong angular ordering

ϑ̄→∞, and using

ϑ∗, ϕ∗ > 0 , −ϕ∗ < ϕ < ϕ∗ , −ϑ∗ < ϑ < ϑ̄ . (2.19)

The last two conditions follow because the broadening axis lies within the convex hull of

the three particles.

1This is to say, the WTA axis will follow the branch with energy fraction greater than a half. We can

change this energy fraction by a small amount, indeed, by any amount such that we maintain that the

energy fraction of the initial splitting is still greater than a half, and the WTA axis will remain within

the branch. If we leave all other relative energy fractions further down the branch unchanged, it will even

assume the same position.

– 9 –
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Figure 6. The three-particle configuration consists of a pair of particles and a third particle that

is far away, due to the strong angular ordering. We also show the position of a test broadening

axis, and indicate the angular distances (with red lines) that determine the broadening. The origin

of the coordinate system is chosen to lie between the two nearby particles and the ϑ axis is chosen

such that the third particle lies on it.

It’s convenient to switch to the variables

η ≡ ϑ− ϑ∗

ϕ− ϕ∗
, ξ ≡ ϑ+ ϑ∗

ϕ+ ϕ∗
, (2.20)

for which the condition of a local minimum takes the following form

ξ − η =
1− z1

z2 z1

√
1 + η2 , z2

2(1 + ξ2) = (1− z2)2(1 + η2) . (2.21)

It has a solution for

2z1 − 1

2z1
< z2 <

1

2z1
, (2.22)

which is given by

η =
−1 + 2z1 − 2z2

1z2√
−1+4z1−4z2

1−4z2
1z2+8z3

1z2+4z2
1z

2
2−8z3

1z
2
2

, ξ =

√
1+η2−2z2−2η2z2+η2z2

2

z2
.

(2.23)

As in the planar case, the position of the broadening axis depends not just on two daughters

of the splitting, but also the other particle (through z1). However, unlike the planar case,

the broadening axis does not have to lie on a particle, though it will do so for values of

z2 outside the bounds in eq. (2.22). Indeed, these boundaries exactly correspond to the

condition that the momentum fractions of all of the partons are less than half, since the

broadening axis will be along a parton if its momentum fraction is larger than half.

The picture is still slightly more complicated, because we did not yet impose eq. (2.19)

on our solution, which shrinks the solution space. (In particular it should vanish in the

planar limit.) Since the analytic expressions are rather complicated, we illustrate the effect

in figure 7. In the right panel, we show how the solution space shrinks depending on the

ratio ϕ∗

ϑ∗ . In the left panel, we show the position of the broadening axis for ϕ∗

ϑ∗ = 1, with

different paths corresponding to different values of z1. This dependence on z1 explicitly

shows that it violates the Markovian condition.
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Figure 7. Left panel: the position of the broadening axis for ϕ∗/ϑ∗ = 1 is mapped out. The

curves correspond to different z1 values, showing that the Markovian condition is violated, and

run over the allowed z2 range. Right panel: the region in (z1, z2) where the broadening axis does

not lie on a particle. The different shades correspond to different values of ϕ∗/ϑ∗. The generic

bounds correspond to solutions of (2.22) without taking into account the additional constraints

from eq. (2.19).

In conclusion, we have shown that at leading-logarithmic order (i.e. strong angular

ordering) the broadening axis generically does not lie on a particle, and depends on particles

other than the daughters of the splitting under consideration. It is therefore clear that there

is no simple DGLAP evolution that describes this parton shower picture, though it can of

course be calculated by simulating the full shower.

2.4 Jet shape

The jet shape is the average fraction of the jet energy at a specific angle θ with the axis.

The corresponding cross section can be obtained from eq. (2.1), by expressing ~k⊥ in terms

of θ using eq. (1.2), summing over hadron species h and averaging over zh. Explicitly for

Q� EJR� k � ΛQCD, we combine eqs. (2.1), (2.2) and (2.3) to obtain

d〈z〉
dEJ dθ

=
2πθE2

J

σ

∑
h

∫
dzh zh

dσh

dEJ d2~k⊥ dzh

=
2πθE2

J

σ

∑
i,j,k

∫
dx

x
Hi

(
EJ
x
, µ

)∫
dy y Bij(x,EJR, y, µ)

∫
dz z Cjk(~k⊥, z, µ)

×
∑
h

∫
dzh zh dk→h(zh, µ). (2.24)

The overall factor is the Jacobian due to switching from ~k⊥ to θ, and the full cross section

σ that we normalize to. The dependence on fragmentation functions drops out because of
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the momentum sum rule ∑
h

∫
dzh zh dk→h(zh, µ) = 1 . (2.25)

The jet shape can also be defined on subsets S of particles, such as charged particles,

restricting the sum over h in eq. (2.24). In that case we cannot use eq. (2.25) to eliminate the

fragmentation functions completely. However, the required nonperturbative input is rather

limited, as we need one nonperturbative number for each parton flavor, which describes

the average energy of a parton that goes into particles in the subset S.

2.5 Threshold effects

Because the jet shape turns off sharply at θ = R, the endpoint in terms of |k⊥| = EJR =

xJQR/2 is rather sensitive to the xJ distribution. In particular, in the vicinity of this

endpoint, threshold logarithms of 1−xJ need to be resummed (given that the distribution

is peaked around xJ = 1, this resummation is justified in general). We will include these

double logarithms at LL accuracy, to capture the dominant behavior of this effect.

To argue their form, we use again a parton shower picture, now strongly-ordered in

angle and energy. Requiring xJ ≥ xc, prohibits emissions with angle θ and momentum

fraction z

θ > R and z > 1− xc . (2.26)

For technical reasons,2 it is convenient to use the (dimensionless) transverse momentum

q̂⊥ = z(1− z)θ , (2.27)

rather than the angle θ itself. The phase-space boundaries corresponding to eq. (2.26) in

terms of the coordinates ln(1/z) and ln(1/q̂⊥) are shown in figure 8. At LL accuracy, the

emission probability is uniform in terms of these coordinates, so we can simply calculate

the shaded area. Also, emissions can be treated as independent at this order, leading to

the following Sudakov factor,∫ 1

xc

dxJ
dσthr

i

dxJ
= σi exp

{
−2αsCi

π

[
ln(1− xc) lnR+

1

2
ln(1− xc)2

]}
, (2.28)

where we split σ = σq + σg, and Ci = CF for quark jets and CA for gluon jets.

Even if we are only interested in the cross section integrated over the jet energy, we

shouldn’t implement threshold corrections after this integral, since this neglects correlations

between the jet energy EJ and the transverse momentum ~k⊥. Instead, we apply the

2In the collinear and soft approximation, eq. (2.11) becomes dz/z1+2ε dθ/θ1+2ε, using dimensional reg-

ularization. Now
∫∞
R

dθ/θ1+2ε = 1/(2ε) − lnR + O(ε), and the 1/(2ε) gives a finite contribution when

combined with the 2ε ln z from z1+2ε, so we cannot set ε = 0 at the beginning of the calculation. However,

this can be done when using q̂⊥, since then we have dz/z dq̂⊥/q̂
1+2ε
⊥ .
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ln 1
q̂?

Figure 8. Requiring x ≥ xc prohibits emissions in the (blue) shaded region of phase-space, in

terms of the momentum fraction z and transverse momentum q̂⊥ in eq. (2.27) of the emission.

Sudakov factor in eq. (2.28) to the xJ spectrum,

dσh

dxJ d2~k⊥ dzh
= −Q

2

∑
i

d

dx′

[∫ 1

x′
dx′′

∫ 1

x′′

dx

x
H̃i

(
x′′Q

2x
, µ

)
G̃i(x, xJQR/2,~k⊥, zh, µ)

× exp

{
−αsCi

π
ln2(1− x′)

}]
x′=xJ

. (2.29)

Here we took the cumulative of eq. (2.1), then included the threshold Sudakov in eq. (2.28),

and took the derivative. The main point is that the EJ that appears in G corresponds to

the measured xJ (and not x, x′ or x′′). A direct comparison with our NLO ingredients

reveals that the lnR term in eq. (2.28) is already accounted for by small-R resummation,

and we therefore omitted it to avoid double counting. Similarly, we subtracted the overlap

between the exponentiated threshold logarithms and the NLO expressions for G and H,

as indicated by the tilde. Although the implementation of eq. (2.29) directly follows from

eq. (2.28), it is not very efficient. We therefore use the following simpler prescription,

dσh

dxJ d2~k⊥ dzh
= −Q

2

∑
i

∫ 1

xJ

dx′′

x′′

∫ 1

x′′

dx

x
H̃i

(
x′′Q

2x
, µ

)
G̃i(x, xJQR/2, ~k⊥, zh, µ)

× d

dx′

[
exp

{
−αsCi

π
ln2(1− x′)

}]
x′=xJ/x′′

, (2.30)

which holds to the same accuracy.

2.6 Numerical implementation

We now present in some detail our implementation, starting with how we solved the evolu-

tion equations numerically. We then show how we combine the factorization theorems for

k � EJR and k ∼ EJR, and conclude with a discussion of our scale choice and uncertainty

estimates. The one-loop expressions for H are well known [47–50]. The coefficients B in

eq. (2.2), C in eq. (2.3) and J in eq. (2.4) were calculated at one-loop order in ref. [6],

where in our implementation the relation pTR ↔ 2EJ tan R
2 is used to convert the pp jet

definition (that uses azimuthal angles and pseudo-rapidity) to our e+e− case (that uses
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angles). Keeping the tangent (with respect to the angle R) retains some subleading cor-

rections in the small-R expansion underpinning eq. (2.1), improving the behavior of the

cross section in the vicinity of the θ ∼ R endpoint. Similarly, we capture more (but not

all) subleading corrections by using θ(pTR− k)↔ θ(EJ sinR− k) in the jet functions J .

The starting point for all the numerical results shown in section 3 is eq. (2.1). We

work with cumulative distribution in ~k⊥,∫
k<kc

d2~k⊥
dσh

d2~k⊥ dEJ dzh
= π

∫ kc

0
dk2 dσh

d2~k⊥ dEJ dzh
, (2.31)

differentiating the result at the end of the computation. This does not complicate the

evolution, because the anomalous dimensions do not involve ~k⊥. In fact, it is necessary to

choose the scales of the evolution in terms of kc, because C
(0)
ij (~k⊥) ∝ δ2(~k⊥) would cause

the distribution to vanish unless ~k⊥ = 0. By contrast, C
(0)
ij (kc) ∝ θ(kc) as function of kc.

The resummation is implemented in the form presented in eq. (2.7): we start from the

fragmentation functions d at some initial scale µd and we evolve them to µC ∼ kc where we

match onto the TMD fragmentation function D. We note that the convolution variable of

the evolution is the energy fraction of the hadron z. We then evolve the TMD fragmentation

function using the modified DGLAP to µB ∼ EJR, with the convolution variable still

effectively being the energy fraction of the hadron. At the µB scale, we match onto the

fragmenting jet function G. Finally we evolve using standard DGLAP up to µH ∼ Q, with

the convolution variable now being the energy fraction of the hard parton which initiates

the jet, denoted by x. At this point the corrections from the hard function are included.3

We repeat the evolution separately for different values of the jet energy fraction EJ and

finally integrate over it. Each term in the NLO corrections H(1), C(1), B(1), J (1) only has a

nontrivial dependence on x or z but not both, so these evolutions factorize and are carried

out separately.

All RGEs are solved using the classic Runge-Kutta method in the evolution basis

(singlet/nonsinglet decomposition) and account for heavy quark thresholds. However, we

adopt different strategies depending on the observable. The jet shape in eq. (2.24) is the

first moment in zh, so in this case we find it natural to perform the evolution in Mellin

space, where it becomes multiplicative. The one-loop anomalous dimensions for (modified)

DGLAP evolution in Mellin space were given in ref. [6].4 When inclusive over all hadrons,

we can use the sum rule in eq. (2.25) to remove input from fragmentation functions, while for

charged pions we take the first moment of existing parameterizations provided by the latest

DSS [51] and HKNS [52] (global) fits. Even if we perform LL, the presence of NLO fixed-

order ingredients justifies the usage of their NLO sets, where more recent parametrizations

are available. As a different observable, we consider the cross section differential in the

hadron energy fraction zh, varying cuts on the transverse momentum kc. In this case we

3We stress that due to the matrix nature of the factorization formulae the various evolution/matching

steps do not commute.
4We found a typo in eq. (C.3) there. The correct expression for the (gg) modified anomalous dimension

is γ′
(1)
gg (N,µ) = γ

(1)
gg (N,µ)− αs(µ)CA

π

[
−2H1/2(N+1) + 2 ln 2 + 2−N−2 5N3+33N2+68N+48

N(N+1)(N+2)(N+3)

]
.
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carry out the evolution directly in z space, performing the Mellin convolutions on a 75-step

linear grid.

Small-R resummation in e+e− collisions poses the additional issue of evolving dis-

tributions in the convolution variable, such as δ(1 − x), rather than functions (for the

convolutions in z there is no problem, as such distributions are smeared by their convo-

lution with phenomenological fragmentation functions). We solve this issue by taking the

zero truncated moment of the distribution and exploiting that such a truncated moment

itself satisfies a DGLAP evolution equation with modified splitting functions [53]. This is

simply due to the rearrangement∫ 1

x0

dx

∫ 1

x

dx′

x′
f(x′)g

( x
x′

)
=

∫ 1

x0

dx′

x′
x0

x′
f
(x0

x′

)∫ 1

x′
dx g(x) , (2.32)

where in our case f is the splitting function. To get the evolved spectrum we then differ-

entiate the evolved truncated moment. To validate this technique, we checked its accuracy

against evolution in Mellin space for the jet shape differential in angle and for additional test

observables. We found good agreement on the normalized results we show, well within our

uncertainty bands. A non-negligible difference persists in absolute normalization, caused

by the large sensitivity of the method on the x = 1 endpoint, where our distributions are

peaked. To mitigate this effect, we use a 60-point exponential grid (that becomes finer as

x → 1), and we only show normalized results. Finally, we resum threshold logarithms of

1 − xJ at LL accuracy, as discussed in section 2.5. Using eq. (2.30) this only requires an

additional convolution step.

We now describe how to we extend predictions from kc � EJR to kc . EJR, referring

for definiteness to the jet shape. For large kc one has to include the power corrections in

eq. (2.24), by using the coefficients on the left hand side eq. (2.5). Since µC ∼ µB, we turn

off resummation between the two scales. In order to transition between the two regimes in

a continuous way, we schematically perform the matching

σ = H(Q)⊗x U(Q,EJR)⊗x
[
B(EJR)⊗z U ′(EJR, kc)⊗z C(kc)⊗z d(kc)

+ J(EJR)⊗z d(EJR)−B(EJR)⊗z C(EJR)⊗z d(EJR)
]
, (2.33)

where U (U ′) are (modified) DGLAP evolution kernels between the indicated scales, and

the arguments of the functions indicate the canonical scale at which they are evaluated.

Interestingly, in the case of the jet shape differential in angle the second line vanishes for

θ < R, only cutting off the spectrum at θ = R. We do not expect this to hold at higher

order.

We end this section discussing our choice of scales. Our standard configuration is

µH = Q, µB = 2EJ tan(R/2), µC = kc , (2.34)

which differs slightly from the canonical scales in eq. (2.6). To avoid αs(µC) from hitting

the Landau pole, we use the following profile for the scale µC ,

µC(kc) =
k0

2

(
1 +

k2
c

k2
0

)
if kc ≤ k0 , (2.35)
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where k0 = 1 GeV. Of course in this region nonperturbative corrections to eq. (2.3) will be

important. In principle we could also use a profile scale to gradually switch off resummation

when approaching the region kc ∼ EJR, see e.g. refs. [54, 55], but we find no clear reason

to do so in our case.

Finally, we estimate the perturbative uncertainty by varying the scales by a factor

2. Specifically, we first only vary the profile scale µC around its central value, then vary

µB and µC at the same time, and then vary all the three scales together. This probes the

resummation uncertainties related to logarithms of kc/EJR, R and fixed-order uncertainty,

respectively. In addition, we vary the profile parameter k0 up and down by a factor of 2. We

take the final uncertainty to be the quadrature of the four cases. We also investigated the

dependence on the scale at which the coupling αs(µ) in threshold corrections in eq. (2.30)

is evaluated, finding that this effect is negligibly small.

3 Results

In this section we show results for the jet shape, differential in angle or transverse mo-

mentum, and the fragmentation spectrum with a cut on angle or transverse momentum.

Our default setup is as follows: e+e− → jets at a center of mass energy of Q = 1 TeV.

The jets are identified using (the e+e− version of) anti-kT with R = 0.4 and the WTA

recombination scheme, and jets are required to have jet energy EJ > 200 GeV. We com-

pare predictions from Herwig 7.1.1 and Pythia 8.226, through a Rivet analysis [56],

to our analytic calculations using the framework in section 2. We choose the following

normalization of the jet shape as our default,

Z(θ) =

(
d〈z〉
dθ

)/(∫ R

θmin

dθ
d〈z〉
dθ

)
,

Z(k) =

(
d〈z〉
dk

)/(∫ kmax

kmin

dk
d〈z〉
dk

)
. (3.1)

with θmin = 0.1 and kmin = 20 GeV, kmax = 100 GeV.

We start by showing in figure 9 results for the jet shape. The central region of the

distribution follows an (approximate) power law, where deviations from a simple 1/θ are

due to the resummation of logarithms of R/θ and the running of the coupling constant.

We have highlighted these deviations by plotting θZ(θ) rather than Z(θ). All predictions

agree in this region, and ours have the added benefit of a theory uncertainty estimate. This

power-law behavior extends to the edge of the jet for the angular distribution, but has a

smooth turn off for the transverse momentum distribution (right panel) due to eq. (1.2)

and the jet energy distribution. In particular, reliable predictions near the endpoint re-

quire the resummation of threshold logarithms, discussed in section 2.5, without which our

predictions would disagree with Herwig and Pythia in this region. Moving on to the

small k region, we note that the parton-level distribution is peaked near k = 0 because the

WTA axis is always along a particle. The adjacent “dead cone” is due to the shower cut

off, and is filled with radiation by the hadronization model. This effect is normally not

visible, because the position of the axis is smeared by soft radiation, suggesting that the
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Figure 9. The jet shape as function of angle (left panel) and transverse momentum (right panel),

predicted by Herwig (black), Pythia (blue) at parton (dashed) and hadron-level (solid), and

obtained from our analytic calculations including perturbative uncertainties (red curve with band).

10 2 10 1

10 1

100

×
Z(

)

e + e jj, Q = 1 TeV, Herwig 7, hadrons,
WTA, EJ > 200 GeV anti-kT R = 0.4

C/A
kT

Figure 10. The jet shape at hadron level as function of angle for the e+e− anti-kT (black),

Cambridge/Aachen (blue dashed) and kT algorithm (red dot-dashed).

winner-take-all axis is particularly useful for studying this nonperturbative physics. Note

that Herwig and Pythia differ before hadronization, but agree well after including it.

Our purely perturbative calculation is not valid in this region, and would require the inclu-

sion of nonperturbative effects. The reason that nonperturbative effects already become

important for k . 10 GeV, is due to our definition in eq. (1.1). For example, a hadron with

zh ∼ 0.1 and k = 10 GeV has a transverse momentum of zhk = 1 GeV.

Next we investigate in figure 10 the dependence of the jet shape on the jet algorithm,

comparing the (e+e− version of) anti-kT , Cambridge/Aachen and kT algorithms. There

are only differences at the very edge of the jet, and they are rather small. Since the WTA

axis is robust, these differences are due to particles at the edge of the jet being clustered

into it or not. As expected, anti-kT has the sharpest edge and kT the softest edge. The

differences between algorithms will become larger when there are many jets in an event,

e.g. when the cut on EJ is loosened or pp collisions are considered.

In the left panel of figure 11 we show the jet shape for anti-kT with R = 0.2, 0.4

and 1. Exclusive kT is also shown, which clusters the whole event into two jets, and thus

corresponds to R ∼ π/2. The WTA axis is the same, independent of R, which is why the

distributions overlap. For larger values of θ the collinear approximation no longer holds,
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WTA, EJ > 200 GeV anti-kT, R = 1.0

R = 0.4
R = 0.2
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Figure 11. Left panel: the jet shape as function of the angle for different values of the jet radius

R, and for exclusive kT . The curves are normalized in θ = [0.1, 0.2]. Right panel: the jet shape for

exclusive kT (two jets) as function of angle with the WTA axis (red) and standard jet axis (black

dashed).

and the distributions even rises due to a Jacobian factor. Specifically, one would expect

a constant energy density from soft radiation, i.e. dE/dΩ = dE/(dφdθ sin θ) ∼ constant,

implying that θdE/dθ ∼ θ/(sin θ) rises. This is not the case for the jet shape using the

standard jet axis, as shown in the right panel of figure 11, because the axis will reposition

itself depending on all the radiation in the jet. This figure also clearly shows that the jet

shape with standard jet axis exhibits Sudakov double logarithms instead of a power-law

dependence on θ.

The attentive reader will have noticed that our jet shape distributions go down to

angles smaller than the size of a calorimeter cell at the LHC (θ ≈ 0.1). In the left panel

of figure 12 we demonstrate that limited angular resolution does not change the jet shape.

Specifically, we recluster the jet into subjets of radius r < R, and then calculate the jet

shape using these subjets (instead of hadrons) as input. The distributions overlap as long

as the angle is above the subjet radius scale, which is expected from our calculations in

section 2. Below the subjet radius the distribution drops off, except for the contribution

from θ = 0. Alternatively, a more granular angular resolution can be achieved using

tracking, so we show in the right panel of figure 12 that the jet shape defined on all

particles or only on charged pions has the same shape. Of course this distribution is a bit

more sensitive to hadronization effects, and requires few nonperturbative parameters to

implement in our analytic calculation, as discussed in section 2.4.

To investigate how sensitive the jet shape is to soft radiation, we aggressively5 remove

soft radiation using a grooming procedure. Specifically, we consider trimming [57] with

Rsub = 0.05 and fcut = 0.03, and soft drop [58] with zcut = 0.2 and β = 0. For comparison

we show results both for the jet shape with the WTA axis and the standard (E scheme) jet

axis, see figure 13. We take the momentum fraction z to be the hadron energy divided by

the groomed jet energy, but have normalized the distributions to those of ungroomed jet,

so one can clearly see how much radiation is removed by the grooming. For trimming there

is little change for r < 0.05, since the subjet containing the WTA axis is never trimmed

5This is necessary to see any effect, due to the limited amount of radiation in the e+e− environment.
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Figure 12. Left panel: the jet shape using subjets (instead of hadrons) as input. The lowest bin

gets its contribution from θ = 0. All the jet shapes were normalized by the same factor, taken to

be the area of the r = 0.01 curve in θ = [0.1, 0.4]. Middle panel: the jet shape using all particles

(blue) and only charged pions (red dashed) as input. The red-dashed pion distribution has been

normalized to the blue curve for all particles to emphasize the similarity in the shape. Right panel:

the analytic calculation of the jet shape for pions using two set of fragmentation functions: DSS or

HKNS (red and green dashed respectively), compared to the full result (blue).

away. For r > 0.05 an almost constant amount is removed by trimming. By contrast, the

jet shape for the standard jet axis affects all angles, due to the response of the axis to the

trimming. Similarly, soft drop removes a constant amount, except close to het jet axis.

We next consider the effect of a cut on transverse momentum or angle on the fragmen-

tation spectrum of charged pions, see figure 14. The effect of these cuts is clearly visible

at small zh but does not affect the distribution at large zh, since such hadrons are kine-

matically forced to be close to the jet axis. In particular, for zh > 0.5 the winner-take-all

axis is along the hadron and the distribution is insensitive to the cut, which is why we did

not show this region. The analytic curves exhibit the same qualitative behavior as those

obtained using Herwig, as is particularly clear in the subpanels which show the ratio to

the “most-inclusive” cuts on either θ or k. The absolute distributions differ, but this is

simply indicative of the different intrisically-nonperturbative fragmentation spectrum used

by Herwig and DSS.

We end this section by presenting results for the jet shape at the 13 TeV LHC. The

simulated events are clustered using the standard (pp-version) of anti-kT , and the jets

are required to have transverse momentum pT,J > 200 GeV with respect to the beam

axis. We now take zh = pT,h/pT,J , i.e. the transverse momentum fraction, and use ∆R =√
(φh−φJ)2 + (yh−yJ)2 to quantify the distance to the jet axis, where φ and y are the

azimuthal angle and rapidity. Specifically, we show

Z(∆R) =

(
d〈z〉
d∆R

)/(∫ R

∆Rmin

d∆R
d〈z〉
d∆R

)
, (3.2)

in figure 15, where ∆Rmin = 0.1. It’s clear that the jet shape exhibits the same (approx-

imate) power-law behavior observed for the e+e− case. Also shown is the jet shape after

soft drop with zcut = 0.1 and β = 2. This grooming is less aggressive than in figure 13 and

only affects the region close to the jet boundary.

Last of all we show in figure 16 the jet shape in pp collisions for quark vs. gluon jets

which we define as being produced by the tree-level hard-scattering process pp → qq̄ vs.
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Figure 13. The jet shape with respect to the WTA axis (solid) and standard jet axis (dashed) at

hadron level. Left panel: after applying trimming (blue). Right panel: after soft drop (red).
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Figure 14. The fragmentation spectrum of charged pions with a cut on their transverse momentum

(top) or angle (bottom), from Monte Carlo (left) and through the analytic calculation (right). The

ratio to the “most-inclusive” cuts, θcut = 0.5 or kcut = 80 GeV, are shown for each case.

pp→ gg. The quark distribution lies below the gluon distribution, except for the first bin

where it is much higher, since both curves have the same normalization (this time with

∆Rmin = 0.0). As expected, the gluon distribution is broader, since gluons radiate more

than quarks. We also calculate the classifier separation,

∆ =
1

2

∫
dλ

[
pq(λ)− pg(λ)

]2
pq(λ) + pg(λ)

, (3.3)

and find that for the WTA jet shape ∆ = 0.022. Compared to the observables studied in

refs. [59, 60], this is not a particularly powerful quark-gluon discriminant.
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Figure 15. Jet shape at the LHC for jets with pT,J > 200 GeV at hadron (solid) and parton level

(dashed), using all particles (black) or after applying soft drop (red).
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Figure 16. Jet shape at the LHC for jets with pT,J > 200 GeV at parton level for pp → qq̄

(blue) and pp → gg (black). Note that the curves have been normalized in the whole range, i.e.

with ∆Rmin = 0.0.

4 Conclusions

In this paper we have studied the distribution of hadrons inside a jet in terms of their

energy and angle with respect to a recoil-free axis. Instead of the usual double-logarithmic

dependence of the cross section on the angle (or transverse momentum), we find a power

law, because these observables are insensitive to soft radiation. Since the position of the

axis is not smeared by soft radiation, these observables are particularly interesting to

study perturbative collinear physics, which feature prominently in our distributions when

approaching the axis.

In addition to the intrinsic interest in TMD fragmentation of the nuclear physics com-

munity, we believe these observables are promising for studying the quark-gluon plasma,

since the medium produces so much low-energy radiation that it is essential to use an axis

that is insensitive to that. Other potential applications include the extraction of the strong

coupling αs or the discrimination of quark and gluon jets at the LHC. What makes these

observables interesting from a theoretical point of view is that they are purely collinear
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and so they can be calculated to higher orders from the collinear splitting functions. An-

other direction we intend to explore is to consider recoil-free axes for more complicated

observables, e.g. those used to tag boosted heavy objects.
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