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Abstract

In this paper, the sensitivity analysis of a single scale model is employed in order to reduce the input dimensionality of
the related multiscale model, in this way, improving the efficiency of its uncertainty estimation. The approach is illustrated
with two examples: a reaction model and the standard Ornstein–Uhlenbeck process. Additionally, a counterexample shows
that an uncertain input should not be excluded from uncertainty quantification without estimating the response sensitivity to
this parameter. In particular, an analysis of the function defining the relation between single scale components is required to
understand whether single scale sensitivity analysis can be used to reduce the dimensionality of the overall multiscale model
input space.
c⃝ 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Results of computational models should be supported by uncertainty estimates whenever precise values of their
inputs are not available [15,25,27]. This is usually the case since measurements of inputs rarely can be made exactly,
or inputs may include aleatory uncertainty [14,26]. Uncertainty Quantification (UQ) of a complex model usually
requires powerful computational resources. Moreover, the cost of some UQ methods increases exponentially with
the number of uncertain inputs.

Sensitivity analysis (SA) identifies the effects of uncertainty in a model input or group of inputs to the model
response. In 1990, Sobol introduced sensitivity indices to measure the effect of input uncertainty on the model output
variance [20,22]. In [21,24], Sobol employs SA in order to fix uncertain parameters with low total sensitivity indices
and reduce the model dimensionality.

Here such application of SA to multiscale models is considered. A multiscale model is defined as a collection
of single scale models that are coupled using scale bridging methods [5]. The approach proposed here consists in
examining the type of function coupling the single scale components, followed by estimating the sensitivity of the
response of a single scale model. This paper demonstrates that estimates of the single scale model sensitivity can
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Fig. 1. Scale separation map. The functions G( f, ·) and h are the macro and micro models with inputs x and ξ , respectively. The function
G( f (x), h(ξ )) defines the relation between the response of the micro model and the rest of the macro model parameters denoted by f . The
final multiscale model output z = g(x, ξ ) = G( f (x), h(ξ )) is produced by the macro model.

be used to assess the sensitivity of the overall multiscale model response for some classes of multiscale model
functions. However, this is not always possible, as will be shown by a counterexample.

Sobol’s variance based approach is the preferred method to measure model output sensitivity [10,16,17,23].
Even though it is important to note that variance is not always the most representative measure of model response
uncertainty [3,11], it is assumed to be so in this work. The proposed approach is based on exploring the coupled
structure of multiscale models, allowing to analyse independently the single scale models. Therefore, the second
assumption is that SA can be performed on the multiscale model components. Additionally, it is assumed that the
multiscale model parameters are uncorrelated.

In Section 2, a brief description of multiscale models is given. Section 3 is devoted to SA, and its application
to dimensionality reduction of a multiscale model is discussed in Section 3.1. Together with some examples of the
sensitivity analysis for multiscale models (Sections 3.1.1 and 3.1.2), a counterexample is considered in Section 3.1.3
in order to illustrate that, even though it is tempting to employ the SA result of single scale models to the response
of the overall multiscale model, this is not always allowed. Section 4 summarises the results and includes a note on
the application of the proposed approaches to some real-world models. Some other cases of multiscale models for
which the proposed method on dimension reduction can be applied are in Appendix. In particular, in Appendix D
an upper bound for the sensitivity of model output for a general class of coupling function is obtained.

2. Multiscale model

Following the concept introduced in the Multiscale Modelling and Simulation Framework (MMSF) [1,2,5,6],
multiscale models are considered as a set of single scale models coupled using scale bridging methods. The single
scale models represent processes that operate on well defined spatio-temporal scales. In MMSF, the single scale
models are placed on a scale separation map (SSM), where axes indicate the spatial–temporal scales. An example
of SSM with a multiscale model that consists of two single scale components is shown in Fig. 1. The directed edges
between the single scale components indicate their interactions. In general, cyclic and acyclic coupling topologies
are recognised: the cyclic one, as in Fig. 1, assumes a feedback loop between the components, and in the acyclic
one, no feedback is present. Here we rely on the assumptions of a component-based structure of the multiscale
models as well as on a drastic difference in the computational cost of the single scale components.

The overall multiscale model is denoted by a function g(x, ξ ) = z such that

g : Rn+m
→ Rq

with n,m, q ∈ N and E[|g|
2] < ∞, which produces the Quantity of Interest (QoI) z. We introduce a function

G : Rs+p
→ Rq , with s, p ∈ N, as a representation of g, which underlines the relationship between the micro

model response and the remaining variables inside the macro model, denoted by the function f :

g(x, ξ ) = G( f (x), h(ξ )).
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Therefore, the function G( f (x), ·) represents the macro model for some f : Rn
→ Rs which depends on parameters

x = (x1, . . . , xn). It is assumed that f can be executed in a relatively short computational time, that it has a finite
non-zero variance, i.e. E[| f |

2] < ∞ and f is not constant, and that it is possible to obtain its output sensitivity.
The micro scale component is defined by a function h : Rm

→ Rp which satisfies E[|h|
2] < ∞. The sets of

variables on which the function h depends1 are of the form ξ = (ξ1, . . . , ξm).
Without loss of generality, later in the text it is assumed that the uncertain inputs x and ξ follow uniform

distributions U([0, 1]n) and U([0, 1]m), respectively.

3. Sensitivity analysis

Sensitivity analysis identifies the effect of uncertainty in the model input parameters on the model response [18].
The Sobol sensitivity indices [20,23] (SIs) are widely used to measure the response sensitivity. The total SI of an
input xi for the results of the multiscale model function g(x, ξ ) = z is given by

Sg
Txi

=
Var(z) − Varx∼i ,ξ

(
Exi [z|x∼i , ξ ]

)
Var(z)

=

∫
|g(x, ξ )|2dxdξ −

∫
|
∫

g(x, ξ )dxi |
2dx∼i dξ∫

|g(x, ξ )|2dxdξ − |g0|
2 , (3.1)

where g0 = E[g(x, ξ )], and the notation x∼i = (x1, . . . , xi−1, xi+1, . . . , xn) is employed [9]. In [20,24], the total
SIs were employed to identifying the effective dimensions of a model function and to fixing unessential variables.
In particular, it was shown that, when fixing xi to a value x0

i in [0, 1], the error defined by

δ(x0
i ) =

∫ ⏐⏐g(x, ξ ) − g(x∼i , x0
i , ξ )

⏐⏐2 dxdξ
Var(z)

satisfies

P
(
δ(x0

i ) ≤

(
1 +

1
ε

)
Sg

Txi

)
≥ 1 − ε (3.2)

for any ε > 0. This result is applied in this work, meaning that we expect with high confidence that fixing an input
with a low total sensitivity index does not produce a large error in the estimates of uncertainty. Then, this fact can
be employed to reduce input dimensionality, so that UQ can be performed more efficiently. However, sensitivity
indices are usually not given in advance and their estimation can be a computationally expensive task as well.

3.1. Sensitivity analysis of multiscale models

In this work, it is proposed to evaluate the response sensitivity of the computationally cheap single scale model
f to estimate an upper bound of the sensitivity of the multiscale model output z. This approach can be highly
computationally efficient; however, the method does not work in general.

In order to fix uncertain inputs according to single scale model SA, it should be proved that the total sensitivity
for an input xi remains small also for the output of the model g(x, ξ ), i.e. Sg

Txi
≪ 1 given that S f

Txi
≪ 1. This

cannot be assumed in general, and it depends on the form of the model function G.
The first step of the proposed approach is to analyse the multiscale model function G, as it is shown in the

following sections. In the cases, in which our method applies, the next step is to estimate numerically S f
Txi

for

i = 1, . . . , n by a black box method, for instance from [24]. Then, if it is found that S f
Txi

≪ 1, it shall follow
automatically that Sg

Txi
≪ 1. Hence, according to (3.2), uncertainty can be estimated with fixed xi without producing

a large error.
While the results stated below hold also for vector valued functions, using the definition of total SI given in

(3.1), we shall work mainly with scalar functions, in order to avoid a heavy notation.

1 Additionally, h may depend on the macro model response. When this is the case, the micro model function is denoted by h(x, ξ )
or h(x), meaning that it depends on the same uncertain inputs as the macro model function f . This is a relevant feature of the method
presented here.
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3.1.1. Case 1
We start by considering the homogeneous case: G : R2

→ R, given by G(u, v) = uv.

Theorem 3.1. Let g : (0, 1)m+n
→ R be a function in L2((0, 1)m+n) such that

g(x, ξ ) = f (x)h(ξ ),

for some f : (0, 1)n
→ R and h : (0, 1)m

→ R satisfying f ∈ L2((0, 1)n) and h ∈ L2((0, 1)m). Then, we have

Sg
Txi

= λ f,h S f
Txi
, (3.3)

where

λ f,h =

∫
f (x)2 dx − f 2

0∫
f 2(x)dx −

f 2
0 h2

0∫
h2(ξ )dξ

.

In particular,

Sg
Txi

≤ S f
Txi
, (3.4)

and

Sg
Txi

≥

(
1 −

f 2
0∫

f 2(x)dx

)
S f

Txi
. (3.5)

Proof. The total SI of the input xi for the results of the model g(x, ξ ) is equal to

Sg
Txi

=

∫∫
f 2(x)h2(ξ )dxdξ −

∫∫
(
∫

f (x)h(ξ )dxi )2dx∼i dξ∫∫
f 2(x)h2(ξ )dxdξ − ( f0h0)2

=

∫
f 2(x)dx −

∫
(
∫

f (x)dxi )2dx∼i∫
f 2(x)dx −

f 2
0 h2

0∫
h2(ξ )dξ

=

∫
f (x)2 dx − f 2

0∫
f 2(x)dx −

f 2
0 h2

0∫
h2(ξ )dξ

∫
f 2(x)dx −

∫
(
∫

f (x)dxi )2dx∼i∫
f 2(x)dx − f 2

0
=

∫
f (x)2 dx − f 2

0∫
f 2(x)dx −

f 2
0 h2

0∫
h2(ξ )dξ

S f
Txi
,

from which (3.3) follows.
By the Cauchy–Schwarz inequality,

h2
0 ≤

∫
h2(ξ )dξ.

Therefore, λ f,h ≤ 1, and (3.4) is obtained. In addition, again by Cauchy–Schwarz inequality, we get

λ f,h ≥

∫
f (x)2 dx − f 2

0∫
f 2(x)dx

= 1 −
f 2
0∫

f 2(x)dx
> 0

for any h ∈ L2((0, 1)m). Hence, (3.5) is obtained. □

Therefore, if a low sensitivity to the parameter xi is identified by computing S f
Txi

, this parameter can be excluded
from UQ of the whole multiscale model. On the other hand, inequality (3.5) means that we have a lower bound
for the total SI of the input xi for the model g(x, ξ ) = f (x)h(ξ ), which is independent from the choice of the
function h(ξ ). In particular, if xi is an important variable for the model f (x), then (3.5) implies that it cannot lose
dramatically its importance in the model given by g.

Example 3.2 (Reaction Equation). An example of Case 1 can be a reaction equation presented by an acyclic
model [4] with initial conditions provided by some function f (x):

∂z(t, x, ξ )
∂t

= −ψ(ξ )z(t, x, ξ ),

z(0, x, ξ ) = f (x),

where x and ξ are uncertain model inputs. The analytical solution of the equation is

z(t, x, ξ ) = f (x)e−tψ(ξ ).
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Therefore, if we define ht (ξ ) = e−tψ(ξ ), we get

z(t, x, ξ ) = f (x)ht (ξ ),

and Theorem 3.1 can be applied.
Since the proposed approach is applicable to multiscale models regardless of the complexity of f and h, in the

example, these model components are represented by the following equations:

ψ(ξ ) = ξ 2
1 − ξ2,

f (x) = x2
1 + x1x2x3 + x3

3 − x1x3,

where uncertain parameters x have uniform distribution U(0.9, 1.1), ξ1 is uniformly distributed on [0.07, 0.09], and
ξ2 on [0.05, 0.09].

Sensitivity analysis of the function f results in:

S f
Tx1

≈ 2.9 · 10−1,

S f
Tx2

≈ 7.2 · 10−2,

S f
Tx3

≈ 6.5 · 10−1,

suggesting that the parameter x2 does not significantly affect the output of the function f . Therefore, by
Theorem 3.1, the value of this parameter can be equated to its mean when estimating uncertainty of the overall
model response z.

Fig. 2(a) illustrates a satisfactory match between the mean values and standard deviations obtained by sampling
the results varying all the uncertain inputs and keeping the input x2 equal to its mean value. Fig. 2(c) shows that the
relative error in the standard deviation does not exceed 3.5% at any simulation time. Moreover, the resulting p-value
of Levene’s test [12] is about 0.84. Therefore, the null hypothesis that the samples are obtained from distributions
with equal variances cannot be rejected.

Fig. 2(b) and (d) show the probability density functions (PDFs) and the cumulative distribution functions (CDFs)
of the uncertain model output z at the final simulation time obtained using these two samples. There is a good match
in the PDFs and CDFs with Kolmogorov–Smirnov (K–S) two sample test shows the K–S distance nearly 3.6 · 10−4

and p-value larger than 0.5, therefore, the hypothesis that the two samples are drawn from the same distributions
cannot be rejected.2

3.1.2. Case 2
We consider the linear case, where the sampling function G : R2

→ R is given by G(u, v) = u + v.

Theorem 3.3. Let g : (0, 1)n+m
→ R be a function in L2((0, 1)n+m) such that

g(x, ξ ) = f (x) + h(ξ ),

for some f : (0, 1)n
→ R and h : (0, 1)m

→ R satisfying f ∈ L2((0, 1)n) and h ∈ L2((0, 1)m). Then, we have

Sg
Txi

= µ f,h S f
Txi
, (3.6)

where

µ f,h :=
1

1 +
Var(h)
Var( f )

.

In particular, Sg
Txi

≤ S f
Txi

.

Proof. The total SI of the input xi for the results of the model g is equal to

Sg
Txi

=

∫
( f (x) + h(ξ ))2dxdξ −

∫
(
∫

f (x) + h(ξ )dxi )2dx∼i dξ∫
( f (x) + h(ξ ))2dxdξ − ( f0 + h0)2

=

∫
f 2(x)dx −

∫
(
∫

f (x)dxi )2dx∼i∫
f 2(x)dx − f 2

0 +
∫

h2(ξ )dξ − h2
0
,

2 This conclusion also applies to the other simulation times (data not shown).
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Fig. 2. (a) Comparison of the estimated mean and standard deviation of the model response zt using the original sample and the sample
with the unimportant parameter x2 equal to its mean value (reduced); (b) and (d) Comparison of the probability density functions and the
cumulative distribution functions at the final simulation time Tend = 100; (c) Relative error in the estimated mean and standard deviation
using the samples with the reduced number of uncertain input.

from which we get (3.6) by dividing by Var( f ) numerator and denominator.
Clearly, µ f,h ∈ (0, 1], and so we conclude that Sg

Txi
≤ S f

Txi
. □

Therefore, if the parameter xi is unimportant for f , it can be equated to its mean value in the uncertainty
estimation of the model g.

Example 3.4 (Standard Ornstein–Uhlenbeck Process). An example of Case 2 can be a multiscale model whose
micro scale dynamics does not depend on the macro scale response. Let us consider the system (Fig. 3(a))
[7,8]:

∂z
∂t

= v + f (x),

∂v

∂t
= −

1
ϵ
v +

1
√
ϵ

Ẇt ,

f (x) = −x1 + (x2
2 x3 + x4),

where z simulates the slow processes with z(t = 0) = 1, v is the fast process with v(t = 0) = 1, ϵ = 10−2, Ẇt is a
white noise with unit variance. The fast dynamics is the standard Ornstein–Uhlenbeck process. At any simulation
time t, Ẇt plays the role of ξ in Theorem 3.3. The macro model uncertain parameters x = (x1, x2, x3, x4) follow
normal distribution, such that x1 ∼ N (0, 10−4), x2 ∼ N (0, 2.5 ·10−4), x3 ∼ N (0, 2.5 ·10−6), x4 ∼ N (0, 2.5 ·10−6).
The system is simulated using the forward Euler method with the macro time step ∆tM = 1 and the micro time
step ∆tµ = 10−2.
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Fig. 3. (a) Standard Ornstein–Uhlenbeck process; (b) Comparison of UQ result using the original sample and the sample obtained with
values of the unimportant parameters x2 and x3 equal to their mean (reduced); (c) and (e) Comparison of the PDF and CDF at the final
time step; (d) Relative error in the estimation of the mean and standard deviation.

Sensitivity analysis of the function f (x) yields

S f
Tx1

≈ 7.7 · 10−1,

S f
Tx2

≈ 2.6 · 10−4,

S f
Tx3

≈ 3.9 · 10−4,

S f
Tx4

≈ 2.0 · 10−1.
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At any simulation time, the inputs x2 and x3 do not influence significantly the output of the function f . Therefore,
they can be equated to their mean values without a substantial loss of accuracy of the uncertainty estimate as a
consequence of Theorem 3.3.

The uncertainty estimation results of z are presented in Fig. 3(b). As it is proven analytically, the estimates
obtained by sampling the model results with uncertain parameters x2 and x3 equal to their mean values are close to
those resulting from samples where all the uncertain inputs vary. At any simulation time, the relative error between
these estimates of the standard deviation does not exceed 1.1% (Fig. 3(d)). Additionally, Levene’s test shows p-value
about 0.66, therefore, we cannot reject the hypothesis that the two samples are drawn from distributions with the
same variance.

The PDFs and CDFs for the model result at the final time point obtained from these two samples are in Fig. 3(c)
and (e). There is a good match of the PDFs and CDFs obtained from these two samples, and K–S test produces
the distance about 0.01 and p-value about 0.47, therefore, the hypothesis that the two samples are drawn from the
same distributions cannot be rejected.

Some additional cases of the function G for which the method of eliminating unimportant parameters to reduce
the input dimensionality is valid are presented in Appendix.

3.1.3. Counterexample
In this section, the importance of the examination of properties of the function G is demonstrated. The

counterexample illustrates that low sensitivity to a parameter of the response of a function f does not necessarily
imply low sensitivity to this parameter of a response of the function g.

Example 3.5 (Total Sensitivity Indices of Composite Functions). Let n = 2,m = 1 and i = 2,

∂z
∂x1

= −
1

4 4
√
β

|x1 + x2 + ξ |−
5
4 , (3.7)

for (x1, x2, ξ ) ∈ (0, 1)3, with z(0, x2, ξ ) =
1

4√β|x2+ξ |
and β > 0 some fixed parameter. The solution to Eq. (3.7) can

be represented using the following system

u = f (x) = x1 + βx2,

v = h(x1, ξ ) = (1 − β)x1 − βξ,

G(u, v) =
1

4
√

|u − v|
,

so that

z(x, ξ ) = g(x, ξ ) =
1

4
√
β

1
4
√

x1 + x2 + ξ
.

Let us now directly obtain sensitivity indices of the function f (x) for the parameter x2:

S f
Tx2

=

1
3 +

β2

3 +
β

2 −

(
1
3 +

β2

4 +
β

2

)
1
3 +

β2

3 +
β

2 −

(
β+1

2

)2 =

β2

12
β2+1

12

=
β2

1 + β2 .

Note that S f
Tx2

can be made arbitrarily small as β → 0: for instance, by choosing β ∈
(
0, 1

10

)
, we get

S f
Tx2
<

1
100

,

so that x2 becomes an unimportant input for f .
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On the other hand, sensitivity of the function g(x, ξ ) does not depend on β:

Sg
Tx2

=

1
√
β

∫
(0,1)3

1
√

x1+x2+ξ
dx1dx2dξ −

1
√
β

∫
(0,1)2

(∫
(0,1)

1
4√x1+x2+ξ

dx2

)2
dx1dξ

1
√
β

∫
(0,1)3

1
√

x1+x2+ξ
dx1dx2dξ −

1
√
β

(∫
(0,1)3

1
4√x1+x2+ξ

dx1dx2dξ
)2

=

∫
(0,1)3

1
√

x1+x2+ξ
dx1dx2dξ −

∫
(0,1)2

(∫
(0,1)

1
4√x1+x2+ξ

dx2

)2
dx1dξ∫

(0,1)3
1

√
x1+x2+ξ

dx1dx2dξ −

(∫
(0,1)3

1
4√x1+x2+ξ

dx1dx2dξ
)2 .

In addition, since g is symmetrical,

Sg
Tx2

= Sg
Tx1

= Sg
Tξ
.

Hence, this proves that x2 is not an unimportant input for the function g, since it must be as relevant as x1 and ξ .
Therefore, in general, it is wrong to eliminate an uncertain input from UQ only based on sensitivity analysis of a
single scale model without verifying that Sg

Txi
≤ λS f

Txi
holds for some finite λ ≥ 0 as in Theorems 3.1 and 3.3.

4. Concluding remarks

An application of sensitivity analysis to reduce dimensionality of multiscale models in order to improve the
performance of their uncertainty estimation is discussed in this paper. It has been shown that for some multiscale
models, the estimates of Sobol sensitivity indices of a single scale output can be used as an estimate of the upper
bound for the sensitivity of the output of the whole multiscale model. In other words, knowledge on the importance
of inputs from single scale models can be used to find the effective dimensionality of the overall multiscale model.
Two classes of coupling function G (multiplicative, additive) were considered, where the approach was demonstrated
to work, based on Theorems 3.1 and 3.3, and two examples. However, a counterexample was also constructed,
showing that the success of the method strongly depends on the properties of the coupling function G. Obviously,
this analysis only covers a very small portion of possible coupling functions, and a more systematic or case by case
investigation would be warranted.

The next step is to apply the proposed approach to real-world multiscale applications, for instance, to a multiscale
fusion model [13] and to a coupled human heart model [19]. Uncertainty quantification applied to these models
is computationally expensive due to the high dimension of the model parameters. Therefore, the SA analysis on
single scale models to reduce the dimensionality of the overall multiscale model input can be one of the possible
ways to improve the efficiency of the model uncertainty quantification.
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Appendices

In this Appendix, additional cases of the function G are considered. In particular, relations between the function
f and two or more functions representing the micro model are investigated, in this way allowing for vector valued
functions h. Overall, our goal here is to show that the method presented in this work can be applied to different
types of functions of the multiscale model components.
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Appendix A. Case 3

Consider the affine linear case: G : R3
→ R given by G(u, v1, v2) = uv1 + v2.

Theorem A.1. Let g : (0, 1)m+n+k
→ R be a function in L2((0, 1)m+n+k) such that

g(x, ξ, η) = f (x)h1(ξ ) + h2(x∼i , η),

for some f : (0, 1)n
→ R, h1 : (0, 1)m

→ R and h2 : (0, 1)k+n−1
→ R satisfying f ∈ L2((0, 1)n), h1 ∈ L2((0, 1)m),

and h2 ∈ L2((0, 1)k+n−1). Then,

Sg
Txi

= γ f,h1,h2 S f
Txi
, (A.1)

where

γ f,h1,h2 :=

∫
f 2(x)dx − f 2

0∫
f 2(x)dx −

f 2
0 (h1)2

0∫
h2

1(ξ )dξ
+

∫∫
h2

2(x∼i ,η)dx∼i dη−(h2)2
0∫

h2
1(ξ )dξ

+ 2(h1)0
( f h2)0− f0(h2)0∫

h2
1(ξ )dξ

.

If, additionally, it is assumed that

(h1)0( f h2)0 ≥ f0(h1)0(h2)0, (A.2)

then

Sg
Txi

≤ S f
Txi
.

Proof. We compute

Var(g)Txi
=

∫∫
f 2(x)h2

1(ξ )dxdξ +

∫∫
h2

2(x∼i , η)dx∼i dη + 2(h1)0( f h2)0

−

∫∫ (∫
f (x)h1(ξ )dxi

)2

dx∼i dξ −

∫∫
h2

2(x∼i , η)dx∼i dη − 2(h1)0( f h2)0,

Var(g) =

∫∫
f 2(x)h2

1(ξ )dxdξ +

∫∫
h2

2(x∼i , η)dx∼i dη + 2(h1)0( f h2)0

− h2
0 f 2

0 − (h2)2
0 − 2 f0(h1)0(h2)0.

Thus, the total SI of the input xi for the results of the model g(x, ξ, η) is equal to

Sg
Txi

=
Var(g)Txi

Var(g)
=

∫
f 2(x)dx −

∫
(
∫

f (x)dxi )2dx∼i∫
f 2(x)dx −

f 2
0 (h1)2

0∫
h2

1(ξ )dξ
+

∫∫
h2

2(x∼i ,η)dx∼i dη−(h2)2
0∫

h2
1(ξ )dξ

+ 2(h1)0
( f h2)0− f0(h2)0∫

h2
1(ξ )dξ

,

from which (A.1) follows. By Cauchy–Schwarz inequality, we have

(h1)2
0 ≤

∫
h2

1(ξ )dξ,

(h2)2
0 ≤

∫∫
h2

2(x∼i , η)dx∼i dη,

which imply

γ f,h1,h2 ≤
Var( f )

Var( f ) + 2(h1)0
( f h2)0− f0(h2)0∫

h2
1(ξ )dξ

.

To estimate the last term at the denominator, (A.2) is employed, yielding

γ f,h1,h2 ≤ 1,

and the result follows. □

Note that, in the previous theorem, h2 can be independent of more than one input x j , however, it is crucial
to assume the independence from the unimportant parameters which we want to exclude from uncertainty
quantification.
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Remark A.2. It is noticed that condition (A.2) is equivalent to assume that E(h1)Cov( f, h2) ≥ 0, since Cov( f, h2) =

( f h2)0 − f0(h2)0. Under the same assumption, one can get the following lower bound on γ f,h1,h2 :

γ f,h1,h2 ≥

∫
f 2(x)dx − f 2

0∫
f 2(x)dx +

∫∫
h2

2(x∼i ,η)dx∼i dη−(h2)2
0∫

h2
1(ξ )dξ

+ 2(h1)0
( f h2)0− f0(h2)0∫

h2
1(ξ )dξ

.

On the other hand, if E(h1)Cov( f, h2) ≤ 0; that is, (h1)0( f h2)0 ≤ f0(h1)0(h2)0, then

γ f,h1,h2 ≥

∫
f 2(x)dx − f 2

0∫
f 2(x)dx +

∫∫
h2

2(x∼i ,η)dx∼i dη−(h2)2
0∫

h2
1(ξ )dξ

.

In addition, if it is assumed that (h1)0( f h2)0 ≤ f0(h1)0(h2)0 and that

Var( f ) +
Var(h2)∫
h2

1(ξ )dξ
+ Cov( f, h2) ≥ 0,

we obtain the following upper bound for γ f,h1,h2 :

γ f,h1,h2 ≤
1

1 +

∫∫
h2

2(x∼i ,η)dx∼i dη−(h2)2
0

Var( f )
∫

h2
1(ξ )dξ

+ 2(h1)0
( f h2)0− f0(h2)0
Var( f )

∫
h2

1(ξ )dξ

.

Appendix B. Case 4

A variant of the linear case G(u, v) = u + v is considered. The difference with Case 2 of Theorem 3.3 is that
now the functions f and h depend on the same set of variables.

Theorem B.1. Let g : (0, 1)n
→ R be a function in L2((0, 1)n) such that

g(x) = f (x) + h(x),

for some f, h : (0, 1)n
→ R, f, h ∈ L2((0, 1)n). Then, if

Cov( f, h) = ( f h)0 − f0h0 ≥ 0,

we have

Sg
Txi

≤

(√
S f

Txi
Var( f ) +

√
Sh

Txi
Var(h)

)2

Var( f ) + Var(h)
, (B.1)

and so

Sg
Txi

≤ 2 max{S f
Txi
, Sh

Txi
}, (B.2)

where the factor 2 is sharp.

Proof. By a simple computation, it follows that

Sg
Txi

=

∫
( f + h)2dx −

∫
(
∫

( f + h)dxi )2dx∼i∫
( f + h)2dx − ( f0 + h0)2

=
Var( f )Txi

+ Var(h)Txi
+ 2

∫
f hdx − 2

∫
(
∫

f dxi )(
∫

hdxi )dx∼i

Var( f ) + Var(h) + 2Cov( f, h)
,

where Var( f )Txi
=
∫

f 2(x) dx −
∫

(
∫

f (x) dxi )2 dx∼i , and Var(h)Txi
is defined analogously. Then, by applying the

Cauchy–Schwarz inequality to the functions f (x) −
∫

f (x) dxi and h(x) −
∫

h(x) dxi , we get⏐⏐⏐⏐∫ f hdx −

∫ (∫
f dxi

)(∫
hdxi

)
dx∼i

⏐⏐⏐⏐ ≤

√
Var( f )Txi

Var(h)Txi
. (B.3)
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Thus, if Cov( f, h) ≥ 0, by (B.3) we obtain

Sg
Txi

≤

S f
Txi

Var( f ) + Sh
Txi

Var(h) + 2
√

S f
Txi

Var( f )Sh
Txi

Var(h)

Var( f ) + Var(h)
,

from which (B.1) immediately follows. Finally, we show that

(
√

ay +
√

bz)2

a + b
≤ 2 max{y, z} (B.4)

for any a, b, y, z > 0. Indeed, without loss of generality, let y > z, and recall that 2
√

ab ≤ a + b: then,

(
√

ay +
√

bz)2

a + b
≤ y

(
√

a +
√

b)2

a + b
= y

a + b + 2
√

ab
a + b

≤ 2y.

Moreover, the factor 2 is sharp: if y = z and a = b,

(
√

ay +
√

bz)2

a + b
= y

4a
2a

= 2y = 2 max{y, z}.

Therefore, inequality (B.4) shows that (B.1) implies (B.2). □

The bound given by (B.1) means that the total sensitivity index Sg
Txi

for the function g of the input xi is controlled

by S f
Txi

and Sh
Txi

. It is clear that this result can be applied also to a function g of the form

g(x) = f (x) + h1(x) + h2(x) + · · · + hk(x),

for any k ≥ 1. Indeed, it is enough to proceed by iteration: at first, we let

h(x) = h1(x) + h2(x) + · · · + hk(x),

then (B.1) is applied to Sh
Txi

, by seeing h as

h(x) = h1(x) + h̃2(x),

where

h̃2(x) = h2(x) + · · · + hk(x).

By applying this procedure k times, the desired result is obtained. However, since the factor 2 in (B.2) is sharp, in
general we cannot hope to obtain a better control than

Sg
Txi

≤ 2k max{S f
Txi
, Sh1

Txi
, Sh2

Txi
, . . . , Shk

Txi
},

where the factor 2k is again sharp.

Appendix C. Case 5

A variant of Case 3 (Theorem A.1), G(u, v1, v2) = uv1 + v2 is considered. This time, we assume dependence
of h2 also on the input xi .

Theorem C.1. Let g : (0, 1)n+m+k
→ R be a function in L2((0, 1)n+m+k) such that

g(x, ξ, η) = f (x)h1(ξ ) + h2(x, η)

for some f ∈ L2((0, 1)n), h1 ∈ L2((0, 1)m) and h2 ∈ L2((0, 1)n+k). Then, if E(h1)Cov( f, h2) ≥ 0,

Sg
Txi

≤

S f
Txi

(
∫

h2
1(ξ ) dξ )Var( f ) + Sh2

Txi
Var(h2) + 2(h1)0

√
S f

Txi
Var( f )Sh2

Txi
Var(h2)

(
∫

h2
1(ξ ) dξ )Var( f ) + f 2

0 Var(h1) + Var(h2)
. (C.1)

Proof. It is enough to evaluate Sg
Txi

. We have∫
g2(x, ξ, η) dx dξ dη −

∫ (∫
g(x, ξ, η) dxi

)2

dx∼i dξ dη
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=

∫∫
( f (x)h1(ξ ) + h2(x, η))2 dx dξ dη −

∫ ∫ (∫
( f (x)h1(ξ ) + h2(x, η)) dxi

)2

dx∼i dξ dη

=

(∫
h2

1(ξ ) dξ
)

Var( f )Txi
+ Var(h2)Txi

+ 2(h1)0

(∫
f (x)h2(x, η) dx dη − 2

∫ (∫
f (x) dxi

)(∫
h2(x, η) dxi

)
dx∼i dη

)
≤

(∫
h2

1(ξ ) dξ
)

Var( f )Txi
+ Var(h2)Txi

+ 2(h1)0

√
Var( f )Txi

Var(h2)Txi
,

by (B.3). On the other hand, we get∫∫
g2(x, ξ, η) dx dξ dη − g2

0 =

∫∫
( f (x)h1(ξ ) + h(x, η))2 dx dξ dη − ( f h1 + h2)2

0

=

(∫
h2

1 dξ
)

Var( f ) + f 2
0 Var(h1) + Var(h2) + 2(h1)0Cov( f, h2).

≥

(∫
h2

1 dξ
)

Var( f ) + f 2
0 Var(h1) + Var(h2),

since (h1)0Cov( f, h2) ≥ 0. Then, it follows that

Sg
Txi

≤

(∫
h2

1(ξ ) dξ
)

Var( f )Txi
+ Var(h2)Txi

+ 2(h1)0

√
Var( f )Txi

Var(h2)Txi(∫
h2

1 dξ
)

Var( f ) + f 2
0 Var(h1) + Var(h2)

=

S f
Txi

(
∫

h2
1 dξ )Var( f ) + Sh2

Txi
Var(h2) + 2(h1)0

√
S f

Txi
Var( f )Sh2

Txi
Var(h2)

(
∫

h2
1 dξ )Var( f ) + f 2

0 Var(h1) + Var(h2)
,

which is (C.1). □

If h1 ≡ 1 and k = 0, there is no dependence on ξ and η, and Theorem C.1 implies Theorem B.1 for the functions
f and h2.

Appendix D. An estimate on a general class of model functions

Let G : R2
→ R be such that there exist L ≥ c > 0 satisfying

|G(u, v) − G(u0, v)| ≤ L|u − u0|, (D.1)

|G(u, v)| ≥ c
√

u2 + v2 (D.2)

for any u, u0, v ∈ R, which means that G is Lipschitz in u, uniformly in v, and that it is a coercive function.

Theorem D.1. Let g : (0, 1)n+m
→ R be a function in L2((0, 1)n+m) such that g0 = 0 and

g(x, ξ ) = G( f (x), h(x∼i , ξ )) (D.3)

for some functions f : (0, 1)n
→ R and h : (0, 1)n+m−1

→ R satisfying f ∈ L2((0, 1)n) and h ∈ L2((0, 1)n+m−1).
Then,

Sg
Txi

≤ 2
L2

c2

Var( f )
Var( f ) + Var(h)

S f
Txi
. (D.4)

Proof. By (D.1) and (D.3), it follows that g(x, ξ ) ∈ L2((0, 1)n+m). Since g0 = 0, (D.2) implies

Var(g) =

∫
(0,1)n+m

g2(x, ξ ) dx dξ

≥ c2
(∫

(0,1)n
f 2(x) dx +

∫
(0,1)n+m−1

h2(x∼i , ξ ) dx∼i dξ
)
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≥ c2 (Var( f ) + Var(h)) .

We further notice that, by Jensen inequality combined with (D.1) and (D.3), we get∫
(0,1)n+m

(
g(xi , x∼i , ξ ) −

∫ 1

0
g(x̃i , x∼i , ξ ) dx̃i

)2

dxi dx∼i dξ

≤

∫
(0,1)n+m

∫ 1

0
|g(xi , x∼i , ξ ) − g(x̃i , x∼i , ξ )|2 dx̃i dxi dx∼i dξ

=

∫
(0,1)n+m+1

|G( f (xi , x∼i ), h(x∼i , ξ )) − G( f (x̃i , x∼i ), h(x∼i , ξ ))|2 dx̃i dxi dx∼i dξ

≤ L2
∫

(0,1)n−1

∫ 1

0

∫ 1

0
| f (xi , x∼i ) − f (x̃i , x∼i )|

2 dx̃i dxi dx∼i

= 2L2

(∫
(0,1)n

f 2(x) dx −

∫
(0,1)n−1

(∫ 1

0
f (xi , x∼i ) dxi

)2

dx∼i

)
.

Therefore, combining these two inequalities, (D.4) is obtained. □

We notice that we can replace the assumption g0 = 0 in Theorem D.1 with a weaker one.

Corollary D.2. Let g : (0, 1)m+n
→ R be a function in L2((0, 1)m+n) as in (D.3), with f ∈ L2((0, 1)n),

h ∈ L2((0, 1)n+m−1). Then, if

c2(Var( f ) + Var(h)) − g2
0 ≥ 0,

we have

Sg
Txi

≤ 2
L2Var( f )

c2(Var( f ) + Var(h)) − g2
0

S f
Txi
.

Proof. The proof is the same of Theorem D.1, one needs just to subtract the term g2
0 at the denominator. □

Remark D.3. It is not difficult to see that we could restate Theorem D.1 and Corollary D.2 for a function
G : R × Rl

→ R; that is, allowing v to be a vector (v1, v2, . . . , vl) in Rl . The Lipschitz condition would not
change, while the coercivity condition (D.2) would become

|G(u, v)| ≥ c
√

u2 + |v|2 = c
√

u2 + v2
1 + v2

2 + · · · + v2
l .

This would allow to have not only one function h, but a family of l different functions h1, h2, . . . , hl , which could
be seen as a vector valued function

h = (h1, h2, . . . , hl) : (0, 1)n+m−1
→ Rl ,

satisfying

Var(h) = Var(h1) + Var(h2) + · · · + Var(hl).

The next example illustrates that the admissible function G for Theorem D.1 and Corollary D.2 can be very
nonlinear.

Example D.4. Let

G(u, v) = a|u| + b|v| + arctan
(

|u| + |v|

1 + v2

)
,

for some a, b > 0. Then, G is Lipschitz in u uniformly in v, since

∂G(u, v)
∂u

=

(
a +

(1 + v2)
(1 + v2)2 + u2 + v2 + 2|u ∥ v|

)
sgn(u),
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which is a bounded function. Thus, G satisfies condition (D.1), with

L = sup
u,v

⏐⏐⏐⏐∂G(u, v)
∂u

⏐⏐⏐⏐ .
As for the coercivity condition (D.2), it is easy to see that G(u, v) ≥ 0 and

G(u, v) ≥ min{a, b}(|u| + |v|) ≥ min{a, b}

√
u2 + v2,

so that we have c = min{a, b}. It is clear that, since G(u, v) ≥ 0, any g(x, ξ ) = G( f (x), h(x∼i , ξ )) cannot satisfy
g0 = 0, unless f = h = 0. Hence, in general, we can apply Corollary D.2 only if we ensure that

min{a, b}
2(Var( f ) + Var(h)) ≥ g2

0 .
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