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1. INTRODUCTION AND METHOD
We summarize the findings of Graus et al. [2]. Many queries is-

sued to search engines are related to entities [4]. Entity ranking,
where the goal is to position a relevant entity at the top of the rank-
ing for a given query, is therefore becoming an ever more important
task [1]. Entity ranking is inherently difficult due to the potential
mismatch between the entity’s description in a knowledge base and
the way people refer to the same entity when searching for it.

We propose a method that aims to close this gap by leverag-
ing collective intelligence as offered by external entity “description
sources”. We differentiate between dynamic description sources
that are timestamped, and static ones that are not. We leverage
five static description sources for expanding entity representations.
First, from the knowledge base: (1) anchor text of inter-knowledge
base hyperlinks, (2) redirects, (3) category titles, and (4) names of
entities that are linked to or from an entity. From the web: (5) web
anchors that link to entities. In addition, we leverage three dynamic
description sources, whose content are added to entity representa-
tions in a streaming manner: (6) search engine queries that yield
clicks on entities, (7) tweets, and (8) tags that mention entities.

We represent entities as fielded documents [5], where each field
corresponds to content that comes from one description source. As
external description sources continually come in, the content in the
entity’s fields changes, and previously learned feature weights may
be sub-optimal. Hence, constructing a dynamic entity representa-
tion for optimal retrieval effectiveness boils down to dynamically
learning to optimally weight the entity’s fields. We exploit im-
plicit user feedback (i.e., clicks) to retrain our model, and relearn
the weights associated to the fields, much like online learning to
rank [3]. As an entity ranker, we employ a random forest classifier,
using its confidence scores as a ranking signal.

2. RESULTS AND CONCLUSIONS
To evaluate our method’s performance over time, we treat users’

clicks as ground truth, and the goal is to rank clicked entities at
position 1. We split the query log into chunks, allocate the first
chunk for training, and evaluate each succeeding query in the next
chunk. Then, we add this chunk to the training set, retrain the clas-
sifier, and continue evaluating the next chunk. In Figure 1 we com-
pare our Dynamic Collective Entity Representation method (DCER)
to a static baseline, which only exploits the Knowledge Base de-
scription sources (KBER), i.e., sources 1–4 in Section 1. We see
how each individual description source contributes to more effec-
tive ranking, with KB+tags narrowly outperforming KB+web as
the best single source. We observe that after about 18,000 queries,
KB+tags overtakes the (static) KB+web method, suggesting that
newly incoming tags yield higher ranking effectiveness.
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Figure 1: Impact on performance of individual description
sources. MAP on the y-axis, number of queries on the x-axis.
This plot is best viewed in color.

Our results demonstrate that incorporating dynamic description
sources into dynamic collective entity representations enables a
better matching of users’ queries to entities. Furthermore, we show
how continuously updating the ranker leads to improved ranking
effectiveness in dynamic collective entity representations.
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