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ABSTRACT
We present a heavy traffic analysis of a single-server pollingmodel,
with the special features of retrials and glue periods. The combin-
ation of these features in a polling model typically occurs in certain
optical networking models, and in models where customers have
a reservation period just before their service period. Just before
the server arrives at a station there is some deterministic glue
period. Customers (both new arrivals and retrials) arriving at the
station during this glue period will be served during the visit of
the server. Customers arriving in any other period leave immedi-
ately and will retry after an exponentially distributed time. As this
model defies a closed-form expression for the queue length distri-
butions, our main focus is on their heavy-traffic asymptotics, both
at embedded time points (beginnings of glue periods, visit peri-
ods, and switch periods) and at arbitrary time points. We obtain
closed-form expressions for the limiting scaled joint queue length
distribution in heavy traffic. We show that these results can be
used to accurately approximate the performance of the system for
the complete spectrum of load values by use of interpolation
approximations.
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1. Introduction

Polling models are queueing models in which a single server, alternatingly,
visits a number of queues in some prescribed order. These models have been
extensively studied in the literature. For example, various different service dis-
ciplines (rules which describe the server’s behavior while visiting a queue) and
both models with and without switch-over times have been considered. We
refer to Takagi[22,23] and Vishnevskii and Semenova[24] for some literature
reviews and to Boon, van der Mei and Winands[3], Levy and Sidi[13] and
Takagi[21] for overviews of the applicability of polling models.
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Motivated by questions regarding the performance modeling and analysis
of optical networks, the study of polling models with retrials and glue periods
was initiated in Boxma and Resing[5]. In a communication network, packets
must be routed from source to destination, passing through a series of nodes
and a protocol decides which packet may be transmitted at these points. A
cyclic polling strategy, cyclic meaning that there is a fixed pattern for giving
service to particular ports/stations, is used as a protocol here. The “wired”
part of communication networks these days is almost completely replaced by
optical networks. These networks utilize optical fiber cables as the primary
communication medium for transporting data as light pulses (photons)
between source and destination. Optical nodes, unlike electronics, have a
problem with buffering of optical packets, as photons cannot be stopped.
This problem is usually solved by converting a light pulse to electric data,
storing it and then reconverting it to a light pulse when the node is ready
for further transmission. This is a time and energy consuming process. To
overcome this issue, whenever there is a need to buffer photons, they can be
forced to move locally in fiber loops. These fiber loops or fiber delay lines
(FDL) originate and end at the head of a switch. When a photon arrives at
the switch at a time it cannot be served, it is sent into an FDL, thereby
incurring a small delay to its time of arrival without getting lost or displaced.
Depending on the availability, requirement, traffic, size of photon and other
such factors, the length (delay produced) of these FDLs can differ. Hence,
we assume that these FDLs delay the photons by a random amount of time.
Also, if a packet does not receive service after a cycle through an FDL, then
depending on the model it can go into either the same or a longer or a
shorter or randomly to any of the available FDLs. Hence, we assume that
two consecutive retrials are independent of each other. This FDL feature can
be modeled by a retrial queue.
A sophisticated technology that one might try to add to this is varying the

speed of light by changing the refractive index of the fiber loop, cf.[16] By
increasing the refractive index in a small part of the loop we can achieve
“slow light,” which implies slowing the packets. Just before a service period
at a port starts, the refractive index in a small region at the end of FDLs can
be increased, thereby slowing down the packets and “queueing” them, so
that they are available for service when the service period starts. This feature
is, in our work, modeled as glue periods immediately before the visit period
of the corresponding station. Packets (both new arrivals and retrials) arriving
in this glue period can be served in that subsequent visit period. Packets
arriving in any other period leave immediately and will retry after an expo-
nentially distributed time. These assumptions regarding retrials and glue
periods reflect the specific properties of optical buffering, i.e., FDLs and
slowing down the packets by varying the refractive index.
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Not restricting ourselves to optical networks, one can also interpret a
glue period as a reservation period, i.e., a period in which customers can
make a reservation at a station for service in the subsequent visit period of
that station. The polling models with retrials and reservation periods could
be interesting objects of study in, e.g., healthcare. In our model, the reser-
vation period immediately precedes the visit period and could be seen as
the last part of a switchover period.
In Ref[5], the joint queue length process is analyzed both at embedded

time points (beginnings of glue periods, visit periods and switch-over peri-
ods) and at arbitrary time points, for the model with two queues and deter-
ministic glue periods. This analysis is later on extended in Abidini, Boxma
and Resing[2] to the model with a general number of queues. After that, in
Abidini et al.[1], an algorithm is presented to obtain the moments of the
number of customers in each station for the model with exponentially dis-
tributed glue periods. Furthermore, in Ref[1] also a workload decomposition
for the model with generally distributed glue periods is derived leading to a
pseudo-conservation law. The pseudo-conservation law in its turn is used
to obtain approximations of the mean waiting times at the different sta-
tions. In these articles, however, no analytical expressions for the complete
joint distributions have been derived, which is something we aim to do in
this article.
In this manuscript, we will study the above-described polling system

with retrials and deterministic glue periods in a heavy traffic regime. The
reason that we restrict ourselves to deterministic glue periods is that in that
case we can use the relation between our polling model and a multitype
branching process with immigration as discussed in Ref[2]. This relation
enables us to study the heavy-traffic behavior of the process. Optical net-
works, as a result of the huge bandwidth provided, are not heavily loaded
at the core level, but at the access level, the high volatility of traffic can
lead to periods at which the system works under heavy load. The behavior
of networks in this heavy-loaded period is a motivation for the heavy traffic
analysis of a polling model with retrials and glue periods.
More concretely, we will regard the regime where each of the arrival

rates is scaled with the same constant, and subsequently the constant
approaches from below that value, for which the system is critically loaded.
Then, the workload offered to the server is scaled to such a proportion that
the queues are on the verge of instability. Many techniques have been used
to obtain the heavy traffic behavior of a variety of different polling models.
Initial studies of the heavy traffic behavior of polling systems can be found
in Coffman, Puhalskii and Reiman[6,7], where the occurrence of a so-called
heavy traffic averaging principle is established. This principle implies that,
although the total scaled workload in the system tends to a Bessel-type
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diffusion in the heavy-traffic regime, it may be considered as a constant
during the course of a polling cycle, while the loads of the individual
queues fluctuate like a fluid model. It will turn out that this principle will
also hold true for this model. Furthermore, in van der Mei[14], several
heavy traffic limits have been established by taking limits in known expres-
sions for the Laplace–Stieltjes transform (LST) of the waiting-time distribu-
tion. Alternatively, Olsen and van der Mei[17] provide similar results, by
studying the behavior of the descendant set approach (a numerical compu-
tation method, cf. Konheim, Levy and Srinivasan[10]) in the heavy traffic
limit. For the derivation of heavy traffic asymptotics for our model, how-
ever, we will use results from branching theory, mainly those presented in
Quine[18]. Earlier, these results have resulted in heavy traffic asymptotics
for conventional polling models, see van der Mei[15]. We will use the same
method as presented in that article, but for a different class of polling sys-
tems that models the dynamics of optical networks. In addition, for some
steps of the analysis, we will present new and straightforward proofs, while
other steps require a different approach. Furthermore, we will derive
asymptotics for the joint queue length process at arbitrary time points, as
opposed to just the marginal processes as derived in Ref[15]. Due to the
additional intricacies of the model at hand, we will need to overcome many
arising complex difficulties, as will become apparent later.
The rest of the article is organized as follows. In Section 2, we introduce

some notation and present a theorem from Ref[18] on multitype branching
processes with immigration. In Section 3, we describe in detail the polling
model with retrials and glue periods and recall from Ref[2] how the joint
queue length process at some embedded time points in this model is
related to multitype branching processes with immigration. Next, we will
derive heavy traffic results for our model. In Section 4, we consider the
joint queue length process at the start of glue periods. In Section 5, we
look at the joint queue length process at the start of visit and switch-over
periods, while in Section 6, we consider the joint queue length process at
arbitrary time points. Finally, in Section 7, we show how the heavy-traffic
results, in combination with a light-traffic result, can be used to approxi-
mate performance measures for stable systems with arbitrary system loads.

2. Multitype branching processes with immigration

To derive heavy-traffic results for the model under study, we regard its
queue length process as a multitype branching process with immigration.
To this end, before introducing the actual model in detail, we will state an
important general result from Ref[18] on multitype branching processes
with immigration in this section, which we will make significant use of in
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the sequel of this article. To state this result, we will first need
some notation.
A multitype branching process with immigration has two kinds of indi-

viduals: immigrants and offspring. The immigrants in the model are repre-
sented by the generating function

g zð Þ ¼
X

j1;...;jN�0

q j1; . . . ; jNð Þzj11 . . . zjNN :

Here, z ¼ ðz1; z2; . . . ; zNÞ and jzij � 1, for all i ¼ 1; . . . ;N, and
qðj1; . . . ; jNÞ is the probability that jk type-k individuals immigrate into the
system in a given generation, for all k ¼ 1; . . . ;N. We use this to define
the mean immigration vector g ¼ ðg1; . . . ; gNÞT , where gi ¼ ogðzÞ

ozi
jz¼1 , for all

i ¼ 1; . . . ;N, where 1 represents a vector of which each of the entries
equals one.
Similarly, the offspring in the model is represented by the vector of gen-

erating functions hðzÞ ¼ ðh1ðzÞ; h2ðzÞ; . . . ; hNðzÞÞ. Here,

hi zð Þ ¼
X

j1;...;jN�0

pi j1; . . . ; jNð Þzj11 . . . zjNN ;

where piðj1; . . . ; jNÞ is the probability that a type-i individual produces jk
type-k individuals, for all i ¼ 1; . . . ;N and k ¼ 1; . . . ;N. We use this to

define the mean matrix M ¼ ðmi;jÞ, where mi;j ¼ ohiðzÞ
ozj

jz¼1 , for all

i; j ¼ 1; . . . ;N. The elements mi;j represent the mean number of type-j chil-
dren produced by a type-i individual per generation. We also define the

second-order derivative matrix KðiÞ ¼ ðkðiÞj;kÞ where kðiÞj;k ¼ o2hiðzÞ
ozjozk

jz¼1 , for

all i; j; k ¼ 1; . . . ;N:
Define w ¼ ðw1; . . . ;wNÞT as the normalized right eigenvector corre-

sponding to the maximal eigenvalue n of M. Then,

Mw ¼ nw and wT1 ¼ 1:

Furthermore, we define v ¼ ðv1; . . . ; vNÞT as the left eigenvector of M,
corresponding to the maximal eigenvalue n, normalized such that

vTw ¼ 1:

Additionally, we give the following general notation in order to state the
result of Ref[18]. Any variable x which is dependent on n will be denoted
by x̂ to indicate that it is evaluated at n¼ 1. Further, for 0< n< 1 let

p0 nð Þ :¼ 0 and pn nð Þ :¼
Xn
r¼1

nr�2; n ¼ 1; 2; . . . : (2.1)

We denote with Cða; lÞ a gamma-distributed random variable. For
a; l; x> 0, its probability density function is given by
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f xð Þ ¼ la

C að Þ x
a�1e�lx; where C að Þ :¼

ð1
t¼0

ta�1e�tdt:

Now that the required notation is defined, we state the following import-
ant result, which we will make use of in the sequel to derive heavy-traffic
asymptotics for the polling model with retrials and glue periods. This result
is given and proved in Ref[18] (Theorem 4), and it implies that, under cer-
tain assumptions on the immigration function gðzÞ and the offspring gen-
erating function hðzÞ (see Eqs. (1.1) and (1.2) in Ref[18]),

1
p nð Þ

Z1

..

.

ZN

0
B@

1
CA!

d
A

v̂1
..
.

v̂N

0
B@

1
CAC a; 1ð Þ; when n " 1: (2.2)

Here !d means convergence in distribution, pðnÞ :¼ limn!1 pnðnÞ;a :¼
1
A ĝ

Tŵ and A :¼ 1
2

PN
i¼1 v̂iðŵTK̂

ðiÞ
ŵÞ> 0. The vector ðZ1;Z2; . . . ;ZNÞ is

defined such that Zi is the steady-state number of individuals of type-i in
the multitype branching process with immigration, for all i ¼ 1; . . . ;N.

3. Polling model with retrials and glue periods

In this section, we first define the polling model with retrials and glue peri-
ods. Then, we recall from Ref[2] its property that the joint queue length
process at the start of glue periods of a certain queue is a multitype
branching process with immigration.

3.1. Model description

We consider a single server polling model with multiple queues, Qi;
i ¼ 1; . . . ;N. Customers arrive at Qi according to a Poisson process with
rate ki; they are called type-i customers. The service times at Qi are i.i.d.,
with Bi denoting a generic service time of which the first three1 moments
are finite, with distribution Bið�Þ and LST ~Bið�Þ. The server cyclically visits
all the queues, thus after a visit of Qi, it switches to Qiþ1; i ¼ 1; . . . ;N.
Successive switch-over times from Qi to Qiþ1 are i.i.d., where Si denotes a
generic switch-over time of which the first two moments are finite1, with
distribution Sið�Þ and LST ~Sið�Þ. We make all the usual independence
assumptions about interarrival times, service times and switch-over times at
the queues. After a switch of the server to Qi, there first is a deterministic
(i.e., constant) glue period Gi, before the visit of the server at Qi begins.
The significance of the glue period stems from the following assumption.

1The assumptions of the first three service time moments and the first two switch-over time moments being
finite are made for technical purposes. These assumptions are sufficient to satisfy the conditions given in Eqs.
(1.1) and (1.2) of Ref[18] which are used in the proof of Theorem 4 of Ref[18], as will become apparent in Lemma
6. As mentioned in Section 2, this theorem plays a key role in our analysis.
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Customers who arrive at Qi do not receive service immediately. When cus-
tomers arrive at Qi during a glue period Gi, they stick, joining the queue of
Qi. When they arrive in any other period, they immediately leave and enter
into an orbit from which they retry after retrial intervals which are inde-
pendent of everything else, and exponentially distributed with parameter
�i, i ¼ 1; . . . ;N.
Since customers will only “stick” during the glue period, the service dis-

cipline at all queues can be interpreted as being gated. That is, during the
visit period at Qi, the server serves all “glued” customers in that queue, i.e.,
all type-i customers waiting at the end of the glue period, but none of those
in orbit, and neither any new arrivals. We are interested in the steady-state
behavior of this polling model with retrials. We hence assume that the sta-
bility condition q ¼PN

i¼1 qi < 1 holds, where qi :¼ kiE½Bi�.
Note that now the server has three different periods at each station, a

deterministic glue period during which customers are glued for service, fol-
lowed by a visit period during which all the glued customers are served
and a switch-over period during which the server moves to the next
station. We denote, for i ¼ 1; . . . ;N, by ðXðiÞ

1 ;XðiÞ
2 ; . . . ;XðiÞ

N Þ;
ðYðiÞ

1 ;YðiÞ
2 ; . . . ;YðiÞ

N Þ and ðZðiÞ
1 ;ZðiÞ

2 ; . . . ;ZðiÞ
N Þ vectors with as distribution the

limiting distribution of the number of customers of the different types in
the system at the start of a glue period, a visit period and a switch-over
period of station i, respectively. Furthermore, we denote, for i ¼ 1; . . . ;N,
by ðVðiÞ

1 ;VðiÞ
2 ; . . . ;VðiÞ

N Þ the vector with as distribution the limiting distribu-
tion of the number of customers of the different types in the system at an
arbitrary point in time during a visit period of station i. During glue and
visit periods, we furthermore distinguish between those customers who are
queueing in Qi and those who are in orbit for Qi. Therefore, we write
YðiÞ
i ¼ YðiqÞ

i þ YðioÞ
i and VðiÞ

i ¼ VðiqÞ
i þ VðioÞ

i , for all i ¼ 1; . . . ;N, where q
represents queueing and o represents in orbit. Finally, we denote by
ðLð1qÞ; . . . ; LðNqÞ; Lð1oÞ; . . . ; LðNoÞÞ the vector with as distribution the limiting
distribution of the number of customers of the different types in the queue
and in the orbit at an arbitrary point in time.
The generating function of the vector of numbers of arrivals at Q1 to QN

during a type-i service time Bi is biðzÞ :¼ ~Bið
PN

j¼1 kjð1�zjÞÞ. Similarly, the
generating function of the vector of numbers of arrivals at Q1 to QN during
a type-i switch-over time Si is riðzÞ :¼ ~Sið

PN
j¼1 kjð1�zjÞÞ.

3.2. Relation with multitype branching processes

We now identify the relation of the polling model as defined in Section 3.1
with a multitype branching process. In Ref[2], it is shown that the number
of customers of different types in the system at the start of a glue period of
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station 1 in the polling model with retrials and glue periods is a multitype
branching process with immigration. Here, type-i individuals in the
branching process represent customers of type-i in orbit in the polling
model. The different generations in the branching process correspond to
the successive cycles in the polling models. The immigration in a certain
generation represents new arrivals during switchover times and glue peri-
ods in a certain cycle and/or descendants of these arrivals in the current
cycle (corresponding to customers arriving during the service time of these
new arrivals) if the new arrivals are served during the current cycle. In par-
ticular, it is derived in Ref[2] that the joint probability generating function
(PGF) of Xð1Þ

1 ; . . . ;Xð1Þ
N satisfies

E z
X 1ð Þ
1

1 z
X 1ð Þ
2

2 . . . z
X 1ð Þ
N

N

h i
¼
YN
i¼1

r ið Þ zð Þ
YN
i¼1

e�GiDi zð ÞE h1 zð Þ
� �X 1ð Þ

1 h2 zð Þ
� �X 1ð Þ

2 . . . hN zð Þ
� �X 1ð Þ

N

h i
;

(3.1)

where r ið Þ zð Þ :¼ ri z1; . . . ; zi; hiþ1 zð Þ; . . . ; hN zð Þ
� �

;

Di zð Þ :¼
Xi�1

j¼1

kj 1�zjð Þ þ ki 1� b ið Þ zð Þ
� �

þ
XN
j¼iþ1

kj 1�hj zð Þ
� �

;

b ið Þ zð Þ :¼ bi z1; . . . ; zi; hiþ1 zð Þ; . . . ; hN zð Þ
� �

;

hi zð Þ :¼ fi z1; . . . ; zi; hiþ1 zð Þ; . . . ; hN zð Þ
� �

;

and fi zð Þ :¼ 1�e�miGið Þbi zð Þ þ e�miGizi:

The first two factors in (3.1) represent the immigration part of the pro-
cess. Therefore, we have the immigrant generating function given by

g zð Þ ¼
YN
i¼1

r ið Þ zð Þ
YN
i¼1

e�GiDi zð Þ:

The third factor represents the branching part of the process. Recall that
the vector of offspring generating functions is given by

h zð Þ ¼ h1 zð Þ; h2 zð Þ; . . . ; hN zð Þ� �
:

A customer of type-i present at the start of a glue period of station 1 is
effectively replaced by a population with joint PGF hiðzÞ in the next cycle.
As explained in detail in Ref[2], (3.1) consists of the product of

three factors:

� QN
i¼1 r

ðiÞðzÞ represents new arrivals during switch-over times and
descendants of these arrivals in the current cycle.

� QN
i¼1 e

�GiDiðz Þ represents new arrivals during glue periods and descend-
ants of these arrivals in the current cycle. The function DiðzÞ is itself a
sum of three terms:
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� Pi�1
j¼1 kjð1�zjÞ represents the arrivals of type j < i; these arrivals

are not served in the current cycle.
� kið1� bðiÞðzÞÞ represents descendants of the arrivals of type-i; these

arrivals are all served during the visit of station i in the current cycle.
� PN

j¼iþ1 kjð1�hjðzÞÞ represents the arrivals or descendants of arrivals
of type j > i; these arrivals are either served (with probability
1�e�miGi) or not served (with probability e�miGi) in the current cycle.

� E½½h1ðzÞ�X
ð1Þ
1 ½h2ðzÞ�X

ð1Þ
2 . . . ½hNðzÞ�X

ð1Þ
N � represents descendants of

ðXð1Þ
1 ; . . . ;Xð1Þ

N Þ generated in the current cycle.

We now proceed to further identify the branching process by finding its
mean matrix M and the mean immigration vector g.

3.2.1. Mean matrix of branching process
The elementsmi;j of the mean matrixM of the branching process are given by

mi;j ¼ fi;j � 1 j � i½ � þ
XN
k¼iþ1

fi;kmk;j; (3.2)

where fi;j ¼ ofiðzÞ
ozj

����
z¼1

; and hence

fi;j ¼ 1�e�miGið ÞkjE Bi½ �; i 6¼ j;
1�e�miGið Þqi þ e�miGi ; i ¼ j:

(
(3.3)

In the heavy traffic analysis of this model, the following lemma will
be useful.

Lemma 1.

M ¼ M1 � � �MN; (3.4)

where, for i ¼ 1; 2; . . . ;N, we have

Mi ¼

1 0 � � � 0 0 0 � � � � � � 0

0 1 . .
. ..

.
0 0 � � � � � � 0

..

. . .
. . .

.
0 0 0 � � � � � � 0

0 � � � 0 1 0 0 � � � � � � 0

fi;1 fi;2 � � � fi;i�1 fi;i fi;iþ1
..
. ..

.
fi;N

0 � � � � � � 0 0 1 0 � � � 0

0 � � � � � � 0 0 0 1 . .
.

0

0 � � � � � � 0 0 0 . .
. . .

.
0

0 � � � � � � 0 0 0 � � � 0 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; (3.5)

Proof. See Appendix. w
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Remark 1. (Intuition behind Lemma 1) The matrix Mi represents what
happens with customers during a visit period at station i. Customers at sta-
tion i itself are either served or not served, leading to the ith row with ele-
ments fi;j. Customers at all other stations are not served leading to 1’s on
the diagonal and 0’s outside the diagonal. We obtain the product
M1 � � �MN because a cycle consists successively of visit periods of station 1,
station 2, . . ., up to station N.

3.2.2. Mean number of immigrants
Next, we look at the immigration part of the process. Let gi be the mean
number of type-i individuals which immigrate into the system in each gen-
eration. Equation (3.12) of Ref[2] gives us

gi ¼
XN
k¼1

kk
Xk�1

j¼1

Gj þ E Sj½ �� �0
@

1
A 1�e�mkGkð Þ þ Gk

0
@

1
Amk;i

þki
Xi�1

j¼1

Gj þ E Sj½ �� �
e�miGi þ

XN
j¼i

E Sj½ � þ
XN
j¼iþ1

Gj

0
@

1
A: (3.6)

The right-hand side of (3.6) is the sum of two terms. The termPN
k¼1 kkðð

Pk�1
j¼1 ðGj þ E½Sj�ÞÞð1� e�mkGkÞ þ GkÞmk;i represents the mean

number of type-i customers which are descendants of customers of type k,
arriving during glue periods and switch-over periods before the visit period
of station k and served during the visit at station k, in the current cycle.
The first part of the second term ki

Pi�1
j¼1ðGj þ E½Sj�Þe�miGi represents the

mean number of customers of type i which arrive during glue periods and
switch-over periods before the visit of the server at station i and which are
not served during the visit of station i in the current cycle. The second part
of the second term kið

PN
j¼i E½Sj� þ

PN
j¼iþ1 GjÞ represents the mean number

of customers of type i which arrive during glue periods and switch-over
periods after the visit period of station i in the current cycle. Note that
each of the terms mentioned above is non-negative and finite.
Furthermore, for non-zero glue periods and arrival rates, at least one of the
terms is non-zero. Therefore, we have 0< gi<1.

Remark 2. Note that the branching part of the process only represents
descendants of customers which are present in the system at the start of a
glue period of station 1. Customers which arrive at stations during glue
periods and switch-over periods are not represented by the branching part
of the process. Instead they and their descendants are represented by the
immigration part of the process. Both glue periods and switch-over periods
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can be considered as parts of the cycle during which the server is not
working. This rather unexpected feature explains why the polling model at
hand is not part of the class of polling models considered by Ref[15], but
requires an analysis on its own.

4. Heavy traffic analysis: number of customers at start of glue periods
of station 1

Now that we have successfully modeled the polling system as a multitype
branching process with immigration, we derive the limiting scaled joint
queue length distribution in each station at the start of glue periods of sta-
tion 1 by following the same line of proof as that of Ref[15]. In Ref[15], the
author first proves a couple of lemmas for a conventional branching-type
polling system without retrials and glue periods and, afterwards, uses these
lemmas to give the heavy-traffic asymptotics of the joint queue length pro-
cess at certain embedded time points. In the following subsection, we will
derive similar lemmas in order to derive a heavy-traffic theorem for our
polling system with retrials and glue periods.
Note that when we scale our system such that q " 1, we are effectively

changing the arrival rate at each station while keeping the service times
and the ratios of the arrival rates fixed. Let any variable x which is depend-
ent on q be denoted by x̂ whenever it is evaluated at q¼ 1. Therefore, we
have for any system that, ki ¼ qk̂i.
From Theorem 1 of Ref[26], we know that if all elements of a matrix are

continuous in some variable, then the real eigenvalues of this matrix are
also continuous in that variable. As each element of M is a continuous
function of q, the maximal eigenvalue n is a continuous function of q as
well. Furthermore, from Lemmas 3, 4 and 5 of Ref[20] we know that n< 1
when q< 1, n ¼ 1 when q¼ 1 and n> 1 when q> 1. Therefore, we have
that n is a continuous function of q and

lim
q"1

n qð Þ ¼ n 1ð Þ ¼ 1:

4.1. Preliminary results and lemmas

Lemma 2. The normalized right and left eigenvectors of M̂, the mean matrix
of the system with q ¼ 1, corresponding to the maximal eigenvalue n ¼ 1,
are respectively given by

ŵ ¼
ŵ1

..

.

ŵN

0
B@

1
CA ¼ b

jbj and v̂ ¼
v̂1
..
.

v̂N

0
B@

1
CA ¼ jbj

d
û ;
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where

b ¼
E B1½ �
..
.

E BN½ �

0
B@

1
CA; u ¼

u1
..
.

uN

0
B@

1
CA; jbj :¼

XN
j¼1

E Bj½ �;

uj :¼ kj
e�mjGj

1� e�mjGj
þ
XN
k¼j

qk

2
4

3
5 and d :¼ ûTb:

Proof. See Appendix. w

Remark 3. Alternatively, we could have used Lemma 4 from Ref[15] to find
the left and normalized right eigenvectors. The normalized right eigen-
vector ŵ is the same as given in Ref[15]. To find the left eigenvector v̂ from
Ref[15], we first need to calculate the exhaustiveness factor fj. In our model,
this exhaustiveness factor is given by fj ¼ ð1�e�mjGjÞð1�qjÞ. Each customer
of type j, present at the start of a glue period at station j, is served with
probability ð1�e�mjGjÞ and during that service time on average qj new type-
j customers will arrive. Furthermore, with probability e�mjGj a customer of
type j, present at the start of a glue period at station j, is not served.
Therefore, we have 1�fj ¼ ð1�e�mjGjÞqj þ e�mjGj , and hence the exhaustive-
ness factor is given by fj ¼ ð1�e�mjGjÞð1�qjÞ: Substituting this exhaustive-
ness factor in Lemma 4 of Ref[15] we get

uj ¼ kj
1�qj
� �

1� 1�e�mjGið Þ 1�qj
� �� �

1� e�mjGjð Þ 1� qj
� � þ

XN
k¼jþ1

qk

2
64

3
75

¼ kj
e�mjGj þ 1�e�mjGjð Þqj

1� e�mjGj
þ
XN
k¼jþ1

qk

2
4

3
5

¼ kj
e�mjGj

1� e�mjGj
þ
XN
k¼j

qk

2
4

3
5;

which is in agreement with Lemma 2.

Remark 4. In Lemma 2, we have given the left and normalized right eigen-
vectors for the mean matrix M̂ at eigenvalue n¼ 1. Note that this mean
matrix is defined for the branching process when we consider the begin-
ning of a glue period of station 1 as the initial point of the cycle. Instead, if
we consider the beginning of a glue period of station i as the initial point
of the cycle, we get, for eigenvalue n¼ 1, the same normalized right eigen-
vector ŵ . However, the left eigenvector is now given by the vector v̂ ðiÞ
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defined by

v̂ ið Þ ¼
v̂ ið Þ
1

..

.

v̂ ið Þ
N

0
BB@

1
CCA ¼ jbj

d
û ið Þ;

where

u ið Þ :¼
u ið Þ
1

..

.

u ið Þ
N

0
BB@

1
CCA and u ið Þ

j :¼
kj

e�mjGj

1� e�mjGj
þ
XN
k¼j

qk þ
Xi�1

k¼1

qk

2
4

3
5; i � j;

kj
e�mjGj

1� e�mjGj
þ
Xi�1

k¼j

qk

2
4

3
5; i> j:

8>>>>>>><
>>>>>>>:

Note that d ¼ û ð1ÞTb ¼ û ðiÞTb and uð1Þj ¼ uðNþ1Þ
j ¼ uj, for all i; j ¼ 1; . . . ;N.

In this article, we prove all the lemmas and theorems using v̂ ¼ v̂ ð1Þ.
However, we can instead use v̂ ðiÞ and prove the same by just changing the
initial point of the cycle from the beginning of a glue period of station 1 to
the beginning of a glue period of station i.
In Lemma 2, we have evaluated the normalized right, and left eigenvec-

tors of M at the maximal eigenvalue, when q " 1. We will now use this to
compute the value of the derivative of this eigenvalue as q " 1.

Lemma 3. For the maximal eigenvalue n ¼ nðqÞ of the matrix M, the
derivative of nðqÞ w.r.t. q satisfies

n0 1ð Þ ¼ 1
d
:

Proof. See Appendix. w

For the result in (2.2), we need all the second-order derivatives d2hiðzÞ
dzjdzk

of
the function hiðzÞ. In Lemma 4, we first find d2hiðzÞ

dzjdzk
, for all i, j and k, and

then use them to find the parameter A as defined in (2.2).

Lemma 4. For the second-order derivative matrix KðiÞ ¼ ðkðiÞj;kÞ where
kðiÞj;k ¼ o2hiðzÞ

ozjozk

����
z¼1

, for all i; j; k ¼ 1; . . . ;N; we have that

A :¼ 1
2

XN
i¼1

v̂ 1ð Þ
i ŵTK̂

ið Þ
ŵ

� �
¼ 1

2djbj
b 2ð Þ

b 1ð Þ ;

where
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b jð Þ ¼
PN

i¼1 kiE Bj
i

h i
PN

i¼1 ki
;

for j = 1, 2.

Proof. See Appendix. w

At this point, we have determined all parameters required to deploy in
(2.2), except for the constant a. This parameter depends on the immigra-
tion part of our process and is given by the following lemma.

Lemma 5. For g ¼ ðg1; . . . ; gNÞT, we have that

a :¼ 1
A
ĝ Tŵ ¼ 2rd

b 1ð Þ

b 2ð Þ ; (4.1)

where

r ¼
XN
i¼1

E Si½ � þ Gið Þ:

Proof. See Appendix. w

Now that we have determined all the parameters of (2.2), we give a final
lemma in which we show that the multitype branching process defined by
our polling system with retrials and glue periods actually falls in the frame-
work put forward in Ref[18]. In particular, we show that the offspring gen-
erating function hðzÞ falls in the class K as defined in (1.1) of Ref[18] and
that the immigration generating function gðzÞ falls in the class J as defined
by (1.2) of Ref[18].

Lemma 6. The generating functions for offspring and immigration, hðzÞ and
gðzÞ, respectively satisfy the conditions defined in (1.1) and (1.2) of [18].

Proof. See Appendix. w

4.2. The heavy traffic theorem

Similar to the procedure used in Ref[15], we will now combine the prelim-
inary work in Section 4.1 with Theorem 4 in [18] in order to obtain the
following heavy traffic theorem for the complete queue length process at
cycle starts.

Theorem 1. For the cyclic polling system with retrials and glue periods, the
scaled steady-state joint queue length vector at the start of glue periods at
station 1 satisfies
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1�qð Þ
X 1ð Þ
1

..

.

X 1ð Þ
N

0
BB@

1
CCA!q"1

d

b 2ð Þ

2b 1ð Þ
1
d

û 1ð Þ
1

..

.

û 1ð Þ
N

0
BB@

1
CCAC a; 1ð Þ; (4.2)

where

a ¼ 2rd
b 1ð Þ

b 2ð Þ :

Proof. In Lemma 6, we have shown that the branching process underlying
the polling model with retrials and glue periods fits the framework of
Ref[18]. As a result, it now follows from (2.2) that

1
p n qð Þ� � X 1ð Þ

1

..

.

X 1ð Þ
N

0
BB@

1
CCA!

d
A

v̂ 1ð Þ
1

..

.

v̂ 1ð Þ
N

0
BB@

1
CCAC a; 1ð Þ; when q " 1; (4.3)

where pðnðqÞÞ :¼ limn!1 pnðnðqÞÞ, and A and v̂ ð1Þ and a ¼ 1
A ĝ

Tŵ ; are as
defined in Lemmas 2, 4 and 5.
From (2.1) we can say that, for q< 1,

p n qð Þ� � ¼ 1
n qð Þ 1� n qð Þ� � :

Using this, together with Lemma 3, gives

lim
q"1

1�qð Þp n qð Þ� � ¼ lim
q"1

1�q
n qð Þ 1� n qð Þ� � ¼ lim

q"1
�1

n0 qð Þ 1� 2n qð Þ� � ¼ lim
q"1

1

n0 qð Þ ¼ d:

(4.4)

Therefore, multiplying and dividing the LHS of (4.3) with 1�q, we get

1�q
1� qð Þp n qð Þ� � X 1ð Þ

1

..

.

X 1ð Þ
N

0
BB@

1
CCA!

d
A

v̂ 1ð Þ
1

..

.

v̂ 1ð Þ
N

0
BB@

1
CCAC a; 1ð Þ; when q " 1:

Using (4.4), this gives

1�qð Þ
X 1ð Þ
1

..

.

X 1ð Þ
N

0
BB@

1
CCA!

d

1
2jbj

b 2ð Þ

b 1ð Þ

v̂ 1ð Þ
1

..

.

v̂ 1ð Þ
N

0
BB@

1
CCAC a; 1ð Þ; when q " 1;

and hence
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1�qð Þ
X 1ð Þ
1

..

.

X 1ð Þ
N

0
BB@

1
CCA!

d

b 2ð Þ

2b 1ð Þ
1
d

û 1ð Þ
1

..

.

û 1ð Þ
N

0
BB@

1
CCAC a; 1ð Þ; when q " 1:

4.3. Discussion of results: connection with a binomially gated polling model

It turns out that the heavy-traffic results that we obtained in this section
for the model at hand, are similar to those of a binomially gated polling
model (see e.g., Ref[12]). The dynamics of the binomially gated polling
model are much like those of a conventional gated polling model, except
that after dropping a gate at Qi, the customers before it will each be served
in the corresponding visit period with probability pi in an i.i.d. way, rather
than with probability one as in the gated model. In particular, the heavy
traffic analysis of our model coincides with that of a binomially gated poll-
ing model with the same interarrival time distributions, service time distri-
butions and switch-over time distributions, and probability parameters
pi ¼ 1�e�miGi . To check this, we note that the binomially gated polling
model with these probability parameters falls within the framework of the
seminal work of Ref[15] when taking the exhaustiveness parameters
fi ¼ ð1�qiÞð1�e�miGiÞ, after which it is easily verified that Theorem 5 of
Ref[15] coincides with Theorem 1. Note, however, that although we also
exploit a branching framework in this paper, the model considered in this
article does not fall directly in the class of polling models considered in
Ref[15], due to the intricate immigration dynamics it exposes.
The intuition behind this remarkable connection is as follows. First, we

have that a binomially gated polling model does not have the feature of
glue periods. However, in a heavy-traffic regime, the server in our model
will reside in a visit period for 100% of the time, so that glue periods
hardly occur in this regime either. Furthermore, in a binomially gated poll-
ing model, each customer present at the start of a visit period at Qi will be
served within that visit period with probability pi ¼ 1�e�miGi in an i.i.d.
fashion. Note that something similar happens with the model at hand.
There, the start of a visit period coincides with the conclusion of a glue
period. During this glue period, all customers present in the orbit of the
queue will, independently from one another, queue up for the next visit
period with probability 1�e�miGi . These two facts explain the analogy.
It is worth to emphasize that this analogy, remarkable though it is, does

not help us in the further analysis towards the asymptotics of the customer
population at an arbitrary point in time. While Theorem 1 is now aligned
with Theorem 5 of Ref[15], we cannot use the subsequent analysis steps in
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that article to get to results concerning the customer population in heavy
traffic at an arbitrary point in time. This is much due to the fact that the
strategy of Ref[15] exploits a relation between the queue length of Q1 at a
cycle start and the virtual waiting time of that queue at an arbitrary point
in time. Since the type-i customers in our model are not served in the
order of arrival, as is usually assumed, such a relation is hard to derive and
is essentially unknown. As an alternative, we will extend the current heavy
traffic asymptotics at cycle starts to certain other embedded epochs in
Section 5, and eventually to arbitrary points in time in Section 6.

5. Heavy traffic analysis: number of customers at other embedded
time points

A cycle in the polling system with retrials and glue periods passes through
three different phases: glue periods, visit periods and switch-over periods.
In the previous section, in Theorem 1, we studied the behavior of the
scaled steady-state joint queue length vector at the start of glue periods at
station 1. We will now extend this result to the scaled steady-state joint
queue length vector at the start of a visit period and the start of a switch-
over period in Theorems 2 and 3.

Theorem 2. For the cyclic polling system with retrials and glue periods, the
scaled steady-state joint queue length vector at the start of visit periods at
station 1 satisfies

1�qð Þ

Y
1qð Þ
1

Y 1oð Þ
1

Y 1ð Þ
2

..

.

Y 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA

!
d

b 2ð Þ

2b 1ð Þ
1
d

1�e�m1G1ð Þû 1ð Þ
1

e�m1G1 û 1ð Þ
1

û 1ð Þ
2

..

.

û 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA
C a; 1ð Þ; when q " 1:

(5.1)

Proof. The distribution of the number of new customers of type j entering
the system during a glue period of station i is stochastically smaller than that
of the number of events GðiÞ

j in a Poisson process with rate k̂j during an
interval of length Gi. This is due to the fact that the arrival rate kj ¼ qk̂j

does not exceed k̂j. Since GðiÞ
j is finite with probability 1, we have that

ð1�qÞGðiÞ
j ! 0 with probability 1, as q " 1. Therefore the limiting scaled

joint queue length distribution, for all customers other than type i, at the
start of a glue period is the same as at the start of a visit period of station i.
Furthermore, the XðiÞ

i customers of type i, present in the system at the
start of a glue period of station i, join the queue, independently of each
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other, with probability 1�e�miGi during the glue period. Let fUi; i � 0g be a
series of i.i.d. random variables where Uk indicates whether the k-th cus-

tomer joins the queue or stays in orbit, for all k ¼ 1; . . . ;XðiÞ
i . More specif-

ically, Uk ¼ 1 if the customer joins the queue, with probability 1�e�miGi ,
and Uk ¼ 0 if the customer stays in orbit, with probability e�miGi . Then the

number of customers of type i in the queue (YðiqÞ
i ) and in the orbit (YðioÞ

i )
at the start of a visit period at station i are given by

Y
iqð Þ
i ¼

XX ið Þ
i

k¼1

Uk and Y ioð Þ
i ¼ X ið Þ

i �
XX ið Þ

i

k¼1

Uk:

Since XðiÞ
i ! 1 with probability 1, as q " 1, we have by virtue of the

weak law of large numbers that

Y
iqð Þ
i

X ið Þ
i

¼

PX ið Þ
i

k¼1
Uk

X ið Þ
i

!
P

1�e�miGi ; when q " 1; (5.2)

where !
P means convergence in probability. Similarly we have

Y ioð Þ
i

X ið Þ
i

¼ X ið Þ
i �PX ið Þ

i
k¼1Uk

X ið Þ
i

!
P

e�miGi ; when q " 1: (5.3)

Therefore, using Slutsky’s convergence theorem[9], along with (4.3), (5.2)
and (5.3) and the arguments above, we get

1�qð Þ

Y
1qð Þ
1

Y 1oð Þ
1

Y 1ð Þ
2

..

.

Y 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA

!q"1
d

b 2ð Þ

2b 1ð Þ
1
d

1�e�m1G1ð Þû 1ð Þ
1

e�m1G1 û 1ð Þ
1

û 1ð Þ
2

..

.

û 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA
C a; 1ð Þ; when q " 1:

We end this section by considering the scaled steady-state joint queue
length vector at the start of a switch-over period from station 1 to
station 2.

Theorem 3. For the cyclic polling system with retrials and glue periods, the
scaled steady-state joint queue length vector at the start of a switch-over
period from station 1 to station 2 satisfies
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1�qð Þ
Z 1ð Þ
1

Z 1ð Þ
2

..

.

Z 1ð Þ
N

0
BBBB@

1
CCCCA!

d

b 2ð Þ

2b 1ð Þ
1
d

e�m1G1 û 1ð Þ
1 þ 1�e�m1G1ð Þû 1ð Þ

1 k̂1E B1½ �
û 1ð Þ
2 þ 1�e�m1G1ð Þû 1ð Þ

1 k̂2E B1½ �
..
.

û 1ð Þ
N þ 1�e�m1G1ð Þû 1ð Þ

1 k̂NE B1½ �

0
BBBB@

1
CCCCAC a; 1ð Þ; when q " 1:

(5.4)

Proof. The number of customers in the orbit of station j at the start of a
switch-over period from station i to station iþ 1 equals the number of cus-
tomers in the orbit at the start of the visit of station i plus the Poisson
arrivals with rate kj, during the service of customers in the queue of station
i, say JðiÞj . In other words, we have that

Z ið Þ
j ¼ Y ið Þ

j þ J ið Þ
j ; j 6¼ i;

Y ioð Þ
i þ J ið Þ

i ; j ¼ i:

(
(5.5)

Note that JðiÞj is the sum of Poisson arrivals with rate kj during YðiqÞ
i inde-

pendent service times with distribution Bi. Let Di;j;k be the number of Poisson
arrivals with rate kj during the k

th service in the visit period of station i. Thus

J ið Þ
j ¼

XY iqð Þ
i

k¼1

Di;j;k:

Since YðiqÞ
i ! 1 as q " 1, and E½Bi� is finite, we have by virtue of the

weak law of large numbers that

J ið Þ
j

Y
iqð Þ
i

!
P

k̂jE Bi½ �; when q " 1: (5.6)

Therefore, using Slutsky’s convergence theorem along with (5.1), (5.5)
and (5.6) we get

1�qð Þ
Z 1ð Þ
1

Z 1ð Þ
2

..

.

Z 1ð Þ
N

0
BBBB@

1
CCCCA!

d

b 2ð Þ

2b 1ð Þ
1
d

e�m1G1 û 1ð Þ
1 þ 1�e�m1G1ð Þû 1ð Þ

1 k̂1E B1½ �
û 1ð Þ
2 þ 1�e�m1G1ð Þû 1ð Þ

1 k̂2E B1½ �
..
.

û 1ð Þ
N þ 1�e�m1G1ð Þû 1ð Þ

1 k̂NE B1½ �

0
BBBB@

1
CCCCAC a; 1ð Þ; when q " 1:

Remark 5. Alternatively, Theorems 2 and 3 can be obtained by exploiting
known relations between the joint PGFs of the vectors ðXð1Þ

1 ; . . . ;

Xð1Þ
N Þ; ðYð1qÞ

1 ;Yð1oÞ
1 ;Yð1Þ

2 . . . ;Yð1Þ
N Þ and ðZð1Þ

1 ; . . . ;Zð1Þ
N Þ given in Equations

(3.2) and (3.3) of Ref[2]. After replacing each parameter zj in these func-
tions by zð1�qÞ

j and taking the limit of q going to one from below, these
expressions give the relations between the joint PGFs of the heavy traffic
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distributions. Combining these results with Theorem 1 and subsequently
invoking Levy’s continuity theorem (see e.g., Section 18.1 of [25]) then
readily imply the theorems.

Remark 6. Throughout this section, we have focused on the joint queue
length process at the start of a glue, visit or switch-over period at Q1.
However, similar results for the starts of these periods at any Qi can be obtained
by either simply reordering indices, or by exploiting the relations obtained in
Ref[2] between ðXðiÞ

1 ; . . . ;XðiÞ
N Þ; ðYðiqÞ

1 ;YðioÞ
1 ;YðiÞ

2 . . . ;YðiÞ
N Þ; ðZðiÞ

1 ; . . . ;ZðiÞ
N Þ

and ðXðiþ1Þ
1 ; . . . ;Xðiþ1Þ

N Þ.

6. Heavy traffic analysis: number of customers at arbitrary time points

In this section, we look at the limiting scaled joint queue length distribu-
tion of the number of customers at the different stations at an arbitrary
time point. At such a point in time, the system can be in the glue period,
the visit period or the switch-over period of some station i, with probability

ð1�qÞGiPN

i¼1
ðGiþE½Si�Þ

, qi and ð1�qÞE½Si�PN

i¼1
ðGiþE½Si�Þ

respectively. As q " 1, the probabilities

ð1�qÞGiPN

i¼1
ðGiþE½Si�Þ

and ð1�qÞE½Si�PN

i¼1
ðGiþE½Si�Þ

both converge to 0. Therefore, we only need

to study the scaled steady-state joint queue length vector at an arbitrary
time in each of the N visit periods.

Theorem 4. For the cyclic polling system with retrials and glue periods, the
scaled steady-state joint queue length vector at an arbitrary time point in a
visit period of station 1 satisfies

1�qð Þ

V
1qð Þ
1

V 1oð Þ
1

V 1ð Þ
2

..

.

V 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA

!
d

b 2ð Þ

2b 1ð Þ
1
d

1�e�m1G1ð Þû 1ð Þ
1

e�m1G1 û 1ð Þ
1

û 1ð Þ
2

..

.

û 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA

2
66666664

þ 1� e�m1G1ð Þû 1ð Þ
1 U

�1
k̂1E B1½ �
k̂2E B1½ �

..

.

k̂NE B1½ �

0
BBBBBB@

1
CCCCCCA

3
7777775
C aþ 1; 1ð Þ; when q " 1: (6.1)

Proof. We will use Equation (3.19) of[2] to prove this. This equation states
that the joint generating function, RðiÞ

vi ðzq; zoÞ, of the numbers of customers
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in the queue and in the orbits at an arbitrary time point in a visit period of
Qi is given by

R ið Þ
vi zq; zoð Þ ¼

ziq E z
Y

iqð Þ
i

iq

QN
j¼1;j6¼i z

Y ið Þ
j

jo

	 

z
Y ioð Þ
i

io

� �
� E ~Bi

PN
j¼1 kj 1�zjoð Þ

� �Y iqð Þ
i QN

j¼1;j6¼i z
Y ið Þ
j

jo

	 

z
Y ioð Þ
i

io

� �	 


E Y
iqð Þ
i

h i
ziq � ~Bi

PN
j¼1 kj 1� zjoð Þ

� �� �

�
1� ~Bi

PN
j¼1 kj 1�zjoð Þ

� �
PN

j¼1 kj 1� zjoð Þ
� �

E Bi½ �
:

Evaluating the above generating function in the points ~zq ¼
ðzð1�qÞ

1q ; . . . ; zð1�qÞ
Nq Þ and ~zo ¼ ðzð1�qÞ

1o ; . . . ; zð1�qÞ
No Þ, we get

R ið Þ
vi ~zq;~zo
� � ¼

z 1�qð Þ
iq E z

1�qð ÞY iqð Þ
i

iq

QN
j¼1;j 6¼i z

1�qð ÞY ið Þ
j

jo

	 

z

1�qð ÞY ioð Þ
i

io

� �
� E ~Bi

PN
j¼1 kj 1�z 1�qð Þ

jo

� �� �Y iqð Þ
i QN

j¼1;j6¼i z
1�qð ÞY ið Þ

j

jo

	 

z

1�qð ÞY ioð Þ
i

io

� �	 


E Y iqð Þ
i

h i
z 1�qð Þ
iq � ~Bi

PN
j¼1 kj 1� z 1�qð Þ

jo

� �� �� �

�
1� ~Bi

PN
j¼1 kj 1�z 1�qð Þ

jo

� �� �
PN

j¼1 kj 1� z 1�qð Þ
jo

� �� �
E Bi½ �

: (6.2)

This equation has two terms. The first term expresses the generating function
of the number of customers in the system at the start of the service of the cus-
tomer who is currently in service. The second term is the generating function
of the number of customers that arrived during the past service period of the
customer who is currently in service. As q " 1, this second term satisfies

lim
q"1

1� ~Bi
PN

j¼1 kj 1�z 1�qð Þ
jo

� �� �
PN

j¼1 kj 1� z 1�qð Þ
jo

� �� �
E Bi½ �

¼ lim
q"1

1�E e
�
PN

j¼1
kj 1�z 1�qð Þ

jo

� �� �
Bi

� �
PN

j¼1 kj 1� z 1�qð Þ
jo

� �� �
E Bi½ �

¼ lim
q"1

E Bie
�
PN

j¼1
kj 1�z 1�qð Þ

jo

� �� �
Bi

� �
E Bi½ � ¼ E Bi½ �

E Bi½ � ¼ 1;

(6.3)

where the second equality follows from l’Hôpital’s rule. Equation (6.3)
expresses the fact that the scaled vector of number of customers arriving at
the different stations during a past service time tends to 0, and hence its
generating function tends to 1, as q " 1.
Before taking the limit q " 1 in (6.2), we first look at

limq"1 ð ~Bið
PN

j¼1 kjð1� zð1�qÞ
jo ÞÞÞ 1

1�q. As we mentioned earlier, when we scale
q " 1 we scale the system such that only the arrival rates increase and the
service times remain the same. So, we can write kj ¼ qk̂j where k̂j is fixed
and independent of q, for all j ¼ 1; . . . ;N: Therefore, we have
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lim
q"1

~Bi q
XN

j¼1
k̂j 1� z 1�qð Þ

jo

� �	 
	 
 1
1�q

¼ elimq"1

ln ~Bi q
PN

j¼1
k̂j 1�z

1�qð Þ
jo

� �� �� �
1�q

¼ e

limq"1

q
PN

j¼1
k̂ jz

1�qð Þ
jo

ln zjoþ
PN

j¼1
k̂ j 1�z

1�qð Þ
jo

� �� �
~Bi
0 q
PN

j¼1
k̂j 1�z

1�qð Þ
jo

� �� �
� ~Bi q

PN

j¼1
k̂ j 1�z

1�qð Þ
jo

� �� �
¼ e

E Bi½ �
PN

j¼1
k̂ j ln zjo ¼ e

PN

j¼1
ln z

E Bi½ �k̂ j
jo ¼QN

j¼1 z
E Bi½ �k̂ j

jo ; (6.4)

where the second equality follows from l’Hôpital’s rule.
Next, we evaluate the following limit, which is related to the denomin-

ator of the first term in (6.2)

lim
q"1

z 1�qð Þ
iq � ~Bi

PN
j¼1 kj 1�z 1�qð Þ

jo

� �� �
1� q

¼ lim
q"1

z 1�qð Þ
iq �1

1� q

þ lim
q"1

1�E e
�q
PN

j¼1
k̂ j 1�z 1�qð Þ

jo

� �
Bi

h i
1� q

¼ lim
q"1

z 1�qð Þ
iq ln ziq

� lim
q"1

E qBi

XN

j¼1
k̂jz

1�qð Þ
jo ln zjo þ Bi

XN

j¼1
k̂j 1� z 1�qð Þ

jo

� �	 

e
�q
PN

j¼1
k̂ j 1�z 1�qð Þ

jo

� �
Bi

� �
¼ ln ziq�

PN
j¼1 k̂jE Bi½ � ln zjo ¼ ln ziq

QN
j¼1 z

�E Bi½ �k̂ j

jo

� �
; (6.5)

where the first equality uses the fact that kj ¼ qk̂j and the second equality
follows from l’Hôpital’s rule.
We know that limq"1 z

ð1�qÞ
iq ¼ 1. Substituting this along with (6.3), (6.4)

and (6.5) in (6.2) while we take q " 1, we get

lim
q"1

R ið Þ
vi ~zq;~zo
� � ¼

lim
q"1

E z
1�qð ÞY iqð Þ

i
iq

QN
j¼1;j6¼i z

1�qð ÞY ið Þ
j

jo

	 

z

1�qð ÞY ioð Þ
i

io

� �
�E

QN
j¼1 z

E Bi½ �k̂ j 1�qð ÞY iqð Þ
i

jo

QN
j¼1;j6¼i z

1�qð ÞY ið Þ
j

jo

	 

z

1�qð ÞY ioð Þ
i

io

� �

E 1� qð ÞY iqð Þ
i

h i
ln ziq

QN
j¼1 z

�E Bi½ �k̂ j

jo

� � :

(6.6)

Consider the following notation

j :¼ b 2ð Þ

2b 1ð Þ
1
d

1�e�m1G1ð Þû 1ð Þ
1 ¼ b 2ð Þ

2b 1ð Þ
k̂1

d

j1 :¼ b 2ð Þ

2b 1ð Þ
1
d
e�m1G1 û 1ð Þ

1

ji :¼ b 2ð Þ

2b 1ð Þ
1
d
û 1ð Þ
i ; 8i ¼ 2; . . . ;N:
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Using the above notation in (5.1) and substituting it in (6.7) we have,

lim
q"1

R 1ð Þ
vi ~zq;~zo
� � ¼ E zjC a;1ð Þ

1q

QN
j¼1 z

jjC a;1ð Þ
jo

h i
�E

QN
j¼1 z

E B1½ �k̂ jjC a;1ð Þ
jo

QN
j¼1 z

jjC a;1ð Þ
jo

h i
E jC a; 1ð Þ½ � ln z1q

QN
j¼1 z

�E B1½ �k̂ j

jo

� �

¼
E zj1q

QN
j¼1 z

jj
jo

� �C a;1ð Þ
� �

�E
QN

j¼1 z
E B1½ �k̂ jjþjj
jo

� �C a;1ð Þ
� �

ja ln z1q
QN

j¼1 z
�E B1½ �k̂ j

jo

� � :

Now we introduce the following notation to change our generating func-
tion into an LST,

s :¼ � ln z1q
si :¼ � ln zio; 8i ¼ 1; . . . ;N:

Then we have that the joint LST of the scaled steady-state joint queue
length vector, of the queue of station 1 and the orbits at all the stations,
during an arbitrary time in the visit period of station 1 is

lim
q"1

R 1ð Þ
vi ~zq;~zo
� � ¼ E e�sjQN

j¼1 e
�sjjj

� �C a;1ð Þ
� �

�E
QN

j¼1 e
�sj E B1½ �k̂ jjþjjð Þ� �C a;1ð Þ

� �

aj ln e�s
QN

j¼1 e
sjE B1½ �k̂ j

� �

¼ E e
� sjþ

P
j
sjjj

� �
C a;1ð Þ

h i
�E e

�
PN

j¼1
sj E B1½ �k̂ jjþjjð ÞC a;1ð Þ

h i
aj �sþ E B1½ �Pj k̂jsj
� �

¼
1

1þsjþ
P

j
sjjj

� �a� 1

1þ
PN

j¼1
sj E B1½ �k̂ jjþjjð Þ

	 
a

aj �sþ E B1½ �Pj k̂jsj
� �

¼ E e
� sjþ

P
j
sjjjþ �sjþ

P
j
k̂ jE B1½ �jsj

� �
U

� �
C aþ1;1ð Þ

h i
;

(6.7)

where U is a standard uniform random variable and the last equality fol-
lows from the expression

E e� aþbUð ÞC aþ1;1ð Þ½ � ¼
1

1þa

� �a� 1
1þ aþbð Þ
� �a
ab

:

Now we substitute s ¼ � ln z1q and si ¼ � ln zio back in (6.7) to get for
the joint generating function
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lim
q"1

R 1ð Þ
vi ~zq;~zo
� � ¼ E zj1q

YN
j¼1

z
jj
jo z�1

1q

YN
j¼1

z
k̂ jE B1½ �
jo

0
@

1
A

jU
0
B@

1
CA

C aþ1;1ð Þ
2
664

3
775: (6.8)

Let VðiÞ
iq and VðiÞ

io be the number of customers in the queue and orbit of station

i, and VðiÞ
j be the number of customers of type j 6¼ i, at an arbitrary point in time

during a visit period of station i, for all i ¼ 1; . . . ;N. Then from (6.8) we have,

1�qð Þ

V
1qð Þ
1

V 1oð Þ
1

V 1ð Þ
2

..

.

V 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA

!
d

j
j1
j2
..
.

jN

0
BBBBB@

1
CCCCCAþ jU

�1
k̂1E B1½ �
k̂2E B1½ �

..

.

k̂NE B1½ �

0
BBBBBB@

1
CCCCCCA

2
6666664

3
7777775
C aþ 1; 1ð Þ; when q " 1:

(6.9)

Therefore, the scaled steady-state joint queue length vector, in the queue
of station 1 and the orbits of all stations, at an arbitrary time during a visit
period of station 1, as q " 1, satisfies

1�qð Þ

V
1qð Þ
1

V 1oð Þ
1

V 1ð Þ
2

..

.

V 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA

!
d

b 2ð Þ

2b 1ð Þ
1
d

1�e�m1G1ð Þû 1ð Þ
1

e�m1G1 û 1ð Þ
1

û 1ð Þ
2

..

.

û 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA

þ U

�k̂1

k̂1q̂1
k̂2q̂1

..

.

k̂Nq̂1

0
BBBBBB@

1
CCCCCCA

2
66666664

3
77777775
C aþ 1; 1ð Þ; when q " 1:

An intuitive argument for Theorem 4 can be given in the following way.
Since, under heavy traffic, the scaled number of customers which are in the
queue of station 1 at the start of an arbitrary visit period is gamma distrib-
uted, jCða; 1Þ, also the scaled length of an arbitrary visit period is gamma
distributed, jE½B1�Cða; 1Þ. Therefore, if we choose an arbitrary time point
in a visit period of station 1 the scaled length of that special visit period is
distributed as jE½B1�Cðaþ 1; 1Þ, where j ¼ bð2Þ

2bð1Þ
1
d ð1�e�m1G1Þûð1Þ

1 . Since this
is a special interval which we are looking at, the scaled steady-state joint
queue length vector at the start of this visit period satisfies

1�qð Þ

�Y
1qð Þ
1

�Y
1oð Þ
1

�Y
1ð Þ
2

..

.

�Y
1ð Þ
N

0
BBBBBBBB@

1
CCCCCCCCA

!
d

b 2ð Þ

2b 1ð Þ
1
d

1�e�m1G1ð Þû 1ð Þ
1

e�m1G1 û 1ð Þ
1

û 1ð Þ
2

..

.

û 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA
C aþ 1; 1ð Þ; when q " 1:

(6.10)
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At the arbitrary point in time, we have jUCðaþ 1; 1Þ customers served,
which means that there are Jð1Þj ¼PjUCðaþ1;1Þ

k¼1 ðLð1Þj Þk new customers of
type j arriving during that period. Note that as q " 1; Jð1Þj ! 1, therefore
the new arrivals during the past service time of the customer in service can
be neglected. Using the same arguments as in Theorem 3, we can say that
the limiting scaled distribution of the new number of customers of type j
at an arbitrary point in time during the visit of station i can be given as

J 1ð Þ
j

U�Y
1qð Þ
1

! kjE B1½ �:

Therefore, the scaled steady-state joint queue length vector at an arbi-
trary point in time during the visit of station 1 as q " 1 satisfies

1�qð Þ

V
1qð Þ
1

V 1oð Þ
1

V 1ð Þ
2

..

.

V 1ð Þ
N

0
BBBBBBB@

1
CCCCCCCA

!
d

b 2ð Þ

2b 1ð Þ
1
d

0
e�m1G1 û 1ð Þ

1

û 1ð Þ
2

..

.

û 1ð Þ
N

0
BBBBBB@

1
CCCCCCA

þ 1� e�m1G1ð Þû 1ð Þ
1

1�U
Uk̂1E B1½ �
Uk̂2E B1½ �

..

.

Uk̂NE B1½ �

0
BBBBBB@

1
CCCCCCA

2
6666664

3
7777775
C aþ 1; 1ð Þ; when q " 1;

which is equivalent to (6.1).
In (6.1), we have given the scaled steady-state joint queue length vector

of customers of each type at an arbitrary point in time during the visit
period of station 1 when q " 1. Using Remark 4, we can extend this to an
arbitrary point in time during the visit period of a given station i. This can
be written as

1�qð Þ

V ið Þ
1

..

.

V ið Þ
i�1

V
iqð Þ
i

V ioð Þ
i

V ið Þ
iþ1

..

.

V ið Þ
N

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

!
d

b 2ð Þ

2b 1ð Þ
1
d

û ið Þ
1

..

.

û ið Þ
i�1

1�e�miGið Þû ið Þ
i

e�miGi û ið Þ
i

û ið Þ
iþ1

..

.

û ið Þ
N

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

þ U

k̂1q̂i

..

.

k̂i�1q̂i

�k̂i

k̂iq̂i

k̂iþ1q̂i

..

.

k̂Nq̂i

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

2
666666666666664

3
777777777777775

C aþ 1; 1ð Þ; when q " 1:

(6.11)

Due to the observation that in heavy traffic, the server resides in a visit
period for 100% of the time, (6.11) leads to the following theorem.

Theorem 5. In a cyclic polling system with retrials and glue periods, the
scaled steady-state joint queue length vector at an arbitrary time point, with
LðiqÞ and LðioÞ representing the number in queue and in orbit at station i
respectively for all i ¼ 1; . . . ;N, satisfies
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1�qð Þ

L 1qð Þ

..

.

L Nqð Þ

L 1oð Þ

..

.

L Noð Þ

0
BBBBBBBB@

1
CCCCCCCCA

!
d

b 2ð Þ

2b 1ð Þ
1
d
P C aþ 1; 1ð Þ when q " 1; (6.12)

where P ¼ Pi with probability q̂i and

Pi ¼

0
..
.

0
1�e�miGið Þû ið Þ

i
0
..
.

0
û ið Þ
1

..

.

û ið Þ
i�1

e�miGi û ið Þ
i

û ið Þ
iþ1

..

.

û ið Þ
N

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

þ U

0
..
.

0
�k̂i

0
..
.

0
k̂1q̂i

..

.

k̂i�1q̂i

k̂iq̂i

k̂iþ1q̂i

..

.

k̂Nq̂i

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Proof. As mentioned at the beginning of this section, when q̂ " 1 the sys-
tem is in the visit periods with probability 1. Therefore, the limiting scaled
joint queue length distribution at an arbitrary point in time can be given as
the limiting scaled joint queue length distribution in the visit period of sta-
tion i with probability q̂i: Now consider that the number of customers of
type j, at an arbitrary point in time during the visit period of station i, in
queue and orbit respectively is given by VðiqÞ

j and VðioÞ
j . Then using (6.11),

we can write
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1�qð Þ

V iqð Þ
1

..

.

V
iqð Þ
i�1

V iqð Þ
i

V iqð Þ
iþ1

..

.

V
iqð Þ
N

V ioð Þ
1

..

.

V ioð Þ
i�1

V ioð Þ
i

V ioð Þ
iþ1

..

.

V ioð Þ
N

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

!
d

b 2ð Þ

2b 1ð Þ
1
d

0
..
.

0
1�e�miGið Þû ið Þ

i
0
..
.

0
û ið Þ
1

..

.

û ið Þ
i�1

e�miGi û ið Þ
i

û ið Þ
iþ1

..

.

û ið Þ
N

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

þ U

0
..
.

0
�k̂i

0
..
.

0
k̂1q̂i

..

.

k̂i�1q̂i

k̂iq̂i

k̂iþ1q̂i

..

.

k̂Nq̂i

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

C aþ 1; 1ð Þ; when q " 1:

(6.13)

This holds because VðioÞ
j ¼ VðiÞ

j and VðiqÞ
j ¼ 0 when i 6¼ j: Therefore, we

know that the limiting scaled joint queue length distribution at an arbitrary
point in time, with probability q̂i, can be given as bð2Þ

2bð1Þ
1
d PiCðaþ 1; 1Þ.

Hence we have

1�qð Þ

L 1qð Þ

..

.

L Nqð Þ

L 1oð Þ

..

.

L Noð Þ

0
BBBBBBBB@

1
CCCCCCCCA

!
d

b 2ð Þ

2b 1ð Þ
1
d
P C aþ 1; 1ð Þ; when q " 1; (6.14)

where P ¼ Pi with probability q̂i. w

Remark 7. Note that under heavy-traffic the total scaled workload in the
system satisfies the so-called heavy-traffic averaging principle. This prin-
ciple, first found in Refs[6,7] for a specific class of polling models, implies
that the workload in each queue is emptied and refilled at a rate that is
much faster than the rate at which the total workload is changing. As a
consequence, the total workload can be considered constant during the
course of a cycle (represented by the gamma distribution), while the work-
loads in the individual queues fluctuate like a fluid model. It is because of
this that the queue length vector in Theorem 5 also features a state-space
collapse (cf. Ref[19]): the limiting distribution of the 2N-dimensional scaled
queue length vector is governed by just three distributions: the discrete
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distribution governing P, the uniform distribution and the gamma
distribution.
Therefore, using Theorems 4 and 5, and the fact that d ¼Pi E½Bi�ûðjÞ

i

for all j ¼ 1; . . . ;N; the scaled workload in the system at an arbitrary point
in time is given by

1�qð Þ
XN
i¼1

E Bi½ � L iqð Þ þ L ioð Þ� �
!
d

b 2ð Þ

2b 1ð Þ C aþ 1; 1ð Þ; when q " 1:

Since the above equation is independent of everything but the gamma
distribution, the workload is the same at any arbitrary point in time during
the cycle. Hence the system agrees with the heavy-traffic averaging principle.
Note that in Theorems 1, 2 and 3, we have found the limiting distribution
of the scaled number of customers at embedded time points. Extending the
heavy traffic principle along with these theorems, we can say that the scaled
workload in an arbitrarily chosen cycle can be given as

1�qð Þ
XN
i¼1

E Bi½ �X 1ð Þ
i !

d

b 2ð Þ

2b 1ð Þ C a; 1ð Þ; when q " 1:

We observe that the scaled workload in the two cases, arbitrary point in
time and arbitrary cycle, have Cðaþ 1; 1Þ and Cða; 1Þ distributions respect-
ively. This is because of a bias introduced in selection of an arbitrary point
in time, i.e., an arbitrarily chosen point in time has a higher probability to
be in a longer cycle than being in a shorter cycle. This bias does not exist
when we arbitrarily choose a cycle.

7. Approximations

In the previous section, we derived the heavy traffic limit of the scaled
steady-state joint queue length vector at an arbitrary point in time for the
cyclic polling system with retrials and glue periods. We now show that
these results are not just valid for the limiting heavy-traffic regime, but can
in fact be used to obtain approximations for arbitrary values of the system
load. To achieve this, we deploy an interpolation approximation between
the heavy traffic result and a light traffic result, similar to what is described
in Boon et al.[4], in Section 7.1. Then we give a numerical example in
Section 7.2 to illustrate that the error of the approximation is small for
arbitrary values of the system load.
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7.1. Approximate mean number of customers

Consider the following approximation for the mean number of customers
of type i,

E Li½ � 	 c0 þ qc1
1� q

: (7.1)

The coefficients c0 and c1 are chosen in agreement with the light traffic
and heavy traffic behavior of E½Li�. Clearly, when q # 0, also E½Li� # 0.
Hence, we choose c0 ¼ 0. On the other hand, we have
limq"1 E½ð1�qÞLi� ¼ c1. Using (6.12), we get

lim
q"1

E 1�qð ÞLi½ � ¼ lim
q"1

E 1�qð Þ L iqð Þ þ L ioð Þ� �h i

¼ E
b 2ð Þ

2b 1ð Þ
1
d

XN
j¼1

q̂j û
jð Þ
i þ Uk̂iq̂j

� �
� Uk̂iq̂i

0
@

1
AC aþ 1; 1ð Þ

2
4

3
5

¼ b 2ð Þ

2b 1ð Þ
1
d

XN
j¼1

q̂j û
jð Þ
i þ k̂iq̂j

2

 !
� k̂iq̂i

2

0
@

1
A aþ 1ð Þ:

Hence, we choose c1 ¼ bð2Þ
2bð1Þ

ðaþ1Þ
d ðPN

j¼1 q̂jðûðjÞ
i þ k̂ iq̂ j

2 Þ � k̂ iq̂ i
2 Þ, and so the

final approximation for E½Li� becomes, for arbitrary q 2 ð0; 1Þ,

E Li½ � 	 q
1� qð Þ

b 2ð Þ

2b 1ð Þ
aþ 1ð Þ
d

XN
j¼1

q̂j û
jð Þ
i þ k̂iq̂j

2

 !
� k̂iq̂i

2

0
@

1
A: (7.2)

7.2. Numerical example

In this section, we will compare the above approximation with exact
results. The exact results are obtained using the approach in Ref[2]

Consider a five-station polling system in which the service times are
exponentially distributed with mean E½Bi� ¼ 1 for all i ¼ 1; . . . ; 5. The
arrival processes are Poisson processes with rates k1 ¼ q 1

10 ;k2 ¼
q 2

10 ; k3 ¼ q 3
10 ; k4 ¼ q 1

10 ; k5 ¼ q 3
10 : The switch-over times from station i

are exponentially distributed with mean E½Si� ¼ 2; 3; 1; 5; 2 for stations
i ¼ 1; . . . ; 5. The durations of the deterministic glue periods are
Gi ¼ 3; 1; 2; 1; 2, and the exponential retrial rates are
mi ¼ 5; 1; 3; 2; 1, for stations i ¼ 1; . . . ; 5 respectively. We plot the fol-
lowing for q 2 ð0; 1Þ and compare the approximation given in (7.2) with
the values obtained using exact analysis.
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In Figures 1 and 2, we respectively plot the percentage error calculated

as % error ¼ Approximate value�Exact value
Exact value � 100, for the mean number of cus-

tomers of each type and the total mean number of customers in the system.
The error percentage is similar to that predicted in Ref[4]. The error is
non-negligible for lower values of q, but it decreases quickly as q increases.
Consequently, for larger values of q, the approximation is accurate.
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Figure 1. Percentage error for the number of customers in each station.
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Figure 2. Percentage error for total number of customers.
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Based on this, we conclude that the heavy-traffic results as derived in
this article are very useful for deriving closed-form approximations for the
queue length, especially as the systems under study (e.g., optical systems)
typically run under a heavy workload (i.e., a large value of q). Nevertheless,
to obtain better performance for small values of q, the current approxima-
tion as presented here can be refined by e.g., computing theoretical values
of d

dqELijq¼0 and incorporating that information in (7.1) as explained in

Ref[4] Furthermore, approximations for the mean queue length as men-
tioned here can be extended to approximations for the complete queue
length distributions of the polling systems with glue periods and retrials in
the spirit of Ref[8]. These extensions, however, are beyond the scope of
this article.

Appendix

Proof of Lemma 1. First of all, note that mN;j ¼ fN;j for all j ¼ 1; :::;N: Therefore, we
have

MN ¼

1 0 � � � � � � 0

0 1 . .
. � � � 0

..

. . .
. . .

. � � � 0

0 � � � � � � . .
.

0
0 � � � � � � 1 0
mN;1 mN;2 � � � mN;N�1 mN;N

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Now using the fact that mN�1;j ¼ fN�1;j þ fN�1;NmN;j for all j � N�1 and furthermore
mN�1;N ¼ fN�1;NmN;N , we obtain that

MN�1MN ¼

1 0 � � � � � � � � � 0

0 1 . .
. � � � � � � 0

..

. . .
. . .

. � � � � � � 0

0 � � � � � � . .
. . .

.
0

0 � � � � � � 1 0 0
mN�1;1 mN�1;2 � � � � � � mN�1;N�1 mN�1;N

mN;1 mN;2 � � � � � � mN;N�1 mN;N

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Continuing in this way we obtain

M1 � � �MN ¼
m1;1 � � �m1;N

..

. . .
. ..

.

mN;1 � � �mN;N

0
B@

1
CA ¼ M:

Proof of Lemma 2. First, we look at the normalized right eigenvector ŵ . Using (3.5),

we evaluate the vector M̂iŵ . Let ðM̂iŵÞj represent the jth element of M̂iŵ . By a series of

simple algebraic manipulations, it follows then that
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M̂iŵ
� �

j ¼
ŵj; j 6¼ i;

1
jbj
XN
k¼1

f̂ i;kE Bk½ �; j ¼ i:

8><
>:

However, it also holds that

XN
k¼1

f̂ i;kE Bk½ � ¼ e��iGiE Bi½ � þ
XN
k¼1

1� e��iGið ÞE Bi½ �k̂kE Bk½ �

¼ e��iGiE Bi½ � þ 1�e��iGið ÞE Bi½ �
XN
k¼1

q̂k ¼ E Bi½ �:

Therefore, we conclude that ðM̂iŵÞi ¼ ŵi. This implies that ŵ is the normalized right
eigenvector of M̂i for an eigenvalue n¼ 1, for all i ¼ 1; :::;N. Hence from (3.4), we get the
first part of the lemma. Next, we look at the left eigenvector v̂ . Since û is a multiple of v̂ ,
it is enough to show that û is an eigenvector of M̂. Define

u ið Þ ¼
u ið Þ
1

..

.

u ið Þ
N

0
BB@

1
CCA; where u ið Þ

j ¼
kj

e��jGj

1� e��jGj
þ
XN
k¼j

qk þ
Xi�1

k¼1

qk

2
4

3
5; i � j;

kj
e��jGj

1� e��jGj
þ
Xi�1

k¼j

qk

2
4

3
5; i> j:

8>>>>>>><
>>>>>>>:

(A.1)

Note that uð1Þj ¼ uðNþ1Þ
j ¼ uj, for all j ¼ 1; :::;N, and hence, uð1Þ ¼ uðNþ1Þ ¼ u.

Furthermore, we have

û 1ð ÞTM̂1 ¼

û1 f̂ 1;1
û1 f̂ 1;2 þ û2

..

.

û1 f̂ 1;N þ ûN

0
BBBBB@

1
CCCCCA

T

¼
k̂1 e��1G1

1�e��1G1
þ k̂1q̂1

û2 þ k̂2q̂1

..

.

ûN þ k̂N q̂1

0
BBBB@

1
CCCCA

T

¼
û 2ð Þ
1

û 2ð Þ
2

..

.

û 2ð Þ
N

0
BBBB@

1
CCCCA

T

¼ û 2ð ÞT ;

and, in a similar way, for all i ¼ 1; :::;N,

û ið ÞTM̂i ¼ û iþ1ð ÞT : (A.2)

Therefore, we have

û TM ¼ û 1ð ÞTM̂1 � � � M̂N ¼ û Nþ1ð ÞT ¼ û T :

Hence û and v̂ are the left eigenvectors of M̂, for eigenvalue n¼ 1. w

Proof of Lemma 3. Since the maximal eigenvalue n of M is a simple eigenvalue and fur-
thermore M is continuous in q, Theorem 5 of Lancaster [11] states that

dn
dq

����
q¼1

¼ v̂ TM̂
0
ŵ

v̂Tŵ
; (A.3)

where M̂
0
is the element wise derivative of M with respect to q evaluated at q¼ 1. Let

Ui ¼ ðQi�1
k¼1 MkÞM0

ið
QN

k¼iþ1 MkÞ. Then due to (3.4) we can write M0 ¼PN
i¼1 Ui. From (3.5)

we can see that
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M0
i ¼

0 � � � 0 � � � 0

..

. . .
. � � � . .

. ..
.

dfi;1
dq

� � � dfi;i
dq

� � � dfi;N
dq

..

. . .
. � � � ..

.

0 � � � 0 � � � 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

0 � � � 0

..

. . .
. ..

.

1�e��iGið ÞE Bi½ � dk1
dq

� � � 1�e��iGið ÞE Bi½ � dkN
dq

..

. . .
. ..

.

0 � � � 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

0

..

.

1�e��iGið ÞE Bi½ �
..
.

0

0
BBBBBBBB@

1
CCCCCCCCA

dk1
dq

� � � dkN
dq

	 

: (A.4)

From the definition of q, we know that
PN

i¼1 E½Bi� dkidq ¼ 1, and hence
dk1
dq

� � � dkN
dq

	 

ŵ ¼ jbj�1: (A.5)

Since ŵ is the normalized right eigenvector of any M̂i for eigenvalue n¼ 1, we haveYN
k¼iþ1

M̂kŵ ¼ ŵ : (A.6)

Using (A.4), (A.5) and (A.6) we get

M̂
0
i

YN
k¼iþ1

M̂kŵ ¼ 1
jbj

0
..
.

1�e��iGið ÞE Bi½ �
..
.

0

0
BBBBBB@

1
CCCCCCA
: (A.7)

From (A.2) and (A.7) we get

û T Ûiŵ ¼ ûT
Yi�1

k¼1

M̂k

 !
M̂

0
i

YN
k¼iþ1

M̂kŵ

 !
¼ 1

jbj

û ið Þ
1

..

.

û ið Þ
i�1

û ið Þ
i

û ið Þ
iþ1

..

.

û ið Þ
N

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

T

0
..
.

0
1�e��iGið ÞE Bi½ �

0
..
.

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
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¼ û ið Þ
i 1�e��iGið ÞE Bi½ �

jbj ¼ q̂i

jbj ; (A.8)

where the last equality follows from the fact that ûðiÞ
i ¼ k̂i=ð1�e��iGiÞ, see (A.1).

Multiplying both sides of (A.8) with jbj=d and summing it over all i ¼ 1; :::;N; we get that

v̂ TM̂
0
ŵ ¼

XN
i¼1

jbj
d
û TÛiŵ ¼

XN
i¼1

q̂i

d
¼ 1

d
: (A.9)

Since v̂ Tŵ ¼ 1, we obtain from (A.3) and (A.9) that n0ð1Þ ¼ 1
d : w

Proof of Lemma 4. We know that
hi zð Þ ¼ fi z1; :::; zi; hiþ1 zð Þ; :::; hN zð Þ

� �
¼ 1�e��iGið Þbi z1; :::; zi; hiþ1 zð Þ; :::; hN zð Þ

� �þ e��iGi zi

¼ 1�e��iGið ÞE e
�Bi

Xi
c¼1

1� zcð Þkc þ
XN
c¼iþ1

1� hc zð Þ
� �

kc

 !2
4

3
5
þ e��iGi zi:

From this it follows that

@hi zð Þ
@zk

¼ 1� e��iGið ÞE Bi kk1 k � i½ � þ
XN
c¼iþ1

kc
@hc zð Þ
@zk

 !
e
�Bi

Pi
c¼1

1�zcð Þkcþ
PN
c¼iþ1

1�hc zð Þð Þkc
	 
2

64
3
75þ e��iGi1½k ¼ i�;

and
@2hi zð Þ
@zj@zk

¼ 1� e��iGið ÞE
" 

B2
i kk1½k � i� þ

XN
c¼iþ1

kc
@hc zð Þ
@zk

 !
kj1½j � i� þ

XN
c¼iþ1

kc
@hc zð Þ
@zj

 !

þ Bi

XN
c¼iþ1

kc
@2hc zð Þ
@zj@zk

!
e
�Bi

Pi
c¼1

1�zcð Þkcþ
PN
c¼iþ1

1�hc zð Þð Þkc
	 
#

;

(A.10)

where 1½E� ¼ 1, when the event E is true and otherwise 1½E� ¼ 0. Because

@2hi zð Þ
@zj@zk

����
z¼1

¼ k ið Þ
j;k

and

1�e��iGið ÞE Bi½ � kk1 k � i½ � þ
XN
c¼iþ1

kc
dhc
dzk

zð Þ
 !����

z¼1

¼ mi;k�1 k ¼ i½ �e��iGi ;

we have

k ið Þ
j;k ¼

E B2
i

� �
E Bi½ �2 1� e��iGið Þ mi;j�1 j ¼ i½ �e��iGi

� �
mi;k�1 k ¼ i½ �e��iGi
� �þ 1�e��iGið ÞE Bi½ �

XN
c¼iþ1

kck
cð Þ
j;k

¼ E B2
i

� �
E Bi½ �2 1� e��iGið Þ mi;jmi;k� 1 j ¼ i½ �mi;k þ 1 k ¼ i½ �mi;j

� �
e��iGi þ 1 i ¼ j ¼ k½ �e�2�iGi

� �

þ 1�e��iGið ÞE Bi½ �
XN
c¼iþ1

kck
cð Þ
j;k :

(A.11)

Let 1i be an N � N matrix, where the element in the i-th row and the i-th column
equals one, and all N2�1 other entries read zero. Then, based on (A.11), we can write
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K ið Þ ¼ E B2
i

� �
E Bi½ �2 1� e��iGið Þ

mi;1mi;1 � � �mi;1mi;N

..

. . .
. ..

.

mi;Nmi;1 � � �mi;Nmi;N

0
B@

1
CA� e��iGi

0 � � � mi;1 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � mi;i�1 � � � 0
mi;1 � � � 2mi;i � � � mi;N

0 � � � mi;iþ1 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � mi;N � � � 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

þ e�2�iGi1i

2
666666666664

3
777777777775

þ 1�e��iGið ÞE Bi½ �
XN
c¼iþ1

kcK
cð Þ

¼ E B2
i

� �
E Bi½ �2 1� e��iGið Þ

mi;1

..

.

mi;N

0
B@

1
CA mi;1 � � �mi;N
� �� e��iGi

0 � � � mi;1 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � mi;i�1 � � � 0
mi;1 � � � 2mi;i � � � mi;N

0 � � � mi;iþ1 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � mi;N � � � 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

þ e�2�iGi1i

2
666666666664

3
777777777775

þ 1�e��iGið ÞE Bi½ �
XN
c¼iþ1

kcK
cð Þ:

This leads to

wT K ið Þw ¼ E B2
i

� �
E Bi½ �2 1� e��iGið Þ

wT

mi;1

..

.

mi;N

0
B@

1
CA mi;1 � � �mi;N
� �

w � e��iGiwT

0 � � � mi;1 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � mi;i�1 � � � 0
mi;1 � � � 2mi;i � � � mi;N

0 � � � mi;iþ1 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � mi;N � � � 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
w þ e�2�iGiwT1iw

2
666666666664

3
777777777775

þ 1�e��iGið ÞE Bi½ �
XN
c¼iþ1

kcw
TK cð Þw: (A.12)

Note that from the definition of ŵ , we have that

ŵT

m̂i;1

..

.

m̂i;N

0
B@

1
CA ¼ m̂i;1 � � � m̂i;N

� �
ŵ ¼ E Bi½ �

jbj : (A.13)
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Now we evaluate

ŵT

0 � � � m̂i;1 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � m̂i;i�1 � � � 0
m̂i;1 � � � 2m̂i;i � � � m̂i;N

0 � � � m̂i;iþ1 � � � 0

..

. . .
. ..

. . .
. ..

.

0 � � � m̂i;N � � � 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
ŵ ¼ 1

jbj

m̂i;1E Bi½ �
..
.

m̂i;i�1E Bi½ �
m̂i;iE Bi½ � þ

XN
j¼1

m̂i;jE Bj½ �
m̂i;iþ1E Bi½ �

..

.

m̂i;NE Bi½ �

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

T

ŵ

¼
E Bi½ �

XN
j¼1

m̂i;jE Bj½ � þ E Bi½ �
XN
j¼1

m̂i;jE Bj½ �

jbj2 ¼ 2E Bi½ �2
jbj2 : (A.14)

Evaluating (A.12) for q " 1, and substituting (A.13) and (A.14) in it, we have

ŵT K̂
ið Þ
ŵ ¼ E B2

i

� �
E Bi½ �2 1� e��iGið Þ

E Bi½ �2
jbj2 � 2e��iGi

E Bi½ �2
jbj2 þ e�2�iGi

E Bi½ �2
jbj2

" #

þ 1�e��iGið ÞE Bi½ �
XN
c¼iþ1

k̂cŵ
TK̂

cð Þ
ŵ ¼ 1�e��iGið ÞE B2

i

� �
jbj2

þ 1�e��iGið ÞE Bi½ �
XN
c¼iþ1

k̂cŵ
TK̂

cð Þ
ŵ ¼ 1�e��iGið Þ E B2

i

� �
jbj2 þ E Bi½ �

XN
c¼iþ1

k̂cŵ
TK̂

cð Þ
ŵ

 !
: (A.15)

Multiplying both sides of (A.15) with v̂i and evaluating it for i¼ 1 we get

v̂1ŵ
T K̂

1ð Þ
ŵ ¼ jbjk̂1

d

E B2
1

� �
jbj2 þ E B1½ �

XN
c¼2

k̂cŵ
TK̂

cð Þ
ŵ

 !
¼ k̂1E B2

1

� �
djbj

þ jbjq̂1k̂2 1�e��2G2ð Þ
d

E B2
2

� �
jbj2 þ

XN
c¼3

k̂cŵ
TK̂

cð Þ
ŵ

 !
þ jbj q̂1

d

XN
c¼3

k̂cŵ
TK̂

cð Þ
ŵ ; (A.16)

where for the second equality we again used (A.15), but now for i¼ 2, to substitute
ŵTK̂

ð2Þ
ŵ . Multiplying both sides of (A.15) with v̂i and evaluating it for i¼ 2 we get

v̂2ŵ
T K̂

2ð Þ
ŵ ¼ jbjk̂2

d
e��2G2 þ 1� e��2G2ð ÞXN

j¼2

q̂j

0
@

1
A E B2

2

� �
jbj2 þ E B2½ �

XN
c¼3

k̂cŵ
TK̂

cð Þ
ŵ

 !

¼ jbjk̂2
d

e��2G2 þ 1� e��2G2ð Þ 1� q̂1ð Þ
� �

E B2
2

� �
jbj2 þ E B2½ �

XN
c¼3

k̂cŵ
TK̂

cð Þ
ŵ

 !

¼ jbjk̂2�jbjq̂1k̂2 1�e��2G2ð Þ
d

E B2
2

� �
jbj2 þ E B2½ �

XN
c¼3

k̂cŵ
TK̂

cð Þ
ŵ

 !
: (A.17)
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Summing (A.16) and (A.17) we get

X2
j¼1

v̂jŵ
TK̂

jð Þ
ŵ ¼

X2
j¼1

k̂j
d

E B2
j

h i
jbj þ jbj

d

X2
j¼1

q̂j

0
@

1
AXN

c¼3

k̂cŵ
TK̂

cð Þ
ŵ :

By repeating the above procedure, we end up with

XN
j¼1

v̂jŵ
TK̂

jð Þ
ŵ ¼

XN
j¼1

k̂j
d

E B2
j

h i
jbj ¼ 1

djbj
b 2ð Þ

b 1ð Þ :

Therefore we have

A :¼ 1
2

XN
j¼1

v̂jŵ
TK̂

jð Þ
ŵ ¼ 1

2djbj
b 2ð Þ

b 1ð Þ :

w

Proof of Lemma 5. Multiplying both sides of (3.6) with E½Bi� and summing it over all i
gives

XN
i¼1

giE Bi½ � ¼
XN
k¼1

kk
XN
i¼1

mk;iE Bi½ �
 ! Xk�1

j¼1

Gj þ E Sj½ �� �
1� e��kGkð Þ þ Gk

0
@

1
A

þ
XN
i¼1

qi
Xi�1

j¼1

Gj þ E Sj½ �� �
e��iGi þ

XN
j¼i

E Sj½ � þ
XN
j¼iþ1

Gj

0
@

1
A:

Since ŵ is an eigenvector of M̂k, we have
PN

i¼1 m̂k;iE½Bi� ¼ E½Bk�. Hence, taking q " 1,
we get

XN
i¼1

ĝiE Bi½ � ¼
XN
i¼1

q̂i
Xi�1

j¼1

Gj þ E Sj½ �� �
1� e��iGið Þ þ Gi þ

Xi�1

j¼1

Gj þ E Sj½ �� �
e��iGi þ

XN
j¼i

E Sj½ � þ
XN
j¼iþ1

Gj

0
@

1
A

¼
XN
i¼1

q̂i
XN
j¼1

E Sj½ � þ Gj
� � ¼XN

i¼1

E Si½ � þ Gið Þ: (A.18)

Substituting ŵ ¼ jbj�1ðE½B1� � � � E½BN �ÞT and A ¼ 1
2djbj

bð2Þ
bð1Þ in (4.1) and using (A.18) will

give that a ¼ 2rd bð1Þ
bð2Þ. w

Proof of Lemma 6. First, we state (1.1) and (1.2) of Ref[18] in our notation.
For some a1 > 0; a2 > 0; a3 <1 and a positive integer U, (1.1) in Ref[18] entails the fol-

lowing conditions:

(i) fMUgi;j � a1; 8i; j ¼ 1; 2; :::;N.

(ii)
P

i;j;k k
ðiÞ
j;k � a2; 8i; j; k ¼ 1; 2; :::;N:

(iii)
P

i;j;k;l
@3hiðzÞ
@zj@zk@zl

jz¼1 � a3 8i; j; k; l ¼ 1; 2; :::;N:

Furthermore, for some a4 > 0 and a5 <1, (1.2) in [18] entails the following conditions:

(iv) gð1Þ ¼ 1:
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(v)
PN

i¼1 gi � a4:

(vi)
P

i;j
@2gðzÞ
@zj@zk

jz¼1 � a5 8i; j ¼ 1; 2; :::;N:

Now we prove that each of the above statements hold for our model.
First, considering Eqs. (3.2) and (3.3), and assuming that arrival rates and service times

are positive (which is the case in a non-trivial model), we conclude that mi;j > 0 for all
i; j ¼ 1; 2; :::;N. Hence, (i) holds for U¼ 1 and a1 close enough to zero.

Condition (ii) implies that the sum of second order joint moments of the number of
children of type j and k produced by a customer of type i should be positive. As numbers
of children cannot become negative, all these joint moments are clearly non-negative. This
can also be seen from (A.10). Furthermore, when i ¼ N, (A.10) reveals that

k Nð Þ
j;k ¼ @2hN zð Þ

@zj@zk

����
z¼1

¼ 1�e��NGNð ÞE B2
Nkjkke

�BN

PN
c¼1

1�zcð Þkc
	 
" #����

z¼1

¼ kjkk 1�e��NGNð ÞE B2
N

� �
:

As each of the terms of the above equations are positive in a non-trivial model, so is kðNÞ
j;k :

Since all the values of kðiÞj;k are non-negative and at least one is positive the value ofP
i;j;k k

ðiÞ
j;k is positive, and hence (ii) holds for a2 close to zero.

For (iii), note that the arrival processes in our system are independent Poisson processes
with finite positive rate and the third moments of the service times are finite. This implies
the third-order joint moments are finite and hence their sum is finite. So (iii) holds for
some finite value of a3.

Condition (iv) holds as gðzÞ is a generating function of a vector of finite ran-
dom variables.

Next, it is easy to verify that each term in (3.6) is positive for a non-trivial model.
Hence, so are g1; :::; gN . Therefore, we conclude that (v) holds for a4 close enough to zero.

The arrival processes in our system are independent Poisson processes with finite posi-
tive rate. Further, the second moments of the switchover times are finite, and the glue peri-
ods are finite and deterministic. It implies that the second moments of the non-visit times
are finite and hence the second-order joint moments are finite and therefore their sum is
finite. So (vi) is satisfied for some finite value of a5. w
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