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ABSTRACT: Ammonia is one of the most important compounds in the chemical industry as it is
the main raw material in the production of fertilizers. Its production is achieved using the Haber−
Bosch process, where nitrogen and hydrogen react in the presence of a catalyst producing a mixture
containing ammonia. In this work we use molecular simulations to study the effect of confinement
on the ammonia synthesis reaction in pure silica zeolites FER, MOR, MFI, BEA, LTA, and FAU.
We calculated adsorption isotherms and isobars of the components resulting from the reaction for
a wide range of values of pressure and temperature. The removal of the resulting ammonia will
keep the equilibrium of the reaction favoring ammonia formation at lower values of pressure than
in conventional plants. Among the studied zeolites, FAU and ITQ-29 are preferred for ammonia
storage because of their higher adsorption capacity. The effect of confinement is proven to increase
ammonia production, being the zeolites with the narrowest pores (FER and MFI) the ones that
exhibit the highest conversion of the reactants. Besides, we found that the optimal working conditions for the production
process in confinement are 573 K and 200 bar. At these particular conditions, the production of ammonia increases without the
addition of any extra operational costs to the process.

■ INTRODUCTION
The worldwide production of ammonia is among the largest
within the chemical industry as it is probably the most important
chemical in the world.1,2 Synthetic ammonia is the main raw
material in the production of fertilizers (80% of produced
ammonia), nitric acid, urea plants, melamine, explosives, dyes,
and plastics.3,4 On a large scale, the industrial synthesis of
ammonia is almost entirely produced by the Haber−Bosch
process. This process generates a mixture of hydrogen, nitrogen,
and carbon dioxide by burning fossil fuels with air and water.
Once carbon dioxide is removed from the mixture, nitrogen and
hydrogen react in the presence of a catalyst (typically iron),
producing a diluted ammonia-gas stream that needs to be
recovered. To break the strong bond of nitrogen, a temperature
above 400 K is required. Additionally, high values of pressure
(between 200 and 1000 bar) are used to enhance the production
rate.5 Only about 15% of synthesis gas is converted to ammonia
each time in the reaction, requiring the gases to pass multiple
times over the catalyst bed to achieve full conversion.6 The
synthesis of ammonia is highly exothermic. Therefore, long
times are needed in order to reach equilibrium at high values of
temperature. The activation energy of the reaction at room
temperature is also too high, thus reducing drastically the
reaction rate. Increasing pressure, reducing temperature, and at
the same time using a catalyst will favor the proportion of
ammonia yielded in the mixture. The removal of the product
from the batch is also essential to ensure and keep the
equilibrium in favor of ammonia formation. This way, ammonia
can be synthesized at lower values of pressure than in
conventional plants.7,8

On a very large scale, ammonia is traditionally separated from
the other components of the reaction by condensation,5 while

on small and intermediate scales it can also be separated with gas
absorbers.9−11 However, high investments and operating costs
are the main drawbacks of these techniques.9−11 Separation and
recovery of gaseous ammonia by adsorption is well known but
has not been extensively applied. From the industrial application
point of view, the selectivity, adsorption, and regeneration
capacity of the adsorbent are of key importance.9,11,12 The most
studiedmaterials for this purpose areMOFs, zeolites, and COFs,
whose uptake capacity at room temperature and 1 bar partial
pressure of ammonia could reach up to 105 mg/g (MOFs), 130
mg/g (zeolites), and 272 mg/g (COFs).13−16 Here, we will
focus on zeolites because they are the most commonly used at
the industrial level for their low cost and high durability. Only a
few zeolites are reported to have fair values of adsorption at the
pressure and temperature conditions of the industrial gas
stream.17−21 In particular, 13X, 4A, and 5A zeolites, all of them
containing extra-framework cations, are reported as the best
candidates.4,16,22 Nevertheless, it is known that the selective
adsorption of ammonia is easier to achieve in the absence of
water. Therefore, and to avoid intermediate steps in the
industrial process, the use of pure silica zeolites seems promising
for their hydrophobic nature.
Besides the selection of the optimal material, we need to take

into account the effect of confinement on the chemical reaction
equilibrium. To the best of our knowledge, there is not much
information in this regard.23−28 A previous study on activated
carbons concluded that the yield in the pores is mainly
determined by the increased density of the adsorbates. The
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selectivity of the material for one of the reactants over the other
is also an important factor at low pressure and/or temperature,
but not at the high values of pressure and temperature
considered at the industrial working conditions of the process.
The yield of the ammonia reaction in the pores is not as sensitive
to variations in temperature as to changes in density within the
pore phase.28

■ METHODS
This work aims to improve the production of ammonia from the
standard Haber−Bosch process by an efficient recovery of the
gas using zeolites. For this purpose, molecular simulations are
employed to analyze the performance of pure silica FER, MOR,
BEA, MFI, LTA (ITQ-29), and FAU zeolites. We select these
structures because they are currently used in the chemical and
petrochemical industry.
We use the RASPA software package to simulate adsorption in

zeolites.29 In particular, we calculate isotherms and isobars with
Monte Carlo (MC) simulations in the grand canonical ensemble
(GCMC). In this ensemble, chemical potential, volume, and
temperature are kept fixed. The chemical potential is related to
pressure through the Peng−Robinson equation and the fugacity
coefficient. Absolute adsorption values are converted into excess
adsorption when comparing to experimental data.30 Our
simulations consist of 2.5 × 104 initialization cycles, 2.5 × 104

equilibration cycles, and 2× 105 production cycles. Initialization
cycles are used in MC to quickly equilibrate the position of the
atoms in the system, while equilibration cycles are used to
measure the biasing factors. Within each cycle, random trial
moves are applied to a randomly selected molecule from the
system. Thesemoves are rotation, translation, regrow, insertion/
deletion, and identity change (in the case of mixtures). The
Continuous Fractional Component Monte Carlo method
(CFCMC) is an algorithm used to improve the efficiency of
ensembles where the number of molecules varies, as it allows
increasing the number of successfully insertedmolecules.29,31−33

To deal with the ammonia synthesis reaction, we use a
combination of CFCMC and the Reactive Monte Carlo method
(RxMC). This method allows computing equilibrium properties
for chemically reacting fluids.34,35 RxMC extends the GCMC
ensuring that the chemical reaction equilibria between reactants
and products is maintained. This is achieved by sampling
forward and backward the reaction, using MC moves.
“Reaction” moves are also applied. Reactants are removed and
products are inserted in the system in such a way that an
equilibrium distribution is obtained. To perform RxMC
simulations, the input of the intermolecular potentials and the
ideal-gas partition function for the reactants and products are
required along with the usual ensemble constants. The partition
functions of the components of the reaction are taken from the
literature36,37 (Table S1 from the Supporting Information).
Host−guest and guest−guest interactions are modeled by

Lennard-Jones (L-J) and Coulombic potentials, with point
charges located at the center of the atoms of the system. Guest−
guest L-J parameters are obtained by Lorentz−Berthelot mixing
rules, while host−guest L-J parameters were fitted to reproduce
experimental data. The Ewald summation method is used to
calculate the Coulombic interactions with a relative precision of
1 × 10−6. L-J and Coulombic potentials are cut and shifted at a
cutoff distance of 12 Å. We use already published rigid models
for hydrogen,38 nitrogen,39 and ammonia.40 These models have
been widely validated and reproduce characteristic properties of
the gases such as the vapor−liquid equilibrium curve or the

vapor density. The molecule of hydrogen is defined as a single
uncharged Lennard-Jones center that incorporates quantum
corrections with a Feynman−Hibbs effective interaction
potential. The molecules of nitrogen and ammonia are modeled
with Lennard-Jones parameters, point charges in all their atoms,
and a charged dummy atom without mass to mimic the polarity
of the molecules. The zeolites used here vary in topology. FER
and MOR have 2D systems of interconnected channels, BEA
andMFI have 3D systems of interconnected channels, and FAU
and LTA have 3D systems of large cavities surrounded by
sodalites. Zeolites are considered as rigid frameworks. We use
reported crystallographic positions of the atoms from Morris et
al.41 (FER), Gramlich42 (MOR), Newsam43 (BEA), van
Koningsveld et al.44 (MFI), Hriljac et al.45 (FAU), and Corma
et al.46 (LTA-ITQ-29). The cell parameters of these zeolites are
summarized in Table S2 from the Supporting Information.
All atoms of the structure have point charges assigned.47 For

the molecule of hydrogen, we define L-J interactions of the
molecules with the silicon and oxygen atoms of the framework.38

For nitrogen and ammonia, we use effective L-J parameters for
the zeolites oxygen atom only (Ozeo).48 These parameters are
collected in Table 1.

■ RESULTS AND DISCUSSION
Prior to the analysis of the adsorption of mixtures, we first
evaluate the pure component adsorption in the zeolites at several
working conditions. We calculate the loading of hydrogen,
nitrogen, and ammonia in the zeolites at a pressure range of 10−6

bar to 100 bar and temperature from 80 to 300 K (Figures S1−
S3 from the Supporting Information).
To enhance ammonia production, the idea is to separate this

component from the other components of the mixture.
Therefore, we look for the optimal combination of pressure
and temperature, where the uptakes of hydrogen and nitrogen
are low and the loading of ammonia is high. This information
can be used to predict the most suitable operating conditions for
the process. In particular, at 300 K and 100 bar, the loading of
ammonia seems directly related to the available pore volume of
the zeolites (FAU > LTA > BEA > MOR > MFI > FER). We
found ammonia condensation inside the pores of the zeolites at
most temperatures (Figure 1). The steepness of the isotherms at

Table 1. Lennard-Jones Parameters and Point Charges Used

atom 1 atom 2 ε/kB (K) σ (Å)
μij

(uma)
charge
(e−)

Adsorbates
H (H2) H (H2) 36.733 2.958 1 0
N (N2) N (N2) 38.298 3.306 −0.405
dummy (N2) dummy (N2) 0.81
N (NH3) N (NH3) 185 3.42 0
H (NH3) H (NH3) 0.41
dummy
(NH3)

dummy
(NH3)

−1.23

Zeolites
O (zeo) O (zeo) −0.393
Si (zeo) O (zeo) 0.786

AdsorbatesZeolites
H (H2) O (zeo) 66.055 2.89 1.79
H (H2) Si (zeo) 28.256 1.854 1.86
N (N2) O (zeo) 60.58 3.261
N (NH3) O (zeo) 160 3.125
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140 K in a narrow range of pressure indicates phase transition of
ammonia. This only occurs for FAU, LTA, and maybe BEA at
300 K and requires much higher values of pressure. It is for this
reason that the use of high temperature is very important for this
particular process.
Before evaluating the effect of the zeolites on the reaction

yield, we validate the models and force fields with the reaction of
synthesis of ammonia in the bulk at several temperatures. Figure
2 compares the ammonia reaction yield obtained using RxMC

simulations with reported experimental values.49 As seen in the
figure, the highest ammonia reaction yield is obtained at 573 K
for all partial pressures, with a maximum at 1000 bar, with nearly
full formation of ammonia.
To obtain the highest reaction yield, one needs to take into

account not only the temperature of the process but also the
pressure (Figure 3). We compare our results at 100 and 200 bar
with the experimental values from Haber.50 As observed from
the figure there is a perfect match between both sets of data,
therefore we can extrapolate our conclusions from the
experimental values of Haber. At 473 K, it is possible to get
over 86% yield by increasing pressure from 1 to 200 bar.
However, at this temperature, differences in the yields at 100 and
200 bar are not significant (5% difference). As Fritz Haber
mentioned during his Nobel Lecture in 1920, an increase in
pressure is only of interest if it considerably reduces the
temperature of rapid conversion without creating technical
difficulties.
The next step in this work is to investigate the effect of

confinement on the equilibrium of the reaction of ammonia
synthesis from nitrogen and hydrogen. To this aim, we

performed MC simulations using the initial molar fractions of
the components of the reaction previously obtained by RxMC
simulations (Table S3). Instead of running new RxMC
simulations, this reduces computational time. However, it has
been previously validated that the results obtained will not vary
between methods.51

As shown in Figure 4, the production of ammonia increases in
all cases. This finding was previously reported for activated
carbons by Turner et al.28 with an increased yield of ammonia of
about 40%, being the narrowest pores the responsible of the

Figure 1.Ammonia adsorption at 140 K (left) and 300 K (right) in the zeolites under study: BEA (red), FAU (blue), FER (green), LTA (yellow),MFI
(purple), and MOR (orange).

Figure 2. Ammonia mole fraction from the reaction of nitrogen and
hydrogen at 573 K (red), 673 K (blue), 773 K (green), and 873 K
(yellow). Comparison between calculated values (solid symbols and
lines) and experimental data (open symbols and dashed lines).49

Figure 3. Calculated ammonia reaction yield at 100 bar (solid red
triangles) and 200 bar (solid blue diamonds). Dashed lines and open
symbols are the values reported by Haber during his Nobel Lecture in
1920,50 including data at 1 bar (green circles) and 30 bar (orange
squares).

Figure 4.Mole fraction of adsorbed ammonia as a function of pressure.
Solid lines represent the values in the bulk, while dashed lines and
symbols are the values calculated in the zeolites: BEA (up triangles),
FAU (asterisks), FER (squares), LTA (diamonds), MFI (circles), and
MOR (down triangles). Colors refer to temperature: 873 K (green),
773 K (blue), 673 K (red), and 573 K (black).
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largest improvement. As seen in the figure, the lower the
pressure the larger the effect exerted by confinement on the
ammonia production. The largest increase was observed at 673
K, with an enhanced yield of 51% at 200 bar in FER. The
optimum value of temperature is 573 K with almost a full
production of ammonia and constant values for the whole range
of pressure studied. In the same tone as Turner et al., zeolites
with smaller pore volume show the largest mole fraction of
ammonia adsorbed (opposite trend than for the adsorption
isotherms of the pure components). This behavior is expected,
as the effect of confinement in the reaction will be reduced in
zeolites with large pores. However, differences between zeolites
are almost negligible at 573 K, with an average enhancement of
about 17%. Table S4 from the Supporting Information,
compares the absolute increment and the percentage of
enhancement achieved with the zeolites compared to the results
obtained in the bulk. At higher values of temperature (773 and
873 K), the percentages of enhancement seem higher; however,
the absolute increment is much lower than at 573 or 673 K.
Based in our findings, 573 K and 200 bar provide the best

balance of temperature and pressure for an efficient synthesis of
ammonia. These operating conditions guarantee high ammonia
production (between 91 and 94% ammonia adsorbed) without
requiring substantial costs. Besides the reaction yields obtained
within the materials, it is interesting to see the distribution of the
molecules inside the structures. Because the adsorption of
hydrogen and nitrogen is almost negligible at these conditions,
we can analyze the distribution of the molecules of ammonia
inside the zeolites with the average density profiles (Figures
5−7). These plots are obtained from the projection over the
planes of the center of mass of the molecules adsorbed inside the
pores of the zeolites.
The average density profiles of ammonia in FER and MOR

(2D systems of interconnected channels) show that the
molecules are preferably adsorbed in the smallest channels
(5.4× 4.2 and 4.8× 3.5 Å in FER and 7.0× 6.5 and 5.7× 2.6 Å in
MOR), being the side pockets ofMOR the preferred location for
this zeolite. FER is the structure with the narrowest channels and
for this reason is the zeolite that provides the best improvement
in the ammonia production. The preferred locations for the
molecules of ammonia in BEA and MFI (3D systems of
interconnected channels) are the intersections between
channels. The molecules of ammonia are more confined in the
channels of MFI (narrower) than in the channels of BEA
(wider). FAU and ITQ-29 (3D systems of cages surrounded by
sodalities) show homogeneous adsorption of ammonia
distributed between the super cages and the sodalities of these
zeolites. The homogeneity on the adsorption is a consequence of
the large size of the cavities of these materials. As in the previous
cases, the zeolite with the smallest cavities (ITQ-29) shows the
highest concentration of molecules.
Figure 8 shows the adsorption of ammonia, nitrogen, and

hydrogen at 573 K and 200 bar. It compares the results obtained
w h e n t h e r e a c t i o n t a k e s p l a c e (NH 3 /N 2 /H 2
62.55511:9.36122:28.08367) with the expected mixture using
the stoichiometry of the reaction in ideal conditions (NH3/N2/
H2 33.3:16.7:50). Hydrogen and nitrogen adsorptions are lower
in real conditions than the expected from the stoichiometric
mixture; however, the adsorption of ammonia is largely
increased in all zeolites. These results corroborate once more
the positive effect of confinement on the production and
recovery of ammonia. FAU and LTA topologies show the
highest ammonia adsorption for both mixtures. Despite

Figure 5. Average density profiles of ammonia inside the pores of the
zeolites at 573 K and 200 bar (right). From top to bottom: XY and XZ
views for FER and YZ view for MOR. The color gradation (black-blue-
green-yellow-orange-red) indicates the less and most populated areas.
To guide the view, we add a representation of the structures (left). The
atomic structures are represented by the oxygen and silica atoms in red
and yellow, respectively. Grid surfaces where the accessible part appears
in purple and the non-accessible part is colored in gray are also depicted.

Figure 6. Average density profiles of ammonia inside the pores of the
zeolites at 573 K and 200 bar (left). From top to bottom: YZ and XZ
views for MFI and YZ view for BEA. The color gradation (black-blue-
green-yellow-orange-red) indicates the less and most populated areas.
To guide the view, we add a representation of the structures (left). The
atomic structures are represented by the oxygen and silica atoms in red
and yellow, respectively. Grid surfaces where the accessible part appears
in purple and the non-accessible part is colored in gray are also depicted.
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differences in ammonia uptakes follow similar trends, larger
differences between zeolite behaviors are observed for the
reactive than for the stoichiometric mixture.
We found in this work that the material with the highest

ammonia capacity is different than the material with the highest
ammonia formation. Therefore, the selection of the best
performing material will depend on the criteria set for the
application. Figure 9 shows the performance of the materials at
573 K and 200 bar in terms of their ammonia uptake and
increment in the ammonia production. As observed from the
figure, FER is the best zeolite in terms of ammonia production,
while FAU and LTA have the largest adsorption capacity.

■ CONCLUSIONS
We carried out molecular simulations to study the performance
of pure silica zeolites FER, MOR, BEA, MFI, LTA, and FAU in
the production process of ammonia. Aiming to improve the yield
of ammonia from its synthesis reaction, the effect of confinement
was studied. Several working conditions were investigated for
pressure up to 1000 bar and temperature ranging between 80
and 873 K. The need of working at a high temperature (above
400 K) was found to be needed, because otherwise a phase
transition of ammonia to liquid ammonia occurs. The effect of
confinement is proved to increase the ammonia production in all
zeolites with special improvement in FER. However, in terms of
ammonia capture, zeolites with the largest pore volume (FAU or
LTA) show the highest adsorption capacity, proposing this
material as the optimal candidate for ammonia recovery. The
right balance of temperature and pressure (573 K and 200 bar)
leads to the highest ammonia yield without implying high
implementation costs. Therefore, depending on which step of
the ammonia production we want to implement, a different
material should be selected: FER to enhance the production and
FAU for a better recovery of ammonia.
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