
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Nighres
processing tools for high-resolution neuroimaging
Huntenburg, J.M.; Steele, C.J.; Bazin, P.-L.
DOI
10.1093/gigascience/giy082
Publication date
2018
Document Version
Final published version
Published in
GigaScience
License
CC BY

Link to publication

Citation for published version (APA):
Huntenburg, J. M., Steele, C. J., & Bazin, P-L. (2018). Nighres: processing tools for high-
resolution neuroimaging. GigaScience, 7(7), [giy082].
https://doi.org/10.1093/gigascience/giy082

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1093/gigascience/giy082
https://dare.uva.nl/personal/pure/en/publications/nighres(c88abd96-b33a-48fa-a350-2f2bdf95e534).html
https://doi.org/10.1093/gigascience/giy082


GigaScience, 7, 2018, 1–9

doi: 10.1093/gigascience/giy082
Advance Access Publication Date: 4 July 2018
Technical Note

TE CHNICAL NO TE

Nighres: processing tools for high-resolution
neuroimaging
Julia M. Huntenburg 1,2,*, Christopher J. Steele3,4,5,† and
Pierre-Louis Bazin3,6,7,†

1Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive
and Brain Sciences, Stephanstrasse 1a, Leipzig, 04103, Germany, 2Neurocomputation and Neuroimaging Unit,
Department of Education and Psychology, Free University of Berlin, Habelschwerdter Allee 45, Berlin, 14195,
Germany, 3Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences,
Stephanstrasse 1a, Leipzig, 04103, Germany, 4Cerebral Imaging Center, Douglas Mental Health University
Institute, 6875 LaSalle Boulevard, Montreal, Quebec, H4H 1R3, Canada , 5Department of Psychology, Concordia
University, 7141 Sherbrooke West, Montreal, Quebec, H4B IR6, Canada , 6Department of Neurophysics, Max
Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig, 04103, Germany and
7Psychology Department, University of Amsterdam, Nieuwe Achtergracht 129B, Amsterdam, 1018 WT,
Netherlands
∗Correspondence address. Julia M. Huntenburg. E-mail: ju.huntenburg@gmail.com http://orcid.org/0000-0003-0579-9811. Max Planck Institute for
Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig, 04103, Germany
†Contributed equally.

Abstract

With recent improvements in human magnetic resonance imaging (MRI) at ultra-high fields, the amount of data collected
per subject in a given MRI experiment has increased considerably. Standard image processing packages are often
challenged by the size of these data. Dedicated methods are needed to leverage their extraordinary spatial resolution. Here,
we introduce a flexible Python toolbox that implements a set of advanced techniques for high-resolution neuroimaging.
With these tools, segmentation and laminar analysis of cortical MRI data can be performed at resolutions up to 500 μm in
reasonable times. Comprehensive online documentation makes the toolbox easy to use and install. An extensive
developer’s guide encourages contributions from other researchers that will help to accelerate progress in the promising
field of high-resolution neuroimaging.

Keywords: neuroimaging in python; high-resolution MRI; ultra-high field MRI; laminar MRI; python Java integration

Background

Recent advances in ultra-high field (7 Tesla [T] and above) mag-
netic resonance imaging (MRI) make it possible to image the en-
tire human brain at an unprecedented level of detail [1]. Submil-
limeter resolutions and quantitative metrics reveal fine-grained
variations in structure and function that were previously unde-
tectable in vivo. This information allows researchers to ask new

questions about the human brain. Examples include investiga-
tion of intracortical myelin (e.g., [2-5]), the laminar organization
of the cortical sheet (e.g., [6-10]), feedforward and feedback pat-
terns in cortical connections [11, 12], and the detailed descrip-
tion of small cortical and subcortical structures [13, 14] and their
function [15].

Received: 27 June 2018; Revised: 26 June 2018; Accepted: 29 June 2018

C© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/7/giy082/5049008 by U

niversiteit van Am
sterdam

 user on 14 April 2020

http://www.oxfordjournals.org
http://orcid.org/0000-0003-0579-9811
mailto:ju.huntenburg@gmail.com
http://orcid.org/0000-0003-0579-9811
http://orcid.org/0000-0003-0579-9811
http://creativecommons.org/licenses/by/4.0/


2 Processing tools for high-resolution neuroimaging

While ultra-high field scanners have become increasingly
available and the first open 7T MRI datasets have been released
[16-18], software tools still lag behind. Standard neuroimaging
software packages are often not designed to handle the grow-
ing data size and new quantitative contrasts. Three-dimensional
MRI data grows as a cube of its resolution, and computational
complexity generally ranges from O(Nlog N) to O(N2). Therefore,
a change in spatial resolution from 1 mm to 0.5 mm easily en-
tails an increase in computational requirements by a factor of 15
to 60, depending on the methods used. Moreover, new applica-
tions such as laminar analysis have only become possible with
higher resolutions and are not implemented in many existing
software packages.

CBS High-Res Brain Processing Tools (CBS Tools) is a software
suite that addresses this gap by providing cutting-edge meth-
ods for efficient processing of MR images at submillimeter res-
olution [19]. For example, CBS Tools implements routine corti-
cal segmentation at resolutions as high as 400 μm; processing
of quantitative MRI sequences such as magnetization prepared
two rapid acquisition gradient echoes (MP2RAGE), quantitative
multi-parameter mapping (MPM), or quantitative susceptibility
mapping [19]; laminar analysis [7]; and small vessel segmenta-
tion [20]. While this software has been well received as a key
tool set for quantitative and high-resolution neuroimaging, its
adoption has been slowed by the complex infrastructure it builds
on. CBS Tools was developed in Java as a set of plug-ins for the
MIPAV software package [21] and the JIST pipeline environment
[22]. The MIPAV and JIST framework provides a graphical inter-
face for building analysis pipelines and implements many con-
venient tools; however, it comes with a complex installation pro-
cedure, heavy dependencies, and limited documentation. More
importantly, it is difficult to integrate with other popular neu-
roimaging tools, limiting its software ecosystem.

Meanwhile, a range of versatile, interoperable open-source
packages for the analysis of neuroscientific data has been de-
veloped using the increasingly popular programming language
Python [23]. For example, Nipy [24] is a community of practice
devoted to the use of Python in the analysis of neuroimaging
data, encompassing popular tools such as Nibabel [25], Nipype
[26], Nilearn [27], and many others.

Here, we present Nighres1, a new toolbox that makes the
quantitative and high-resolution image-processing capabilities
of CBS Tools available in Python. Nighres is a user-friendly
Python package that interfaces with CBS Tools while avoid-
ing the JIST and MIPAV dependency tree. It facilitates integra-
tion with other Python-based neuroimaging tools and interac-
tive data exploration, e.g., in Jupyter notebooks [28. Nighres fea-
tures comprehensive online documentation with usage exam-
ples that are based on publicly available datasets. An extensive
developer’s guide encourages external contributions. With this
new package, we aim to make the functionality of CBS Tools ac-
cessible to a wider community, highlight the potential of new
high-resolution image-processing methods, and foster collabo-
ration in this emerging field.

Implementation
Architecture and design

The Nighres package consists of two core Python modules. The
module cbstools contains the original CBS Tools Java classes that
have been encapsulated using the JCC package [29]. JCC encap-

1 NeuroImaginG at High RESolution

sulates the Java code with C++ code to make it accessible to the
Python interpreter and produces a complete Python extension
module. The module nighres includes the Python interfaces that
are exposed to the user. It is organized in submodules that rep-
resent different application areas.2 For example, the submodule
laminar contains functions related to laminar analysis of the cor-
tical sheet. There are currently two types of Python interfaces
within these submodules:

(i) Functions that wrap Java classes
(ii) Functions in pure Python

Functions that wrap Java classes
The initial motivation to develop Nighres was to provide a user-
friendly interface to the functionality of CBS Tools, leveraging
the flexibility of Python. Therefore, a majority of the current
functions in Nighres constitute Python wrappers that internally
execute the original CBS Tools Java classes. These functions gen-
erally adhere to the following basic structure (a simple example
can be found in the function probability to levelset):

(i) Evaluate input parameters
(ii) Start Java virtual machine

(iii) Initiate Java class through JCC wrapper
(iv) Load input data and cast to Java array
(v) Pass additional parameters to Java class

(vi) Execute Java class
(vii) Collect outputs of Java class and cast back

(viii) Return outputs (optional: save outputs)

Thus, the actual processing still relies on the same optimized
Java code as in the original CBS Tools. However, since the Nighres
function takes care of the interfacing between Python and Java,
the user interacts only with Python code.

Functions in pure Python
Our long-term vision is for Nighres to become a central plat-
form for new high-resolution image processing tools as they
are developed. As discussed above, Python is rapidly becoming
the most popular programming language in the neuroimaging
community [23]. The modular design of Nighres allows for easy
integration of pure Python processing routines, meaning that
new functions can be contributed without the need to interact
with Java or to learn about the JCC-based wrapping procedure.
In addition, it is possible to integrate useful tools from other
neuroimaging software that have been (or can be) wrapped in
Python, e.g., using Nipype [26]. Currently, Nighres includes a core
set of Python functions for input and output, parameter han-
dling, and file naming to simplify function calls and minimize
the integration burden for new methods.

Data handling

Data handling within Nighres follows established and widely
used standards in the neuroimaging community to ensure max-
imal interoperability. Where possible, Nighres uses the Niba-
bel package for handling imaging data [25]. Input and output
functions are designed to automatically recognize and load the
most commonly used data formats, while maintaining flexibil-
ity to accommodate loading of nonstandard data formats us-
ing custom scripts. Data are internally represented as Nibabel
Nifti1Images (volumes) or Python dictionaries (surfaces) and can

2 For consistency the submodule names are based on the original module
organization in CBS Tools

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/7/giy082/5049008 by U

niversiteit van Am
sterdam

 user on 14 April 2020



3

be passed in the form of file names or memory objects. Process-
ing results are returned as memory objects; functions with mul-
tiple outputs return a dictionary storing the different outputs.
Outputs can also be saved to disk. For saving, modifiers are ap-
pended to the output file names that refer to the name of the
function and the specific output (e.g. layering depth for the con-
tinuous depth output of the layering function). Output names
can be set to have a specific prefix or, by default, append modi-
fiers to the main input file name.

Distribution

While both Python and Java are cross-platform languages, the
JCC package encapsulates CBS Tools’ Java classes with C++ code
and thus makes the compilation platform specific. We imple-
mented an automated build script that compiles the original
CBS Tools Java code and builds the wrappers using JCC. We set
up continuous integration using Travis CI [30] to test the build
on any changes to the code base on Github and, for any tagged
releases, deploy the package to the Python Package Index [31].
The user can then download the package, run the fully auto-
mated build script to recompile the Java code and C++ wrappers
on their platform, and finally use the pip installer [32] to install
the modules and all their dependencies. Subsequently, Nighres
can simply be imported into any Python environment. We also
provide a container allowing users to test Nighres in a preset
environment, without actually installing it on their system. For
this option, the user only has to install Docker [33], a lightweight
container platform that runs on Linux, Windows, and Mac OS X.
The Nighres Dockerfile [34] can then be used to build an Ubuntu
14 Trusty Docker image that contains a suitable Java installation,
Nighres, and Jupyter Notebook.

Dependencies
One goal of Nighres was to reduce external dependencies. We
therefore restricted the required packages for Nighres’ core
functionality to Nibabel for reading and writing of common neu-
roimaging data formats [25], and Numpy for efficient manipula-
tion of data arrays [35]. The functions wrapping CBS Tools code
require the CBS Tools Java library as well the Java matrix manip-
ulation [36] and Apache Commons Math [37] libraries. However,
these libraries are automatically recompiled, wrapped, and in-
stalled from the CBS Tools github repository [38] upon installa-
tion of Nighres. Our example workflows use Nilearn’s [27] plot-
ting functionality for visualizing their results but will automati-
cally skip plotting if Nilearn is not installed.

Support files
Nighres automatically installs all essential support files includ-
ing statistical atlases for brain segmentation, look-up tables
for topological constraints, templates for high-resolution spatial
normalization, and a cerebellar lobular atlas [39]. Example data
from publicly released 7T datasets are hosted on the Nighres
project page [40] at the neuroimaging informatics tools and re-
sources clearinghouse (NITRC, [41]). The data are automatically
downloaded when running the example workflows.

Documentation

Beyond functional code, clear and concise documentation is one
of the most important drivers of software use and longevity.
Nighres’ online documentation [42] was implemented using the
Sphinx documentation tool [43]. The online content is automat-
ically generated from the original function docstrings, which are

written according to the Numpy/Scipy documentation guide-
lines [44]. This design ensures that the documentation stays
up-to-date with minimal overhead for developers and is intu-
itive for users. Extensive example workflows provide users with
easily understandable and reproducible code (see section Us-
age example below). Finally, the online documentation contains
an in-depth developer’s guide that leads contributors through
all steps necessary to submit code changes, new Python func-
tions, or CBS Tools wrappers to the Nighres github repository. We
aimed to write a guide that makes it feasible for any researcher
working with high-resolution neuroimaging data to contribute
to Nighres, even without much previous experience in software
development.

Functionality

Nighres contains a set of advanced functions that are not com-
monly implemented in neuroimaging software and/or have
been optimized toward the specific demands of processing high-
resolution and quantitative neuroimaging data. In this section,
we provide an overview of the major features that are currently
implemented. Their application will be demonstrated in the
subsequent section, which also indicates example computation
times. A more in-depth discussion of the individual algorithms
and their performance can be found in the original references
listed for each function.

MP2RAGE skull-stripping
This fast skull-stripping algorithm has been optimized for quan-
titative images acquired at 7T using the MP2RAGE sequence [45].
See [19] for details.

Multiple object geometric deformable model segmentation
Multiple object geometric deformable model segmentation
(MGDM) is a whole-brain tissue classification method designed
to routinely process datasets at resolutions up to 400 μm. A vari-
ety of inputs (MP2RAGE at 3T, 7T, and 9.4T; MPM at 3T and 7T; T1-,
T2-, and diffusion-weighted images) as well as multiple inputs
are accepted. This atlas-guided method uniquely preserves the
topological properties and relationships of all 25 classified brain
structures. See [19, 46, 47] for details.

Cortical reconstruction using implicit surface evolution
Cortical reconstruction using implicit surface evolution (CRUISE)
provides a precise and efficient method to extract cortical sur-
faces from high-resolution volumetric data based on level set
representations (see next subsection). A distinguishing feature
of this algorithm is the careful modeling of sulcal fundi. CRUISE
can be applied to cerebral and cerebellar cortices and to data
with partial brain coverage. See [48] for details.

Level set creation
This function creates level sets from probabilistic or determin-
istic tissue classifications. Level sets are signed distance func-
tions that can be used for representing cortical surfaces in voxel
space instead of triangular meshes. Such representations have
favorable mathematical properties, avoid mesh sampling prob-
lems, and facilitate the integration of volumetric and surface
data. Several Nighres functions rely on level sets internally. See
[19] for details.

Equivolumetric layering
Nighres implements an equivolumetric technique for modeling
intracortical laminae. This approach accounts for the depen-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/7/giy082/5049008 by U

niversiteit van Am
sterdam

 user on 14 April 2020



4 Processing tools for high-resolution neuroimaging

Table 1: Computation times for usage example

Processing step Duration

Skull stripping 1 minute 8 seconds (8 seconds)
MGDM tissue classification 6 minutes 58 seconds (30 seconds)
CRUISE surface reconstruction 1 minute 57 seconds (3 seconds)
Equivolumetric layering 1 minute 23 seconds (6 seconds)

Shown are average durations over 10 repetitions (with standard deviations in

brackets), determined on a standard laptop. See main text for details.

dency of layer thickness on local curvature by preserving the vol-
ume of cortical segments (cf. [49]). The resulting cortical depth
estimates represent an intracortical coordinate system that is
anatomically more accurate than commonly applied equidistant
or Laplacian approaches. Intracortical surfaces are represented
as level sets. See [50] for details.

In addition to the aforementioned functions, we are currently
preparing to migrate CBS Tools’ multimodal surface registration
algorithm [51] and nonlinear deformation utilities, as well as al-
gorithms for topology correction [52] and vascular segmentation
[20], into the Nighres package.

Usage Example

Here, we present a Nighres usage example. It shows how to ob-
tain a tissue classification and cortical depth estimation from
MP2RAGE data, acquired at 7T with a resolution of 0.7 mm
isotropic. The pipeline contains the following steps:

1. Downloading the open MP2RAGE data set from NITRC
2. Removing the skull and creating a brain mask
3. Atlas-guided tissue classification using MGDM [46]
4. Extracting the cortex of one hemisphere
5. Cortical reconstruction using CRUISE [48]
6. Equivolumetric modeling of intracortical laminae [50]

The outputs of the plotting functions are shown in Figs. 1
and 2. Average computation times for the different processing
steps in this example are indicated in Table 1. They were de-
termined on a standard laptop (8 GB random access memory,
i7-5500U dual core processor, 4 MB cache, 3 GHz maximum fre-
quency) using Python’s timeit module [53].

Import and download

First, we import nighres and the os module to set the output
directory

import nighres, os

out dir = os.path.join

(os.getcwd(),‘‘nighres examples/tissue classification’’)

We also import Nilearn’s plotting functions. If Nilearn is not in-
stalled, plotting will be skipped in the online examples.

from nilearn import plotting

Now, we download an example MP2RAGE dataset that is hosted
on NITRC. It is the structural scan of the first subject, first session
of the 7T test-retest dataset published in [17].

dataset = nighres.data.download 7T TRT(out dir)

Skull stripping

The first processing step is skull stripping. The brain mask is cal-
culated based on the second inversion image of the MP2RAGE se-

quence. For convenience, we can also input the quantitative T1
map and the T1-weighted image, to which the calculated brain
mask will then be applied. We save the outputs in the out dir

specified above and use a subject ID as the base file name.

skullstrip results = nighres.brain.mp2rage skullstripping

(second inversion=dataset[‘‘inv2’’],
t1 weighted=dataset[‘‘t1w’’],
t1 map=dataset[‘‘t1map’’],\thinspace
save data=True, output dir=out dir

file name=‘‘sub001 sess1’’)

To check if the skull stripping worked well, we plot the brain
mask on top of the original image (Fig. 1A). Nighres, like Nilearn,
uses Nibabel’s Nifti1Image object to pass data internally. There-
fore, we can directly pass the outputs to Nilearn’s plotting func-
tions without saving and reloading. Alternatively, the images
stored in out dir can be opened in any common interactive
viewer that can read the Nifti data format.

plotting.plot roi(skullstrip results[‘‘brain mask’’],

dataset[‘‘t1w’’], cut coords=[15, 25, 30],

annotate=False, black bg=False, draw cross=False,
cmap=‘‘PuRd r’’)

(We hereafter omit the plotting code; it can be found in the on-
line documentation.)

MGDM tissue classification

Next, we use the masked data as input for tissue classification
with the MGDM algorithm [46]. MGDM works with a single con-
trast but can be improved with additional contrasts. In this case,
we use the T1-weighted image as well as the quantitative T1
map.

mgdm results = nighres.brain.mgdm segmentation

(contrast image1=skullstrip results[‘‘t1w masked’’],

contrast type1=‘‘Mp2rage7T’’,
contrast image2=skullstrip results[‘‘t1map masked’’],

contrast type2=‘‘T1map7T’’,
save data=True, output dir=out dir,

file name=‘‘sub001 sess1’’)

The topology-constrained segmentation that MGDM creates is
shown in Fig. 1B.

Cortical surface reconstruction

First, we extract the regions needed for cortical reconstruction
from the MGDM output. The outputs are membership functions
for the following regions: the gray matter cortex (“region”), the
underlying white matter (with filled subcortex and ventricles;
“inside”), and the surrounding cerebrospinal fluid (with masked
regions; “background”).

cortex = nighres.brain.extract brain region

(segmentation=mgdm results[‘‘segmentation’’],

levelset boundary=mgdm results[‘‘distance’’],

maximum membership=mgdm results[’’memberships’’],

maximum label=mgdm results[’’labels’’],

extracted region=‘‘left cerebrum’’,

save data=True, output dir=out dir,

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/7/giy082/5049008 by U

niversiteit van Am
sterdam

 user on 14 April 2020



5

Figure 1: Tissue classification from MP2RAGE data. (A) The brain mask obtained from skull stripping. Note that the white rectangles in the image occur because the

data has been ”defaced” for anonymization. (B) The result of the MGDM tissue classification. Visualized using Nilearn [27].

file name=‘‘sub001 sess1 left cerebrum’’)

Next, we use the extracted data as input for cortical reconstruc-
tion with the CRUISE algorithm [48]. CRUISE uses the member-
ship functions as a guide and the white matter mask as a (topo-
logically spherical) starting point to grow refined boundaries be-
tween the gray and white matter and the gray matter and the
cerebrospinal fluid.

cruise = nighres.cortex.cruise cortex extraction

(init image=cortex[‘‘inside mask’’],

wm image=cortex[‘‘inside proba’’],

gm image=cortex[‘‘region proba’’],

csf image=cortex[‘‘background proba’’],

normalize probabilities=True,
save data=True, output dir=out dir

file name=‘‘sub001 sess1 left cerebrum’’)

The topology-constrained segmentation with refined bound-
aries that CRUISE created is shown in Fig. 2A.

Modeling of intracortical laminae

Finally, we use the gray–white matter boundary (GWB) and cere-
brospinal fluid–gray matter boundary (CGB) from CRUISE to com-
pute cortical depth and model intracortical laminae. Impor-
tantly, the equivolumetric approach implemented in Nighres
accounts for the dependency of layer thickness on cortical fold-
ing (for an in-depth discussion, see [50]).

depth = nighres.laminar.volumetric layering

(inner levelset=cruise[‘‘gwb’’],
outer levelset=cruise[‘‘cgb’’],
n layers=4,
save data=True, output dir=out dir,

file name=‘‘sub001 sess1 left cerebrum’’)

Fig. 2B shows the continuous equivolumetric depth estimate.
The function call also outputs discrete representations of the
modeled laminae as well as level sets describing the intracor-
tical surfaces.

In summary, this example implements a complete work-
flow for advanced processing of a quantitative MR contrast at
high spatial resolution (voxel size = 0.7 mm isotropic). With the
openly available and automatically downloaded data, any user
can try out Nighres’ functionality immediately after installation

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/7/giy082/5049008 by U

niversiteit van Am
sterdam

 user on 14 April 2020



6 Processing tools for high-resolution neuroimaging

Figure 2: Cortical surface reconstruction and depth estimation. (A) Topology-constrained reconstruction of the boundaries between the cortical gray matter (cortex,
blue), the cerebrospinal fluid (outside, white), and the white matter (inside, brown) using CRUISE [48]. (B) Intracortical depth estimated using an equivolumetric
approach [50]. Visualized using Nilearn [27].

and then adapt the code for their own use case. The examples
can be found in our online documentation [54], where the code
can be downloaded as Python scripts or Jupyter notebooks.

Discussion

The availability of high-resolution and quantitative MRI data
and the interest in new research directions that these data en-
able are rapidly growing (e.g., [55, 56]). At the same time, image
processing tools required to leverage the new level of spatial de-
tail provided by this data are scarce. We developed a Python tool-
box that specializes in processing high-resolution brain imaging
data. It has been designed with two key purposes in mind:

(i) to provide the neuroimaging community with user-friendly ac-
cess to cutting-edge high-resolution image processing tools

(ii) to create a flexible framework that can be extended by other
researchers, along with thorough instructions on how to con-
tribute

Comparison to other tools

Most major neuroimaging packages are optimized for data with
a maximum spatial resolution of 1 mm isotropic. Only recently
have some extensions and new tools for processing of high-
resolution data begun to emerge, which will be discussed in the
following section [57].

Freesurfer
Freesurfer is a popular open-source package for analyzing corti-
cal surface data [58, 59]. It is robust, well documented, and ap-
plicable across platforms. By default, Freesurfer resamples the
input data to a spatial resolution of 1 mm isotropic, obliterating

the advantages of higher-resolution data. The latest Freesurfer
release includes an option for processing at submillimeter reso-
lution [60]. However, this option is still under development and
tested only for a resolution of 0.75 mm [61]. A Matlab routine for
laminar analysis of high-resolution MRI data using Freesurfer
has been proposed as well [62]. Here, intracortical surfaces are
evolved as triangular meshes starting from the gray-white mat-
ter boundary in an equidistant fashion. This approach can cause
errors and mesh irregularities, especially closer to the pial sur-
face, and does not take into account the known dependency of
layer thickness on local curvature.

More generally, Freesurfer’s robustness and ease of use come
at the cost of strict requirements for data organization (e.g., im-
posed directory structure, native file format) and limited flexi-
bility in the adaptation of individual processing steps for new
applications. While it provides excellent pipelines for standard
processing of T1- or T2-weighted whole brain scans, it is not
optimized for processing nonstandard data such as quantita-
tive T1 maps or images with partial brain coverage. At the same
time, replacing individual processing steps with customized al-
gorithms, combining Freesurfer with other tools, or applying
manual corrections can be challenging even for experienced
users. Therefore, while Freesurfer will likely play an important
role, as ultra-high field imaging becomes more abundant, it cur-
rently lacks the flexibility required for the active and collabora-
tive development of new techniques in this emerging field.

BrainVoyager
Another software that has recently extended its functionality
to the specific demands of high-resolution image processing is
BrainVoyager [63]. A new pipeline, comprehensively described
in a recent publication [64], enables laminar and columnar anal-
yses of 9.4T data. Intracortical surfaces are modeled following
the equivolumetric approach through the evolution of regular

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/7/giy082/5049008 by U

niversiteit van Am
sterdam

 user on 14 April 2020



7

grids for small regions of interest. Unfortunately, BrainVoyager
is a commercial software with closed source code. In addition to
the financial aspect of buying a license, this also entails that de-
tails of the applied algorithms are not transparent and the soft-
ware cannot be adapted by users.

LAYNII
LAYNII is a set of highly optimized C++ tools for laminar anal-
ysis of high-resolution fMRI data with partial brain coverage
[12,65]. Equivolumetric layering is available for slices without
3D curvature. The implementation in C++ enables fast process-
ing but has the disadvantage that fewer researchers can adapt
or contribute code, as compared to high-level languages such
as Python. LAYNII also lacks documentation, making it hard for
new users to adopt it.

LAYNII is a good example of an advanced toolbox that serves
a specific purpose and could benefit from being combined with
a more comprehensive and well-documented software frame-
work for high-resolution image processing. It will be crucial in
the future to synchronize Nighres with more specialized projects
such as LAYNII and make their integration as easy as possible.

CBS Tools
Nighres evolved out of CBS Tools, a suite of Java tools providing
dedicated open-source methods for high-resolution and quan-
titative image processing [19]. This includes specialized tech-
niques such as equivolumetric layering [50] and multimodal sur-
face registration [51], as well as versions of more common ap-
plications such as tissue classification that have been optimized
for high-resolution data and quantitative contrasts. While many
standard processing algorithms in neuroimaging grow at a log-
linear (O(Nlog N)) or even quadratic (O(N2)) rate with data size,
CBS Tools’ algorithms approach linear rates (O(N)) or use nonit-
erative solutions (for details, see [19]). CBS Tools can thus rou-
tinely operate on data at resolutions of up to 0.5 mm isotropic.

As described in the introduction, CBS Tools’ complex design
and heavy dependencies make installation and handling chal-
lenging and impede contributions from other researchers. For a
previous project, we presented simple Python wrappers for se-
lected CBS Tools functions [66]. Here, we described a comprehen-
sive software framework that has evolved out of these initial at-
tempts. With Nighres, we present a flexible and user-friendly im-
plementation of CBS Tools’ functionality, which eliminates the
dependency on MIPAV and JIST. This approach provides a signif-
icant improvement in usability while preserving the excellent
performance of CBS Tools. Another major advance of Nighres
compared to CBS Tools is its extensive online documentation.
In addition to explaining every function’s inputs and outputs,
it provides carefully documented usage examples with step-by-
step instructions of how the different tools can be combined to
create complete processing pipelines. The implementation in
Python along with a detailed developer’s guide facilitate adap-
tation and extension of the existing tools by other researchers.

We gave an example of Nighres’ performance in the previous
section (see Table 1). To put this example into perspective, con-
sider Freesurfer’s recon-all command, probably the most com-
mon approach for whole brain tissue classification and cortical
surface reconstruction. This command processes a whole brain
image at 1 mm isotropic resolution within a few hours. In com-
parison, the Nighres pipeline presented above achieves tissue
classification and segmentation plus cortical layering at 0.7 mm
isotropic resolution (roughly corresponding to a 3-fold increase
in data size compared to 1 mm isotropic) in less than 15 minutes.

Future directions

The current implementation of Nighres contains a set of cutting-
edge methods; however, rapid methodological advances are to
be expected in the dynamic field of high-resolution neuroimag-
ing. We therefore designed Nighres as a transparent software
platform through which newly developed methods can be made
available to the community and improved collaboratively. New
or existing tools can easily be added in a variety of formats, de-
pending on the specific requirements of the operation and the
preferences of the developer. The extensive developer’s guide
aims to encourage contributions, even from researchers without
extensive experience in software development.

We intend to closely integrate our package with the exist-
ing community around neuroimaging tools in Python. To this
end, we adopted standardized objects for internal data handling,
which can easily be exchanged with other tools. An example
is the seamless visualization of Nighres outputs using Nilearn’s
[27] plotting functions, as showcased in the usage example (Figs.
1 and 2).

A major limitation of the current package is that it has been
developed and tested for common Linux platforms only. The C++
code generated by JCC to interface with CBS Tools’ Java classes
makes the compilation platform dependent. We addressed this
issue by providing an automated build script that recompiles
the code upon installation. While this process has only been
tested on Linux, the design makes future adaptation to Mac OS
X platforms straightforward. Support for Windows is not cur-
rently planned. However, the provided Dockerfile enables usage
of Nighres in a container on any platform that supports Docker.

Many future extensions of the current package can be envi-
sioned. In addition to integrating more of the original CBS Tools
functions, a main goal is to extend functionality with new tools
coded directly in Python and potentially to replace the Java de-
pendency altogether. To ensure efficient processing of the large
amount of data, this might require increasing Python’s perfor-
mance, e.g., using Numba [67]. Another goal is to provide inte-
gration with tools for parallel processing and job management
on compute clusters.

Conclusion

We developed a user-friendly and well-documented Python
package that makes cutting-edge high-resolution image pro-
cessing tools available to the research community. The toolbox
is easy to install and provides a comprehensive set of advanced
techniques. While the current functionality is largely based on
CBS Tools, we hope that the flexible framework encourages con-
tribution of new tools, stimulates collaboration, and accelerates
progress in the promising field of high-resolution neuroimaging.

Availability and requirements
� Project name: Nighres
� Project home page: https://github.com/nighres/nighres
� Operating system(s): Linux
� Programming language: Python, Java
� Other requirements: Java≥1.7, Python≥2.7, Numpy≥1.13,

Nibabel≥2.1.0
� License: Apache License 2.0
� RRID:SCR 016287

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/7/giy082/5049008 by U

niversiteit van Am
sterdam

 user on 14 April 2020

https://github.com/nighres/nighres
https://scicrunch.org/resolver/RRID:SCR_016287


8 Processing tools for high-resolution neuroimaging

Availability of supporting data

The datasets that support the results of this article are available
in the NITRC image repository [41] under https://www.nitrc.or
g/frs/?group id=1205. Snapshots of the data and code are also
available in the GigaScience GigaDB repository [68].

Abbreviations

CGB: cerebrospinal fluid-gray matter boundary; CRUISE: corti-
cal reconstruction using implicit surface evolution; GWB: gray-
white matter boundary; MGDM: multiple object geometric de-
formable model; MPM: quantitative multi-parameter mapping;
MP2RAGE: magnetization prepared two rapid acquisition gra-
dient echoes; MRI: magnetic resonance imaging; Nighres: Neu-
roImaginG at High RESolution; NITRC: the neuroimaging infor-
matics tools and resources clearinghouse; T: Tesla.

Competing interests

The authors declare that they have no competing interests.

Funding

J.M.H. was partially funded by a stipend from Google via the
Google Summer of Code 2017 Program, with the International
Neuroinformatics Coordinating Facility (INCF) as the mentoring
organization.

Author Contributions

J.M.H., C.J.S., and P.L.B. contributed equally to the conceptual-
ization of the project and writing of the manuscript. J.M.H. led
and C.J.S. and P.L.B. supported software development. All au-
thors read and approved the final manuscript.

Acknowledgements
We thank Gilles de Hollander, Nathaniel Kofalt, and Rüdiger

Meier for their contributions to Nighres; Daniel S. Margulies for
his continuous support of this project; and Malin Sandström and
the INCF for their coordination of the Google Summer of Code
Project.

References

1. van der Zwaag W, Schäfer A, Marques JP, et al. Recent ap-
plications of UHF-MRI in the study of human brain func-
tion and structure: a review: UHF MRI: Applications to Hu-
man Brain Function and Structure. NMR in Biomedicine
2016;29(9):1274–88.

2. Lutti A, Dick F, Sereno MI, et al. Using high-resolution quan-
titative mapping of R1 as an index of cortical myelination.
NeuroImage 2014;93:176–88.

3. Sereno MI, Lutti A, Weiskopf N, Dick F. Mapping the human
cortical surface by combining quantitative T1 with retino-
topy. Cereb Cortex 2013;23(9):2261–8.

4. Dick F, Tierney AT, Lutti A, et al. In vivo functional and
myeloarchitectonic mapping of human primary auditory ar-
eas. J Neurosci 2012;32(46):16095–105.

5. Huntenburg JM, Bazin PL, Goulas A, et al. A systematic re-
lationship between functional connectivity and intracorti-
cal myelin in the human cerebral cortex. Cerebral Cortex
2017;27(2):981–97.

6. Dinse J, Härtwich N, Waehnert MD, et al. A cytoarchitecture-
driven myelin model reveals area-specific signatures in hu-

man primary and secondary areas using ultra-high resolu-
tion in-vivo brain MRI. NeuroImage 2015;114:71–87.

7. Waehnert MD, Dinse J, Schäfer A, et al. A subject-specific
framework for in vivo myeloarchitectonic analysis using
high resolution quantitative MRI. NeuroImage 2016;125:94–
107.

8. Fracasso A, van Veluw SJ, Visser F, et al. Lines of Baillarger
in vivo and ex vivo: myelin contrast across lamina at 7T MRI
and histology. Neuroimage 2016;133:163–75.

9. Whitaker KJ, Vértes PE, Romero-Garcia R et al. Adolescence is
associated with genomically patterned consolidation of the
hubs of the human brain connectome. Proc Natl Acad Sci U
S A 2016;113(32):9105–10.

10. Marques JP, Khabipova D, Gruetter R. Studying cyto and
myeloarchitecture of the human cortex at ultra-high field
with quantitative imaging: R1, R2(∗) and magnetic suscep-
tibility. Neuroimage 2017;147:152–63.

11. Kok P, Bains L, vanMourik T, et al. Selective activation of the
deep layers of the human primary visual cortex by top-down
feedback. Current Biology 2016;26(3):371–6.

12. Huber L, Handwerker DA, Jangraw DC, et al. High-resolution
CBV-fMRI allows mapping of laminar activity and connec-
tivity of cortical input and output in human M1. Neuron
2017;96(6):1253–63.

13. Keuken MC, Bazin PL, Crown L, et al. Quantifying inter-
individual anatomical variability in the subcortex using 7T
structural MRI. NeuroImage 2014;94:40–6.

14. Steele CJ, Anwander A, Bazin PL, et al. Human cerebellar sub-
millimeter diffusion imaging reveals the motor and non-
motor topography of the dentate nucleus. Cerebral Cortex
2017;27(9):4537–48.

15. Thürling M, Kahl F, Maderwald S, et al. Cerebellar cortex and
cerebellar nuclei are concomitantly activated during eye-
blink conditioning: a 7T fMRI study in humans. J Neurosci
2015;35(3):1228–39.

16. Forstmann BU, Keuken MC, Schafer A, et al. Multi-modal
ultra-high resolution structural 7-Tesla MRI data repository.
Sci Data 2014;1:140050.

17. Gorgolewski KJ, Mendes N, Wilfling D, et al. A high resolution
7-Tesla resting-state fMRI test-retest dataset with cognitive
and physiological measures. Sci Data 2015;2:140054.

18. Tardif CL, Schäfer A, Trampel R, et al. Open Science CBS Neu-
roimaging Repository: sharing ultra-high-field MR images of
the brain. Neuroimage 2016;124:1143–8.

19. Bazin PL, Weiss M, Dinse J, et al. A computational framework
for ultra-high resolution cortical segmentation at 7Tesla.
Neuroimage 2014;93(2):201–9.

20. Bazin PL, Plessis V, Fan AP, et al. Vessel segmentation
from quantitative susceptibility maps for local oxygenation
venography. In: 2016 IEEE 13th International Symposium on
Biomedical Imaging (ISBI). 2016;1135–8.

21. McAuliffe MJ, Lalonde FM, McGarry D, et al. Medical image
processing, analysis and visualization in clinical research. In:
Proceedings 14th IEEE Symposium on Computer-Based Med-
ical Systems. CBMS 2001; 2001. 381–6.

22. Lucas BC, Bogovic JA, Carass A, et al. The Java Image Science
Toolkit (JIST) for rapid prototyping and publishing of neu-
roimaging software. Neuroinformatics 2010;8(1):5–17.

23. Muller E, Bednar JA, Diesmann M, et al. Python in neuro-
science. Front Neuroinform 2015;9:11.

24. http://nipy.org/.
25. Brett M, Hanke M, Cipollini B, et al. nibabel: 2.1.0 (Version

2.1.0). Zenodo 2016. http://doi.org/10.5281/zenodo.60806
26. Gorgolewski KJ, Burns CD, Madison C, et al. Nipype: a flexi-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/7/giy082/5049008 by U

niversiteit van Am
sterdam

 user on 14 April 2020

https://www.nitrc.org/frs/?group_id=1205
http://nipy.org/


9

ble, lightweight and extensible neuroimaging data process-
ing framework in Python. Front Neuroinform 2011;5.

27. Abraham A, Pedregosa F, Eickenberg M, et al. Machine learn-
ing for neuroimaging with scikit-learn. Front Neuroinform
2014;8:14.

28. http://jupyter.org/.
29. http://lucene.apache.org/pylucene/jcc/index.html.
30. https://travis-ci.org/nighres.
31. https://pypi.python.org/pypi/nighres.
32. https://pip.pypa.io/en/stable/.
33. https://www.docker.com/.
34. https://github.com/nighres/nighres/blob/master/Dockerfil

e.
35. van der Walt S, Colbert SC, Varoquaux G. The NumPy array:

a structure for efficient numerical computation. Computing
in Science Engineering 2011;13(2):22–30.

36. http://math.nist.gov/javanumerics/jama/.
37. http://commons.apache.org/proper/commons-math/.
38. https://github.com/piloubazin/cbstools-public.
39. Bazin JPLK, Steele CJ, Margulies D, et al. Subject-specific cor-

tical cerebellar mapping at 3T and 7T. Poster presented at the
Nineteenth Annual Meeting of the Organization for Human
Brain Mapping, Seattle, WA, June 16-20, 2013. Abstract 1788.

40. https://www.nitrc.org/projects/nighres/.
41. Kennedy DN, Haselgrove C, Riehl J, et al. The NITRC image

repository. NeuroImage 2016;124(Part B):1069–73.
42. http://nighres.readthedocs.io/en/latest/.
43. http://www.sphinx-doc.org/en/stable/.
44. https://numpydoc.readthedocs.io/en/latest/format.html.
45. Marques JP, Kober T, Krueger G, et al. MP2RAGE, a self bias-

field corrected sequence for improved segmentation and T1-
mapping at high field. Neuroimage 2010;49(2):1271–81.

46. Bogovic J, Prince J, Bazin P. A multiple object geometric de-
formable model for image segmentation. Computer Vision
and Image Understanding 2013;117(2):145–57.

47. Fan X, Bazin PL, Prince JL. A multi-compartment segmen-
tation framework with homeomorphic level sets. In: 2008
IEEE Conference on Computer Vision and Pattern Recogni-
tion; 2008. p. 1–6.

48. Han X, Pham DL, Tosun D, et al. CRUISE: cortical re-
construction using implicit surface evolution. NeuroImage
2004;23(3):997–1012.

49. Bok S. Der Einfluß der in den Furchen und Windun-
gen auftretenden Krümmungen der Großhirnrinde auf die
Rindenarchitektur. Arch Psychiatr Nervenkr Z Gesamte Neu-
rol Psychiatr 1929;12:682–750.

50. Waehnert MD, Dinse J, Weiss M, et al. Anatomically
motivated modeling of cortical laminae. NeuroImage

2014;93(2):210–20.
51. Tardif CL, Schäfer A, Waehnert M, et al. Multi-contrast multi-

scale surface registration for improved alignment of cortical
areas. NeuroImage 2015;111:107–22.

52. Bazin PL, Pham DL. Topology correction of segmented medi-
cal images using a fast marching algorithm. Computer Meth-
ods and Programs in Biomedicine 2007;88(2):182–90.

53. https://docs.python.org/2/library/timeit.html.
54. http://nighres.readthedocs.io/en/latest/auto examples/in

dex.html.
55. Trampel R, Bazin PL, Pine K, et al. In-vivo mag-

netic resonance imaging (MRI) of laminae in
the human cortex. Neuroimage 2017, doi is
https://doi.org/10.1016/j.neuroimage.2017.09.037.

56. Paus T. Imaging microstructure in the living
human brain: a viewpoint. NeuroImage 2017,
https://doi.org/10.1016/j.neuroimage.2017.10.013.

57. cf. https://layerfmri.com/2018/01/04/layer-fmri-software-i
n-the-field/.

58. Dale AM, Fischl B, Sereno MI. Cortical surface-based analy-
sis: I. Segmentation and surface reconstruction. Neuroimage
1999;9(2):179–94.

59. Fischl B, Sereno MI, Dale AM. Cortical surface-based analy-
sis: II: Inflation, flattening, and a surface-based coordinate
system. Neuroimage 1999;9(2):195–207.

60. Zaretskaya N, Fischl B, Reuter M, et al. Advantages of cortical
surface reconstruction using submillimeter 7 T MEMPRAGE.
Neuroimage 2017;165:11–26.

61. https://surfer.nmr.mgh.harvard.edu/fswiki/SubmillimeterR
econ.

62. https://github.com/kendrickkay/cvncode/blob/master/cvn
makelayers.m.

63. Goebel R. BrainVoyager–past, present, future. Neuroimage
2012;62(2):748–56.

64. Kemper VG, Martino FD, Emmerling TC, et al. High resolution
data analysis strategies for mesoscale human functional MRI
at 7 and 9.4T. NeuroImage 2018;164:48–58.

65. https://github.com/layerfMRI.
66. Huntenburg JM, Wagstyl K, Steele C, et al. Laminar Python:

tools for cortical depth-resolved analysis of high-resolution
brain imaging data in Python. Research Ideas and Outcomes
2017;3.

67. https://numba.pydata.org/.
68. Huntenburg JM, Steele CJ, Bazin PL. Support-

ing data for “Nighres: processing tools for high-
resolution neuroimaging.” GigaScience Database 2018.
http://dx.doi.org/10.5524/100469

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/7/giy082/5049008 by U

niversiteit van Am
sterdam

 user on 14 April 2020

http://jupyter.org/
http://lucene.apache.org/pylucene/jcc/index.html
https://travis-ci.org/nighres
https://pypi.python.org/pypi/nighres
https://pip.pypa.io/en/stable/
https://www.docker.com/
https://github.com/nighres/nighres/blob/master/Dockerfile
http://math.nist.gov/javanumerics/jama/
http://commons.apache.org/proper/commons-math/
https://github.com/piloubazin/cbstools-public
https://www.nitrc.org/projects/nighres/
http://nighres.readthedocs.io/en/latest/
http://www.sphinx-doc.org/en/stable/
https://numpydoc.readthedocs.io/en/latest/format.html
https://docs.python.org/2/library/timeit.html
http://nighres.readthedocs.io/en/latest/auto_examples/index.html
https://layerfmri.com/2018/01/04/layer-fmri-software-in-the-field/
https://surfer.nmr.mgh.harvard.edu/fswiki/SubmillimeterRecon
https://github.com/kendrickkay/cvncode/blob/master/cvnmakelayers.m
https://github.com/layerfMRI
https://numba.pydata.org/

