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Abstract
The vascular organization of the human brain can determine neurological and neurophysiological functions, yet thus far it 
has not been comprehensively mapped. Aging and diseases such as dementia are known to be associated with changes to the 
vasculature and normative data could help detect these vascular changes in neuroimaging studies. Furthermore, given the 
well-known impact of venous vessels on the blood oxygen level dependent (BOLD) signal, information about the common 
location of veins could help detect biases in existing datasets. In this work, a quantitative atlas of the venous vasculature using 
quantitative susceptibility maps (QSM) acquired with a 0.6-mm isotropic resolution is presented. The Venous Neuroanatomy 
(VENAT) atlas was created from 5 repeated 7 Tesla MRI measurements in young and healthy volunteers (n = 20, 10 females, 
mean age = 25.1 ± 2.5 years) using a two-step registration method on 3D segmentations of the venous vasculature. This 
cerebral vein atlas includes the average vessel location, diameter (mean: 0.84 ± 0.33 mm) and curvature (0.11 ± 0.05 mm−1) 
from all participants and provides an in vivo measure of the angio-architectonic organization of the human brain and its 
variability. This atlas can be used as a basis to understand changes in the vasculature during aging and neurodegeneration, 
as well as vascular and physiological effects in neuroimaging.

Keywords Venous vasculature · QSM, UHF-MRI · Vein atlas · Vein segmentation · Cerebral vasculature

Introduction

Cerebral arteries are known to be affected in aging and dis-
eases such as atherosclerosis and dementia (Peters 2006; 
Brown and Thore 2011). In part because of this, arteries 
have long been the main focus of research on the cerebral 

vasculature. The venous vasculature is more challenging 
to characterize due to greater variability between subjects 
(Browning 1884; Duvernoy et al. 1981; Bernier et al. 2018), 
but there is an increasing recognition that valuable informa-
tion about cerebral physiology and brain function in health 
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and disease could be gleaned from a more thorough under-
standing of veins.

Veins have received increased attention over the past dec-
ades as they are a significant source of both contrast and bias 
in gradient echo (GE) blood oxygenation level dependent 
(BOLD) functional magnetic resonance imaging (fMRI) 
(Seiyama et al. 2004; Gagnon et al. 2015), especially at low 
field strengths (Donahue et al. 2011). But while different 
aspects of venous physiology have been explored in the con-
text of the BOLD signal, venous structure has only received 
a limited amount of attention (Turner 2002; Gagnon et al. 
2015). One of the issues of concern is that the GE BOLD 
contrast is known to be sensitive to draining veins, which 
introduce a bias in the measured location of brain activation 
(Turner 2002). This is because the BOLD signal is based 
on local changes in deoxyhemoglobin (dHb) concentration 
from dilution with oxyhemoglobin during the hemodynamic 
response that accompanies changes in neural activity (Logo-
thetis and Wandell 2004). While the BOLD signal is thought 
to arise partly from the parenchymal response, it has been 
shown to also have a significant intravascular component, 
especially at the lower field strengths of 1.5 or 3 Tesla (T) 
used in most functional MRI studies (Boxerman et al. 1995; 
Donahue et al. 2011). This is problematic since it is esti-
mated that a vein with a diameter of 0.6 mm is able to drain 
125 mm2 of cortex (Turner 2002). This influence of draining 
veins not only generates uncertainty in the exact location 
of brain activity as measured by the BOLD response, but 
also biases the amplitude of the response measured as drain-
ing veins contain more dHb and may, therefore, contribute 
the voxels with the highest signal change amplitude. These 
venous voxels may then be detected as the most significant 
areas of signal change instead of tissue (Boubela et al. 2015). 
There is currently no established method to identify these 
voxels with large veins in vivo. However, a venous atlas 
could in the future be used as a prior to identify the voxels 
most likely to have a large venous contribution in functional 
MRI studies and would allow the measurement of orienta-
tion-related biases.

It is also increasingly recognized that factors such 
as aging, injury, diseases such as stroke and dementia, 
lifestyle changes, and physiological training can have a 
profound impact on brain vascular structure and oxida-
tive metabolism (Kramer et al. 2006; Pathak et al. 2011; 
Voss et al. 2011). Structural changes in the cerebral vas-
culature have been shown to occur in post-mortem stud-
ies of aging, Alzheimer’s disease (AD), cerebral venous 
thrombosis (CVT) (Towbin 1973; Villringer et al. 1989; 
Einhäupl et al. 1991; Vogl et al. 1994), and leukoaraio-
sis (Brown and Thore 2011). A reduced vascular density 
and increased tortuosity has been observed in aging, and 
these changes are thought to underlie the development of 
the ubiquitous white matter lesions (Peters 2006). While 

these changes have predominantly been studied in terms 
of the arterial vasculature, Brown et al. report an increased 
wall thickness in veins and venules of the periventricu-
lar white matter with normal aging and a greater degree 
of wall thickening in patients with leukoaraiosis (Brown 
and Thore 2011). Furthermore, an increased tortuosity has 
been associated with leukoaraiosis (Wahlund et al. 2001) 
and has been shown to be detectable using susceptibility-
weighted imaging (SWI) at 7 T (Shaaban et al. 2017). The 
small size of the veins affected by many neurological dis-
orders poses a challenge for in vivo imaging, however, 
especially at the field strengths typically used for MRI 
studies of aging and disease. An atlas of the venous vascu-
lature could help solve some of these issues by providing 
a strong prior for venous segmentation of susceptibility 
images and normative information against which to com-
pare aging and disease-related changes.

Magnetic susceptibility is an intrinsic property of tissues 
that describes the response of its atoms in a large magnetic 
field, such as the paramagnetic effect of iron. This property 
can be imaged using the Quantitative Susceptibility Map-
ping (QSM) technique, which has been shown to be primar-
ily sensitive to myelin, iron deposition, and dHb in the brain 
(Langkammer et al. 2012; Stüber et al. 2014; Fan et al. 2014; 
Wang and Liu 2015). QSM can be used to image veins, since 
the presence of paramagnetic dHb molecules creates a dif-
ference in magnetic susceptibility in venous blood relative 
to surrounding tissue. Furthermore, the quantitative suscep-
tibility in each venous voxel is directly related to the Oxygen 
Extraction Fraction (OEF) and the Cerebral Metabolic Rate 
of Oxygen  (CMRO2) through Fick’s principle (Fan et al. 
2014; Serres et al. 2015). Therefore, QSM is a powerful 
technique for studying the venous network as it provides 
information not only about venous structure, but also about 
local metabolism.

Recognition of the importance of the brain’s venous net-
work combined with recent developments in susceptibility 
imaging has already led to the creation of two probabilistic 
venous atlases (Ward et al. 2018; Bernier et al. 2018). QSM 
can, however, provide additional information about venous 
properties, which we seek to leverage here. In this paper we 
introduce the Venous Neuroanatomy (VENAT) atlas. This 
atlas includes several improvements over previous venous 
atlases: since it was acquired at a higher field strength, it 
has a higher SNR and a higher image resolution (0.6 mm 
isotropic) than previous atlases, and it uses multiple repeti-
tions to further increase SNR. This image resolution allows 
detection of vessels up to 0.3 mm in diameter. The VENAT 
atlas is open source and available on figshare (https ://figsh 
are.com/artic les/VENAT _Proba bilit y_map_nii_gz/72059 
60). This atlas was built using an optimized approach 
through registration of vascular segmentations and using five 
repeated QSM images per participant. The VENAT atlas 

https://figshare.com/articles/VENAT_Probability_map_nii_gz/7205960
https://figshare.com/articles/VENAT_Probability_map_nii_gz/7205960
https://figshare.com/articles/VENAT_Probability_map_nii_gz/7205960
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includes a partial volume (PV) map, which shows vessel 
location, maps of the diameter, curvature of vessels, and 
venous density maps.

Methods

Participants

MRI acquisitions were performed in 20 young, right-
handed participants between the ages of 22 and 30 years 
(average ± standard deviation (SD) of 25.05 ± 2.48 years, 10 
females). None of the participants had a history of neuro-
logical disorders or currently suffered from psychiatric dis-
orders as indicated by self-report and a structured clinical 
interview. The study was approved by the Ethics Committee 
of the University of Leipzig and was conducted in accord-
ance with the Declaration of Helsinki. All participants gave 
written informed consent prior to the beginning of the study.

Scan parameters

Acquisitions were completed on a 7 T Siemens Magnetom 
MR system (Siemens Healthcare, Erlangen, Germany) with 
a 32-channel Nova head coil (NOVA Medical Inc., Wilm-
ington MA, USA). Two sequences were acquired to generate 
the vascular atlas: a multi-echo 3D GE FLASH (Haase et al. 
1986) with two echo times (TE) and a whole brain T1 map 
using the MP2RAGE technique (Marques et al. 2010). Auto-
align was used at the beginning of each session to ensure a 
comparable placement of the acquired image between time 
points. Additionally, dielectric pads were placed at the sides 
of their head to enhance signal in the temporal lobes and the 
cerebellum (O’Reilly et al. 2016).

The multi-echo 3D GE FLASH image was acquired with 
a 0.6-mm isotropic resolution; flow compensation along all 
three axes for the first echo; repetition time (TR) = 29 ms; 
TE1/TE2 = 8.16/18.35  ms; matrix = 260 × 320 × 256; 
GRAPPA acceleration = 3; bandwidth = 250 Hz/Px; and 
time of acquisition (TA) = 14:22 min. Phase and magni-
tude information was saved separately for each receive 
channel. The whole brain MP2RAGE was acquired with a 
0.7-mm isotropic resolution and the following parameters: 
TR = 5000 ms; TE = 2.45 ms; matrix = 320 × 320 × 240; 
inflow time 1/2 = 900/2750  ms; Flip angle 1/2 = 5°/3°; 
bandwidth = 250 Hz/Px; and TA = 10:57 min. The result-
ing estimated quantitative T1 map was used for registration. 
Additionally, low-resolution GE phase reference images 
were acquired to estimate phase offsets between receive 
channels for optimal coil combination of the high-resolution 
phase images (Hammond et al. 2008; Deistung et al. 2013). 
The scan parameters were TR = 18 ms, TE = 4.08/9.18 ms, 

matrix = 128 × 128 × 80, flip angle = 10°, 2 mm isotropic 
resolution, bandwidth = 300 Hz/Px, and TA = 3:24 min.

Identical acquisitions were performed five times over a 
period of 3 weeks on each participant as part of an inter-
ventional motor learning study, with 20 min of training for 
5 days. Since we did not expect changes in macrovascular 
venous structure as a consequence of this learning paradigm, 
all five acquisitions were used for generating the atlas.

Registration to standard stereotactic MNI‐space

Processing was done using Medical Image Processing, 
Analysis and Visualization (MIPAV) 7.4.0 [http://mipav 
.cit.nih.gov/] and the CBS High-Res Brain Processing 
Tools for MIPAV (CBSTools) [https ://www.nitrc .org/proje 
cts/cbs-tools /], except when specified. At each time point, 
a dedicated skull-stripping algorithm was applied to the 
MP2RAGE images (Bazin et al. 2016). The skull-stripped 
images were then registered rigidly to the MNI152 0.5 mm 
template to avoid deforming individual anatomy. The second 
echo image of the 3D GE sequence, which provided good 
anatomical contrast, was registered linearly to the quantita-
tive T1 MP2RAGE image from the same time point. Linear 
registrations were done using FSL FLIRT (Fischer and Mod-
ersitzki 2003) with normalized mutual information and 6 
Degrees of Freedom (DoF). The deformation field from the 
registration from the MP2RAGE images to MNI space and 
from 3D GE to MP2RAGE was concatenated and applied to 
the first echo from the 3D GE sequence to transform these 
images from native space into MNI space.

Quantitative susceptibility map reconstruction

The phase images from each channel were recombined 
offline using the phase estimates from the low-resolution 
field maps to ensure a high phase image quality for QSM 
reconstruction. The combined magnitude (Fig. 1b) and phase 
(Fig. 1a) of the first, flow-compensated echo (TE = 8.16 ms) 
were used as input for QSM reconstruction. A brain mask 
was generated by building an average of the MP2RAGE 
images from all five time points for each participant in MNI 
space. This average brain mask was generated to ensure a 
consistent brain size over all time points. The average brain 
mask was transformed into individual space for each partici-
pant and time point by applying the inverse transformation 
field from the registration of the 3D GE images to MNI 
space.

The brain mask was eroded by 8 voxels to avoid artifacts 
from the large susceptibility difference at air–tissue inter-
faces during QSM reconstruction while preserving as much 
brain volume as possible. QSM maps were created using the 
Fast L1-Regularized QSM with Magnitude Weighting and 
SHARP background filtering toolbox (Bilgic et al. 2014) 

http://mipav.cit.nih.gov/
http://mipav.cit.nih.gov/
https://www.nitrc.org/projects/cbs-tools/
https://www.nitrc.org/projects/cbs-tools/
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(Fig. 1c) in MATLAB R2016b (MathWorks, Inc., Natick, 
Massachusetts, United States. This QSM reconstruction 
method was chosen to ensure an optimal parameter esti-
mation for each participant individually using the L-curve 
method. Magnitude weighting was used to enhance contrast 
around veins. The standard toolbox parameters were only 
modified to change the field strength parameter from 3 T 
to 7 T.

Vessel segmentation

Vessels were segmented using a multiscale vessel filter 
(Bazin et al. 2016) on the QSM image from each time point. 
This filter estimates image edges recursively and uses a 
global probability diffusion scheme to link nearby vascular 
voxels into vessel branches. This vessel filter generates a 
probability map, a partial volume map, and a diameter map 
as output. It estimates vessel diameter based on PV of the 
smaller vessels in a multiscale fashion. This diameter esti-
mation technique can detect diameters half the voxel size of 
the resolution using the approximation described by Woerz 
et al. (Woerz and Rohr 2004). These diameter maps depict a 
one voxel thick centerline with diameter coded as the inten-
sity value. This filter has been found to be particularly sen-
sitive to small vessels, see Bazin et al. (2016) for an evalu-
ation. However, due to the high iron content of the smaller 
basal ganglia nuclei, the vessel filter also detects small basal 
ganglia nuclei as large vessels. To prevent this erroneous 
segmentation, the Atlas of The bAsal Ganglia (ATAG) atlas 
of 30 young participants, was used as a negative prior to 
modify the filter (Fig. 1d) (Keuken et al. 2014). The nega-
tive prior included the non-linear right and left masks of the 
striatum, external segment of the globus pallidus, internal 

segment of the globus pallidus, red nucleus, subthalamic 
nucleus, substantia nigra, and periaqueductal grey, combined 
into one mask in MNI space. To transform the ATAG mask 
from MNI space into individual space, the inverse deforma-
tion fields from the 3D GE to MNI space registration were 
applied. Vessel segmentation with the multiscale filter was 
done in native space to avoid segmentation errors due to 
registration of the QSM images into MNI space. In order to 
calculate an average of the diameter images even when the 
alignment across time points and participants is imperfect, 
the diameter maps were inflated by 2 mm to create a 2-mm 
skeleton of the vasculature. The output images of the ves-
sel filter (vessel probability map, PV map and the inflated 
diameter) were then registered into the MNI152 space by 
applying the transformation matrices of the 3D GE images 
into the MNI space.

Atlas construction

Single participant average

The atlas was created by registering the segmented vessels 
from all time points for each participant to each other and 
calculating the mean of these images. This type of registra-
tion is challenging given the small size of cortical vessels 
and variability in vessel location across participants or due 
to registration errors across participants. To prevent this 
loss of information, the segmented vessels in MNI space 
(Fig. 1e) were reduced to their centerline by applying a skel-
etonization algorithm adapted from Bouix et al. (Bouix et al. 
2005) on the probability maps, with a boundary and skeleton 
threshold of 0.5 (Fig. 1f). To increase the probability of an 
overlap of the vessel location, a distance map up to 15 mm 

Fig. 1  Pipeline for the single participant average; a combined phase 
(TE = 8.16  ms); b combined magnitude (TE = 8.16  ms); c QSM; d 
ATAG atlas; e probability map of the vessel segmentation; f skele-

tonized vessels; g probability distance map (up to 15 mm) of all time 
points; h average of probability distance maps
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(unless the veins were located closer to each other) of these 
centerlines was calculated. These maps were then converted 
to probability distance maps (Fig. 1g) (i.e. a probability of 
1 at the centerline with decreasing values with increasing 
distance). This allowed the construction of an average ves-
sel location despite some variability in location. Curvature 
was calculated from the skeletons of the probability maps in 
MNI space. The algorithm for calculating the curvature was 
adapted from An et al. (2011). An et al. computed the curva-
ture based on discrete curves. The curvature is geometrically 
defined as the inverse radius of the circle at every point of 
the curve. The curvature maps are depicted as a skeleton 
with their corresponding curvature as intensity value. Simi-
lar to the diameter maps, these curvature maps were also 
inflated by 2 mm to ensure an overlap during the averaging 
process even if the alignment is imperfect.

The probability distance maps in MNI space of each time 
point were registered to each other using the SyN module of 
Advanced Normalization Tools (ANTS) (Avants et al. 2009). 
The reference image used for this registration was the aver-
age of the participant’s probability distance maps in MNI 
space (Fig. 1h). The SyN algorithm was run with the stand-
ard parameters as specified in the CBSTools interface with 
40 × 50 × 40 iterations at coarse, medium and fine scales, a 
three voxel gaussian blurring kernel, and SyN parameter 
set to 0.25. Registration was done iteratively with each step 
taking as input the probability distance maps from the previ-
ous registration with their resulting average as a reference 
(Fig. 1g, h). After each registration step the transformation 
matrices of the probability distance maps were also applied 
on the PV maps; the inflated diameters and inflated curva-
ture maps and their corresponding averages were calculated. 
To follow the improvement from each registration step, the 
standard deviation of each registered PV image to the aver-
age PV map was calculated. Four registration steps were 
necessary to bring the average improvement for each par-
ticipant across time points below 10%.

To display the range of our data quality, Fig. 2 shows the 
images for the participant with the lowest (denoted as par-
ticipant low variance (LV)) and highest (high variance (HV)) 
average standard deviation. For visualization purposes a 
skeletonization algorithm was then applied on the average 
registered PV maps with values of 0.33 for the boundary 
and skeleton threshold to return to a one voxel thick map of 
the diameter and curvature. The output of the skeletoniza-
tion was binarized and multiplied with the inflated diameter 
and curvature average maps of each participant to display 
diameter and curvature on the skeleton.

Multi‑participant atlas

The multi-participant atlas was built by combining the 
individual probability distance averages computed for each 

individual. These single participant averages (Fig. 3a) were 
combined into a first multi-participant average (Fig. 3b). The 
initial multi-participant average appears blurred as a result 
of inter-participant variability. To refine the registration, the 
individual vessel mask that was most similar to the multi-
participant average (i.e., with the lowest standard deviation 
difference) was used as a target and all individual averages 
non-linearly registered to it with SyN (iteration parameters 
again set to 50 × 40 × 50). This registration step was done 
once to ensure a first alignment into the group space, and 
the resulting registered images were averaged to generate a 
sharp reference image (Fig. 3c) for the following registra-
tion steps. After this, multiple iterations using increasingly 
fine registration parameters (Fig. 3d–f) were performed to 
achieve an accurate alignment of the different participants. 
Each registration used the average of the previous registra-
tion step as a reference image and the registered images of 
the previous registration step as input to the SyN algorithm 
of ANTS. As in the single participant average, the transfor-
mation matrix was applied after each registration step on 
the average inflated diameter and curvature maps and the 
average PV map of the single participants. After each regis-
tration an average of these registered maps was calculated.

Each registration step was done until an improvement 
in standard deviation below 1% was achieved as conver-
gence criterion for each level of registration (Fig. 4). Thir-
teen registration steps were required to meet this criterion 
at the coarse level (40 × 0 × 0) (Fig. 3d), followed by seven 
medium (40 × 50 × 0) (Fig. 3e) and two fine registration steps 
(40 × 50 × 40) (Fig. 3f). After the last registration step, the 
mean and standard deviation of the PV were calculated. 
Similar to the single participant averages, a skeletonization 
algorithm was applied on the final VENAT PV map (Fig. 3g) 
with a boundary/skeleton formation parameter of 0.15. The 
resulting skeleton was binarized and multiplied with the reg-
istered diameter and curvature maps to return to one voxel 
thick maps for the VENAT atlas.

Density map

A voxel-wise vascular density map was created using the 
unthresholded probabilistic vessel maps from the vascular 
filter. Probabilities larger 0 were binarized and averaged 
across time points. Only voxels that were detected in at least 
two time points were kept to reduce the influence of noise. 
An average across participants of the single participant prob-
ability density maps was generated.

Regional density was investigated using both anatomical 
and functional atlases. Two anatomical atlases were cho-
sen, the MNI and the Harvard–Oxford atlas. The bootstrap 
analysis of stable clusters (BASC) parcellation (Bellec et al. 
2010; Bellec 2013) was used for functional atlas parcella-
tion. The MNI atlas was chosen to estimate densities for 
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each lobe and the Harvard–Oxford and BASC064 atlas for 
estimating finer grained regional densities based on anatomi-
cal and functional parcellations, respectively. To maximize 

sensitivity, we used all venous voxels present in at least two 
time points in one version of this analysis. In another, we 
used all venous voxels present in at least three time points 

Fig. 2  Maximum intensity projection across all slices of the PV maps 
and the standard deviation; low variance (LV) denotes the partici-
pant with the lowest standard deviation; high variance (HV) denotes 

the participant with the highest standard deviation. Both participant 
images are shown in the sagittal, axial and coronal view in MNI152 
space
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to maximize specificity. For each region the mean individual 
PV was averaged across participants to yield a mean inter-
participant average density.

Results

Single participant average

Examples of inter-session PV averages are shown in Fig. 2 
for the participant with the lowest variance (LV) and high-
est variance (HV) (mean ± SD of the variance maps: LV: 
0.02 ± 0.03; HV: 0.02 ± 0.05) across days. In Fig. 2, partici-
pant LV demonstrates data quality for our best participant 
and shows a high density of vessels over the entire brain. 
HV on the other hand shows a lower density of vessels espe-
cially in frontal and temporal areas. Furthermore, LV shows 
a greater number of smaller cortical veins than HV, which 
shows mainly larger veins, also appearing blurrier in the 
image. The standard deviation maps (Fig. 2) support these 
observations as LV shows a lower variance (higher consist-
ency in the vessel diameter) than HV across the brain.

The average diameter across the five time points is given 
in Fig. 5 for the same participants as in Fig. 2. LV shows 
more vessels with smaller diameters (mean: 0.67 ± 0.33 mm) 
compared to HV (mean: 1.01 ± 0.50 mm). The standard 
deviation (not shown) was on average 0.07 ± 0.07 mm for 
LV and 0.17 ± 0.14 mm for HV. While most large vessels are 
not present in the images due to erosion of the mask during 
QSM reconstruction, part of the sagittal sinus, straight sinus, 

and transverse sinuses are visible in the images. Most visible 
vessels are smaller cortical vessels, however. Participant LV 
shows a higher vessel density than participant HV, especially 
in the frontal lobe, and larger numbers of smaller vessels. 
Furthermore, LV shows a lower variability in vessel diam-
eter, especially for the larger vessels, than HV.

The average curvature representing the average inverse 
radius of the circle at every point of the veins is depicted 
in Fig.  5. The figure shows the curvature for the same 
participants as in Fig. 2 (LV and HV). Average curvature 
values were the same for both participants with an aver-
age of 0.10 ± 0.04 mm−1 (across all voxels identified as 
veins). To evaluate the consistency across the five time 
points, the standard deviation was calculated across the 
brain, respectively, 0.06 ± 0.03 mm−1 for participant LV and 
0.07 ± 0.03 mm−1 for participant HV for curvature.

Multi‑participant average

Individual average vessel maps were registered together to 
create the multi-participant VENAT atlas. Figures 6 and 7 
show the same PV map with a Maximum Intensity Projec-
tion (MIP) across 20 slices in the axial view from inferior to 
superior and in the sagittal view from right to left, respec-
tively, to better appreciate the distribution of vessels over the 
brain. The intensities of the PV images range from 0 to 0.8. 
Visually, the distribution of vessels was found to be sparser 
as compared to the single participant averages and to differ 
across brain regions. Figure 8 compares the standard devia-
tion across participants (inter-participant) with the mean 

Fig. 3  a Venous probability map of the participant with the lowest 
standard deviation; b initial multi participant average; c average after 
registration to the participant closest to the initial average; d probabil-
ity average after 13 coarse registrations; e probability average after 7 

medium registrations; f probability average after 2 fine registrations; 
g PV map of the VENAT atlas; all maps are maximum intensity pro-
jections across 20 slices starting from the interhemispheric plane
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standard deviation within participants (intra-participant). 
The standard deviation ranged from 0 to 0.20 and from 0 
to 0.29 for the mean value within participants and across 
participants, respectively. Standard deviation was found to 
be smaller within participants than across participants, with 
larger standard deviations in larger veins.

The voxel-based group probability density map is shown 
in Fig. 9, where 100% denotes that a voxel was classified 
as a vessel in all participants and time points. The regional 
densities of the MNI, the Harvard–Oxford and BASC064 
atlases are shown in Fig. 10. Two density maps for the 
VENAT atlas were used, one with a higher sensitivity 
(voxels classified as veins in at least two time points) and 
one with a higher specificity (voxels classified as veins 
in at least three time points). The region with the highest 
density across all three parcellation atlases was found to 
be the insula. Regional densities in the MNI atlas were 
found to be homogeneous (Occipital Lobe, Cerebellum, 

Parietal Lobe, Temporal Lobe and Frontal Lobe between 
10.28% ± 1.20% to 11.94% ± 1.07%), with the high-
est density detected in the insula (15.09% ± 1.06%). The 
density distributions of the Harvard–Oxford atlas and the 
BASC064 were found to be more heterogeneous, how-
ever. The regional densities in the Harvard–Oxford atlas 
varied between 1.94% ± 0.36%/2.91% ± 0.69% for the 
frontal pole for the high specificity and high sensitivity 
values, respectively, and 24.31% ± 1.99%/29.51% ± 2.30% 
for Heschl’s Gyrus (including H1 and H2) for the high 
specificity and high sensitivity values, respectively. 
Regional densities for the BASC064 atlas ranged between 
0.20% ± 0.26%/0.40% ± 0.47% for the temporal pole for the 
high specificity and high sensitivity values, respectively, 
and 17.18% ± 2.45%/21.78% ± 2.94% for the lateral visual 
network anterior region for the high specificity and high 
sensitivity values respectively.
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Average diameter and curvature maps are shown in 
Fig. 11. Diameter and curvature maps from the multi-par-
ticipant average were found to have a protracted range of val-
ues as compared to individual averages. However, the mean 
value of the average diameter map was similar to the indi-
viduals’ (mean: 0.84 ± 0.33 mm) but with increased standard 
deviation (mean: 0.26 ± 0.15 mm) reflecting inter-participant 

variability. Furthermore, the smallest diameter detected 
(0.4 mm) was larger than the theoretically detectable limit, 
as well as the values found in the individual averages. Aver-
age curvature of the VENAT atlas across the entire brain 
was similar to that of individual averages: 0.11 ± 0.05 mm−1. 
Standard deviation was also similar to the individual aver-
ages with an average value of 0.06 ± 0.03 mm−1.

Fig. 5  Maximum intensity projection across all slices of the diameter 
maps and curvature; low variance (LV) denotes the participant with 
the lowest standard deviation; high variance (HV) denotes the partici-

pant with the highest standard deviation. Both participant images are 
shown in the sagittal, axial, and coronal view in MNI152 space



2476 Brain Structure and Function (2019) 224:2467–2485

1 3

Fig. 6  Maximum intensity projection across 20 slices. The images show the partial volume map of the multi-participant atlas from inferior to 
superior
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Fig. 7  Maximum intensity projection across 20 slices. The images show the partial volume map of the multi-participant atlas from right to left

Fig. 8  Maximum intensity projection over all slices; the images show the average standard deviation maps within participants (Intra-participant 
variability) and the standard deviation across participants (Inter-participant variability)
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Fig. 9  Individual axial slices of the probabilistic high-sensitivity density atlas from inferior to superior
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Discussion

Here we present a high-resolution atlas of the cerebral 
venous vasculature based on 7 T QSM in 20 young healthy 
individuals with five acquisitions each. This atlas was gen-
erated through multi-step registration of segmented vessels 
and, therefore, shows the average venous positions across 
participants. The inclusion of multiple QSM maps for each 
participant ensured a high-quality input vessel map for each 
participant for the subsequent across-participant registration. 
The atlas shows that vessels are consistent across time points 
within a single individual, leading to high-quality individual 
vessel maps across days with low standard deviations. The 
multi-participant atlas highlights the high variability in ves-
sel location, but especially in vessel diameter across individ-
uals. The VENAT atlas also includes maps of the curvature 
of vessels, providing additional information about venous 
structure that has not previously been available. Overall, the 
VENAT atlas is the highest resolution whole-brain venous 
atlas currently available and will be an ideal tool for investi-
gating the venous contribution of BOLD signals, as well as 
venous changes in aging and disease.

Single participant average

To improve the quality of the individual inputs into the 
across-participant registration, we used five QSM acquisi-
tions per participant. This was both to increase signal-to-
noise ratio (SNR) and to reduce spurious vessels due to noise 
in our segmentations. Across-day individual averages for 
the LV and the HV participant, and the average standard 

deviation map of all participants illustrate the range of data 
quality used in this atlas. Participants with high SNR have 
a large number of systematically detected small vessels and 
relatively few regions where no vessels have been detected. 
Motion in some participants during the scan led to decreased 
venous contrast and SNR, resulting in a less consistent seg-
mentation across days and more locally variable distribution 
of larger and blurrier vessels. This impact of data quality is 
also visible in larger diameter estimates and a larger stand-
ard deviation for noisier participants, highlighting the fact 
that the uncertainty added by lower SNR is expressed more 
strongly in the diameter estimates than in the position of 
vessels. This is likely due to the fact that we create a prob-
ability distance map of the skeleton to perform registration, 
so vessels that are not as well segmented across days were 
still registered into similar positions, but with uncertainty 
reflected in their exact diameter.

Curvature estimates appear largely uninfluenced by data 
quality differences, at least within this study which included 
only experienced 7 T participants. This can be seen from 
the identical curvature ranges and similar standard devia-
tions for LV and HV. Therefore, curvature may be a valuable 
metric to use when comparing vessel structure across the 
lifespan or in disease populations, as data acquired in older 
adults and patients are likely to be noisier due to higher iron 
content (Wayne Martin et al. 1998; Zecca et al. 2004) and 
greater movement. Unfortunately, to our knowledge there 
is no ground truth quantification of the curvature expected 
from the human venous vasculature in vivo. While post-
mortem work has shown curvature to increase with age and 
disease (Brown and Thore 2011), curvature is typically not 

Fig. 11  Average vessel diameter and curvature of the multi-participant atlas
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quantified per se. Therefore, the validity of the estimates 
presented in this manuscript remains to be established. 
Nevertheless, the data presented here is a first step toward 
establishing normative values for QSM-based estimates of 
curvature.

The VENAT vessel atlas

The individual averages across 5 days were then used to cre-
ate the VENAT atlas from 20 participants, thus combining 
100 measurements of the vasculature. The resulting atlas 
shows a prominent contribution of larger veins, indicating 
a lower variability in the position of larger veins. This is 
consistent with other atlasing work by Bernier et al. and 
Ward et al. (Ward et al. 2018; Bernier et al. 2018). Smaller 
veins, while abundant in the individual averages, are sparser 
in the across-participant average and the smallest diameter 
detected in the atlas (0.4 mm) is larger than the theoretical 
detection limit as well as the smaller vessels detected in the 
individual averages. This is due to the fact that smaller veins 
have to be consistent within a certain precision across all 
participants to be aligned. This sparsity of smaller veins in 
the overall atlas is present despite the higher field and spatial 
resolution used here, which allowed us to detect smaller cor-
tical veins more consistently than in these previous atlases. 
This highlights one of the difficulties of venous atlasing, 
since the position and shape of smaller vessels is highly 
variable across individuals. However, this variability is still 
informative since if the VENAT atlas is taken as a norma-
tive atlas, then the standard deviation maps made available 
online can be used to detect abnormal venous structure due 
to disease.

The partial volume values in the atlas range from 0 to 
0.8 (Figs. 6, 7), while in the individual participant aver-
ages includes values between 0 and 1 (Fig. 2). This further 
emphasizes the variability across individuals, since this 
not only indicates that no voxel is entirely venous in the 
multi-participant average, but also that the variability across 
participants means that no vessel is ever completely consist-
ent across participants. This is especially striking for larger 
veins which span more than one voxel, since even though 
registration of these vessels is somewhat straightforward, 
there is never any complete agreement on their exact loca-
tion or diameter. Therefore, the atlas depicts the common 
location of veins and can be used to understand venous vari-
ability across participants. The multi-participant standard 
deviation maps demonstrate a high variability in vessel 
diameter especially for larger vessels, due both to the seg-
mentation errors and inter-participant variability in vessel 
location that manifests as noise in the diameter estimate. The 
atlas also shows fewer vessels of small diameters as these are 
more variable and may not have been successfully registered 
across participants. This variability across participants in 

smaller veins especially is both consistent with other atlases 
and with existing post-mortem work (Duvernoy et al. 1981; 
Ward et al. 2018; Bernier et al. 2018).

In contrast to the homogeneous densities across the MNI 
atlas, the Harvard–Oxford atlas and the BASC064 atlas 
show heterogeneous densities (Fig. 10), probably due to the 
smaller size of the regions in these two atlases as compared 
to the MNI atlas. This heterogeneity of venous vessel den-
sity seen in the BASC064 and Harvard–Oxford atlas has 
also been described by Miyawaki et al., Vigneau-Roy et al. 
and Bernier et al. (Miyawaki et al. 1998; Vigneau-Roy et al. 
2014; Bernier et al. 2018). The densities of the higher sen-
sitivity analysis (vessels present in at least two time points) 
shown in Fig. 10 are almost identical to the vascular densi-
ties reported by Vigneau-Roy et al., whereas the lower den-
sity values of the higher specificity analysis (vessels present 
in at least three time points) are more similar to the values 
reported by Bernier et al. These similarities in diverse densi-
ties may be due to the different thresholds used with the dif-
ferent multiscale vessel filter approaches of different studies. 
While Bernier et al. used a threshold of 0.5 to define their 
vessels, making it more similar to our more stringent analy-
sis, Vigneau-Roy et al. used a very low threshold of 0.01, 
making it more similar to our higher sensitivity analysis. It 
is important to note, however, that the results for both the 
higher sensitivity and higher specificity analyses reported 
here were calculated without any threshold on the vessel 
filter. It is, therefore, likely that this apparent similarity in 
results does not stem from the same relationship between 
noise, resolution, and consistency of vessel detection across 
days given the higher resolution used here and the greater 
number of repeated acquisitions. However, Bernier et al. 
reports a higher average density in the temporal gyrus, which 
may be due to signal drop-outs due to intra-voxel dephasing 
near air/tissue interfaces at higher field strength, i.e. 7 T 
(Olman and Yacoub 2011).

Regional analysis of vascular densities also revealed a 
pattern whereby primary sensory brain regions (visual area 
in the BASC064 atlas and Heschl’s Gyrus (auditory area) in 
the Harvard–Oxford atlas) followed by the insula (BASC064 
and Harvard–Oxford atlas) showed some of the higher densi-
ties detected. This is consistent with data from post mortem 
and animal studies showing high vessel densities in these 
areas and reflecting their high degree of functional activ-
ity (Duvernoy et al. 1981; Bell and Ball 1985; Zheng et al. 
1991).

The curvature atlas showed similar values and variabil-
ity to the individual participant averages, largely due to the 
fact that these measures are extracted on the single partici-
pant level and averaged. Compared to vessel diameter, the 
measure appears more stable across participants. Validation 
with other techniques, including post-mortem work, would 
help determine whether the curvature values of the VENAT 
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atlas correspond to true population averages or whether the 
measurements are impacted by vessel variability across indi-
viduals and represent underestimates of the true curvature. 
However, as no quantitative measurement of curvature in 
human cerebral veins could be found, no comparison was 
possible for this work.

Other venous atlases

The recent increased interest in venous physiology has led 
to two other venous atlases being published recently (Ward 
et al. 2018; Bernier et al. 2018). The first atlas was pre-
sented by Ward et al. and is a probabilistic atlas based on 
combinations of QSM, SWI and manual venous segmenta-
tions. This atlas was created through averaging individual 
venous maps created from an optimized combination of 
these three types of images, but without explicitly register-
ing segmented vessels. Rather, matrices from T1 to MNI152 
registration were applied to these individual vascular trees. 
One advantage of this atlas is the fact that since all three 
types of images were used, the atlas includes the contribu-
tion of large veins, which were obtained from SWI, and the 
basal ganglia, which were obtained from manual segmen-
tations. While our VENAT atlas necessarily excluded the 
deep gray matter, it is based on a larger group of partici-
pants, and a higher resolution image acquisition at higher 
field strength, allowing us to detect smaller vessels. Further-
more, by registering vascular trees rather than applying a T1 
weighted-based registration on vessel trees, we are able to 
recover important information about venous structure such 
as average location, diameter, and curvature. One difference 
between these two atlases is also the age range included. 
The atlas proposed by Ward et al. includes a wide age range 
(52.6 ± 25.2 years), while ours is based only on healthy 
younger adults (25.1 ± 2.5 years). While this may make the 
Ward et al. atlas more valid as a lifespan atlas, our new atlas 
may represent a more normative representation of the early, 
healthy vasculature, before any aging or disease-related 
changes have occurred. More studies on vascular changes 
in aging and disease are required to understand whether any 
changes can be observed in the range of diameters detectable 
using the VENAT atlas.

On the other hand, the probabilistic atlas by Bernier et al. 
differs both from the Ward et al. atlas and our atlas as it is 
both an arterial (based on time-of-flight angiography) and 
venous atlas (based on 3 T SWI imaging). Similarly, to the 
VENAT atlas, the atlas presented by Bernier et al. is based 
on non-linear registration of venous segmentations, also per-
formed using ANTS. The age ranges used for the creation 
of both atlases are also similar. The VENAT atlas provides 
some advantages, including the higher field and resolution 
of the acquired data. We detected veins as small as 0.4 mm 
in diameter (Bazin et al. 2016) as opposed to the 0.6-mm 

limit of the atlas proposed by Bernier et al. Furthermore, 
the higher field strength provides a higher contrast, which 
further enhances our ability to detect smaller veins (Duyn 
et al. 2007). On the other hand, the use of SWI instead of 
QSM allowed Bernier et al. to map larger veins, since these 
appear with excellent contrast in SWI maps, but are shaved 
off at least partially in QSM when eroding the brain mask to 
avoid artifacts from air-tissue interfaces. However, the use 
of SWI may be suboptimal for detection of veins in the falx 
cerebri (Ward et al. 2018). Orientation effects on the SWI 
image (Fan et al. 2014) and inclusion of non-local sources in 
SWI may furthermore lead to overestimation of small vein 
diameters (Haacke et al. 2004; Ward et al. 2018).

Other advantages of the VENAT atlas include the multi-
ple time points used to build the individual segmentations 
used as input into the atlas. This resulted in higher data 
quality for these individual inputs and lessened the need for 
denoising algorithms such as non-local means filter used by 
Bernier et al. This also ensured that the vessels included in 
the individual inputs were real vessels, reproducibly detected 
across days.

Implications of our work

Venous atlases are a recent development, both for technical 
reasons and because the importance of venous physiology 
is increasingly recognized. One of the most obvious areas 
of application for these venous atlases is for calculating bias 
from larger veins in BOLD-based imaging. It has been esti-
mated that the intravenous contribution to the BOLD signal 
at 3 T is 40–70% (Boxerman et al. 1995; Donahue et al. 
2011), but in addition to this, highly stringent threshold-
ing of statistical maps may further enhance this effect by 
selecting only the most prominent and, therefore, venous 
voxels. This is problematic not only in terms of interpreta-
tion of the magnitude of the BOLD signal in response to a 
task, but also in localizing the underlying neuronal activity. 
Estimates based on this analysis by Turner of the Duver-
noy atlas would indicate that the parenchyma drained by 
the smaller veins visible in our atlas (0.4 mm) can be up to 
8 mm away from the location of the veins (Turner 2002). 
While there are techniques, such as spin echo BOLD fMRI, 
to minimize the intravascular venous contribution, they suf-
fer from a lower sensitivity than gradient echo fMRI (Parkes 
et al. 2005) and are, therefore, less commonly used. An 
alternative approach would be to try to estimate this venous 
bias. The three atlases presented so far could all be used as 
priors in fMRI analysis to reduce or at least understand the 
impact of large veins on activation detection using gradient 
echo BOLD fMRI. The advantages of our atlas are related 
to its higher resolution, allowing the detection of bias from 
smaller draining veins more closely related to neural activ-
ity. Furthermore, venous diameter could be used to estimate 
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the relative bias of differently sized veins, while curvature 
maps could help detect bias due to orientation as compared 
to the main magnetic field. Recent work by Gagnon et al. has 
suggested that orientation of the cortex in a given voxel may 
have an impact on the BOLD signal (Gagnon et al. 2015). 
This is likely to also apply to signal arising from draining 
veins and detected as areas of high activity in fMRI analyses.

The other application of this work is in helping us under-
stand aging- and disease-related changes in brain physiol-
ogy. This could both be in understanding the changes in 
aging and disease-related biases in the BOLD signal, by not 
only identifying changes in venous structure that can impact 
BOLD signal location and amplitude biases due to draining 
veins, but also in comparing venous maps to our norma-
tive population. Aging, vascular diseases, and dementia are 
associated with changes to the venous vasculature such as 
venous collagenosis (Brown et al. 2002) and CVT (Tow-
bin 1973; Villringer et al. 1989; Einhäupl et al. 1991; Vogl 
et al. 1994). These could affect venous density, diameter, and 
curvature and atlases such as the one proposed here could 
be used as normative data to attempt to detect and quantify 
these abnormal changes of density, diameter, and curvature 
in vivo. The VENAT atlas cannot be generalized across age 
and disease, but can be used as normative data for clinical 
and research studies to better understand the influence of 
aging and diseases on the venous vasculature. Furthermore, 
the atlas can be used to estimate biases in BOLD measure-
ments from large draining veins.

Limitations

The main limitation of this work is related to resolution, 
as only larger veins (> 0.3 mm) can be measured. This 
is problematic as much of the bias in BOLD arises from 
smaller veins and much of the changes in aging and disease 
also occur in smaller veins (Brown and Thore 2011). This 
limited resolution is a consequence of limited acquisition 
time in live participants, as well as time limitations due to 
the impact of movement on QSM data quality. This limited 
resolution also makes validation of this work more difficult, 
as published post-mortem work such as the Duvernoy atlas 
(Duvernoy et al. 1981) only includes veins up to 380 µm. 
However, the higher field strength used for this atlas allowed 
the use of a higher resolution than that used for previous 
atlases. Future work using prospective motion correction 
and other advanced acquisition schemes may provide even 
higher resolutions for vascular atlasing.

Vessel segmentation based on QSM is also challenging 
for the largest veins and sinuses located at the surface of the 
brain, due to the masking required for the QSM reconstruc-
tion to avoid streaking artifacts from air–tissue interface. In 
this work, an erosion of 8 voxels was required to avoid these 
artifacts. As a result of this, the largest veins, such as the 

sagittal sinus, were not entirely included in the QSM images, 
leading to a greater variability in the detected diameter of 
the larger veins at the cortical surface across participants. In 
future versions of this atlas, we hope to remedy this problem 
by combining SWI images and QSM for the segmentation of 
the larger veins at the surface of the cortex, or by performing 
a more approximate QSM reconstruction for locating vessels 
at the surface of the cortex in spite of the artifacts (Topfer 
et al. 2015).

An additional aspect is the data quality and the reproduc-
ibility of the QSM reconstructions. Though the reproduc-
ibility of QSM maps at 3 T has been shown to be high (Deh 
et al. 2015), the reproducibility of vessel segmentations has 
never been assessed. Here we show that in high-quality data, 
a consistent dense vessel tree can be reconstructed, but that 
even small variations in data quality can impair the ability to 
detect smaller veins or can lead to variations in the diameter 
estimation. Prospective motion correction of QSM acqui-
sitions could lessen the impact of motion on data quality 
and render these techniques more robust. Even with highly 
reproducible vascular trees as in our best participants, the 
intrinsic variability of human vasculature is a challenge to 
atlasing. While we could show that careful alignment of the 
vascular tree across participants provides a detailed map for 
many veins, it is also clear that measures from individual 
segmentations are more informative than atlas-based trends, 
for instance when assessing biases in BOLD responses. 
However, when using existing or publicly available BOLD 
datasets that do not include SWI or QSM acquisitions, a 
normative atlas could still be instrumental for determining 
the impact of veins on population-level BOLD results.

Conclusion

The VENAT atlas is the first atlas depicting veins using an 
ultra-high field MRI at 7 Tesla. It was built with a multi-
step registration approach on segmented veins. An average 
image of each participant across multiple time points was 
used as an input for the atlas itself. The atlas consists out of 
four maps: partial volume, diameter, curvature, and venous 
density maps which are all freely available (https ://figsh are.
com/artic les/VENAT _Proba bilit y_map_nii_gz/72059 60). 
The VENAT atlas is a promising tool that can be used as 
normative data for clinical and research studies not only to 
better understand the influence of aging and diseases on the 
venous vasculature, but also to estimate biases in BOLD 
measurements from large draining veins.
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