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AN EXAMPLE CONCERNING SADULLAEV’S BOUNDARY RELATIVE

EXTREMAL FUNCTIONS

JAN WIEGERINCK

In memory of Józef Siciak

Abstract. We exhibit a smoothly bounded domain Ω with the property that for suitable
K ⊂ ∂Ω and z ∈ Ω the Sadullaev boundary relative extremal functions satisfy the inequality
ω1(z,K,Ω) < ω2(z,K,Ω) 6 ω(z,K,Ω).

1. Introduction

In [5] Sadullaev introduced several so-called boundary relative extremal functions for compact
sets K in the boundary of domains D ⊂ Cn, and asked whether their regularizations are perhaps
always equal. Recently Djire and the author [1, 2] gave a positive answer in certain cases where
D and K are particularly nice.

In this note we show that in general equality does not hold. The example is formed by a suitable
compact set in the boundary of the domain Ω that was constructed by Fornæss and the author
[3] as an example of a domain D where bounded plurisubharmonic functions that are continuous
on D cannot be approximated by plurisubharmonic functions that are continuous on D. We start
by briefly recalling the definitions of boundary relative extremal functions and the construction of
the domain Ω.

1.1. Boundary relative extremal functions. We follow Sadullaev [5, Section 27]. Let D be
a domain with smooth boundary in Cn, ξ ∈ ∂D, and Aα(ξ) = {z ∈ D; |z − ξ| < αδξ(z)}, where
α > 1 and δξ(z) is the distance from z to the tangent plane at ξ to ∂D. For a function u defined
on D, put

ũ(ξ) = sup
α>1

lim sup
z→ξ

z∈Aα(ξ)

u(z), ξ ∈ ∂D.

Definition 1.1. Let PSH(D) denote the plurisubharmonic functions on D and let K ⊂ ∂D be
compact. We define the following boundary relative extremal functions

(1)

ω(z,K,D) = sup{u(z) : u ∈ PSH(D), u 6 0, ũ|K 6 −1};

(2)

ω1(z,K,D) = sup{u(z) : u ∈ PSH(D) ∩ C(D), u 6 0, u|K 6 −1};

(3)

ω2(z,K,D) = sup{u(z) : u ∈ PSH(D), u 6 0, lim sup
z→ξ

z∈D

6 −1, for all ξ ∈ K}.

The upper semi-continuous regularization u∗ of a function u on a domain D is defined as

u∗(z) = lim sup
w→z

{u(w)}.

The functions ω∗, ω∗
1 , ω∗

2 are plurisubharmonic. Observing that ω1(z,K,D) 6 ω2(z,K,D) 6

ω(z,K,D), Sadullaev’s question is for what j is ω∗(z,K,D) ≡ ω∗
j (z,K,D)?
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1.2. The domain Ω. We briefly recall the construction and properties of the domain Ω from [3].

(1.1) Ω = {(z, w) ∈ C
2; |w − eiϕ(|z|)|2 < r(|z|)}.

Here r and ϕ are in C∞(R) with the following properties: −1 6 r 6 2; r(t) 6 0 for t 6 1 and for
t > 17; r(t) ≡ 1 for 3 6 t 6 8 and for 10 6 t 6 15; r(t) takes its maximum value = 2 precisely at
t = 2, 9, and 16. Moreover, r′(t) > 0 on 1 6 t < 2, 8 < t < 9 and 15 < t < 16, while f ′(t) < 0 on
2 < t < 3, 9 < t < 10, and 16 < t 6 17. Next ϕ satisfies ϕ(t) < −π/2 for t 6 4 and for t > 14;
ϕ(t) > π/2+ 100 for 5 6 t 6 6 and for 12 6 t 6 13 and ϕ(t) < −π/2+ 100 for 7 < t < 10, and we
demand in addition that ϕ 6 108.

From [3] we recall that Ω is a Hartogs domain with smooth boundary, and that the annulus

(1.2) A = {(z, w);w = 0, 2 6 |z| 6 15}

is contained in Ω.

2. Negative answer to Sadullaev’s question

Theorem 2.1. Let K = {(z, w ∈ ∂Ω; |z| = 2 or |z| = 16}. Then

ω1((z, w),K,Ω) < ω2((z, w),K,Ω)

for (z, w) in an open neighborhood of {w = 0, |z| = 9}.

Proof. Let u ∈ PSH(Ω) ∩ C(Ω), u 6 0, u|K 6 −1. Then by the maximum principle, |u| 6 −1 on
the discs |w − eiϕ(|z|)| 6 2, where z is fixed and satisfies |z| = 2 or |z| = 16, and in particular on
the circles C1(w) = {(z, w) : |z| = 2} and C2(w) = {(z, w) : |z| = 16}, where |w| < 1. Because Ω
is a smoothly bounded domain, it follows from [3, Theorem 1] (see also [4] for recent extensions of
this theorem), that u can be approximated uniformly on Ω by smooth plurisubharmonic functions
v defined on shrinking neighborhoods of Ω.

Let Ωδ = {ζ ∈ C2; d(ζ,Ω) < δ}. Then given ε > 0, there exist δ > 0 and v ∈ PSH(Ωδ), such
that |u − v| < ε on Ω. For |w| < δ the annulus Aw = {(z, w) : 2 6 |z| 6 16} is contained in
Ωδ. On its boundary, which equals C1(w) ∪ C2(w), we have that v < −1 + ε, hence this also
holds on Aw. It follows that u < −1 + 2ε on Aw ∩ Ω, in particular u < −1 + 2ε on the open set
V = {(z, w) : 8 < |z| < 10, |w| < δ, |w| < r(|z|)−1} ⊂ Ω. It follows that ω1((z, w),K,Ω) 6 −1+2ε
on V , and therefore also ω∗

1((z, w),K,Ω) 6 −1 + 2ε on V .
Next we will construct a plurisubharmonic function in the family that determines ω2. The

construction is as in [3, Section 2]. On Ω ∩ ({3 < |z| < 8} ∪ {10 < |z| < 15} there exists a
continuous branch of argw, denoted by h(z, w), such that

ϕ(z)− π/2 6 h(z, w) 6 ϕ(z) + π/2.

In [3] we constructed the following plurisubharmonic function.

(2.1) f(z, w) =



















0 if |z| < 4 or if |z| > 14

max{0, h(z, w)} if 3 < |z| < 6 or if 12 < |z| < 14

max{100, h(z, w)} if 5 < |z| < 8 or if 10 < |z| < 13

100 if 7 < |z| < 11.

It satisfies f 6 110 on Ω, f ≡ 0 on {|z| 6 3} and on {|z| > 14}, hence f extends continuously by 0
to Ω∩ ({|z| 6 3}∪ {|z| > 14}), and f = 100 on V . The plurisubharmonic function g on Ω defined
by

g(ζ) =
f(ζ)− 110

110
, (ζ = (z, w))

is negative, identically equal to −1 on Ω ∩ ({|z| 6 3} ∪ {|z| > 14}), and equal to −10/11 on V .
Hence also ω∗

2((z, w),K,Ω) > ω2((z, w),K,Ω) > −10/11 on V . Choosing ε < 1/10 completes the
proof. �
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