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For studies of how birds control their altitude, seabirds are of particular inter-
est because they forage offshore where the visual environment can be simply
modelled bya flat world textured bywaves then generating only ventral visual
cues. This study suggests that optic flow, i.e. the rate at which the sea moves
across the eye’s retina, can explain gulls’ altitude control over seas. In particu-
lar, a new flight model that includes both energy and optical invariants helps
explain the gulls’ trajectories during offshore takeoff and cruising flight.
A linear mixed model applied to 352 flights from 16 individual lesser black
backed gulls (Larus fuscus) revealed a statistically significant optic flow set-
point of ca 25° s−1. Thereafter, an optic flow-based flight model was applied
to 18 offshore takeoff flights from nine individual gulls. By introducing an
upper limit in climb rate on the elevation dynamics, coupled with an optic
flow set-point, the predicted altitude gives an optimized fit factor value of
63% on average (30–83% in range) with respect to the GPS data. We conclude
that the optic flow regulation principle helps gulls to adjust their altitude over
sea without having to directly measure their current altitude.

1. Introduction
Understanding how a bird adjusts its altitude during a specific manoeuvre is a
difficult task because it is strongly dependent on the atmospheric conditions
and flight capacity of the bird (see review [1]). Seabirds such as albatrosses and
petrels flying close to the sea surface take advantage of the logarithmic increase
in wind speeds to support dynamic soaring [2–5], which works only at very
low altitudes of ca 0–10m (see e.g. fig. 5 in [6]). Birds flying by flapping flight
at low altitudes over the sea could also use this wind speed gradient to reduce
their transport costs. Under tailwinds, birds should fly higher where wind
speed is high, while under headwinds birds should fly lower where wind
speed is low. In terms of energy, a bird minimizing its transport cost should
adjust its airspeed with respect to wind by increasing it in headwinds and
decreasing it in tailwinds [7,8]. This prediction comes from a U-shaped function
between power required to fly and airspeed, which defines characteristic speeds
for achieving minimum power Vmp and maximum range Vmr. During migratory
[9] and homing flights [10] birds utilizewind assistance to minimize the transport
cost and adjust airspeed accordingly to fly at the wind dependent Vmr.

Groundspeed is the combined effect of airspeed and wind speed (actually the
airspeed and wind vectors). Wind assistance alone cannot be used by the bird to
select a given groundspeed and a flight altitude. The altitude could be set by sur-
rounding visual information seen by the bird. A bird can access information about
its ownmotionwith respect to its surrounding environment via the optic flow field
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Figure 1. (a) A gull flying over the sea generates a vector field of optic flow. Such a vector field is perceived by a gull based on the contrasts created by waves and
white-crested waves (also called white-horses). Inspired by [13]. (b) The magnitude of the vector of the optic flow, ω, is determined by the gull’s groundspeed, Vg,
and its altitude, h. If ω is held constant by adjusting the altitude, h will always tend (through the bird dynamics) to be proportional to Vg (only a linear com-
bination—red dashed line—between h and Vg is asymptotically possible). (c) Optic flow magnitude in the ventral field of view at 10 m height where the
magnitude of the ventral optic flow ω(ϕ, θ) = (Vg/h)sin

2 θ × cos ϕ is projected at the sea level with ϕ the azimuthal angle and θ the elevation angle. (The
magnitude of vertical optic flow is the maximum downwards and is ω(ϕ = 0°, θ =−90°) = Vg/h.) (Online version in colour.)
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through its early visual processing [11], as flying insects do in
similar situations [11,12]. The optic flow field perceived by an
agent (a flying insect, a bird or a human) is particularly depen-
dent on the structure of the environment [13–16].Optic flow can
be defined by a vector field of the apparent angular velocities of
objects, surfaces and edges in a visual scene caused by the rela-
tive motion between the agent and the scene (figure 1). The
translational optic flow component is particularly interesting
for birds positioning in space because it depends on (i) the
ratio between the relative linear groundspeed of an object in
the scene with respect to the bird and (ii) the distance from
obstacles in the surrounding environment. Consequently,
optic flow requires neither groundspeed nor distance measure-
ment, which is particularly useful to explain how birds perceive
the world because birds are likely unable to sense directly their
own groundspeed nor the three-dimensional structure of the
environment in which the binocular vision plays a minor role
[17]. In addition, using depth perception based on motion par-
allax firstly requires a background and a foreground, then a
head motion in translation. However, it has been reported for
long-necked birds (whooper swans [18] and herons [19]) that
exhibit a stabilization of their head, which could be the same
for short-necked birds (like seabirds) while flying over sea,
where seabirds perceive only a background. Consequently,
motion parallax should play aminor role in altitude perception.

During flight manoeuvres, various optic flow parameters
(such as the magnitude, the direction, the focus of expansion,
the time-to-contact of optic flow) can be collected by birds to
control their lateral position in straight tunnels (in budgerigars
[20]), to decrease their speed in a converging tunnel (in
budgerigars [21]), to plunge into water (in gannets [22]),
to hover (in hummingbirds [23,24]) and finally to land (in
hawks [25] and in hummingbirds [26]).

In this study, we address the question of how seabirds
control their altitude during offshore takeoffs and cruise
flights with respect to wind. Here, two working hypotheses
were compared about altitude control:

— a first hypothesis based on a direct measurement and
regulation of optic flow that adjusts the altitude and

— a second hypothesis based on a direct measurement of the
barometric pressure that directly regulates the altitude itself.

To test these alternative hypotheses, a statistical analysis
of 352 flights comprising 16 individual lesser black-backed
gulls (Larus fuscus) in various wind conditions was con-
ducted. Then, 18 offshore takeoffs followed by a cruise
flight were analysed by taking into account morphological
parameters from 9 individual gulls.
2. Modelling the flight in terms of groundspeed
and altitude: a theoretical approach

2.1. How is bird groundspeed deduced from aeraulic
effects?

The relationship between:

— the bird’s groundspeed Vg
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— the bird’s airspeed Vair

— the wind speed Vw

is given by equation (2.1):

Vg ¼ Vair þ Vw: (2:1)

The basis for deriving predictions about bird flight is the
so-called flight mechanical theory, which combines the
relationship between power output P and airspeed Vair in
flapping flight as follows:

P(Vair) ¼ aþ b � V�1
air þ c � V3

air, (2:2)

where a, b and c represent various physical, morphological
and physiological properties of the bird and air [27–29]. If
the objective is to minimize the energy cost per unit distance
(i.e. cost of transport), the optimal flight speed is the maxi-
mum range speed Vmr [7,27]. The maximum range speed
Vmr is obtained from the U-shaped power curve [29–31] by
the condition

@P
@Vair

� �
Vair¼Vmr

¼ P(Vmr)
Vmr

: (2:3)

Indeed, a gull’s homing flight is similar to a migratory
flight, in that it is assumed that the flight’s objective is princi-
pally for transportation, as opposed to outbound foraging
flights when the bird is likely also searching for food. Seabirds’
homing flight over the sea is therefore a directed flight between
two locations. During transport flight gulls are expected to
minimize overall energy expenditure or time, thus cost of
travel per unit distance should be minimized rather than
instantaneous energy expenditure. If minimizing the cost of
travel per unit distance birds will travel at maximum range
speed (Vmr) not minimum power airspeed (Vmp). Vmr refers
to Vair rather than Vg. If a bird experiences a tailwind, its cost
of travel per unit distance decreases, thus Vmr also declines.
Conversely under headwinds Vmr increases. In a recent
work, it was analysed how lesser black-backed gulls (and guil-
lemots) modulate their airspeeds in relation to winds [32]. It
was found that gulls increased airspeeds under headwinds
and decreased airspeeds under tailwinds [32], and similar be-
haviour has been observed during longer distance homing
flights [33]. These results suggest that gulls are flying at Vmr

rather than Vmp, since Vmp should not be affected by winds
like Vmr [32].
2.2. Optic flow vector field generated by a bird in
flight over sea

Consider a bird flying over the sea at an altitude h and a
groundspeed Vg (neglecting vertical speed Vz) the magnitude
of the ventral optic flow field ω can be expressed as follows:

v(f, u) ¼ Vg

h
sin2 u� cosf (2:4)

with θ the elevation angle and ϕ the azimuth angle.
The magnitude of the ventral optic flow field is plotted

in figure 1a with the projection of its elevation and
azimuth angles over the sea. The larger projection of vector
magnitude of optic flow over the sea is shown using a
contour plot in figure 1c in the case of a bird flying at a
height of 10m. The bird may be able to perceive the optic
flow maximum from a non-negligible area of its field of view
(figure 1c). The maximum magnitude of the ventral optic
flow is always vertically downwards from the bird in the
direction of the sea:

v(f ¼ 0�, u ¼ �90�) ¼ Vg

h
: (2:5)
2.3. How the model predicts the bird’s flight height
from the ventral optic flow regulation principle

The ventral optic flow regulation principle tends to keep
constant the vertically downward optic flow whatever the
speed or height of flight by adjusting the altitude [34,35].
Here, it introduces this asymptotic proportionality relation-
ship for birds: the bird’s height of flight h will always tend
(through the bird dynamics) to be proportional to the bird’s
ground speed Vg (figure 1b) as

vsp ¼ v(f ¼ 0�, u ¼ �90�) ¼ Vg

h
¼ constant, (2:6)

where ωsp is the ventral optic flow set-point. Besides, the wind
profile power-law is often used to estimate the horizontal wind
speed [36] as follows:

Vw ¼ Vref � h
href

� �a

(2:7)

with the parameter α being the power-law exponent that is
usually specified as a function of stability as well as the rough-
ness of the surface, where 0 < α < 1 (here over seas α = 0.11; see
[37]). The speed Vref is the wind speed at a reference height href
(10m). By combining (2.6) and (2.7) into (2.1), we obtain

vsp � h ¼ Vair þ Vref � h
href

� �a

: (2:8)

To find the bird’s steady-state flight height h reached
during a takeoff as a function of the wind profile, it requires
to solve the equation f (h) = 0 with the function f defined as
follows:

f(h) ¼ Vair þ Vref � h
href

� �a

�vsp � h: (2:9)

In the variation table of the function f (electronic sup-
plementary material, table S1), we observe that only one
unique altitude h exists, enabling f (h) = 0 during an offshore
takeoff manoeuvre. We can therefore conclude that both
the minimization of the rate of energy consumption and
regulating the ventral optic flow enable a bird to fix both
its groundspeed and its altitude above the sea. The bird’s
steady-state flight height h cannot be considered as a ‘target
flight height’ or a ‘desired flight height’, but as an ‘optimal
flight height’ because the bird’s altitude is adjusted as a func-
tion of the wind conditions (higher under tailwinds but lower
under headwinds) and thereby maximizing positive effects as
well as minimizing adverse effects of the wind gradient.
3. Materials and methods
3.1. Gulls’ trajectory recording
Sixteen lesser black-backed gulls (Larus fuscus) were GPS tracked
from their breeding colony on Stora Karlsö island, Sweden
(17.972°E, 57.285°N) during May to September of 2013–2015.
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Figure 2. (a) Study location of the island of Stora Karlsö (indicated by asterisk), Baltic Sea, Sweden. (b) From this site lesser black-backed gull (Larus fuscus)
inbound flights were tracked with GPS (18 flights from nine individual gulls, coloured lines). (Online version in colour.)

Figure 3. Lesser black-backed gull (Larus fuscus) equipped with an 18 g
solar-powered UvA-BiTS device (size: 61 × 25 × 10 mm). The GPS unit
used is the Lea-4S chip from U-blox manufacturer. See [42] for UvA-BiTS
detail. Photographic credit: the authors. (Online version in colour.)
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The island is a small offshore island (2.5 km2) located in the wes-
tern central Baltic Sea, sited 7 km west of the much larger island
of Gotland (figure 2a). During breeding the gulls perform cen-
tral-place foraging trips [38], flying out from their island to
forage, either at sea or on land [39].

Gullswere caught during late incubation (lateMay)usingwalk-
in traps set over their nests. Theywereweighedandsexed frommor-
phological measurements [40] or genetically [41] from a few breast
feathers taken at capture. The GPS devices are ca 18 g (size: 61 ×
25 × 10mm), are solar-powered, have 4MB ofmemory for data sto-
rage, include a tri-axial accelerometer and have a short-range
communication system. They were developed at Amsterdam Uni-
versity (http://www.uva-bits.nl/gps-trackers/), and we used the
UvA-BiTS model 4CDLe during the study (see [42] for GPS device
detail). The GPS device was mounted using either a full body or
wing harnesses [43] constructed of tubular Teflon™ ribbon (Bally
Ribbon Mills 8476-.2500) (full tagging procedure given in [39], see
figure 3). Data were downloaded and programs uploaded to the
GPS devices remotely using a network of four antennas providing
good coverage of the colony area. GPS tracking was continuous
though the location intervals varieddependingon the requirements
ofparallel studies (e.g. [39]).Ata6 s intervalonawhite stork (Ciconia
ciconia) on its nest, it was quantified a mean altitude error of 2.77m
and a mean speed error of 0.02m s−1 of the UvA-BiTS device [42].

The continuous GPS tracks were segmented into foraging trips
and within these, sections of continuous flight, with the final
flight of a foraging trip considered a homing flight, as the gulls
returned from presumed foraging at sea (only marine trips were
used in this study, cf. [39]) to the island colony. Eighteen takeoffs
from nine individual gulls with high resolution data were selected
(i.e. 10 or 15 s intervals), and we selected only takeoffs reaching a
steady-state altitude—i.e. not those with a constantly fluctuat-
ing altitude. In addition, the final altitude had to be greater than
10m with variation in altitude during the ascent until reaching a
steady-state altitude. No information about the presence or
absence of boats in the area around the island of Stora Karlsö
was known, likewise if birds flew alone or with other birds.

Flight GPS points were annotated with wind data extracted
from a global weather model, ERA-interim data [44], provided
by the European Centre for Midrange Weather Forecasts
(ECMWF, http://www.ecmwf.int/en/research/climate-reanaly-
sis/era-interim), which gives variables at 3-h intervals and is
gridded with a spatial resolution of approximately 79 km.
These were extracted using the environmental-data automated
track annotation (Env-DATA) system [45] hosted by MoveBank
(http://www.movebank.org/).

3.2. Takeoff time series analysis: individually tuned
parametric model

3.2.1. Parametric model estimation
The linear parametric models about each gull’s elevation
dynamics were estimated with the System Identification Toolbox
from the Matlab software (parameters: time constant τh and static
gain 1/ωsp in (3.2)). The maximum climbing speed Vzmax was
computed from [8,30]

Vzmax ¼ 2:16 �mm � f
m

� 1:92 �m2=3

r1=2 � b3=2 , (3:1)

wheremm is themass of the flightmuscles, f is the observed flapping
frequency (3.26Hz on average; see [32, p. 162]), m is the total mass
including any added load, ρ is the air density (1.205 kgm−3 at 20°C)
and b is the wing span. The vertical wind is low over the sea,
consequently in flight, we neglected the vertical wind. For each of
the 18 offshore takeoffs followed by a cruise flight, we took into
account the morphological parameters of each gull.

3.2.2. Computation of the predicted altitude
The model output, i.e. the predicted altitude, hest, was computed
with the Simulink environment from the Matlab software. The
best fit factor of the optic flow-based control model is obtained
by adjusting the flight muscle fraction (mm/m) instead of the
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bird mass m, because the bird mass was known without any prey
load. The fit factor considered was the goodness of fit between
optimized simulated data (hest) and actual GPS data (hGPS)
using a Matlab function with a normalized mean square error
cost function (called NRMSE cost function). NRMSE fit factor
varies between minus infinity (worse fit) to 1 (perfect fit).
According to table 15 in [46], the flight muscle ratio (mm/m) is
relatively constant across birds species at 0.18 ± 0.05 (mean ±
s.d., with n = 221). Our simulated model has been adjusted
with the flight muscle ratio in order to get the best fit factor,
then adjusting the maximum climbing speed in the elevation
dynamics model. For our group of 9 individual lesser black-
backed gulls, we obtained the best fit factor with a corresponding
distribution of flight muscle ratio (mm/m) of 0.18 ± 0.03, which is
quite similar to prediction 9 from [30]. The optic flow-based con-
trol model takes into account the observed correlation between
the groundspeed Vg and the altitude h coming from gulls’ GPS
data. The proportionality factor is called here a ventral optic
flow set-point ωsp (2.6). Once the best fit factor has been reached
by adjusting the flight muscle fraction mm/m, each gull’s altitude
is re-computed by considering an altitude control model that
directly feeds the elevation dynamics with a ‘target flight alti-
tude’, noted an altitude set-point hsp, which is computed when
the gull reached its steady-state altitude.

3.2.3. Optic flow-based altitude control model
We consider two scales of time. The gull’s forward dynamics
(figure 4a) responds faster than the gull’s upward dynamics
(constrained by Vzmax (equation (3.1)); see figure 4b) because
the height of flight arises from the response of a first order differ-
ential equation by considering the forward speed as a step input
(3.2). The bird’s elevation dynamics is represented in figure 5a,
which includes both the first order upward dynamics (3.2) and
the maximum climbing speed Vzmax (3.1).

th � dhdt þ h(t) ¼ 1
vsp

� Vg(t): (3:2)
Anexplicit solutionofequation (3.2) canbewritten, ifweconsider
a step response at a given positive amplitude Vg0 value, as follows:

h(t) ¼ Vg0

vsp
� (1� e�(t=th)): (3:3)

For each gull trajectory, we consider only one takeoff followed
by a cruise flight, and then we perform a first order system identi-
fication described by the differential equation (3.2). In thismodel, a
proportionality factor 1/ωsp is introduced, which is the inverse of
the ventral optic flow set-point ωsp (2.6), and the input of the
upward dynamics (3.2) is the groundspeed Vg, which correlates
the altitude h and the groundspeed Vg. If the gull’s groundspeed
is constant during takeoff as well as during cruising flight, then
the predicted altitude profile will be the same with both models.

The inter-flight variability of the climb time constant (τh =
97.3 s ± 68.0 s, with n = 18 takeoffs in figure 4b) was derived on
the basis of morphological properties of the birds (inter alia
age, wingspan, body mass including the load of prey and sex).
3.2.4. Direct altitude control model
Here, the bird’s elevation dynamics is represented in figure 5b,
which includes both the first order upward dynamics (3.4) and
the maximum climbing speed Vzmax (3.1).

th � dhdt þ h(t) ¼ hsp: (3:4)

An explicit solution of equation (3.4) can be written, if we
consider a step response at a given altitude hsp value, as follows:

h(t) ¼ hsp � (1� e�(t=th)): (3:5)

The ‘target flight altitude’, also called the altitude set-point, is
denoted hsp, which is computed from when the gull reached its
steady-state altitude, i.e. the gull’s mean altitude when t > 3τh
or t > 5τh, depending on data availability. In this model, there is
no correlation between altitude and groundspeed.
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used by the gull to select its ‘desired’ or ‘target’ flight altitude. (Online version in colour.)
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4. Results
4.1. Full flight dataset analysis: statistical model using

wind data
The dataset here includes all inbound (returning to the island
colony) over sea flights by the lesser black-backed gulls (383
flights, 16 gulls). The dataset is composed of median altitudes
h calculated per flight, median wind speed measured at 10m
height (from ECMWF data), Vref, and the gull identifier.
After excluding the flights endowed with a median altitude
below zero metres, the data comprise 352 observations of 16
individual gulls (see electronic supplementary material,
table S2).

A nonlinearity of wind profile power law (2.7) was intro-
duced to estimate the wind speed Vw(h) experienced by gulls
at their median altitude h calculated per flight. A linear mixed
effect model was designed using lmer in R software for the
ordinates (βi is the constant random effect) as follows:

h ¼ b1 � Vw(h)þ b0 þ bi þ 1i,Vw (4:1)

with the regression parameters: β1 = 2.2707 and β0 = 32.0016.
The Kenward–Roger corrected F-test was used to calculate
the significance level of the linear mixed model (numerator
degrees of freedom: 1; denominator degrees of freedom:
347.89; F-value: 37.722; p-value: 2.2286 × 10−9; F-scaling: 1).
The parameter β1 was highly significant (figure 6). Using
the coefficient β1 = 2.2707, an identification of the ventral
optic flow set-point ωsp−lmer can be performed using
equation (2.8) that includes the wind profile power law as
follows:

vsp�lmer ¼ 1
b1

¼ 0:4403 rad s�1 ¼ 25:23� s�1: (4:2)
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This statistical analysis tells us that gulls tend to maintain
a ventral optic flow close to 25.23° s−1 whatever the wind
conditions are while flying above the sea.

4.2. Comparison between optic flow-based and direct
altitude control models

In this section, 18 takeoffs are treated as independent obser-
vations despite these being recorded on 9 individual birds.
Indeed, the weather, the wind, the state of the sea, the moment
and the fishing area were uncontrolled and different from one
flight to another (figure 2b).

A set of 18 trajectories representing 9 different gulls are
individually shown in the horizontal plane in figure 2b. The
set of GPS data are clustered and shown in figure 4 for the
initial 400 s of each flight. It allows us not only to show
the increase in speed during the gulls’ takeoff (figure 4a),
but also their level flight along the vertical plane (figure
4b). Both groundspeed and altitude have been individually
normalized by the steady state value reached by the gulls’
groundspeed and altitude, respectively (figure 4). Conse-
quently, both curves reach a steady state close to a value of
one (figure 4).

A linear first order parametric model on the data (18 tra-
jectories) gives a fit factor value (i.e. a NRMSE cost function)
of 40.4% on average (range: 10–80%). Then, by introducing a
constraint on the climb rate according to prediction 10 in
[8,30], a direct altitude control model based on a nonlinear
first order parametric model combined with an altitude set-
point hsp (see figure 5b for details) gives a fit factor of on aver-
age 57.1% (range: 11–77%). However, by adding to the
previous model a correlation between groundspeed and alti-
tude, which is linked to what we call an optic flow set-point
ωsp (see figure 5a for details), an optic flow-based control
model gives a fit factor of 63.4% on average (range: 30–83%).

Examples comparing an optic flow-based control model
to a direct altitude control model for one takeoff is given in
figure 7b (the 17 other takeoffs are shown in electronic sup-
plementary material, figures S4–S20). We observe that in
each case the fit factor was higher with an optic flow-based
control model (blue dots in figure 7b) rather than a direct
altitude control model (red dots in figure 7b).

The set of normalized predicted altitudes (n = 18)
computed with an altitude control model (figure 5b) is
shown in figure 8a, and with an optic flow-based control
model (figure 5b) is shown in figure 8b. Residuals, which
are the errors between altitudes coming from GPS data and
predicted altitudes coming from models, are represented in
figure 8c,d. We compared the residuals’ distribution between
the two models in transient response (white shaded boxes in
electronic supplementary material, figure S3) and in steady-
state response (grey shaded boxes in electronic supplementary
material, figure S3). The median value of the residuals
(figure 8c,d ) coming from the optic flow-based model was
significantly higher in transient response (one-sided Wil-
coxon rank sum test, n = 27, p≪ 0.001) and was also
significantly higher in steady-state response (one-sided Wil-
coxon rank sum test, n = 27, p≪ 0.001). Consequently for
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both parts, the response predicted by the optic flow-based
control model was better than the response predicted by
the altitude control model. Finally, the average values of the
residuals coming from each control model in transient
response, then in steady-state response, were compared to a
normal distribution centred around zero. The distributions
of residuals with the optic flow-based control model (white
shaded boxes in electronic supplementary material, figure
S3) were not significantly different from a normal distribution
centred around zero (t-test, n = 27, p = 0.95 in transient
response, and p = 0.07 in steady-state response). Residuals
with the direct altitude control model (grey shaded boxes
in electronic supplementary material, figure S3) were signifi-
cantly different from a normal distribution centred around
zero (t-test, n = 27, p < 0.01 in transient response and p≪
0.001 in steady-state response). This statistical analysis
shows that the optic flow-based control model is the most
established model. Besides, for 13 out of 18 flights, we
observe a significant correlation (Spearman’s test on GPS
data) between groundspeed and altitude (ρ from 0.22 to
0.83, 13 flights). We therefore conclude that our optic flow-
based control model (figure 5a) better explains the gulls’
GPS tracking data than the direct altitude control model
(figure 5b).
5. Discussion
5.1. Comparison of optic flow set-points identified by

both analyses
We compared the distribution of ventral optic flow set-points
coming from the tuned parametric model obtained from the
takeoff time series (ωsp = 22° s−1 ± 9° s−1 with n = 18, Shapiro
normality test: p = 0.16) and the parameter ωsp−lmer= 25.23° s−1

obtained from the linear mixed effect model (4.2), respectively.
No significant difference was observed between the ωsp
distribution and the value ωsp−lmer (t-test, t-value: 1.5296, d.f.:
16, p-value: 0.1457). This suggests that both analyses identify
optic flow set-points that are in the same range and not signifi-
cantly different. As a consequence, both the takeoff time-series
and the full dataset support the ventral optic flow regulation
hypothesis in a consistent manner.
5.2. Effect of wind on the birds’ altitude
An additional outcome of the ventral optic flow regulation
hypothesis [34,35] is that any increase in headwind will
lead to a decrease in gull flight altitude in order to maintain
the ventral optic flow constant (figure 9a). Conversely, any
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increase in tailwind will lead to an increase in bird altitude
(figure 9c). A bird can adjust its ground speed by adjusting
its airspeed or its heading relative to ground (and wind),
thus allowing it to minimize its cost of transport in flight.
The altitude control system based on optic flow is therefore
consistent with previous observations on speed adjustment
with respect to winds in migrating birds [47].

The small Hellman exponent α over relatively smooth
surfaces, such as the sea, means that wind speed increases
more rapidly than over a rough surface (e.g. a forest). Thus at
higher altitudes (i.e. from 10 to 100m) wind speed will not
vary much, but below 10m wind speed can double going
from 1 to 10m. Around the sea’s waves wind is deflected lead-
ing to a pattern of updraughts and downdraughts [2,3,48].
Together these effects are used by soaring seabirds in dynamic
soaring, gust soaring or ‘sweeping flight’ [2,3,48], and the
characteristic meandering flight style that results has been
termed ‘wave-meandering wing-sailing’ [49]. Flapping sea-
birds can also use these features to gain a higher climb rate at
the start of a takeoff manoeuvre, taking off facing into the
wind in the updraught formed by the deflection of the wind
over a wave (see [10,29, p. 268]), which therefore reduces the
effort required to take off and accelerate to reach the maximum
range speed Vmr. Seabirds may also use the ‘ground effect’
while flying very close to the sea surface to reduce their
energetic expenditure [50], which is helpful for takeoff at sea.
5.3. Effect of altitude on optic flow
According to prediction 3 in [8,30], the optimal altitude for a
migratory bird is that where it can get just sufficient oxygen
to maintain its cruising airspeed. This arises from the power
required to fly at maximum range speed decreasing with alti-
tude due to decreasing air density. Consequently, at an
altitude of 6000m, where the air density is half that at sea
level, a bird should theoretically fly

ffiffiffi
2

p
times faster. On the

other hand, at a given optic flow set-point working in a
100m altitude range, the optic flow would be divided by
a factor 60ffiffi

2
p at an altitude of 6000m. Therefore, the optic

flow would be too small to be maintained at the amplitude
of the one generated in a 100m altitude range. Recently,
McLaren and colleagues (2016) analysing flights of lesser
black-backed gulls flying between south-east England and
The Netherlands recorded much greater flight altitudes
than those observed here during homing flights to the breed-
ing colony, with maximal values of 1240m [33], even though
typical values were lower at 100–150m. On migratory flights,
the gulls have been recorded flying higher still, though that is
overland, with maximal altitudes around 5000m (unpub-
lished data). Consequently, an optic flow based altitude
control system can only work below a 100m altitude range
where the optic flow is significant and detectable by the
visual system of the birds.

5.4. Are groundspeed and altitude still proportional at
higher altitudes?

Birds making lower altitude flights (<100–150m) will
generate a detectable optic flow. However, when on long dis-
tance or migratory flights birds may fly higher at hundreds to
thousands of metres (see above), optic flow values will then
be extremely low, thus unlikely to be suitable for regulating
a given optic flow set-point. This relates to the finding for
common swifts (Apus apus) by Hedenström & Åkesson that
the swifts did not compensate for head- and tail winds as
expected from flight mechanical theory when flying at high
altitudes (>1000m), but they did so at low altitudes (<100
m) [51]. This was interpreted as a failure to detect small
changes in optic flow due to winds by the swifts’ visual
system at high altitudes. In addition, for altitudes higher
than 400m, lesser black-backed gulls were observed to com-
pensate less for cross-wind disturbance than they did at lower
altitudes: fractional compensations were observed to decrease
from about 1.3 (on average) to less than 0.5 at 900m height
[33]. At altitudes above 400m, gulls’ groundspeed may be
highly dependent on the wind speed: no altitude increase
or decrease can be predicted with respect to the optic flow-
based control model as optic flow is low; thus its changes
with altitude would be difficult to detect by the gulls’
visual system.

5.5. Can birds use barometric pressure to determine
altitude?

Birds’ mechanoreceptive paratympanic organ (PTO) is
located in the middle ear, and it is probably used by birds
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to detect barometric pressure [52]. Birds appear to use the
PTO not only as a barometer to predict the onset of inclement
weather [52–54], but also as a genuine altimeter to adjust
their flight altitude during migration. Birds can fly level
within ±20m for distances of 2–3 km at altitudes of 700–
1100m, even at night [55], i.e. without visual cues. However,
it is still an open question whether birds can use changing
barometric pressure directly to measure their current altitude
in real time.

A mechanoreceptive scale sensory organ found in fish [56]
may play the same sensory function as the PTO in birds. It is
known that fish can determine their depth using hydrostatic
pressure [57,58]. On this point, it was demonstrated that the
dynamic depth sensing in fish is less than 1m at a depth of
100m [57]. However, water density is approximately 1000
times higher than air density, and the pressure gradient in
flight is therefore particularly low generating extremely low
frequencies in the feedback signal to the bird’s elevation
dynamics. Therefore, it would be difficult to adjust the flight
altitude for a short period of time, only being practical
for long periods of time such as for example during longer
distance migratory flights.

Abirddoesnot have to compute its altitude fromotherphys-
ical or internal parameters than those from visual cues and the
PTO. Birds could directly estimate altitude with a barometric
measurement by means of their PTO, but with a relatively
coarse resolution (ca ±10m). The optimum airspeed Vmr is an
optimum in relation, not only to the physiology and the mor-
phology of the bird, but also the environnemental context (see
§2). Consequently, a bird does not set its flight at a given Vmr.
We argue it is almost the same thing for altitude, where the
environmental context sets its trajectory mainly via its vision.
The wind and the airspeed Vmr set the bird’s groundspeed,
and visual information coming from the ground (or sea) can
help it to set its altitude up to hundreds of metres.

We tried to represent below the effect on ventral optic
flow of a 10m-altitude resolution during a gull’s cruise
flight; such a 10m-altitude resolution has been observed in
pigeons’ PTO [59,60]. We consider here a gull flying at a
groundspeed of 10.9 m s−1 at an altitude of 25m, which gen-
erates a ventral optic flow of 25° s−1 (figure 10). The PTO will
inform it that it is flying at 25 m ± 10 m, which corresponds in
motion vision to a 25° s−1 ± 16.6° s−1 ventral optic flow range
(figure 10). However, LM neurons are able to measure a ven-
tral optic flow from 0.125° s−1 to 34° s−1 with a resolution of ca
1 spike s−1 per ° s−1 [61,62]. Consequently, we can assume the
gull’s motion vision is able to inform it at 25° s−1 ± 1° s−1,
allowing it to stabilize its altitude at 25 m ± 1 m without
10m oscillations as would result if based on PTO.

The GPS accuracy is ca 2.5 m, which is above the optic
flow-based altitude control accuracy of ca 1m at 25m. Conse-
quently in cruise flight, we did not observe any bird’s vertical
oscillation in GPS data. However, at higher altitude, if a gull
is flying at 15m s−1 at 78m altitude, it will perceive an optic
flow of 11° s−1. With a 1° s−1 resolution in optic flow measure-
ment, it should be able to estimate its altitude at 78 m ± 6 m,
which puts the motion vision’s altitude resolution closer to
the PTO’s altitude resolution. Consequently, over hundreds
of metres in altitude, birds cannot maintain a constant alti-
tude with respect to their ventral optic flow’s objective, but
will show small altitude oscillations, and neither will the
bird be able to adapt its airspeed according to winds (also
called wind flexibility behaviour; see [33]).
5.6. Can birds use their binocular vision for depth
perception and then to control their altitude?

Martin [17,63, ch. 8, 9] explained that the primary role of bin-
ocular vision in birds is for the control of the bill tip. In
addition, the binocular visual field of a seabird (the skimmer)
is oriented around its bill tip and not really toward the
ground [64]. Most seabirds have a maximum binocular field
width in the 15°–30° range (about 120° in humans), which is
limited, suggesting that binocular vision plays only a minor
role in seabirds’ flight control system [17].

In particular, the state of scientific knowledge about the role
of binocular vision in the distance perception and flight control
of birds has been summarized [17]: ‘Exactly how birds do con-
trol their behaviourwhen landing is still not clear, butDavies &
Green (1994) [65] suggest that a complex of multiple sources of
information that may provide birds with distance cues to close
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objects are available to birds when using only one eye and thus
do not involve binocularity’.

Our results revive the ecological perceptual approach con-
ducted initially by Davies & Green [65] in the light of the
latest results on the direct use of optic flow observed in
flying insects and in bioinspired robotics [35] as well as
in the light of the latest knowledge acquired on birds.
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5.7. Effect of waves on the optic flow pattern
The flight model assumes that the sea surface, over which the
gulls fly, provides a stationary reference frame: no data are cur-
rently available on the wave speed. Therefore, the optic flow
experienced by the gulls is solely modelled as a function of
their own movement (groundspeed and altitude). Previous
studies on bird navigation over water suggest that the seascape
(or more specifically the wavescape) is not a fixed reference
frame [66], as the wave patterns move, usually in roughly the
same direction as the wind but at a slower speed. Therefore,
the perceived optic flow will be different from the physical
optic flow. Alerstam & Petterson suggested that the motion
of the wavescape allows birds to only partially compensate
for wind-drift over the sea [67], thus presumably a similar con-
straint may apply to using the ventral optic flow for control of
flight altitude.

Overall, the wave pattern will reduce the adjustment of
altitude if a fixed optic flow set-point was used, as under
headwinds perceived optic flow will be higher than other-
wise, i.e. even as groundspeed approaches zero there will
still be a perceived optic flow if the wavescape is moving,
which would lead to higher flight altitudes than expected.
While under tailwinds optic flow is somewhat reduced, as
the sea surface pattern will be moving in the same direction
as the bird, and hence lower than expected flight altitudes
would result. The wave pattern distorts the ventral optic
flow perceived: such disturbances could be added to the
flight model once data or a methodology of how to obtain
wave pattern become available.

However, for optic flow to be useful ripples above the sea
are essential to form a textured surface. In fact, it was observed
by Heran & Lindauer that a great number of honeybees
plunged into the water when the water surface was mirror
smooth [68]. An altitude control system based solely on a ven-
tral optic flow regulation irrevocably pulls any flying animal
down whenever its eye fails to measure an optic flow [35].
This did not happen in honeybees when the water surface
was rippled [68,69] or when a floating bridge provided a
visual contrast [68].

At this level of reasoning, we may wonder if the visual
pattern produced by waves was textured enough during
the gulls’ flights for an optic flow field to be perceived.
To investigate this, knowing that the average significant
wave height of the Baltic Sea in 1991–2015 was in the range
0.44–1.94m [70], which corresponds to a Beaufort number
of 3 (gentle breeze, mean wind speed equivalent from 3.4 to
5.4m s−1) to 4 (moderate breeze, mean wind speed equivalent
from 5.5 to 7.9m s−1) [71]. We deduce that gulls could see
scattered or fairly frequent white-crested waves at an
effective height of 10m above the sea level. However for
Beaufort numbers from 0 to 2, the sea has a smooth appear-
ance, which makes for poor visual conditions to perceive an
optic flow field. Interestingly, the wind conditions correspond-
ing to a Beaufort number from 3 to 4 fit not only with thewind
conditions of gulls in flight (electronic supplementarymaterial,
figure S21), but alsowith their altitude (see [32, p. 166]). We can
conclude that wind is an important parameter to generate an
optic flow field cue, and to help gulls to control their flight
above the sea.

The spatial acuity of seabirds can be more than four times
lower than that in humans [72], with a maximum spatial
acuity of about 60 cycles/degree in humans. Moreover, in
seabirds, rods are evenly distributed across the entire retina
[73], which allow them to conveniently detect the optic
flow coming from the sea.

We conclude that the optic flow field is potentially the
major visual cue used by seabirds to control their altitude
above the sea.

5.8. Optic flow set-point: differences between
honeybees and gulls

There are a number of differences in flight behaviours
expressed by birds and flying insects [11]. Typically, the
average maximum airspeed of honeybees is approximately
7.5 m s−1 with a minimum power speed of their power
U-curve at 3.3 m s−1 [74]. In free-flight natural conditions,
honeybees have been observed to fly from 3.3 to 5.1m s−1

[74]. However, lesser black-backed gulls typically fly at an air-
speed in natural offshore conditions at an average of
12.3 m s−1 ± 2 m s−1 (see [32, p. 166]) with a minimum
power speed of their power U-curve at 9.3 m s−1 (computed
for lesser black-backed gull; see [31]). Hence, lesser black-
backed gulls can fly three times faster than honeybees by
comparing their minimum power speed.

In honeybees, average maximal flight height is about 2.5
m over natural terrain [68,75]. In general, lesser black-backed
gulls fly at an altitude over sea of up to 130m with a distri-
bution of 31 m ± 29 m on average (see [32, pp. 166–167])
during foraging flights. We conclude that lesser black-
backed gulls fly much higher than honeybees during foraging
flights, which reduces optic flow emanating from the sea.

Consequently, we can conclude from these two last points
that the ventral optic flow set-point of lesser black-backed
gulls is much lower than that typically experienced by honey-
bees, knowing that the ventral optic flow set-point of
honeybees is close to 200° s−1. Our statistical analysis
estimates that the ventral optic flow set-point of lesser
black-backed gulls is close to 25° s−1 on average (see §4.1),
which is a detectable value by the gulls’ visual system
[17,63,76]. A recent review indicates that pigeons’ fast
LM neurons (pretectal nucleus lentiformis mesencephali)
respond to optic flow stimuli of their preferred backward
direction (front to back visual stimuli: temporal to nasal on
the retina) in this same angular velocities range [62].
6. Conclusion
A mathematical model of optic flow-based offshore takeoff
control system in lesser black-backed gulls was developed
in this study to understand what visual cue can be used
by seabirds to control their takeoff and to cruise over a sea
surface. This mathematical model introduced an optic
flow set-point parameter, which aims to be maintained con-
stant by seabirds during takeoff manoeuvres and cruising
foraging flights. Besides, the model takes into account
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a bird’s individual morphology through its elevation
dynamics. Finally, both analyses on the takeoff time-series
and the full dataset support the ventral optic flow regulation
hypothesis in a consistent manner.

We conclude that the optic flow regulation principle allows
seabirds to control their altitude over sea at low flight altitudes
without having to measure their current altitude directly by
another method. To do this, they just have to measure the
optic flow perceived from the sea to adjust their vertical thrust
in order to maintain the ventral optic flow at a given value,
called the optic flow set-point, as previously suggested for
flying insects [34,35]. According to both the airspeed and alti-
tude ranges of lesser black-backed gulls measured during
flight in their natural environment, we demonstrate that gulls
could control their altitude by regulating the ventral optic
flowat a value of 25° s−1 on average, allowing them to fly jointly
up to 130m in altitude at a groundspeed up to 20m s−1, while
maintaining visual contact with the sea. The introduction of
this asymptotic proportionality relationship for birds also
accounts very nicely for the transient altitude response during
takeoff. Overall, gulls need such accurate altitude control
based on optic flow to optimize their energetic effort irrespec-
tively of favourable or unfavourable unknown wind
conditions while being robust to ground disturbances such as
relief. This study cannot claim that ‘optic flow’ alone controls
altitude in birds, but we think that multiple sensory systems
with different resolution are implicated in the birds’ altitude
control comprising visual cues and PTO. We hope this study
will promotequestionsand investigations inotherbirds species.
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