
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Having it both ways: Larry Wall, Perl and the technology and culture of the early
web

Stevenson, M.
DOI
10.1080/24701475.2018.1495810
Publication date
2018
Document Version
Final published version
Published in
Internet Histories: Digital Technology, Culture and Society
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Stevenson, M. (2018). Having it both ways: Larry Wall, Perl and the technology and culture of
the early web. Internet Histories: Digital Technology, Culture and Society , 2(3-4), 264-280.
https://doi.org/10.1080/24701475.2018.1495810

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1080/24701475.2018.1495810
https://dare.uva.nl/personal/pure/en/publications/having-it-both-ways-larry-wall-perl-and-the-technology-and-culture-of-the-early-web(5d5f7ba9-cd2a-4742-a179-8fac9224b966).html
https://doi.org/10.1080/24701475.2018.1495810

Having it both ways: Larry Wall, Perl and the technology
and culture of the early web

Michael Stevenson

University of Amsterdam

ARTICLE HISTORY
Received 20 March 2018
Accepted 26 June 2018

Introduction: Perl and the exceptionalism of the 90s web

What image defines the 1990s web? Perhaps it is an “under construction” gif, a “starry
night” background or some other fragment of what net artist and scholar Olia Lialina
dubbed “a vernacular web” (2005). If not a vernacular, perhaps a sign of an increas-
ingly commercial and professional web – the first banner ad, announcing that this par-
ticular information superhighway would be dotted with billboards and shopping malls,
or a jutting line graph showing the precipitous rise of the Nasdaq composite index.

Of course, the answer is both, or all of the above. The 90s web was defined by its
contradictions: amateur and professional, playful and serious, free and incorporated.
Early descriptions of the World Wide Web’s significance oscillated between, on the
one hand, an accessible and open alternative to walled gardens like America Online,
and on the other hand an electronic frontier ripe for commercialization (Markoff, 1993;
Wolf, 1994). Long before social media or web 2.0 became buzzwords, startups and
new media gurus claimed the web was both a place of community and a place of
commerce (Silver, 2008). Importantly this was not a matter of two webs existing side-
by-side: the 90s web was all of these things at once. Perhaps it was this capacity for
having it both ways, more than any single technical feature, that made the web
feel new.

The height of have-it-both-ways-ism was the wave of hype and financial speculation
surrounding all things “open source” from 1998 to 2000. The term was adopted and
promoted by a group of hackers and entrepreneurs who wanted to legitimize free
software projects and their practices of sharing code, both as something technically
on par or even superior to commercial software, and as a commercially viable model
of software production (Kelty, 2008; Raymond, 1999). This required ditching the term
“free software,” which they felt carried too much baggage, and the new concept
clearly embraced both volunteerism and professionalism, commons and ownership,
and pleasure and profit. It spread like wildfire. Before long, companies branding

CONTACT Michael Stevenson m.p.stevenson@uva.nl
� 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in
any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

INTERNET HISTORIES
2018, VOL. 2, NOS. 3-4, 264–280
https://doi.org/10.1080/24701475.2018.1495810

http://crossmark.crossref.org/dialog/?doi=10.1080/24701475.2018.1495810&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0//
https://doi.org/10.1080/24701475.2018.1495810
http://www.tandfonline.com

themselves as open-source were on Wall Street, setting records with their Initial Public
Offerings. Elsewhere, others began asking how this concept could be applied to other
domains. Open-source journalism? Of course. A volunteer encyclopedia you could rely
on? Sure. Open-source cola? Why not.

How was this situation possible? Or more generally, how did this form of positioning
come to be so taken-for-granted, such that startup CEOs could pen slogans like “Don’t
be evil” without inspiring derision from their peers or parody sitcoms? For one of the
most visible advocates of open-source software, hacker and author Eric Raymond, the
case of “open source” was a matter of waking up. After “[t]wenty years of repeatedly
watching brilliant ideas, promising starts, and superior technologies crushed by slick
marketing,” free software hackers had realized their ad-hoc efforts that ran on little
more than technical ingenuity and passion could compete with corporate behemoths
like Microsoft and IBM – not to mention make a few bucks – if only they learned to do
better public relations (Raymond, 1999, p. 210). According to critics, it was the opposite:
it was delusional to think open source software could somehow remain an unspoiled
gift economy while also being sponsored by capital, and instead this was ultimately a
familiar story of cooptation (Barbrook, 1998; Morozov, 2013).

What both Raymond’s heroic narrative and critical accounts neglect are various
material, practical and discursive interventions that prefigured the rise of a business-
friendly face of free software in the late 1990s. To shed light on this case in particular,
and more generally on having it both ways when it came to imagining the value or
character of the web in the 1990s, this article explores the history of the Perl program-
ming language’s rise from a free software utility created by an idiosyncratic system
administrator in his free time, into an indispensable technology for countless web
companies, professional web developers and homepage-building amateurs.

Why Perl? Although Perl was first released in 1987 and thus preceded the World
Wide Web by a few years, the material and conceptual links between its history and
that of the 90s web are myriad.1 Perl, most notably, was an essential ingredient in the
invention and use of the Common Gateway Interface (CGI), a web server feature that
for many years was the de facto means for making web pages interactive and
dynamic (Stevenson, 2016). Meanwhile, the web is what made Perl a surprise competi-
tor to languages backed by large corporations. As the web grew, so did Perl, from a
few thousand users in 1990 to over a million a decade later. While many of these
users were casual programmers adding a guestbook or contact form to their website,
other users like early web giants Yahoo! and Amazon demonstrated Perl’s legitimacy as
professional-grade technology. Perl’s history, like the early web’s, is one of contradictions
and synthesis. In addition to Perl acting as a platform for both amateur and professional
web development, its creator Larry Wall actively sought to invent practices and institu-
tions of collaboration between the free software world and commercial interests, some-
thing he did largely in concert with his eventual employer, book publisher Tim O’Reilly.

The historical narrative is structured in two parts. First, I argue that Perl must be
understood in the context of Wall’s work on previous free software projects. Drawing
on Boltanski and Th�evenot’s (2006) concept of justificatory regimes, I argue that this
body of work was notable for how it committed to a “civic world” of valuing software
in terms of a uniform collective interest. However, this framework also helps to

INTERNET HISTORIES 265

uncover differences between Wall’s free software work and that of Richard Stallman,
founder of the Free Software Foundation. Second, I show how Perl’s success in the
1990s was tied to its culture of synthesis, or having it both ways.2 Both in terms of
the language’s design, as well key actions and decisions made by Wall and others
regarding the organization and culture of the Perl community, Perl’s success was tied
to how it emphasized flexibility and evolution while encouraging integrity and port-
ability, how it neutralized potential conflict, and how it balanced between Wall’s cre-
ative control and the collective efforts of an increasingly large and devoted
community of volunteer developers. Most significantly, through their collaboration
around Perl, Wall, O’Reilly and others instituted forms of cooperation between free
software communities and the mainstream computing industry.

In short, my claim is that Perl’s significance for the 90s web goes beyond the well-
documented use of the language in web development. The language’s history illus-
trates the kinds of material, social, economic and discursive arrangements that enabled
an odd form of ‘autonomous’ production within the emerging field of new media. For
this history I have drawn on a range of archival sources - various Usenet newsgroups
dating from the early 1980s, documentation for past versions of the Perl programming
language and related software, Perl reference books, published journalistic interviews
with Perl creator Larry Wall and several other key figures in Perl’s history – supple-
mented by semistructured interviews with Larry Wall, Jon Orwant, and several practi-
tioners who either identified as members of the Perl community or identified Perl as a
key technology in their work as web developers in the 1990s.

Free software and the civic order of worth: rn, patch and metaconfig

Beginning in 1984, Larry Wall developed several influential free software programs and
Unix utilities, culminating in his work on Perl. Before releasing Perl in 1987, Wall wrote
rn, a Usenet newsreader, patch, a program for managing versions of software and eas-
ing the distribution of edits to source code, as well as metaconfigure, a utility that soft-
ware developers could use to automate the process of writing configure scripts for
their programs. These programs (in particular patch) are acclaimed for how they facili-
tated and anticipated the decentralized mode of software production that would
eventually be dubbed the open-source model of development (Raymond, 2003, p. 38).
As I argue here, they may also be understood in terms of how they justified this form
of production – that is, how they served as a set of arguments about how software
should work, or what should be valued in software. Here, I discuss Wall’s body of work
both as software objects that enabled and constrained certain actions and behaviors
on computers, and as cultural expressions accompanied by implicit and explicit
attempts to educate users and other developers in terms of best practices. Wall not
only provided tools for navigating Usenet newsgroups or for making software produc-
tion and maintenance less arduous, but in doing so also promoted particular values,
ideas and practices present within the cultures of Usenet and Unix. In other words,
this software formed a material intervention expressing Wall’s position on the struc-
ture and content of a “recursive public” of geeks (Kelty, 2008). Not least, Wall’s work

266 M. STEVENSON

suggested a commitment to a civic order of worth, or regime of justification that privi-
leges the interests of collectives over individuals (Boltanski & Th�evenot, 2006).

The basic arc of Wall’s free software development in this period goes like this: he
developed the feature-rich rn newsreader and released this large and complex pro-
gram (relative to other free software) to Usenet in 1984, where it quickly gained a
large user base. Several rn users sent Wall bugs, feature requests, and suggested
improvements to the code, and Wall responded by posting source code patches to
the program. The work of maintaining rn was cumbersome, however, and led Wall to
write patch and metaconfig, two tools geared toward ensuring standardization and
portability for Unix software. While working as a consultant on a project for the US
National Security Agency, Wall was tasked with repurposing netnews (Usenet’s server
software) into a distributed, synchronized report system with cross-references between
articles. For this Wall could draw on his experience writing rn, however he found it
easier to write his own scripting language than to use available tools. He would later
call the language Perl, and release it to Usenet in December 1987. Perl then took on a
life of its own.

At the time rn was released, the Usenet network consisted of an estimated 900
sites, representing universities, research centers, companies and other organizations,
and roughly 225 articles per day posted to various subject-specific newsgroups
(Hauben & Hauben, 1997, p. 44). Usenet was very much a volunteer operation, a “poor
man’s Arpanet,” with system administrators maintaining the network in their spare
time (ibid). As it connected primarily computer scientists and engineers, it was com-
mon for users to share small Unix programs and utilities. These were always distrib-
uted as source code, since Unix was not a single operating system but many: the
“Unix wars” of the early 1980s pitted Bell Labs’ commercial System V operating system
against the Berkeley Standard Distribution (BSD), while a range of different system
architectures and a few startups building their own proprietary versions of Unix com-
bined to produce a highly fragmented landscape. Sharing software as source code
meant an administrator could edit a program so that it worked on her particu-
lar system.

Both the existing practice of sharing software and the fragmented Unix landscape
helped shape Wall’s contributions. As Wall noted in a speech about Perl and Linux
many years later, sharing code in this way allowed for a departure from various con-
ventions and expectations – not least that code had to be perfect (Wall, 1999). At the
same time, both the risks and rewards of sharing software on Usenet were tied closely
to an individual’s reputation. On the one hand, shared code was an opportunity for
personal, often creative expression. One could display the kind of clever workarounds
and repurposing of technology highly valued in a profession marked by complexity
and opacity (Coleman, 2012). On the other, one had little control over how the code
would be used or in what context. Wall’s own reputation had been “besmirched” a
few years earlier, when a file management system he helped write while in graduate
school was poorly reimplemented with his name still attached (Wall interview).

Beginning with the first release of rn, Wall was clearly motivated by personal pleas-
ure as well as the idea of contributing to and improving Usenet’s volunteer infrastruc-
ture and practices of sharing code. Wall annotated his source code with jokes, and

INTERNET HISTORIES 267

took pride in how his program was “human-engineered,” with keyboard mappings
and interface design choices motivated by user-friendliness rather than software con-
ventions (Wall, 1984a). Most of all, though, he hoped users would appreciate the con-
figure script that used tests and a question and answer format to help administrators
edit the program to work on their particular flavor of Unix. The script was exception-
ally useful given the diverse implementations and architectures, while it also gleefully
narrated its actions with inside jokes lines like “Congratulations! You’re not running
Eunice” (a reference to a particularly noncompatible Unix-like system). Regardless of
whether users like rn, Wall wrote, he hoped that configure might set a new standard
for “friendly distribution” (Wall, 1984a).

A day after releasing rn, Wall posted the first two patches to the program, both of
them for bugs found by users (Wall, 1984b). As he continued to fix bugs and add fea-
tures via patches, Wall experienced both the pleasures and pains of maintaining free
software among a diverse user base. On the one hand, his active maintenance meant
users were more inclined to give feedback, ideas and suggestions he found useful.
When he released rn 4.3 in June 1985, he thanked users for “encouragement and
ideas” and wrote that it was a “truly a net-wide project” (Wall, 1985). On the other
hand, the problem of fragmentation was exacerbated by rn’s numerous patches, as
newer patches were often dependent on previous ones that users may or may not
have added. Fragmentation and the pace of rn’s development thus formed a material
resistance to both the intrinsic and altruistic motivations for maintaining such a project.

Wall soon began writing patch, a program that automated much of this mainten-
ance work through several features for context-aware updates. Users would run patch
to update rn (and before long many other programs that used patch), and patch
would perform several actions to check the expected source code against the actual
code. When these did not match, the program would repurpose a Unix command
called “context diff” to scan up and down the source code to see if it matched on
other lines. If the code was similar enough, patch would be able to make the neces-
sary changes without overwriting any customized code. By contrast, every patch file
included an argument where it would refuse to run if the previous patch was not
installed – to use the program, one had to install patches in sequence. The program
thus circumvented problems created by the lack of standardization and uniformity,
while also disciplining users to ensure their code stayed in sync.

Where patch supplied users with a useful program for keeping rn up to date, it
added to Wall’s list of maintenance tasks. He wrote metaconfig to automate the work
of writing configure scripts for the various versions of the programs he shared (includ-
ing warp, a space-war game Wall had written previously), first for his own use with rn
and patch, and eventually releasing the program in January 1988. “This package knows
just about everything I know about portability to Unix systems,” Wall wrote, before
describing how the program wrote configure scripts that would test for each necessary
software package and its dependencies separately (Wall, 1988b). This bottom-up
approach to determining system context was – along with patch’s capacity for dealing
with custom code – a means to manufacture portability without standardization. It was
a means of keeping a diverse collective in sync so that a common good (the code
base for rn, or later Perl) could be more easily maintained and grown.

268 M. STEVENSON

What arguments were made by rn, patch and metaconfig? In the framework of
“orders of worth” from Boltanski and Th�evenot (2006), the programs can be seen to
promote a technological civility. The worth of these projects – in Wall’s words, in the
praise he received – was certainly in part about their capacities for increasing the val-
ues at the core of the industrial order of worth. But value was found just as much, if
not more, in how these added to the Usenet commons, growing out of collective
action – for example, in Wall’s (1985) pride that rn had become “truly a net-wide proj-
ect” – as well as codifying, automating and to some degree even enforcing such col-
lective action through patch and metaconfig. In 1987, Wall began work on Perl.
Although this work – unlike rn and the other programs – was done officially on the
employers’ dime, from the beginning Wall knew the program could be useful for
others and planned to give it away.

From the GPL to dual licensing

Wall’s work gave new impetus to an ethic of sharing code that had hit roadblocks in a
Unix landscape fragmented by competition between proprietary distributions. Not
coincidentally, this was the same context in which Richard Stallman wrote the GNU
manifesto (1985), outlining his plans to create a free Unix-compatible operating system
and calling on programmers to contribute to it. Stallman had seen colleagues leave
MIT to work for proprietary computing companies, and took their newfound unwilling-
ness to share code as an affront. Although the manifesto presents many of its argu-
ments for free software in appeals to the field’s dominant logic of industrial efficiency
(e.g. by noting how the free operating system will prevent “wasteful duplication of
system programming effort”), Stallman clearly grounds his arguments in a moral econ-
omy of civic value, arguing that “software sellers want to divide the users” and that
“[i]f anything deserves reward, it is social contribution” (Stallman, 1985).

Wall signaled his sympathy for Stallman’s project by releasing Perl 3.0 under the
GNU Public License (GPL) in 1989. Prior to this, Perl came with a short notice saying
“You may copy the perl kit in whole or in part as long as you don’t try to make
money off it, or pretend that you wrote it” (Wall, 1988a). Although the GPL was argu-
ably more permissive (in that it does not preclude anyone from selling copies of the
licensed software), Wall’s decision was striking, as Stallman’s project, and in particular
the socialist leanings implied by it, were viewed skeptically by many of those who dis-
cussed Stallman’s manifesto on Usenet. Given that the first version of the GPL was
published just a few months before Perl 3.0 was released, Perl was likely one of the
first non-GNU projects to bear the license.

Despite this move, there were also signs that Wall’s commitment to GNU’s politics,
and more generally to a civic order of worth, was ultimately limited. As he explained
in a longer discussion of motivations for producing “free software,” Wall (1988c)
worked primarily to please himself, and he only released these products so that his
“life’s work” wouldn’t “die when this computer is scrapped”. Wall suspected his work
had little market value, and even if it did he couldn’t see himself act like a
“mercenary.” This led him to the following conclusions:

INTERNET HISTORIES 269

I guess I’d say that the reason some software comes free is that the mechanism for
selling it is missing, either from the work environment, or from the heart of the
programmer […]

What programmers like me need is a benefactor, like the old composers and artists used
to have. Anybody want to support me while I make beautiful things? (ibid)

Here one sees how Wall’s position differed not only from typical market or indus-
trial logics, but also seeds of difference from the arguments made by Stallman. Where
Stallman’s manifesto consistently returns to the theme of solidarity among pro-
grammers, and this uniformity of critique is inscribed in the GPL, here value was found
(or should be found) not only in a collective interest, but also, and perhaps even more
so, in the creative work itself and in the autonomy of authorship. Driving this point
home he appended the following in the release notes of Perl 3.0:

Just a personal note: I want you to know that I create nice things like this because it
pleases the Author of my story. If this bothers you, then your notion of Authorship needs
some revision. But you can use perl anyway.: -)

- The author (Wall, 1989)

In addition to signaling his spirituality, here Wall indicates a limit on the extent to
which Perl would conform to outside interests. The rejection of compromise, the
emphasis on authorship, and even the suggestion of a greater spiritual authority guid-
ing his work all point to what Boltanski and Th�evenot describe as the “inspirational
world,” a moral economy in which value is accorded to those who devote themselves
to a purpose external to both themselves and outside interests (e.g. in devotion to
the work of art), those who are perceived to be truly original in their thinking, and
thus those who are seen to inspire passion and make possible a break from
entrenched routines or practice.

In 1991, Wall carried out what he later called a “cultural hack” (quoted in Tamiya,
2001), inventing the dual license by releasing Perl under both the GPL and The Artistic
License. The latter was authored by Wall, and distinguished itself from the GPL in two
important ways. First, it laid out a number of provisions to ensure the relative integrity
of Perl, allowing modifications and reuse but maintaining “some semblance of artistic
control” over “the standard distribution” (Wall, 1991, emphasis in original). Second, it
made explicit that Perl could be used to create commercial products that could be
released as proprietary software.

The Artistic License thus emphasized authorship and control at the same time that
it was more permissive than the GPL. If the GPL enforces a form of solidarity in which
any modifications or extensions are returned to the commons, the Artistic License
seeks to maintain Perl’s integrity and Wall’s reputation while simultaneously allowing
for commercial use. The fact that users could choose which license they wanted to
use Perl under was itself innovative. Rather than remove the GPL and risk alienating
the free software community, Wall’s solution meant having it both ways: Perl
belonged to the collective and to the author; it was an expression of GNU solidarity
while also a tool for commercial software production.

270 M. STEVENSON

Perl’s culture of synthesis

During the 1990s, Perl grew from a Unix hacker’s tool into the “glue” holding the web
together, and from a user base of a few thousand to over a million. Likewise, it transi-
tioned from a free programming language shared among system administrators into a
competitor with languages such as Sun-backed Java and a source of profit for internet
startups, software vendors and programmers who used their knowledge of Perl to
land web development jobs. What tied these changes together was a particular pat-
tern of decision-making and positioning – rooted in the language’s design, the organ-
izational structure of the Perl community as well as in Wall’s evolving theories of Perl
and its success - that facilitated and emphasized synthesis of opposing or contradict-
ory practices and belief systems.

Technological synthesis

Perl’s affordances positioned the language for both professional and amateur web pro-
duction, allowing it to compete both for prestige in the field of restricted production
(among experts and hackers) and for market share in the field of mass production (c.f.
Bourdieu, 1993). Perl’s intentional flexibility – the way its interpreter worked hard to
understand code and ‘forgave’ such practices as not declaring variables, or using
numeric operators on strings, as well as the interpreter’s capacity for automatically
managing memory – had two notable effects. On the one hand, it allowed for an
uncommon level of expressiveness whereby expert programmers could employ terse
but powerful statements, inviting the kind of creative, playful interaction that could be
both productive (in terms of maximizing efficiency) and was celebrated in such extra-
curricular practices as Perl poetry and Perl Golf. On the other, it meant that scripts
were sturdy, if not always efficient or pretty: Perl allowed amateur programmers to
write (or copy) CGI scripts that worked, even if their command of the language was
minimal (Garfinkel, 1997).

Perl’s affordances for rapid prototyping and text-processing were equally important
for its use in CGI programming, especially given the dynamics of the emerging indus-
try in the mid- to late-1990s. Web companies, in contrast to existing software develop-
ment companies, had strong incentives to adopt Perl beyond its suitability for CGI.
Optimizing for performance would require using a compiled language like C, however
Perl could reduce production time and add functionality to a site quickly, something
that was essential given the fast pace of change for web startups in the late 1990s
(Stark, 2011). While Wall noted that mainstream computing companies rejected the
language because they perceived it as “schlocky” (quoted in Kim, 1998), startups like
Amazon and Yahoo relied heavily on Perl. Yahoo, for example, used Perl for numerous
maintenance tasks and product features – these included a program to automatically
to find and remove broken links from its directory, as well as a name recognition pro-
gram that matched news items to company names for Yahoo’s stock market product
(O’Reilly, 1998).

Perl’s growth following the release of Perl 4 had two important consequences for
the work of developing and maintaining the language. On the one hand there was an
increasing number of programmers willing and able to contribute to Perl’s core

INTERNET HISTORIES 271

development, much of which involved porting the language to different architectures.
On the other, as Perl became more widely used, it began to fragment. Wall had seen
how tcl, another scripting language, had spawned several “custom” versions that
added features for interfacing with particular databases or other specific uses (Wall
interview). The same process began to affect Perl, for example with Kevin Stock’s ora-
perl, a customized version of the perl interpreter designed to interface with Oracle
databases. Running an oraperl script through the normal perl interpreter would simply
cause the program to die. And so Wall, after his experiences with rn and patch, faced
another situation where his program was evolving outside of his control and generat-
ing compatibility issues and potential confusion. The solution was both technological
and social. First, for Perl 5, Wall wrote an extension mechanism that provided a stand-
ard format for incorporating such custom code. Second, this was accompanied by
efforts to coordinate and centralize the development of Perl modules (Bunce, 1994),
eventually leading to the Comprehensive Perl Archive Network (CPAN). Once again,
Wall sought to achieve synthesis between opposing desires – keeping Perl core devel-
opment integrated on the one hand, and encouraging growth and evolution on
the other.

Cultural synthesis

This emphasis on integrating Perl also led to collaboration between Perl 5’s volunteer
core developers and a commercial vendor supported by Microsoft. In 1995, Microsoft
agreed to fund a port of Perl 5 to Windows, however the code soon forked into two
separate projects: the commercial vendor, ActiveWare (later ActiveState), optimized
Perl to work with Microsoft’s NT server product, while volunteers coordinated on the
Per5-porters mailing list to improve compatibility between the Unix and Windows ver-
sions of Perl. In 1997, with encouragement and support from O’Reilly & Associates as
well as Larry Wall, the two project teams began to coordinate regularly on “Oneperl,”
producing a shared source tree (and thus compatibility) by the summer of 1998 with
the release of Perl 5.005. The collaboration was unique at the time, and ActiveState
represented a model of how a company could justify its actions within different orders
of worth, switching between civic and market worlds depending on whether its audi-
ence was the free software developers it relied on or the company’s corporate clients
and end-users.

The collaboration between the Perl core developers and ActiveWare was facilitated
by another business relationship: in 1996, O’Reilly & Associates hired Larry Wall as
senior software developer to work on Perl-related products. Wall called his employ-
ment “a form of patronage” (quoted in Tamiya, 2001), fulfilling the desire he expressed
years earlier on Usenet (Wall, 1988c). In another interview, Wall explained that his pos-
ition allowed him to exercise control over Perl’s commercialization, in particular ensur-
ing integration. In reference to the different versions of Win32 Perl, he noted:

[W]e actually see this sort of fragmentation in the Linux market. And I’ve taken a slightly
different tack than Linus Torvald [the creator of Linux] has. He’s gone to work for a chip
manufacturer because he wants to stay totally out of the fray. My feeling on that matter
is: I know that there has to be some growth in the commercial area as well as in the

272 M. STEVENSON

freeware area. So I’d like to be close enough to that action that I can sort of bless some
aspects and not-bless other aspects of it.

That’s the main motivation for me coming to O’Reilly a year ago. So that I could be part
of this and sort of boot up the commercial aspects of this in a controlled fashion (quoted
in McMillan, 1997).

Here, Wall’s actions and how he justifies them suggests synthesis between three
ways of valuing Perl and the various connections made between free software and
commercial entities: civic values, to the extent that all sides would put extra work into
ensuring compatibility; market values, to the extent that these efforts could be framed
as ensuring a stronger competitive position for Perl and Perl-related products; and, in
particular for Wall, the value of maintaining control over Perl’s identity.

Organizational synthesis

Beginning in 1996, several initiatives were launched to promote and legitimize Perl,
although these diverged notably in character. On the one hand, there were centralized
operations that sought to promote Perl to the mainstream computing world and
potential corporate users, while on the other were grassroots efforts that promoted
informal community and volunteer participation.

The first group included The Perl Institute, a non-profit founded by Wall, Schwartz
and Christiansen in 1996 that listed among its original goals to “keep Perl free by […]
interfacing between the freeware and commercial communities” (Schwartz, 1996). The
Perl Institute had an ambitious vision of Perl conferences and corporate training pro-
grams to fund Perl development (Maxwell, 1996), however little would come of this as
the institute was dissolved in 1999 following financial troubles. The first annual Perl
Conference, organized by O’Reilly & Associates in August 1997, was more successful.
The conference had just over a thousand attendees, and was organized along three
tracks: core development, Perl for Windows, and Perl for the web. In addition to pro-
moting Perl as what O’Reilly called “the Intel of the information revolution” (McMillan,
1997), the conference aimed to showcase how free software as a commercial oppor-
tunity. The latter point was driven home in particular in the two keynotes: Wall
opened the conference with a talk about Perl culture that also served as a call for
cooperation between the free software and business communities, while Eric
Raymond presented “The Cathedral and the Bazaar” for the first time in the US, and
thus the argument that the informal, collaborative style of free software production
seen in Perl, Apache and Linux yields better software than top-down structures.

The second group consisted of informal, grassroots efforts such as Perl Mongers,
which began in 1997 as a New York City users group. The format spread to several
hundred other cities both in the US and abroad within the next 2 years (Michalski,
1999), and many of these groups remain active in the late 2010s. Perl Mongers meet-
ings range from informal after-work events to small events with invited speakers.
Another grassroots effort was the annual Yet Another Perl Conference (YAPC), organ-
ized by Carnegie Mellon graduate student Kevin Lenzo in 1998. From the start, YAPC
was clearly distinguished from O’Reilly’s Perl Conference. From the insider’s name (a
reference to Unix software called Yet Another Compiler-Compiler) and cheap

INTERNET HISTORIES 273

registration ($60 USD and free for Carnegie Mellon students) to the informal nature of
its talks and its location on the East Coast, the conference seemed in some sense an
exercise in subcultural distinction. Where the Perl Conference served largely to legitim-
ize Perl to an outside world of mainstream computing companies and potential com-
mercial interests, YAPC aimed to facilitate the kind of deep affection felt by those who
already identified with the language, as well as providing a platform for peer
recognition.

Despite some obvious differences between the two kinds of initiative, both sides
saw the relationship as complementary and cooperative rather than competing. On
the one hand, the Perl Mongers team was careful to coordinate with The Perl Institute
and define its mission in terms separate from those of the Institute (Michalski, 1999),
and when The Perl Institute dissolved, its board voted to gift the few resources it had
to the Perl Mongers organization. On the other hand, the Perl Conference provided
the opportunity for the first face-to-face gathering of around 50 core Perl developers
at Wall’s home, mirroring the kind of informal and collegial setting among insiders
that YAPC would seek to create, while O’Reilly and ActiveState were among the con-
ference sponsors for YAPC. Organizationally, then, Perl resisted any single logic, a situ-
ation made possible by an informal hierarchy and Wall’s benevolent dictatorship. For
Wall, this informal structure was motivated by more than pragmatism. Rather, it was
essential to sustaining the creative energy needed for the project (both his own and
that of the community). This is seen for example in how he regularly dismissed
the idea of submitting Perl to a standards organization, as such “headless standards
committees tend to reduce everything to mush” (quoted in Kim, 1998).

Perl and the inspirational order of worth

The many ways in which Perl synthesized opposing practices or values were not lost
on Wall, who actively culled together an image of Perl as an unorthodox upstart
within the history of computing. In conference talks and interviews, Wall often return
to the same theme: Perl’s idiosyncrasy lies in its flexibility and its embrace of contra-
dictions, and this in turn fuels Perl’s success. Beyond theorizing Perl, Wall regularly
used his acclaimed keynotes to provide a kind of “moral education” aimed at both the
free software community and the increasing industry presence at Perl and Open
Source conferences. For instance, in Wall’s keynote at the O’Reilly conference in 1997,
he argued that if there is “an important idea in Perl Culture, it’s this: that too much
control is just as deadly as too little control.” Wall went on to explain that the
language’s success was due to an intellectual flexibility – a way of seeing convergence
in ideas that appear at first to be incompatible – and a corresponding practice of
allowing this set of ideas to evolve (Wall, 1997). The latter he compared to the work
of the “best artists […] who see a work of art beginning to take shape, and are able
to exercise just the right amount of control to let the art have its own way” (ibid).

Wall then drew this lesson out to an explicit appeal to free software supporters and
industry executives to apply the same kind of intellectual flexibility: “[A]sk yourself
whether your belief system is closed or open […] Can you imagine Perl evolving to
fill new ecological niches, while still remaining the same comfortable, old Perl?” Rather

274 M. STEVENSON

than hold onto old convictions and ideas, both sides could “help us do something
new. A new model of cooperation is emerging” (ibid).

If Perl succeeded because of the contradictory beliefs designed into it, and because
it balanced control with a lack of control, how could this form of positioning be trans-
lated to the larger question it now faced about commercialization? It’s important to
note that the “new model of cooperation” that Wall had in mind as a solution was not
what Raymond called the bazaar model of free software development. Rather, it was
the model of cooperation on display at the conference: Perl’s association with O’Reilly,
and ActiveWare’s intermediary role between the Perl community and Microsoft.
O’Reilly could promote and legitimize Perl to a larger audience in a way that Wall and
free software advocates could not, while it also profited from selling Perl products.
ActiveWare demonstrated commitment to the Perl commons while it also sought to
open up a commercial market for proprietary additions to free software. It was a mat-
ter of finding a middle ground between two different ways of valuing software and
justifying the vast efforts involved in its production, namely the civic and market
orders of worth.

How was this cease-fire possible? Between the lines in Wall’s keynote, the answer is
clear: through a mutual commitment to the integrity and autonomy of Perl itself (and
by extension its author). In this light, Wall’s metaphor of Perl as art is crucial, as it
serves to insert a third, inspirational order of worth, or means of calculating Perl’s
value. As art, Perl is valued for its originality and understood as an agent in its own
right, something that evolves largely according to an interior logic. In this metaphor,
the software is not tainted by commercial interest or market success (or, on the other
side, the conservatism of a standards committee) so long as Perl’s autonomy and self-
determination are not compromised. In this natural development, Perl can evolve to
“fill new ecological niches,” commercial or otherwise, while remaining “the same old
comfortable Perl” (ibid).

Wall’s appeal to the inspirational order of worth served to smooth over contradic-
tions in Perl culture at the same time that it helped make the case that Perl and other
open-source software represented a break from computing tradition. Although the
theme runs throughout Wall’s books, documentation and interviews in the 1990s, it is
most explicit in Wall’s keynote from the LinuxWorld Expo in 1999, titled “Perl, the first
postmodern computer language.” Drawing again on analogies to cultural production –
music, art, architecture, journalism - Wall sets up an opposition between modern and
postmodern computing. Perl and Linux were the first examples of the latter, as they
left behind the modernist cults of spareness, originality, seriousness and objectivity.
Perl and Linux were unabashedly pastiche while leaving behind the “Serious Business”
of closed-source software. Finally, this argument is folded back into Wall’s definition of
an ideal open-source subject. At the peak of financial speculation around Linux, and
when various Linux tribes competed along the fault line between market- and civic-
oriented actors, and when the same rift still affected Perl, Wall argued that there were
two kinds of joiners. Where modern joiners naturally gravitated to the prototypical
center of a tribe, the “open source movement is energized by the other sort of joiner,”
one who looked a lot like Perl:

INTERNET HISTORIES 275

This sort of person joins many tribes. These are the people who inhabit the intersections
of the Venn diagrams. They believe in ANDs rather than ORs. […] I call these people
“glue people,” because they not only join themselves to a tribe, they join tribes together
(Wall, 1999).

From his early work on rn and patch to the language design principles expressed
in Perl, and from his earliest Usenet postings and the dual license to a variety of
books, interviews and conference talks, Wall’s contributions to free and open source
software go beyond technical facilitation. Just as importantly, this work provided a
moral education that was unique in its emphasis on “joining” not just competing sys-
tems but competing belief systems. What made the market- and civic-oriented actors
compatible was a set of technical, legal, social and discursive practices that were justi-
fied in terms of their devotion to the larger project of Perl, and thus drew heavily on
the conventions Boltanski and Th�evenot associate with the inspirational mode of
justification.

Postscript

Five ceramic coffee mugs flew in sequence through the air, one of them breaking into
pieces as it made impact with the wall of the hotel’s meeting room. The message
these mugs sent, directed at a small group of Perl developers gathered in a side-ses-
sion during the 2000 Perl conference, was that something had to change. The discus-
sion had turned to the Perl community, how it was stagnating and fragmenting. The
cause was unclear. Was it because technical limitations inherent in Perl’s design were
revealing themselves as its usage expanded? Had Perl’s informal hierarchy and loose
mix of centralized and grassroots organization reached its limits? Was it the fact that
Perl’s major niche, the web industry, increasingly adopted Python, PHP and Javascript?
Or, in retrospect, was it one of so many signs that the dot.com bubble was starting to
burst? Maybe it was all of these things.

The solution was also not clear, and before mugs started flying over their heads
the participants were half-heartedly proposing ideas for a Perl constitution, in order to
formalize and institutionalize changes to how Perl was run. Mug-thrower Jon Orwant
devised his piece of theater, however, to argue that they were looking in the wrong
place. If people were not excited about a constitution, they should ditch that idea and
find a better one. He used Napster, the controversial mp3 sharing program with an
innovative peer-2-peer infrastructure, as an example of a big idea that people were
excited about. The light bulb went on in Wall’s head. Yes, the problem was about Perl
5’s limitations and changing technological needs, and it was also about the Perl com-
munity. However, the solution to these problems was not to make incremental
improvements or to institutionalize; the solution was to inspire the community, and to
break from the past. Wall decided they would rewrite Perl from scratch, even making
the radical move of breaking backward compatibility, something that had been a hall-
mark of Perl development. But wouldn’t Perl 6 just speed up Perl’s demise as Perl 5
development stalled even further? No, Wall would say, that assumed they had to
choose between one or the other.

276 M. STEVENSON

Perl 6, though, hit several roadblocks. In the face of the economic downturn
O’Reilly laid off a large portion of his staff in 2001, including Wall. Wall also became
severely ill, losing at least a year of Perl development. Perl was hurt by brain drain, as
key members of the community took non-Perl jobs. Perl 6’s development trudged for-
ward, but in its nearly 20-year history implementations have yet to live up to the lofty
goals outlined by Wall and the community at the outset. As the years passed, news of
Perl’s death began to appear with regularity. Much like we are prone to mourning the
spirit of the early web, accounts of Perl’s death carry a tinge of nostalgia for a time
when programming felt fun and experimental while also serious and important (fit-
tingly, the earliest predictions of Perl’s fate can be found in an article entitled “The joy
of Perl” [Leonard, 1998]). Perhaps instead of mourning the passing of Perl and the
early web, though, we should mine those pasts for lessons that will help us make
such things new again.

For historians of the technology and culture of the early web, Perl’s story carries
at least two important lessons. First, it serves as a reminder that understanding
technological change requires going beyond structural explanations. Perl’s success
was certainly a case of being in the right place at the right time, in that it was so
clearly suited to the specific technological and economic context of the 90s web.
However, Perl was not invented in order to meet these needs, and its innovative
technical character was instead grounded in Wall’s specific interventions within the
world of (free) software production. Perl emerged from a particular computing cul-
ture – the set of existing technologies, practices and values associated with Usenet
and Unix – as well as Wall’s critical reflections on this culture. Second, Perl’s history
helps to contextualize the either/or logic through which critics view open source
projects, and perhaps by extension the communitarian spirit of the early web,
where the presence of capital is seen to contaminate and deflate any political
potential (e.g. Morozov, 2013). As O’Niel (2011, p. 5) argues in relation to Wikipedia,
the politics of peer production lies in communities’ “conscious rejection of alien-
ation,” and thus in how these ad-hoc organizations aim not just to create demo-
cratic structures able to resist outside pressures, but feelings of unity, belonging
and purpose. In this light, Wall’s efforts both as a language designer and as the
leader of the Perl community can be succinctly described as what O’Niel calls
“critiques of separation”:

The critical operations of people in commons-based peer production projects are critiques
of separation: in a world which denigrates solidarity and promotes division into ever-
smaller market segments, participants in these projects seek a feeling of unity between
their identities as consumers and producers, between their status as experts and
amateurs, between their roles as leaders and followers, between their activities of work
and play, and between themselves and their fellow participants in the project – a project
which they see, more often than not, as a cause to defend (ibid: p. 5–6).

What Perl’s history adds to this observation is that such collective projects are justi-
fied, organized and mobilized not only in accordance with civic values of solidarity
and egalitarianism, but also – and in Perl’s case, more so – by drawing on an inspir-
ational order of worth and its value system centered around creativity, authorship
and passion.

INTERNET HISTORIES 277

Lessons drawn from Perl’s history carry practical value at a time when the web’s
past is often called upon to imagine alternatives to its present. Revitalizing the open
web or building sustained alternatives to what are broadly perceived as the failings of
corporate platforms is certainly possible, and both disaffection with the present state
of the web as well as conscious efforts to address this are clearly visible. However, I
would argue that the success of these efforts will depend not just on how well they
match up with more-or-less shared notions of fairness in political economic terms, but
also whether they offer an inspired vision of transformation.

Notes

1. Hereafter I refer to the World Wide Web as ‘the web,’ and this article adheres to
conventional distinctions between the web and the internet as well as other networked
computing systems such as Usenet. Although Perl is used widely in a range of applications
built on top of the internet and other computer networks, as I outline in this article its
history is particularly entangled with that of the web.

2. “Having it both ways” is consciously similar to Perl’s central motto, “there’s more than one
way to do it.” In addition to embracing a recursive relationship between the two phrases,
I’ve chosen the former because I wanted to emphasize the simultaneous presence of two
value systems in a single person, social group or object.

Acknowledgements

Thank you to Robert Prey and the anonymous reviewers for their helpful comments.

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

References

Barbrook, R. (1998). The Hi-Tech gift economy. First Monday, 3(12). Retrieved from http://www.
firstmonday.org/issues/issue3_12/barbrook/

Boltanski, L., & Th�evenot, L. (2006). On justification: economies of worth. (C. Porter, Trans.) (New
Ed edition). Princeton: Princeton University Press.

Bourdieu, P. (1993). The field of cultural production. In R. Johnson (Ed.) (1st ed.). New York:
Columbia University Press.

Bunce, T. (1994). The Perl 5 Modules List (long). comp.lang.perl. Retrieved from https://groups.
google.com/d/msg/comp.lang.perl/nD0NTU4hxyc/uuUsF2j7Ud4J

Coleman, E. G. (2012). Coding freedom: The ethics and aesthetics of hacking. Princeton: Princeton
University Press.

Davis, E. (n.d.). Re: Larry Wall. Retrieved March 8, 2018, from https://web.archive.org/web/
19991009192946/http://www.feedmag.com/re/re172.2.html

Garfinkel, S. (1997). Perl: The web is its oyster. Retrieved March 14, 2018, from https://www.
wired.com/1997/01/perl-the-web-is-its-oyster/

Hauben, M., & Hauben, R. (1997). Netizens: On the history and impact of usenet and the internet
(1st ed.). Wiley-IEEE Computer Society Pr.

Kelty, C. (2008). Two Bits: The cultural significance of free software. Durham: Duke University Press
Books.

278 M. STEVENSON

http://www.firstmonday.org/issues/issue3_12/barbrook/
http://www.firstmonday.org/issues/issue3_12/barbrook/
https://groups.google.com/d/msg/comp.lang.perl/nD0NTU4hxyc/uuUsF2j7Ud4J
https://groups.google.com/d/msg/comp.lang.perl/nD0NTU4hxyc/uuUsF2j7Ud4J
https://web.archive.org/web/19991009192946/http://www.feedmag.com/re/re172.2.html
https://web.archive.org/web/19991009192946/http://www.feedmag.com/re/re172.2.html
https://www.wired.com/1997/01/perl-the-web-is-its-oyster/
https://www.wired.com/1997/01/perl-the-web-is-its-oyster/

Kim, E. E. (1998). A conversation with Larry Wall. Retrieved March 8, 2018, from http://www.
drdobbs.com/a-conversation-with-larry-wall/184410483

Leonard, A. (1998). The joy of Perl. Salon. Retrieved March 14, 2018, from https://www.salon.
com/1998/10/13/feature_269/.

Lialina, O. (2005). A vernacular web. Retrieved March 17, 2018, from http://art.teleportacia.org/
observation/vernacular/

Markoff, J. (1993). A free and simple computer link. Retrieved January 19, 2011, from http://
www.nytimes.com/library/tech/reference/120893markoff.html

Maxwell, N. (1996). The Perl institute. The Perl Journal, 1(3). Retrieved from http://www.foo.be/
docs/tpj/issues/vol1_3/tpj0103-0009.html

McHugh, J. (1998). For the love of hacking. Retrieved March 6, 2018, from forbes/1998/0810/
6203094a

McMillan, R. (1997). Perl: the challenges ahead. Retrieved March 18, 2018, from https://web.arch-
ive.org/web/19990203011331/http://www.sunworld.com/swol-08-1997/swol-08-wall.html

Michalski, B. (1999). What the heck is a Perl Monger?! Retrieved March 16, 2018, from https://
www.perl.com/pub/1999/01/foy.html/

Morozov, E. (2013). The Meme Hustler. The Baffler, (22). Retrieved from http://www.thebaffler.
com/salvos/the-meme-hustler

O’Reilly, T. (1998). The open-source revolution. Release 1.0, 3–26.
Raymond, E. S. (1999). Revenge of the hackers. In C. DiBona, D. Cooper, & M. Stone (Eds.),

Open sources 2.0: the continuing evolution (Vol. 1, pp. 207–219). Sebastopol, CA: O’Reilly
Media, Inc.

Raymond, E. S. (2003). The art of UNIX programming. Addison-Wesley Professional.
Schwartz, R. (1996). Announcing: The Perl Institute: Helping people help Perl help people. com-

p.lang.perl.misc (Usenet). Retrieved from https://groups.google.com/d/msg/comp.lang.perl.
misc/ow2bcc8TmVQ/Ploe0WIm9HwJ

Silver, D. (2008). History, hype, and hope: An afterward. First Monday, 13(3). Retrieved from
http://firstmonday.org/ojs/index.php/fm/article/view/2143

Stallman, R. (1985). The GNU manifesto. Retrieved from https://www.gnu.org/gnu/manifesto.en.
html

Stark, D. (2011). The sense of dissonance: Accounts of worth in economic life. Princeton
University Press.

Tamiya, M. (2001). LWN interview: Larry Wall. Retrieved March 8, 2018, from http://lwn.net/2001/
features/LarryWall/

Wall, L. (1984a). HARK! The rn kit has been posted. net.news (Usenet). Retrieved from https://
groups.google.com/d/msg/net.news/1qvOELAhg7A/Ewk6hGu9_AcJ

Wall, L. (1984b). rn–first blood. net.news.b (Usenet). Retrieved from https://groups.google.com/d/
msg/net.news.b/heI8-vVnb8c/zT1CN2OOYs4J

Wall, L. (1985). The REAL rn (rn 4.3 - part 0 of 9). mod.sources (Usenet). Retrieved from https://
groups.google.com/d/msg/mod.sources/ZGohbRfEi2w/a9BZgi_KnjoJ

Wall, L. (1988a). Perl 1.0 patch #1. comp.sources.d (Usenet). Retrieved from https://groups.goo-
gle.com/d/msg/comp.sources.d/8Iqjvcfoz6s/PRxoaauMulAJ

Wall, L. (1988b). v13i001: Perl, a “replacement” for awk and sed, Part01/10. comp.sources.unix
(Usenet). Retrieved from https://groups.google.com/d/msg/comp.sources.unix/Njx6b6TiZos/X-
JaOCXhPrsJ

Wall, L. (1988c). “Free” software. comp.sources.d (Usenet). Retrieved from https://groups.google.
com/d/msg/comp.sources.d/HmNVNWuxN1o/srlQwmj6F10J

Wall, L. (1989). v20i084: Perl, a language with features of C/sed/awk/shell/etc, Part01/24. comp.-
sources.unix (Usenet). Retrieved from https://groups.google.com/d/msg/comp.sources.unix/5_
Hg-th6I7w/5pdJ7frTphwJ

Wall, L. (1991). The Artistic License. Retrieved from https://opensource.org/licenses/Artistic-
Perl-1.0

Wall, L. (1997). Perl culture. Retrieved March 20, 2018, from https://web.archive.org/web/
20080924193858/http://www.wall.org:80/�larry/keynote/keynote.html

INTERNET HISTORIES 279

http://www.drdobbs.com/a-conversation-with-larry-wall/184410483
http://www.drdobbs.com/a-conversation-with-larry-wall/184410483
https://www.salon.com/1998/10/13/feature_269/
https://www.salon.com/1998/10/13/feature_269/
http://art.teleportacia.org/observation/vernacular/
http://art.teleportacia.org/observation/vernacular/
http://www.nytimes.com/library/tech/reference/120893markoff.html
http://www.nytimes.com/library/tech/reference/120893markoff.html
http://www.foo.be/docs/tpj/issues/vol1_3/tpj0103-0009.html
http://www.foo.be/docs/tpj/issues/vol1_3/tpj0103-0009.html
https://web.archive.org/web/19990203011331/http://www.sunworld.com/swol-08-1997/swol-08-wall.html
https://web.archive.org/web/19990203011331/http://www.sunworld.com/swol-08-1997/swol-08-wall.html
https://www.perl.com/pub/1999/01/foy.html/
https://www.perl.com/pub/1999/01/foy.html/
http://www.thebaffler.com/salvos/the-meme-hustler
http://www.thebaffler.com/salvos/the-meme-hustler
https://groups.google.com/d/msg/comp.lang.perl.misc/ow2bcc8TmVQ/Ploe0WIm9HwJ
https://groups.google.com/d/msg/comp.lang.perl.misc/ow2bcc8TmVQ/Ploe0WIm9HwJ
http://firstmonday.org/ojs/index.php/fm/article/view/2143
https://www.gnu.org/gnu/manifesto.en.html
https://www.gnu.org/gnu/manifesto.en.html
http://lwn.net/2001/features/LarryWall/
http://lwn.net/2001/features/LarryWall/
https://groups.google.com/d/msg/net.news/1qvOELAhg7A/Ewk6hGu9_AcJ
https://groups.google.com/d/msg/net.news/1qvOELAhg7A/Ewk6hGu9_AcJ
https://groups.google.com/d/msg/net.news.b/heI8-vVnb8c/zT1CN2OOYs4J
https://groups.google.com/d/msg/net.news.b/heI8-vVnb8c/zT1CN2OOYs4J
https://groups.google.com/d/msg/mod.sources/ZGohbRfEi2w/a9BZgi_KnjoJ
https://groups.google.com/d/msg/mod.sources/ZGohbRfEi2w/a9BZgi_KnjoJ
https://groups.google.com/d/msg/comp.sources.d/8Iqjvcfoz6s/PRxoaauMulAJ
https://groups.google.com/d/msg/comp.sources.d/8Iqjvcfoz6s/PRxoaauMulAJ
https://groups.google.com/d/msg/comp.sources.unix/Njx6b6TiZos/X-JaOCXhPrsJ
https://groups.google.com/d/msg/comp.sources.unix/Njx6b6TiZos/X-JaOCXhPrsJ
https://groups.google.com/d/msg/comp.sources.d/HmNVNWuxN1o/srlQwmj6F10J
https://groups.google.com/d/msg/comp.sources.d/HmNVNWuxN1o/srlQwmj6F10J
https://groups.google.com/d/msg/comp.sources.unix/5_Hg-th6I7w/5pdJ7frTphwJ
https://groups.google.com/d/msg/comp.sources.unix/5_Hg-th6I7w/5pdJ7frTphwJ
https://opensource.org/licenses/Artistic-Perl-1.0
https://opensource.org/licenses/Artistic-Perl-1.0
https://web.archive.org/web/20080924193858/http://www.wall.org:80/<larry/keynote/keynote.html
https://web.archive.org/web/20080924193858/http://www.wall.org:80/<larry/keynote/keynote.html

Wall, L. (1999). Perl, the first postmodern computer language. Presented at the LinuxWorld, San
Jose, CA. Retrieved from http://www.wall.org/�larry/pm.html

Wolf, G. (1994). The (second phase of the) revolution has begun. Retrieved February 16, 2016,
from http://www.wired.com/1994/10/mosaic/

280 M. STEVENSON

http://www.wall.org/<larry/pm.html
http://www.wired.com/1994/10/mosaic/

	Outline placeholder
	Introduction: Perl and the exceptionalism of the 90s web
	Free software and the civic order of worth: rn, patch and metaconfig
	From the GPL to dual licensing
	Perls culture of synthesis
	Technological synthesis
	Cultural synthesis
	Organizational synthesis

	Perl and the inspirational order of worth
	Postscript
	Notes
	Acknowledgements
	References

