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Estimating the input of a Lévy-driven queue
by Poisson sampling of the workload process
LIRON RAVNER1,2 , ONNO BOXMA2 and MICHEL MANDJES1

1University of Amsterdam, Korteweg-de Vries Institute for Mathematics, Science Park, Amsterdam,
1098XG, Netherlands. E-mail: l.ravner@uva.nl
2Eindhoven University of Technology, Department of Mathematics and Computer Science, 5600MB, Eind-
hoven, Netherlands.

This paper aims at semi-parametrically estimating the input process to a Lévy-driven queue by sampling
the workload process at Poisson times. We construct a method-of-moments based estimator for the Lévy
process’ characteristic exponent. This method exploits the known distribution of the workload sampled
at an exponential time, thus taking into account the dependence between subsequent samples. Verifiable
conditions for consistency and asymptotic normality are provided, along with explicit expressions for the
asymptotic variance. The method requires an intermediate estimation step of estimating a constant (related
to both the input distribution and the sampling rate); this constant also features in the asymptotic analysis.
For subordinator Lévy input, a partial MLE is constructed for the intermediate step and we show that it
satisfies the consistency and asymptotic normality conditions. For general spectrally-positive Lévy input a
biased estimator is proposed that only uses workload observations above some threshold; the bias can be
made arbitrarily small by appropriately choosing the threshold.

Keywords: Lévy-driven queue; nonparametric estimation; Poisson probing; transient queueing; queue
input estimation

1. Introduction

To optimally design and control queueing systems, it is of great importance to have reliable esti-
mates of the model primitives such as the arrival rate and the service-time distribution. In many
situations, however, one cannot observe the users’ interarrival times and service times; instead,
one only has periodic observations of the workload process. This leaves us with the challenging
task of inferring the model primitives from such workload observations. A complicating factor is
that subsequent observations are dependent. As a consequence, standard estimation techniques
(such as maximum-likelihood estimation) are not applicable in almost all queuing systems.

This work focuses on the problem described above in the setting of a single-server queue
with work arriving according to a spectrally-positive Lévy inputs process, i.e., a Lévy process
X(·) with only positive jumps. The resulting model includes the M/G/1 queue as a special case;
then the input process is a Compound Poisson (CP) process. The set of spectrally-positive Lévy
input processes, however, is substantially broader than CP: it covers a broad range of other
relevant processes, such as Brownian motion, the Gamma process and the Inverse Gaussian
process. The Lévy input process is uniquely defined by its characteristic exponent function
ϕ(α) := log Ee−αX(1), with α ≥ 0 [27]. We assume that ϕ(·) is unknown and it is therefore the
objective to estimate this function. For a detailed account of Lévy-driven queues we refer to [11].
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Approach. In our approach, we exploit the fact that, given some initial workload, there is an
explicit expression for the Laplace–Stieltjes Transform (LST) of the workload after an exponen-
tially distributed time; see, for example, [26]. When the workload is sampled at random times
according to an independent Poisson process (with some specified rate ξ ), this LST enables us to
deal with the dependence between the subsequent workload observations. In particular, method
of moments estimation is carried out by equating the empirical and conditional expected LST,
thus obtaining so called Z-estimators [35]. Our setting can be viewed as non-parametric in the
sense that we do not make specific distributional assumptions about the input process except that
it is a spectrally-positive Lévy process. However, we use parametric estimation techniques for
pointwise estimation of the exponent function.

There is the complication that, due to the specific form of the above-mentioned LST, it is
necessary to first estimate ϕ−1(ξ), that is, the inverse of ϕ at the sampling rate ξ . This interme-
diate step is also crucial for determining the asymptotic performance of the estimator for ϕ(α).
In particular, we show that consistency and asymptotic normality in the intermediate step (to
estimate ϕ−1(ξ), that is) carry over to consistency and asymptotic normality in the main esti-
mation step (to estimate ϕ(α)). For the case of subordinator input (i.e., a Lévy process whose
paths are non-decreasing almost surely) we construct a maximum-likelihood procedure for esti-
mating ϕ−1(ξ), which we show to be consistent and asymptotically normal. This result therefore
covers the special cases of the driving Lévy process being CP, a Gamma process and an Inverse
Gaussian process. For general spectrally-positive Lévy input, that is, also including a Brownian
motion component, we provide an estimation method for ϕ−1(ξ) that uses workload observations
only above some threshold; this procedure is inherently biased, but the bias can be controlled by
choosing the threshold parameter appropriately.

Later in this Introduction, we describe in detail the differences with existing estimation ap-
proaches. A major difference is that previous papers tend to aim at using workload observations
to estimate quantities pertaining to the steady-state workload distribution, from which the model
primitives are then inferred, whereas we explicitly use the knowledge of the dependence between
two subsequent workload observations.

Main contributions. We now summarize the main contributions of our work.

• Thus far, the literature has mostly focused on the case of Compound Poisson input, whereas
we address the larger class of spectrally-positive Lévy processes.

• In our approach we do not rely on estimating quantities pertaining to the steady-state work-
load distribution, but rather explicitly use the system’s correlation structure.

• We provide verifiable conditions for consistency and asymptotic normality of our estimator
(including an expression for the asymptotic variance). These conditions are verified for the
case of subordinator input, thus implying the asymptotic properties for the special case
of CP. When ϕ(α) is estimated for multiple values of α simultaneously, we provide the
corresponding asymptotic covariances.

• The idea to use a Z-estimator in this Lévy-driven setting is novel. As mentioned, our ap-
proach requires knowledge of ϕ−1(ξ), for which we present an estimation procedure.

• We present simulation examples that explore the accuracy of the procedure. These show that
the accuracy is generally good, but degrades for large α (because the asymptotic variance of
the error increases with α). We also observe that the accuracy is best for low ξ , which is to
be expected: when ξ is high, the workload process is very frequently sampled, such that new
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observations offer hardly any new information. As mentioned, for non-subordinator input
the estimator of ϕ−1(ξ) is biased, but our experiments show that the accuracy is high, even
for a relatively low threshold.

Background and related literature. Observing a system at Poisson times is commonly known
as Poisson probing. In communication networks it has been used to estimate (steady-state) packet
delays in a network with unknown traffic input [2,34]. In a practical implementation of Poisson
probing, very small jobs are sent through the system and their delays are recorded. This method
relies on the Poisson Arrivals See Time Averages (PASTA) property: the stationary distribution
coincides with the distribution observed at Poisson instants; theoretical justification can be found
in, for example, [14,36].

In the M/G/1 case, the queue is fed by a Poisson arrival process with rate λ, whereas the
service-times are i.i.d. random variables Gi ∼ G with LST G∗. In [8], a non-parametric ap-
proach is proposed for estimating λ and the LST of G using observations of the lengths of the
busy and idle periods. This procedure overcomes the issue of dependent observations as busy
periods are independent, but it may require a very long observation period to get a large sam-
ple of busy periods, especially in heavily loaded systems. The estimator exploits the fixed-point
equation B∗(α) = G∗(α + λ(1 − B∗(α))), where B∗ is the LST of the busy period, and uses an
estimator Ĝn(α) based on the empirical LST of the busy periods (with n observations). The esti-
mator is consistent and asymptotically normal:

√
n(Ĝn(·)−G∗(·)) converges in distribution to a

Gaussian process. Reference [20] provides a nonparametric procedure for estimating the service-
time distribution, using an equidistant sample of the workload. It consists of two steps: (1) es-
timating the residual service-time distribution by inverting the convolution workload formula,
FV = (1 −ρ)

∑∞
k=0 ρkG�k

e , where FV is the stationary cdf of the workload and G�k
e is the k-fold

convolution of the residual service-time distribution, and (2) then estimating the service-time dis-
tribution itself. As the first step relies on the stationary workload distribution, the procedure does
not use any knowledge on the dependence between observations. Nevertheless, the estimation of
the residual service-time distribution is shown to be consistent and asymptotically normal under
some conditions on the system load. For the second step only heuristic methods are suggested.
The numerical experiments in [20] show that the procedure performs well for moderately loaded
systems but often performs poorly for systems with low or high load.

A general framework for generalized method-of-moments (GMM) estimators for Markov pro-
cesses sampled according to a Poisson process, that is possibly state and time dependent, is pro-
vided in [12]. As it turns out, the fact that in our setup the quantity ϕ−1(ξ) has to be estimated
entails that we cannot use this approach. In Section 7, we further discuss the relation of our work
with the GMM-based procedure of [12] in the context of our model.

Non-parametric estimation of the stationary waiting time distribution for a GI/G/1 queue was
studied in [30]. If the number of arrivals during a service time can be observed, then estimation
of the service-time distribution reduces to the problem of decompounding Poisson sums, as stud-
ied in [10]. As is often the case, when moving from a single-server queue to its infinite-server
counterpart, the analysis greatly simplifies. The object of interest in this line of research is typi-
cally the service-time distribution, and we refer the reader to [8,9,15,16,33]. A related approach
appeared in [29] where an estimator for the arrival rate is derived by relying on counting the
number of arrivals during a busy period. In [32] diffusion approximations are used.
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Estimation of the model primitives from queue observations also has important managerial
applications, for example, in the contexts of demand estimation [4] and dynamic pricing [1].
In [3], the traffic intensity of a non-homogeneous-in-time queue was estimated using a (non-
Poisson) probing scheme that depends on the service-time of the probes. This list of papers on
statistical inference of queueing systems is by no means exhaustive; see [5] for an extensive
bibliography of this strand of research.

In the present paper, we estimate (the characteristic exponent of) a Lévy process by observing
a Lévy-driven queue. Various papers consider the counterpart in which the Lévy process itself is
observed. We refer to, for example, [7,28]; [17] studies the case of a Lévy process without small
jumps.

Paper organization. The remainder of the paper is organized as follows. Section 2 introduces
the queueing model and sampling scheme. In Section 3, the estimator for ϕ(α) is defined and
conditions for consistency and asymptotic normality are provided. The following two sections
deal with the intermediate estimation step of ϕ−1(ξ). In Section 4 an MLE is constructed for the
subordinator case and it is shown to satisfy the consistency and asymptotic normality conditions.
Section 5 presents an approach for the intermediate step that relies only on workload observations
above some threshold. Further, a bound is derived for the bias and explicitly computed in the
limit when the sample size grows. In Section 6, we numerically analyze the performance of
the estimators using simulated data. Section 7 contains conclusions and suggestions for further
research. Finally, proofs and further technical details are provided in the appendices [31].

2. Model and preliminaries

We study a queue with a spectrally-positive Lévy input process J (t). The distribution of the
process can be represented by the exponent function,

log Ee−αJ (1) = −cα + 1

2
σ 2α2 −

∫
(0,∞)

(
1 − e−αx

)
ν(dx), (1)

where c and σ are non-negative constants and ν is the Lévy jump measure. The output of the
system is a unit-rate negative linear drift. This means that the net input process is X(t) = J (t)− t ,
which is also a spectrally-positive Lévy process. For example, if J (t) is CP with rate λ and jump
size LST G∗, then the exponent function of the net input is ϕ(α) = λ(G∗(α) − 1) + α.

Our objective is to estimate the (unknown) exponent function of the net input process,
ϕ(α) := log Ee−αX(1), with α ≥ 0. Let (V (t))t∈R denote the workload process, which can be
represented as the net input process reflected at zero: V (t) = X(t) + max{V (0),L(t)}, where
L(t) := − inf0≤s≤t X(s). If EX(1) < 0, then the stationary distribution of V := V (∞) is given
by the generalized Pollaczek–Khintchine (GPK) formula [11], p. 27:

Ee−αV = αϕ′(0)

ϕ(α)
. (2)

Furthermore, if σ = 0 then the input process J (t) is a subordinator (i.e., an almost surely non-
decreasing Lévy process), and the stationary probability that the workload is 0 equals

P(V = 0) = ϕ′(0) = −EX(1). (3)
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Figure 1. The workload V (t) of an M/G/1 queue is sampled according to the probing process at times
T1, T2, . . . . The jump sizes and interarrival times are not observed. Inference is made based on the sample
(V (T1),V (T2), . . . ).

This is the is case if, for example, the input is CP (as in the M/G/1 model). Importantly, however,
it also holds for spectrally-positive Lévy input without a Brownian component, that is, a Lévy
jump process with non-negative jumps (covering e.g., the Gamma process and the Inverse Gaus-
sian process).

All asymptotic results presented in this paper require that EX(1) < 0, but in principle the
underlying estimation procedure can still be performed when this assumption is not valid. In
relation to the case of an unstable queue (i.e., if EX(1) ≥ 0), it is noted that, while the estimators
are anticipated to perform reasonably well, other estimation procedures are likely to be more
appropriate due to the fact that (after an initial transient period) one effectively observes the
(non-reflected) net input process (X(t))t∈R.

From now on, we assume that the linear drift component c of the input process (J (t))t∈R is
known. Without loss of generality, we normalize this rate to c = 0, so that the linear drift of
the net input process (X(t))t∈R is −1. If both of the net input process and net output rate are
unknown then there are evident problems of identification, and the estimation problem is not
well defined; such cases are outside the scope of this paper.

Suppose that the workload is observed at n random times, sampled according to an indepen-
dent Poisson process with rate ξ . Denote these times by {Ti}ni=1 such that Ti − Ti−1 are i.i.d.
samples from an exponential distribution with parameter ξ (putting T0 := 0). The sampling pro-
cedure is illustrated for the workload of an M/G/1 queue in Figure 1.

The distribution of the workload at Ti conditional on the workload at sample Ti−1 is

E
[
e−αV (Ti )|V (Ti−1)

] = ξ

ξ − ϕ(α)

(
e−αV (Ti−1) − α

ψ(ξ)
e−ψ(ξ)V (Ti−1)

)
, (4)

see, e.g. [26] and [11], Ch. IV; here ψ is the inverse of ϕ. For α = ψ(ξ), the LST of (4) can still
be computed by applying L’Hôpital’s rule:

E
[
e−ψ(ξ)V (Ti)|V (Ti−1)

] = ξe−ψ(ξ)V (Ti−1)(V (Ti−1) + 1
ψ(ξ)

)

ϕ′(ψ(ξ))
. (5)
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Noting that ϕ(0) = 0, it can be verified that the conditional expected workload at observation
time Ti is

E
(
V (Ti)|V (Ti−1)

) = V (Ti−1) + e−ψ(ξ)V (Ti−1)

ψ(ξ)
− ϕ′(0)

ξ
, (6)

and the conditional second moment is

E
[
V (Ti)

2|V (Ti−1)
] = V (Ti−1)

2 − 2
ϕ′(0)

ξ

(
V (Ti−1) + e−ψ(ξ)V (Ti−1)

ψ(ξ)
− ϕ′(0)

ξ

)
+ ϕ′′(0)

ξ
. (7)

The above holds for any Lévy-driven queue with spectrally-positive input. In the subordinator
case, essentially due to the fact that the workload process spends time at zero with positive
probability, by taking α → ∞ in (4), it turns out that

P
(
V (Ti) = 0|V (Ti−1) = v

) = ξ

ψ(ξ)
e−ψ(ξ)v. (8)

The above results are in terms of LSTs; the joint distribution of the sample can in principle be
evaluated by numerical inversion of the LSTs involved, but this is computationally demanding.
Therefore, in the sequel we use a method-of-moments type estimator that requires finding the
root of a function equating the empirical LST or the empirical moments to their respective ex-
pectations. The term ψ(ξ) = ϕ−1(ξ), which depends on the net input process as well as the
sampling rate, appears in the above expressions. Estimating this quantity plays a crucial role in
this work.

Notation. Much of this work involves large sample asymptotic analysis, and as such we will
frequently make use of the following notations: →P for convergence in probability, →as for
almost sure convergence, →d for convergence in distribution, and ≈ to indicate that two random
sequences have the same limit in probability.

3. Semiparametric estimation of ϕ

This section proposes a Z-estimator for ϕ(α) for a given α > 0. We then study the asymptotic
properties of the estimator, in that we provide conditions for consistency and asymptotic normal-
ity given we know ψ(ξ); the estimation of ψ(ξ) is the topic of the next section. For brevity, we
throughout denote Vi := V (Ti).

Given a sample of workload observations at Poisson times, (V1, . . . , Vn), let ψn denote a se-
ries of estimators for ψ(ξ). In particular, ψn is a function R

n+ → R+ of the first n observations
(V1, . . . , Vn). We do not make any assumptions on ψn for now. Later, however, we impose condi-
tions on this sequence that enable the evaluation of the asymptotic performance of the estimators,
and in addition a specific construction for the special case of subordinator input.

An estimator for ϕ(α) is derived by equating the conditional LST (4) and the empirical LST
and solving

1

n

n∑
i=1

e−αVi = 1

n

n∑
i=1

ξ

ξ − ϕ(α)

(
e−αVi−1 − α

ψn

e−ψnVi−1

)
. (9)
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Letting

Zi(α) := e−αVi − ξ

ξ − ϕ(α)

(
e−αVi−1 − α

ψn

e−ψnVi−1

)
, (10)

the estimator is given by the root of 1
n

∑n
i=1 Zi(α). We rearrange (9) to

ϕ(α) = ξ

[
1 − 1

n

n∑
i=1

(
e−αVi−1 − α

ψn

e−ψnVi−1

)/1

n

n∑
i=1

e−αVi

]
, (11)

yielding the estimator

ϕ̂n(α;ψn) = ξα

ψn

(
ψn

αn

(
e−αVn − e−αV0

) + 1

n

n∑
i=1

e−ψnVi−1

)/1

n

n∑
i=1

e−αVi . (12)

This type of estimator is generally referred to as a Z-estimator [35], Ch. V. Note that in our
case the samples are dependent, thus preventing direct use of classical results on consistency
and asymptotic normality. Another justification for this estimator is that it coincides with the
estimator minimizing the sum of quadratic deviations of the empirical LST from their respective
conditional expectations, that is, minimizing the conditional mean square error (MSE).

Remark 1. This method can also be applied for parametric estimation of the moments. For
example, an estimator for the first moment of the net input process, that is, θ := EX(1), can be
derived. This is done by taking the derivative in (12):

θn = −ϕ̂′
n(0;ψn) = − lim

α↓0

d

dα
ϕ̂n(α;ψn) = − ξ

nψn

n∑
i=1

e−ψnVi−1 . (13)

Alternatively, ϕ̂′
n(0;ψn) could be estimated directly from (6); then the estimation equation would

also include the term (Vn − V0)/n. Clearly, as n grows both estimators coincide. The same pro-
cedure can be followed for the (joint) estimation of higher moments. The estimators of the kth
moment E(X(1)k) follows from

θ(k)
n = (−1)kϕ̂(k)

n (0;ψn). (14)

Remark 2. Recall that at α = ψ(ξ) the conditional LST E[e−αV (Ti )|V (Ti−1)] is not given di-
rectly by (4) but can be computed using L’Hôpital’s rule. In practice, this case will not play a
role, though, as ψn = ψ(ξ) will not occur in our setting in which various continuous random
variables play a role. Specifically, while ϕ̂n(ψn;ψn) = ξ , by construction of the Z-estimator, the
event ϕ̂n(ψ(ξ);ψn) = ξ has zero probability to occur.

3.1. Consistency

The main result presented in this subsection is Theorem 1, claiming that consistency of the esti-
mator ψn implies consistency of the estimator ϕ̂n(α;ψn) for all α > 0. The proof relies on first
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establishing the LLN for the empirical LST using the GPK formula (2) for the stationary distri-
bution of the workload observations at Poisson sampling times. The result is then established by
applying Slutsky’s lemma and the continuous mapping theorem to the estimator given in (12).

Theorem 1. If ψn→Pψ(ξ) as n → ∞, then for every α > 0 the pointwise estimator ϕ̂n(α;ψn)

is consistent: ϕ̂n(α;ψn)→Pϕ(α) as n → ∞.

Proof. If EX(1) < 0, then (V (t))t∈R has a stationary distribution. By PASTA the limit distri-
bution at Poisson sampling instants equals the stationary distribution of (V (t))t∈R, with corre-
sponding random variable V . Denote the Poisson sampling process by N(t), with tn := inf{t :
N(t) = n − 1}. The choice of n − 1 in the definition of the counting process is made for the
sake of brevity in the following analysis due to the observations always appearing as Vi−1 in the
estimation equation (9). Then, as tn → ∞ when n → ∞, Equation (2) implies that for any β ≥ 0,

1

n

n∑
i=1

e−βVi−1 = 1

N(tn)

N(tn)∑
i=1

e−βV (ti )→PEe−βV = βϕ′(0)

ϕ(β)
, (15)

as n → ∞. We define the right-continuous process

H(t) :=
∞∑

n=1

1(tn ≤ t < tn+1)ψn, t ≥ 0, (16)

and observe that H(tn) = ψn for every n ≥ 1. By Slutsky’s lemma [35], p. 11, ψnV (tn) =
H(tn)V (tn) →P ψ(ξ)V as n → ∞. Hence, applying PASTA once more,

1

N(tn)

N(tn)∑
i=1

e−H(tn)V (ti )→P

ψ(ξ)ϕ′(0)

ϕ(ψ(ξ))
. (17)

Furthermore, the term ψn

αn
(e−αVn − e−αV0) converges to zero almost surely if the stability con-

dition EX(1) < 0 holds. Next we can use the fact that ϕ(ψ(ξ)) = ϕ(ϕ−1(ξ)) = ξ and apply the
continuous mapping theorem (see [35], p. 7) to (12), thus obtaining

ϕ̂n(α;ψn)→P

(
αξ

ϕ−1(ξ)ϕ′(0)

ϕ(ϕ−1(ξ))

)/(
ϕ−1(ξ)

αϕ′(0)

ϕ(α)

)
= ϕ(α). (18)

Thus, the pointwise estimator of ϕ(α) is consistent for every α > 0. �

Remark 3. Consider the case of parametric estimation of the (first and higher) moments, as de-
scribed in Remark 1. Using the same arguments, it is straightforward to show that the estimators
are consistent if ψn is consistent.
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3.2. Asymptotic normality of ϕ̂n

In this section, we establish, under specific conditions, asymptotic normality of our estimator
ϕ̂n(α;ψn) as n → ∞: we show that

√
n(ϕ̂n(α;ψn) − ϕ(α)) converges to a zero-mean normal

random variable, for any fixed α > 0. We find an expression for the corresponding asymptotic
variance, so that one can assess the estimation error for large samples.

We then extend this result to a multivariate setting: we establish the joint normality of the
vector

√
n
(
�̂n(α) − (α)

)
, (19)

where α := (α1, . . . , αp), (α) := (ϕ(α1), . . . , ϕ(αp)) for some p ∈ N, and �̂n(α) := (ϕ̂n(α1;
ψn), . . . , ϕ̂n(αp;ψn)). Each of the estimation equations (9) is solved independently for αi , but
they rely on the same sample and are therefore dependent.

We start the section by stating a Central Limit Theorem (CLT) for martingale difference sums.
Lemma 2 below consists of two parts; both are essentially known results, that we customized to
our needs. The first part is the univariate result of [18], Thm. 3.2. The second part is a special
case of the multidimensional extension of [25], Thm. 12.6; here we remark that the result in [25]
relates to continuous time, but as we are only interested in the discrete-time case we present a
more concise statement without the quadratic variation terms.

All convergence statements in the following are as n → ∞; we therefore omit this specification
from now on.

Lemma 2. (a) Let Mn be a discrete-time martingale with respect to a filtration {Fn}n≥0, and
denote

Zni := Mi − Mi−1√
Var(Mn)

, i = 1, . . . , n. (20)

If

E max
1≤i≤n

Z2
ni < ∞, n = 1,2, . . . (21)

and

max
1≤i≤n

|Zni |→P0, (22)

then
∑n

i=1 Zni→dN(0,1).
(b) Let

M
n := (

M(1)
n , . . . ,M

(p)
n

)
be a vector of discrete-time martingales, and let

Z
n :=

(
n∑

i=1

Z
(1)
ni , . . . ,

n∑
i=1

Z
(p)
ni

)
,
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with Z
(k)
ni , for k = 1, . . . , p, the respective normalized differences. If these objects satisfy all

conditions of (a), and

lim
n→∞ E

[
ZnZ


n

] = S, (23)

where S ∈R
p×p is a positive-definite matrix with finite elements, then Zn→dN(0, S).

3.2.1. Univariate asymptotic normality

Recall that the estimation procedure also relies on an external estimator for ψ(ξ). As the CLT
below shows, the asymptotic distribution of

√
n(ψn − ψ(ξ)) and its joint distribution with the

estimator for ϕ(α) play a crucial role in the analysis.

Theorem 3. Suppose that EX(1) < 0 and ψn − ψ(ξ) ≈ 1
n
Mn + Rn such that:

(i)
√

nRn→P0 and Mn is a martingale with respect to (V0, . . . , Vn) that satisfies the condi-
tions of Lemma 2(a),

(ii) limn→∞ Var(Mn)/n = σ 2
ξ < ∞,

(iii) limn→∞ 1
n

∑n
i=1 E[Zi(α)Mn] < ∞,

where Zi(α) is given by (10). Then
√

n(ψn − ψ(ξ))→dN(0, σ 2
ξ ), and for every α > 0,

√
n
(
ϕ̂n(α;ψn) − ϕ(α)

)→dN
(
0, σ 2

α,ξ

)
, (24)

where 0 < σ 2
α,ξ < ∞.

Remark 4. The normality assumptions involving the asymptotic estimation error of ψ(ξ) have
to be verified for the specific ψn used. Condition (i) entails that the estimation error satisfies a
martingale CLT, condition (ii) specifies the convergence rate of the variance and can in principle
be generalized to other rates, and condition (iii) further demands that the asymptotic covariance
between estimation errors is bounded with the appropriate scaling. As it turns out, under some
regularity conditions these assumptions are valid for various estimation procedures (see, e.g.,
[25]). In the next section we present an MLE for ψ(ξ) for the subordinator case, and show that
it satisfies the conditions of Theorem 3.

Proof of Theorem 3. In this proof, a number of lemmas are needed. These are stated after the
end of the proof, and are proven in the supplementary material [31].

We focus on the marginal asymptotic distribution of the estimation error for a fixed α > 0. We
denote the estimator by ϕn := ϕ̂n(α;ψn) and recall that the true value at α is ϕ(α).

The starting point is the estimation equation (9), which can be written as

Jn(ψ,ϕ) := 1

n

n∑
i=1

[
e−αVi − ξ

ξ − ϕ

(
e−αVi−1 − α

ψ
e−ψVi−1

)]
= 0. (25)

The standard delta method can be applied for deriving the asymptotic distribution of ϕn; see, for
example, [35], p. 51. Concretely, taking a Taylor expansion of Jn(ψn,ϕn), where ψn and ϕn are
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the estimators, around the true parameters ψ(ξ) and ϕ(α), yields

Jn(ψn,ϕn) ≈ Jn

(
ψ(ξ),ϕ(α)

) + (
ψn − ψ(ξ)

) ∂

∂ψ
Jn

(
ψ(ξ),ϕ(α)

)

+ (
ϕn − ϕ(α)

) ∂

∂ϕ
Jn

(
ψ(ξ),ϕ(α)

)
, (26)

where the remainder will be argued to vanish, in a convergence-in-probability sense, in Lemma 6.
As Jn(ψn,ϕn) = 0, we thus obtain

√
n
(
ϕn − ϕ(α)

) ≈
√

nJn(ψ(ξ),ϕ(α)) + √
n(ψn − ψ(ξ)) ∂

∂ψ
Jn(ψ(ξ),ϕ(α))

− ∂
∂ϕ

Jn(ψ(ξ),ϕ(α))
. (27)

Lemma 4 states that partial derivatives featuring in the right-hand side of (27) converge almost
surely to constants, which we call ∂Jψ and ∂Jϕ . Thus, by applying Slutsky’s lemma to (27),√

n(ϕn − ϕ(α)) converges in distribution to the same limit as

− 1

∂Jϕ

(√
nJn

(
ψ(ξ),ϕ(α)

) + √
n
(
ψn − ψ(ξ)

)
∂Jψ

)
. (28)

By condition (i),

√
n
(
ψn − ψ(ξ)

) ≈ 1√
n

Mn =
√

Var(Mn)

n

n∑
i=1

Zni,

where
∑n

i=1 Zni is a normalized sum of martingale differences that, due to Lemma 2(a),
converges to a standard normal random variable. We conclude, by condition (ii), that the
limiting distribution of

√
n(ψn − ψ(ξ)) is normal. In Lemma 5a, we further show that√

nJn(ψ(ξ),ϕ(α))→dN(0, σ 2
α ), where σ 2

α is given by (34). In order to complete the proof of
Theorem 3, it is now sufficient to prove that the limiting joint distribution of

√
nJn(ψ(ξ),ϕ(α))

and
√

n(ψn − ψ(ξ)) is (bivariate) normal, or equivalently that any linear combination of them
is asymptotically normal. This is done in Lemma 5b by applying Lemma 2(b), which is facili-
tated by the assumption of condition (iii). Finally, we conclude that the asymptotic variance of√

n(ϕn − ϕ(α)) is

σ 2
α,ξ := σ 2

α + 2∂Jψσ 2
α,ψ + (∂Jψ)2σ 2

ξ

(∂Jϕ)2
, (29)

where

σ 2
α,ψ := lim

n→∞ Cov
[√

nJn

(
ψ(ξ),ϕ(α)

)
,
√

n
(
ψn − ψ(ξ)

)]
. (30)

This proves the claimed asymptotic normality. �

Remark 5. The explicit form of the term σ 2
α,ψ depends on the specific estimator ψn. In the

sequel, we derive an explicit expression for the asymptotic variance in the subordinator case
when ψn is an MLE.
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Lemma 4. As n → ∞,

∂

∂ψ
Jn

(
ψ(ξ),ϕ(α)

)→as − αϕ′(0)

(ξ − ϕ(α))ψ ′(ξ)
=: ∂Jψ (31)

and

∂

∂ϕ
Jn

(
ψ(ξ),ϕ(α)

)→as − αϕ′(0)

ϕ(α)(ξ − ϕ(α))
=: ∂Jϕ. (32)

Lemma 5. (a) For any α > 0,
√

nJn

(
ψ(ξ),ϕ(α)

)→dN
(
0, σ 2

α

)
, (33)

where

σ 2
α := 2ξ2αϕ′(0)

(ξ − ϕ(α))2

(
(
ϕ(α)

ξ
)2 − 2ϕ(α)

ξ

ϕ(2α)
− α

ψ(ξ)ϕ(2ψ(ξ))
+ α + ψ(ξ)

ψ(ξ)ϕ(α + ψ(ξ))

)
. (34)

(b) Furthermore, under the conditions of Theorem 3,

√
n

(
Jn

(
ψ(ξ),ϕ(α)

)
ψn − ψ(ξ)

)
→dN

(
0,

(
σ 2

α σ 2
α,ψ

σ 2
α,ψ σ 2

ξ

))
. (35)

Consequently,
√

n
(
Jn

(
ψ(ξ),ϕ(α)

) + ∂Jψ

(
ψn − ψ(ξ)

))→dN
(
0, σ 2

α + 2∂Jψσ 2
α,ψ + (∂Jψ)2σ 2

ξ

)
. (36)

Lemma 6. The remainder term of the Taylor expansion in (26) converges in probability to zero.

3.2.2. Multivariate asymptotic normality

We now consider the situation that ϕ(α) is estimated for multiple values of α simultaneously.
The main result is that the estimation error of �̂n(α) converges to a multivariate normal random
variable at rate

√
n, under the conditions of Theorem 3. The proof combines the lines of reasoning

developed for the univariate asymptotic normality with the use of the Cramér–Wold device.
We first introduce some notation. Denote for any x > 0,

∂Jψ,x := lim
n→∞

∂

∂ψ
Jn

(
ψ(ξ),ϕ(x)

)
, ∂Jϕ,x := lim

n→∞
∂

∂ϕ
Jn

(
ψ(ξ),ϕ(x)

)
, (37)

as defined in (31) and (32). In addition, let

σ 2
J,α,β := (α + β)ϕ′(0)

ϕ(α + β)
− ξ2ϕ′(0)

(ξ − ϕ(α))(ξ − ϕ(β))

×
(

α + β

ϕ(α + β)
+ 2αβ

ψ(ξ)ϕ(2ψ(ξ))
− β(α + ψ(ξ))

ψ(ξ)ϕ(α + ψ(ξ))
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− α(β + ψ(ξ))

ψ(ξ)ϕ(β + ψ(ξ))

)
, (38)

and, for every α �= β ,

σ 2
α,β := σ 2

J,α,β + ∂Jψ,βσ 2
α,ξ + ∂Jψ,ασ 2

β,ξ + ∂Jψ,α∂Jψ,βσ 2
ξ

∂Jϕ,α∂Jϕ,β

. (39)

Theorem 7. Suppose that EX(1) < 0. Let (α) := (ϕ(α1), . . . , ϕ(αp)) and �̂n(α) := (ϕ̂n(α1;
ψn), . . . , ϕ̂n(αp;ψn)), where (α1, . . . , αp) ∈ (0,∞)p . If ψn satisfies the conditions of Theorem 3,
and in particular (iii) is satisfied for every αi , i = 1, . . . , p, then

√
n
(
�̂n(α) − (α)

)→dN(0,�), (40)

where �ij = σ 2
αi ,ξ

if i = j and σ 2
αi ,αj

otherwise.

4. Estimating ψ(ξ) for subordinator input

Theorems 1 and 3 have established that, under specific conditions, the Z-estimator for ϕ(α) is
consistent (asymptotically normal, respectively) if we have a consistent (asymptotically normal)
estimator for ψ(ξ). In this section, we propose such an estimator for ψ(ξ) using a likelihood ap-
proach for the subordinator input case, that is, the input process has almost surely non-decreasing
paths. An important special case is the CP model: nonnegative jumps (with LST G∗(α)) arrive
according to a Poisson process with rate λ. We thus have that for this example,

ϕ(α) = λ
(
G∗(α) − 1

) + α. (41)

In the following an ML-type estimator is constructed for ψ(ξ). Suppose we have a sample of
workload observations V = (V0,V1, . . . , Vn). Let Yi := 1(Vi = 0), then by (8),

P(Yi = 1|V ) = ξ

ψ(ξ)
e−ψ(ξ)Vi−1 , i = 1, . . . , n. (42)

Conditional on V, the sample Y = (Y1, . . . , Yn) is then distributed as a sample of independent,
but non-identically distributed, Bernoulli trials, with likelihood

Pψ(ξ)(Y1, . . . , Yn|V) =
n∏

i=1

[
ξ

ψ(ξ)
e−ψ(ξ)Vi−1

]Yi
[

1 − ξ

ψ(ξ)
e−ψ(ξ)Vi−1

]1−Yi

. (43)

We can thus define the MLE for ψ(ξ): ψ̂n = arg maxψ∈�{Pψ(Y1, . . . , Yn|V)}.
We assume that the parameter space � is compact and that the true value lies within the

interior. This assumption is reasonable and can be achieved by setting � = [ξ,C], where C is
an arbitrarily large constant. Note that ψ(ξ) ≥ ξ by (8). For special cases, the parameter space
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can be specified in a more detailed manner. For example, the exponent function for the CP case
is given in (41), and as G∗(α) ∈ [0,1], it follows that α − λ ≤ ϕ(α) ≤ α. This implies

ψ(ξ) − λ ≤ ϕ
(
ψ(ξ)

) ≤ ψ(ξ). (44)

As ψ(ξ) = ϕ−1(ξ), we conclude that the parameter space is � = [ξ, ξ + λ]. In this definition
there is an implicit assumption that λ is known. If it is unknown, one could again follow the
pragmatic approach of replacing ξ + λ by an arbitrarily large constant.

For any ψ ∈ � , the log-likelihood function, Ln(ψ) = log Pψ(Y1, . . . , Yn|V ), is

Ln(ψ) =
n∑

i=1

[
Yi(log ξ − logψ − ψVi−1) + (1 − Yi) log

(
1 − ξ

ψ
e−ψVi−1

)]
, (45)

and taking derivatives yields

L′
n(ψ) =

n∑
i=1

( 1
ψ

+ Vi−1)(
ξ
ψ

e−ψVi−1 − Yi)

1 − ξ
ψ

e−ψVi−1
. (46)

The MLE is the solution of the nonlinear optimization problem,

ψ̂n := arg max
ψ∈�

Ln(ψ). (47)

The function Ln(ψ) is not always concave with respect to ψ but as the parameter space is com-
pact a maximizer always exists. If Yi = 1 for all i = 1, . . . , n (i.e., all observations are at idle pe-
riods), then by (43) the likelihood Ln(ψ) decreases with ψ , and therefore the MLE is the lower
boundary of the parameter space. On the other hand if Yi = 0 for all i = 1, . . . , n (i.e., no idle
periods are observed), then by (43) the likelihood Ln(ψ) increases with ψ , and then the MLE is
the upper boundary of the support. Otherwise, the solution may be in the interior or boundary of
the parameter space. In the following subsection, we will show that as n increases the asymptotic
log-likelihood has a unique maximizer, that solves the first order equation L′

n(ψ̂n) = 0.

4.1. Consistency

In this subsection, we establish strong consistency of the MLE ψ̂n. As ψ̂n is consistent (actually
even strongly consistent), Theorem 1 thus yields the consistency of ϕ̂n(α; ψ̂n). The key for de-
termining consistency and asymptotic normality is the asymptotic analysis of the log-likelihood
function given in (45) and its first two derivatives. We define �n(ψ) := n−1Ln(ψ), and �′

n(ψ)

and �′′
n(ψ) as the respective first two derivatives. There are several issues that prevent us from

directly applying standard MLE consistency results. Firstly, the observations are dependent. Ad-
ditionally, the function |�n(ψ)| may be unbounded at the boundaries of the parameter space: for
example, if there is some i such that Yi = 1 and Vi−1 = 0 then �n(ψ) → −∞ as ψ ↓ ξ . There-
fore, we will need to verify that as n grows the MLE moves away from the boundary almost
surely.
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In the next theorem, we assume that � is compact and that the true parameter belongs to the
interior of the parameter space, �o. In practice, setting � = [ξ,C] for a very large C should
ensure this condition.

Theorem 8. If EX(1) < 0, and if the parameter space � is compact and ψ(ξ) ∈ �o, then the
MLE is strongly consistent: ψ̂n→asψ(ξ).

Upon combining Theorems 1 and 8, we thus have the following result.

Corollary 9. If EX(1) < 0, and if the parameter space � is compact and ψ(ξ) ∈ �o, then
the Z-estimator for ϕ(α) defined in (12) using the MLE for ψ(ξ) is pointwise consistent:
ϕ̂n(α; ψ̂n)→Pϕ(α), for all α > 0.

The remainder of this subsection focuses on proving Theorem 8. We commence by providing
two lemmas, which are proven in the supplementary material [31], featuring properties of the
log-likelihood function that will be utilized in the asymptotic analysis. In particular, we assert
smoothness and the construction of a strong law of large numbers for the first two derivatives of
the log-likelihood.

Lemma 10. If the parameter space � ⊂ [ξ,∞) is a compact interval, then the functions �n(ψ)

and �′
n(ψ) are bounded and smooth on �o.

Lemma 11. If EX(1) < 0, then for all ψ ∈ �o,

�′
n(ψ)→asE

(
E
(
�′

1(ψ)|V )) = E

[ 1
ψ

+ V

1 − ξ
ψ

e−ψV

(
ξ

ψ
e−ψV − ξ

ψ(ξ)
e−ψ(ξ)V

)]
, (48)

and

�′′
n(ψ)→asE

(
E
(
�′′

1(ψ)|V ))
. (49)

Proof of Theorem 8. The following condition is sufficient for the consistency of an MLE with
dependent observations [23]: for every ψ �= ψ(ξ) (in the interior of �) there exists a δ > 0 such
that

lim
n→∞ sup

ζ∈Bδ(ψ)

{
�n(ζ ) − �n

(
ψ(ξ)

)}
< 0, (50)

almost surely, where Bδ(ψ) := (ψ − δ,ψ + δ) is an open ball around ψ . Firstly, applying (48)
yields

�′
n(ψ)→asE

(
E
(
�′

1(ψ)|V ))
⎧⎪⎨
⎪⎩

> 0, ψ < ψ(ξ),

= 0, ψ = ψ(ξ),

< 0, ψ > ψ(ξ).

(51)
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As ψ(ξ) ∈ �o, for ψ < ψ(ξ) we can consider a ball such that ψ + δ < ψ(ξ), and then for any
ζ < ψ + δ < ψ(ξ), by Lemma 10 the difference can be written as

�n(ζ ) − �n

(
ψ(ξ)

) = −(
�n

(
ψ(ξ)

) − �n(ζ )
) = −

∫ ψ(ξ)

ζ

�′
n(x)dx. (52)

By (51), we have that as n → ∞, �′
n(ψ) > 0 almost surely for any ψ ∈ [ψ + δ,ψ(ξ)], which is

a non-empty interval, and thus

sup
ζ∈(ψ−δ,ψ+δ)

{
�n(ζ ) − �n

(
ψ(ξ)

)} ≤ −
∫ ψ(ξ)

ψ+δ

�′
n(x)dx < 0 (53)

almost surely. Similarly, for any ψ > ψ(ξ) we can consider a ball such that ψ − δ > ψ(ξ) and
conclude that

sup
ζ∈(ψ−δ,ψ+δ)

{
�n(ζ ) − �n

(
ψ(ξ)

)} ≤
∫ ψ−δ

ψ(ξ)

�′
n(x)dx < 0 (54)

almost surely. Therefore, for any ψ �= ψ(ξ) there exists a δ < |ψ − ψ(ξ)| such that (50) holds,
almost surely. As a consequence, (50) is satisfied. �

4.2. Asymptotic normality

We now discuss the asymptotic distribution of the MLE ψ̂n. In this subsection, we show that the
estimation term is asymptotically normal with rate

√
n, and that it further satisfies the conditions

of Theorem 3. Useful conditions for asymptotic normality of the MLE when the observations are
dependent are given in [24]. Again the delta method is relied on; we also make use of arguments
used in the proof of Cramér’s theorem [13], p. 121. Define

Iξ := E

[ ξ
ψ(ξ)

e−ψ(ξ)V ( 1
ψ(ξ)

+ V )2

1 − ξ
ψ(ξ)

e−ψ(ξ)V

]
. (55)

Theorem 12. If EX(1) < 0, and if the parameter space � is compact and ψ(ξ) ∈ �o, then

√
n
(
ψ̂n − ψ(ξ)

)→dN

(
0,

1

Iξ

)
. (56)

We first outline the two main steps required to establish the asymptotic distribution. This will
be followed by a separate lemma verifying each of these steps.

Proof. The smoothness of �′
n(·) established in Lemma 10 implies

�′
n(ψ̂n) = �′

n

(
ψ(ξ)

) +
∫ ψ̂n

ψ(ξ)

�′′
n(x)dx, (57)
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and by applying a change of variables

�′
n(ψ̂n) = �′

n

(
ψ(ξ)

) + (
ψ̂n − ψ(ξ)

)∫ 1

0
�′′
n

(
ψ(ξ) + y

(
ψ̂n − ψ(ξ)

))
dy

= �′
n

(
ψ(ξ)

) + (
ψ̂n − ψ(ξ)

)∫ 1

0
�′′
n

(
yψ̂n + (1 − y)ψ(ξ)

)
dy. (58)

If ψ(ξ) is in the interior of � , then by Lemma 11, as n → ∞, the MLE is given by the root of the
first order condition L′

n(ψ̂n) = 0, almost surely. To verify this conclusion one only has to consider
the limits of �′

n(ψ) at the lower and upper boundary points of the compact interval � , which
are almost surely positive and negative, respectively. Therefore,

√
n�′

n(ψ̂n) = 1√
n
L′

n(ψ̂n)→as0.
Hence, denoting

Dn :=
∫ 1

0
�′′
n

(
yψ̂n + (1 − y)ψ(ξ)

)
)dy, (59)

we have
√

n�′
n

(
ψ(ξ)

) + √
n
(
ψ̂n − ψ(ξ)

)
Dn ≈ 0, (60)

and therefore

√
n
(
ψ̂n − ψ(ξ)

) ≈
√

n�′
n(ψ(ξ))

−Dn

. (61)

We show that
√

n�′
n(ψ(ξ))→dN(0, Iξ ) and Dn→as − Iξ in Lemmas 13 and 14, respectively.

Then, by Slutsky’s lemma, (61) implies (56). �

Lemma 13. Under the conditions of Theorem 8,
√

n�′
n(ψ(ξ))→dN(0, Iξ ).

Lemma 14. Under the conditions of Theorem 8, Dn→as − Iξ .

For the proofs of these two lemmas we refer to the supplementary material [31].

Remark 6. The asymptotic variance (55) in Theorem 12 is σ 2
ξ := 1/Iξ . In the CP case ϕ(α) =

λ(G∗(α) − 1) + α, and therefore ψ(ξ) is an increasing function of ξ such that ψ(0) = 0 and

ξ

ψ(ξ)
= λ(G∗(ψ(ξ)) − 1) + ψ(ξ)

ψ(ξ)
= 1 + λ

G∗(ψ(ξ)) − 1

ψ(ξ)

ξ↓0−−→ ϕ′(0). (62)

This implies that the asymptotic variance σ 2
ξ increases with the sampling rate ξ , and that for a

decreasing rate the variance disappears: σ 2
ξ → 0 as ξ ↓ 0.

4.3. Asymptotic error of ϕ̂n(α; ψ̂n)

Theorem 12 has implications also for the asymptotic estimation error of ϕ(α). We verified the
martingale CLT conditions of Lemma 2(a) for

√
n(ψn −ψ(ξ)) in Theorem 12, and thus if we fur-



Estimating the input of a Lévy queue 3751

ther show that the covariance of the estimation errors has a finite limit we can apply Lemma 2(b)
and Theorem 3 to conclude that

√
n(ϕn(α; ψ̂n) − ϕ(α)) is asymptotically normal. This is done

in the proof of Theorem 15 in the supplementary material [31].

Theorem 15. If EX(1) < 0, ψ̂n is the MLE for ψ(ξ), then

√
n
(
ϕn(α; ψ̂n) − ϕ(α)

)→dN
(
0, σ 2

α,ξ

)
, (63)

where σ 2
α,ξ is given by (29) with

σ 2
α,ψ := ξ2

ψ(ξ)(ξ − ϕ(α))Iξ

× E

[
( 1
ψ(ξ)

+ V )e−ψ(ξ)V

1 − ξ
ψ(ξ)

e−ψ(ξ)V

(
e−αV − α

ψ(ξ)
e−ψ(ξ)V − ξ − ϕ(α)

ξ

)]
. (64)

5. Estimating ψ(ξ) for spectrally-positive Lévy input

The Z-estimator ϕ̂n(α;ψn) requires an estimator for ψ(ξ). In Section 4, we considered the sub-
ordinator case, utilizing that there is a non-zero probability that the queue is empty. For general
spectrally-positive Lévy input with a Brownian motion component this property does not hold.
In this section, we present an alternative procedure.

A moment based Z-estimator ψn can be derived using (6) by solving

n∑
i=1

(Vi − Vi−1) −
n∑

i=1

(
e−ψnVi−1

ψn

− ϕ′(0)

ξ

)
= 0. (65)

After some rearranging of the terms, we define the estimator ψn as the solution of

Vn − V0 + nϕ′(0)

ξ
=

n∑
i=1

e−ψnVi−1

ψn

, (66)

when it exists. There is at most one solution as the left-hand side is constant and the right-
hand side is decreasing from infinity to zero on ψn ∈ R+. However, if the constant on the left
is negative there is no solution and then we can set ψn = ψ̄ , where ψ̄ > 0 is some arbitrary
large constant. Observe that under the stability condition ϕ′(0) = −EX(1) > 0, the probability
of having a negative term on the left vanishes as n → ∞.

The problem, however, is that ϕ′(0) in (66) is also unknown and needs to be somehow es-
timated. Note that if we naïvely plug ϕ̂′

n(0;ψn) into (66) then all terms including ψn cancel
out because the estimator of the first derivative relies on the very same equation, that is, (6). In
the next subsections, we will present an estimation scheme for ϕ′(0) that relies on considering
a sub-sample with high initial workloads above some given threshold. We also show how the
estimator’s inherent bias can be made arbitrarily small.
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5.1. Estimating ϕ′(0)

We construct an estimator for ϕ′(0) relying on the fact that ξEX(T ) = −ϕ′(0) where T ∼ exp(ξ),
and estimating the net input only using observations that are far from zero. If a high workload
was observed then the probability of reflection (i.e., the queue hitting zero) before the next ob-
servation is low. In particular, we can quantify this probability so as to provide an upper bound
for the bias of the estimator.

For some (large) threshold τ > 0 the workload is sampled until there are m ∈N observations Vi

such that Vi−1 ≥ τ . Let M(m,τ) denote the total number of observations, which is now a random
variable, and denote the j th such observation by i(j) ∈ {1, . . . ,M(m, τ)}, for j = 1, . . . ,m. The
estimator for ϑ = −ϕ′(0) = ξEX(T ) is

ϑ̂m(τ ) := ξ

m

m∑
j=1

(Vi(j) − Vi(j)−1). (67)

Observe that the statistic ϑ̂m(τ ) only depends on the increments of the workload process which
makes it convenient for analysis due to the independent increments property of Lévy processes.
We first derive an upper bound for the bias of ϑ̂m(τ ) and in the sequel provide an accurate
asymptotic analysis of the bias. The proofs for this section are detailed in the supplementary
material [31].

Proposition 16. Let bm(ϑ̂; τ) := E[ϑ̂m(τ ) − ϑ]. Then, for any m ∈ N and τ > 0,

0 < bm(ϑ̂; τ) ≤ ξE
[
V (T )|V (0) = 0

]
e−ψ(ξ)τ . (68)

The bound (68) for the bias decays to zero as τ grows, but at the same time the probabil-
ity of observing workloads above τ also diminishes if EX(1) < 0, so that the required num-
ber of samples M(m,τ) also grows. This entails that there is a tradeoff between τ and m in
terms of accuracy, information and required sample size. The expectation in the bound, i.e.,
E[V (T )|V (0) = 0], can be approximately estimated by using observations Vi − Vi−1 such that
Vi−1 ≤ ε for some low threshold ε > 0. The bound (68) also depends on ψ(ξ) which can be
estimated using (66) by plugging in the estimator ϑ̂m(τ ) instead of −ϕ′(0). There is a (seem-
ingly) circular argument here: the estimated bias bound is also biased because it also relies on
the biased estimator ϑ̂m. In the next proposition, however, we argue that this bias is bounded as
well and diminishes with τ .

Proposition 17. Let ψ̃m be the Z-estimator given by (66) with ϕ′(0) replaced with the estimator
ϑ̂m(τ ), then the bias E[ψ̃m − ψ(ξ)] diminishes to zero as τ → ∞.

5.2. Asymptotic analysis

In this subsection, we consider asymptotic properties of ϑ̂m(τ ) as m → ∞. For any τ < ∞,
there is positive bias due to the possibility of reflection, even though it may be very small, and
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therefore the estimator cannot be consistent. A possible solution to this is defining an estimator
with a dynamic threshold τm that grows with the sample size. In this section we analyze the
asymptotic properties of the biased estimator based on the static threshold τ . We first establish
that the estimator ϑ̂m(τ ) converges in probability (as m → ∞, that is) to a constant that depends
on τ . This further enables the computation of the exact asymptotic bias.

Proposition 18. If EX(1) < 0 then for any τ > 0, as m → ∞, ϑ̂m(τ )→Pϑ(τ), where

ϑ(τ) := ξE[e−ψ(ξ)V 1(V ≥ τ)]
ψ(ξ)P(V ≥ τ)

− ϕ′(0) > 0, (69)

and V is the steady-state workload.

An immediate result of Proposition 18 is that from (69) we can derive a bound on the asymp-
totic bias that does not depend on τ .

Corollary 19. For any τ ≥ 0,

b(ϑ̂; τ) := lim
m→∞bm(ϑ̂; τ) = ξE[e−ψ(ξ)V 1(V ≥ τ)]

ψ(ξ)P(V ≥ τ)
≤ ξ

ψ(ξ)
. (70)

As ϕ(α) is a convex and increasing function, the term ξ/ψ(ξ) is an increasing function of the
sampling rate ξ . In line with earlier observations, it shows that sampling slowly is to be preferred
when there is no, or little, cost associated with the sampling duration.

Remark 7. A rough approximation for the expected sample size EM(m,τ) required to collect
m observations above a threshold τ can be obtained by considering the corresponding stationary
tail probability. If the input process is light tailed, then (see [11], Ch. IV),

P(V > τ) ≈ e−ωτ , (71)

where EeωX(1) = 1. If M stationary observations are made then the expected number above τ is
M · P(V > τ), leading to the approximation EM(m,τ) · P(V > τ) ≈ m. We thus obtain

EM(m,τ) ≈ meωτ . (72)

6. Simulation analysis

In order to numerically test the performance of the estimation procedure, we carried out simula-
tions of a queue with Lévy input that consists of three processes: X(t) = C(t) + W(t) + U(t),
where

• C(t) is Compound Poisson with rate λ and Gamma jumps-size distribution, �(η,μ),
• W(t) is Brownian motion with drift d and variance σ 2,
• U(t) is a Gamma process (subordinator) with parameters (β, γ ).
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Figure 2. M/M/1 with λ = 0.8 and μ = 1. The exponent function ϕ(α) (solid red line) and its Z-estimator
ϕ̂n(α; ψ̂n) (dotted blue line) from a sample of n = 30 observations with sampling rate ξ = 1. The interme-
diate estimator ψ̂n is the MLE of Section 4. Also plotted are the upper and lower bounds of the confidence
interval using the normal approximation and asymptotic variance.

The exponent function is then

ϕ(α) = λ

[(
μ

μ + α

)η

− 1

]
− αd + 1

2
α2σ 2 + β log

(
γ

γ + α

)
, (73)

and the expected input per unit of time is EX(1) = −ϕ′(0) = λη/μ+ d +β/γ . We first examine
the performance of the Z-estimator for ϕ that uses the MLE estimator for ψ(ξ) in the M/M/1
case (λ, η,μ,d,σ 2, β, γ ) = (0.8,1,1,−1,0,0,0). In Figure 2, the real and estimated exponent
functions are compared along with the confidence interval based on the asymptotic normal ap-
proximation. Even for a moderate sample size of n = 30 the estimated function is quite close to
the real one. Observe, however, that the estimate is less accurate as α increases. In Figure 3, we
illustrate the increase in accuracy when the sample size n increases. Theorem 1 established that
the estimator is consistent and here we can see that the bias diminishes very quickly. Increasing
the sample size is more important when one wishes to estimate ϕ(α) for high values of α.

In Figure 4, the asymptotic variance σ 2
α,ξ is plotted as a function of α for different sampling

rates. These functions are all increasing and appear to be convex and unbounded. The asymptotic
correlation,

r(α,1) := σ 2
α,1√

σ 2
α,ξ σ

2
1,ξ

(74)

(see Theorem 7), between the estimated function ϕ̂n(α; ψ̂n) and ϕ̂n(1; ψ̂n) is illustrated in Fig-
ure 5. The correlation is a decreasing function of the distance from one, but interestingly does
not disappear to zero but to a lower bound (about 0.2 in this example). This should come as no
surprise after some thought, as the function is estimated using the same sample of observations
for all α > 0.

We used the two-step estimation method of ψ(ξ) introduced in Section 5 to test the perfor-
mance of the estimator ϕ̂n for Lévy input. The data was simulated for an input process with pa-
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Figure 3. M/M/1 with λ = 0.8 and μ = 1. The absolute and relative estimation errors of the exponent
function, (ϕ̂n(α; ψ̂n)−ϕ(α))/ϕ(α), based on sample sizes n ∈ {30,50,100,200} with sampling rate ξ = 1.
The intermediate estimator ψ̂n is the MLE of Section 4. Common random numbers were used to simulate
the full sample of n = 200 and the other estimators use the first n observations.

rameter vector (λ, η,μ,d,σ,β, γ ) = (0.2,1.2,0.5,−1,0.1,1,5) and initial workload V (0) = 0.
In Figure 6, the estimator is based on m = 200 observations with a threshold τ = 2 for differ-
ent sampling rates. As before, accuracy improves with a slow sampling rate and decreases as α

grows. For a fixed sampling rate of ξ = 1, Figure 7 illustrates the estimated functions for different
threshold levels for the biased intermediate estimation step. Both low and high thresholds give
less accurate estimators than the intermediate level, τ = 2 in this example. This is because a low
threshold has a large bias, whereas a high threshold has a small bias but a smaller sample size
and thus a larger variance.

Figure 4. M/M/1 with λ = 0.8 and μ = 1. The asymptotic variance σ 2
α,ξ as a function of α for different

sampling rates.
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Figure 5. M/M/1 with λ = 0.8 and μ = 1. The asymptotic correlation r(α,1), between the estimators
ϕ̂n(α; ψ̂n) and ϕ̂n(1; ψ̂n). The sampling rate is ξ = 1.

Figure 6. Lévy input with (λ, η,μ,d,σ,β, γ ) = (0.2,1.2,0.5,−1,0.1,1,5). The estimation error of the
exponent function, ϕ̂n(α; ψ̃n) − ϕ(α), based on a sample of m = 200 observations for different sampling
rates ξ ∈ {0.5,1,5,10} and threshold τ = 2.

Figure 7. Lévy input with (λ, η,μ,d,σ,β, γ ) = (0.2,1.2,0.5,−1,0.1,1,5). The estimation error of the
exponent function, ϕ̂n(α; ψ̃n) − ϕ(α), based on a sample of m = 200 observations for different thresholds
τ ∈ {0.5,1,2,5} and sampling rate ξ = 1.
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7. Discussion and concluding remarks

In this paper, we have studied the problem of statistical inference on the input process to a
Lévy-driven queue, where the workload is observed at Poisson times. An estimation method
for the characteristic exponent function of the input process has been introduced. The setting is
semi-parametric because although the goal is to estimate a function, the methods employed are
parametric (namely, method-of-moments and ML-based). Under specific verifiable conditions,
consistency and asymptotic normality are proven.

Relation with previous work. In the Introduction we already reflected on the papers [8,20]; we
now focus on the relation with the generalized method-of-moments (GMM) framework of [12].
Recall that our main estimation device is the Z-estimator ϕ̂n(α) which is derived by solving an
estimation equation that equates the empirical LST of the workload to the conditional expected
value after an exponential sampling time. In this respect, our work is related to [12] that studies
GMM estimation of parameters of Markov processes based on data sampled according to a ran-
dom process which may be time and state dependent. In our setting, a GMM procedure is used
to estimate the vector (ϕ(α1), . . . , ϕ(αp)) by solving the respective estimation equations (9) for
i = 1, . . . , p.

Our estimation equations can be stated in terms of the generator functions used in [12] with a
homogeneous Poisson sampling process. However, there is a need to externally estimate the term
ψ(ξ); importantly, this cannot be achieved simultaneously using the same estimation equations.
This is more than just a technical issue associated with the estimation method, and is inherent to
the non-parametric setting of estimating the function ϕ, as opposed to finite-dimensional param-
eter estimation. Another issue is that we make inference on the input process without observing
it directly but rather from observations of the reflected process. Finally, the asymptotic analysis
of [12] only deals with asymptotic normality for the case of a one-dimensional parameter space,
where we have derived the multi-dimensional asymptotic distribution of the estimation errors
and provided explicit terms for all associated asymptotic (co-)variance terms.

Identifiability for CP input. For the CP case one can in principle identify the λ and G∗(α)

separately from the estimates ϕ̂n(α; ψ̂n). First one sets, for some large value of α+,

λ̂n = α+ − ϕ̂n(α+; ψ̂n), (75)

and then, for any α,

Ĝ∗
n(α) = 1 + 1

λ̂n

(
ϕ̂n(α; ψ̂n) − α

)
. (76)

Parametric special cases. Our estimation method is directly applicable to various parametric
special cases using the transient moment equations. For example, when the input is Brownian
motion one has ϕ(α) = −dα + 1

2α2σ 2. In this case, the first two conditional moment equations,
(6) and (7), can be used to construct estimators for d and σ 2. For the M/M/1 queue jump sizes
follow an exponential distribution with rate μ. Therefore, G∗(α) = μ/(μ + α), which yields

ϕ(α) = α(μ + α − λ)

μ + α
, ψ(ξ) = 1

2

(
ξ + λ − μ +

√
(ξ + λ − μ)2 + 4ξμ

)
. (77)
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In Section 4 for the subordinator input case, an MLE for ψ(ξ) was derived. This can be used
to estimate the two parameters of an M/M/1, or any other two-parameter formulation for that
matter, by using only the first moment equation (6). This can be done similarly for other types of
parametric subordinator input such as a Gamma process.

Bootstrap estimation. The asymptotic variance of the estimation errors (in Theorems 3, 7, 12,
and 15, as well as Lemmas 5 and 13) are all expressed in terms of the stationary distribution of
workload V , which is unknown. For example, the variance of the estimation error of the MLE
ψ̂n in Theorem 12 is

Iξ := E

[ ξ
ψ(ξ)

e−ψ(ξ)V ( 1
ψ(ξ)

+ V )2

1 − ξ
ψ(ξ)

e−ψ(ξ)V

]
, (78)

which cannot be directly computed without knowing the distribution of V . A reasonable ap-
proach to overcome this issue is to apply a bootstrap procedure: given a sample of size n ran-
domly select a sample of size m < n with replacement and compute the sample mean of the
desired term, e.g. Iξ , and repeat the above a large number of times and compute the mean of all
results. Such a bootstrap procedure is known to be consistent. As a consequence, for large n and
m the method has good accuracy. We refer to e.g. [35], Ch. 23, for general results, and [19] for a
specific implementation dealing with the stationary workload of an M/G/1 queue.

Future research. There are several interesting questions that are left open in this work. First
of all, the question whether a consistent estimator for ψ(ξ) can be constructed for the general
case. Although simulation analysis suggests that in practice the biased estimator performs well,
it is still of interest to find a consistent estimator for theoretical and practical efficiency purposes.
Another issue is that the object of estimation is the function ϕ but all asymptotic results are
in terms of the function at a finite collection of points. A natural extension would be to derive
functional limit theorems, for example, uniform-consistency and a FCLT approximation for the
estimation error as a Gaussian process. In Section 6, we observed that the asymptotic variance
appears to be increasing and unbounded with α which may lead to technical difficulties, and in
particular it is likely that the estimator is not uniformly-consistent.

Applications. We conclude this paper by mentioning a few applications for which the model
and methods presented here may be useful.

• Optimal sampling rate. As we saw, explicitly in Section 4 and numerically in Section 6, the
accuracy of the estimators improves as the sampling rate decreases. This, however, comes at
a cost of a longer sampling duration. In applications where there is a cost associated with the
duration of the learning period of the system, this leads to the problem of finding an optimal
sampling rate that balances this tradeoff. Our results can be used to derive an approximate
solution.

• Stability detection. Throughout this work, we assumed that EX(1) < 0 and consequently
the workload process is stable. However when the input is unknown, we do not know a
priori whether EX(1) < 0. For example, if the processing speed can be controlled in an
M/G/1 queue but the input is unknown then it is possible that for some processing speeds
the queue is unstable. In this case, a likelihood ratio test can be constructed using the setup
of Section 4. In the general case, the biased estimator ϑ̂n for −EX(1) (Section 5) can be
used to set up a threshold rule for detecting instability.
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• Dynamic pricing. Suppose that the server can charge an admission price with the goal of
maximizing social welfare or revenue. The optimal pricing scheme obviously depends on
the input distribution [22], which may not be known. This naturally leads to a model with
an exploration-exploitation element, and using our framework the exploration step can be
carried out for transient observations without relying on any approximations. The extension
to the dynamic setting requires a state-dependent input model such as [6].

• Testing distributional assumptions. An issue that is related to the two previous points is that
often controllable system parameters are chosen with the goal of maximizing specific per-
formance measures. This is typically done under some modeling assumptions. Our frame-
work enables testing whether the input to the system is consistent with the modeling as-
sumptions (as long as the input alternatives are within the class of spectrally positive Lévy
processes).

• Service level monitoring. Service systems are often obliged to provide performance guar-
antees. For example, when an Internet Service Provider commits to certain bandwidth, it is
important for users and regulators to be able to estimate the performance of the system in
order to monitor whether the contract is upheld or not [21], Ch. IX. Our method allows to
estimate performance measures, such as moments and tail probabilities, using a transient
sample of observations.
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Supplementary Material

Online appendix. Estimating the input of a Lévy-driven queue by Poisson sampling of the
workload process (DOI: 10.3150/19-BEJ1109SUPP; .pdf). The appendix provides the proofs
for several lemmas and theorems.
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