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A B S T R A C T

To better understand human behavior, the emerging field of model-based cognitive neuroscience seeks to anchor
psychological theory to the biological substrate from which behavior originates: the brain. Despite complex
dynamics, many researchers in this field have demonstrated that fluctuations in brain activity can be related to
fluctuations in components of cognitive models, which instantiate psychological theories. In this review, we
discuss a number of approaches for relating brain activity to cognitive models, and expand on a framework for
imposing reciprocity in the inference of mental operations from the combination of brain and behavioral data.

1. Introduction

The evolution of technology for measuring brain signals, such as
electroencephalography (EEG) and functional magnetic resonance
imaging (fMRI), has provided exciting new opportunities for studying
mental processes. Today, scientists interested in studying cognition are
faced with many options for relating experimentally-derived neuro-
physiological variables to the dynamics underlying a cognitive process
of interest. While conceptually the presence of these new “modalities”
of cognitive measures could have immediately spawned an interesting
new integrative discipline, the emergence of such a field has been slow
relative to the rapid advancements made in these new technologies.
Until a little over a decade ago, much of our understanding of cognition
had been advanced by two dominant but virtually non-interacting
groups. The largest group, cognitive neuroscientists, relies on models to
understand patterns of neural activity brought forth by the new tech-
nologies. Like experimental psychologists, the models and methods
used by cognitive neuroscientists are typically data-mining techniques,
and this approach often disregards the computational mechanisms that
might detail a cognitive process. The other group, mathematical psy-
chologists, is strongly motivated by theoretical accounts of cognitive
processes, and instantiates these theories by developing formal math-
ematical models of cognition. The models often detail a system of
computations and equations intended to characterize the processes as-
sumed to take place in the brain. As a formal test of their theory,
mathematical psychologists usually rely on their model's ability to fit
and predict behavioral data relative to the model's complexity.

A recent trend in cognitive science is to blend the theoretical and

mechanistic accounts provided by models in the field of mathematical
psychology with the high-dimensional data brought forth by modern
measures of cognition. For example, Forstmann et al. (2011) advocated
for the use of reciprocal relationships between the latent processes as-
sumed by cognitive models and analyses of brain data. While con-
ceptually, blending these two fields may seem like the ideal approach,
as this review will discuss, it is often not straightforward to impose such
a relationship (Teller, 1984; Schall, 2004) as there are many theore-
tical, philosophical, and methodological hurdles any researcher must
overcome. Yet, the pursuit continues because the payoff is far too en-
ticing to deter some researchers: the notion that agreed upon theore-
tical and computational mechanisms supporting cognition could be
substantiated in the one organ housing mental operations presents a
unique opportunity for major advancements in the understanding of
human behavior.

2. Reciprocal relations between brain and behavior

The relationship between fluctuations in neural data and cognitive
mechanisms can be assessed through statements about the particular
nature of the mapping between neural states and latent cognitive pro-
cesses (Brindley, 1970; Teller, 1984; Schall, 2004). These mathematical
statements are known as linking propositions, and they can be formally
tested and distinguished. For example, Teller (1984) devised a set of
different linking propositions specifying how physiological states map
onto psychological states. In Teller's view, linking propositions should
be defined by a set of logical relations, and she used systems of relations
to define families of linking propositions: identity, similarity, mutual
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exclusivity, simplicity, and analogy. While these propositions are phi-
losophically desirable, they depend on equality statements, which are
impossible to observe in the real world as neurons cannot produce the
exact same pattern of firing from one trial to the next. In our view, as
trial-to-trial fluctuations in neuronal firing are unlikely to be perfectly
predictive of decision dynamics, perfectly axiomatic models can be
ruled out. Instead, to practically impose logical relations, we can define
statistical relationships that quantify evidence for each logical propo-
sition (see Schall, 2004 for a detailed discussion). Because these sta-
tistical relationships are posited to quantify evidence, they are viewed
as being mechanically different from perfectly causal models such as
those discussed in Pearl (2009), although the intentions may often be
similar in spirit. Throughout our review, we will refer to the equations
defining statistical relationships as the linking function, and will only
consider probabilistic links rather than fully causal ones.

The purpose of defining the linking function is to then test which
brain areas are related to the psychological variables we care about. In
Teller's terms, neurons that form clear logical relationships to psycho-
logical states are known as bridge locus neurons. In our terms, bridge
locus neurons are neurons whose association to psychological variables
is quantified through the linking function. In assessing whether brain
areas are related to psychological variables, it is vital that we quantify
evidence as either confirming or refuting the linking propositions. This
way, we will have a clear rule about whether or not brain areas con-
stitute the bridge locus.

Fig. 1 illustrates the concept of the bridge locus, and possible con-
siderations for their instantiation. In each panel, hypothetical brain
regions are related to mechanisms within a popular cognitive model,
known as the diffusion decision model (DDM; Ratcliff, 1978; Ratcliff
and Rouder, 1998; Forstmann et al., 2016). The DDM is useful because
it mathematically specifies how psychological variables assumed in the
model are related to behavioral variables observed in experiments. For
example, consider a choice between detecting leftward and rightward
motion in the classic random dot motion task. When viewing the sti-
mulus, we notice small local effects of coherent motion, and over time,
we arrive at a general consensus of which of the two motions are more
likely. The DDM instantiates this process through sequential sampling:
we extract information from the stimulus at each moment in time, and
this information is gradually accumulated until we have enough in-
formation to make a decision. Conceptually, each response option can
be represented in an “evidence” space where the boundary of the evi-
dence space represents the time at which a choice is made. The DDM
defines psychological variables in terms of mechanisms, and these
mechanisms can be adjusted for individuals or trials to better explain
how behavioral data came about. Two of the key mechanisms in the
model are the rate of evidence accumulation (i.e., the drift rate illu-
strated as the black arrow pointing toward a boundary), and the initial
evidence for the alternatives (i.e., the starting point of the accumulation

process). If we were to relate these mechanisms to brain data (Turner
et al., 2015), there are a number of possible linking propositions that
should be tested. Considerations in forming the bridge locus are (1) the
number of candidate brain regions (one or many), (2) the number of
psychological mechanisms (one or many), and (3) which brain regions
should be related to which mechanisms in the model.

In the field of model-based cognitive neuroscience, there are now
many different approaches for identifying the bridge locus (de Holl
et al., 2016; Turner et al., 2017b). Consistent with the mathematical
propositions of the bridge locus, several researchers have attempted to
infer causality between the two streams of data by either directly re-
placing mechanisms in cognitive models with neural data, or by
searching for brain regions whose statistical properties resemble the
statistical properties of cognitive mechanisms. We now review these
causally-motivated approaches.

2.1. Direct input

The first approach we consider links neural activity from a given
brain area directly to the dynamics of a decision model, and so we refer
to it as the direct input approach. One of the issues with using cognitive
models such as the DDM is that they are inherently and intentionally
abstract. A drift rate defines the rate of accumulation, but what is the
drift rate in terms of the neurophysiological process in the brain?
Previous research has shown that several areas in the brain, such as the
frontal eye field (FEF) and lateral intraparietal (LIP) area, exhibit an
“accumulation to threshold” property, where the cumulative sum of
their firing rates increases to a threshold level during the decision
period, followed immediately by the initiation of a saccade (Bogacz and
Gurney, 2007; Boucher et al., 2007; Glimcher, 2003; Hanes and Schall,
1996; Heekeren et al., 2004; Liu and Pleskac, 2011; Mulder et al.,
2014a,b; Purcell et al., 2012; Purcell and Palmeri, 2016; Roitman and
Shadlen, 2002; Shadlen and Kiani, 2013; Shadlen and Newsome, 2001;
Smith and Ratclif, 2004; Summerfield and de Lange, 2013). The pattern
exhibited by these neurons is taken to be analogous of the accumulation
processes in modern accumulator models, as described above (Brown
and Heathcote, 2008; Ratcliff, 1978; Ratcliff and Rouder, 1998; Usher
and McClelland, 2001). Because of the striking similarities between the
firing of FEF and LIP neurons and the evidence accumulation process in
cognitive models, it seems reasonable that the activity in these neurons
may map directly onto the accumulation process.

One approach to make accumulator models more concrete is to use
the neural activity during a decision process to replace the mathema-
tical mechanism that generates evidence accumulation in the model.
This approach tightly constrains the link between neural and behavioral
data because the neural data are used to generate a direct prediction
about behavioral data in the task. This approach was first explored in
Purcell et al. (2010), who mapped the firing rate of neurons in the FEF

Fig. 1. Considerations when mapping brain to
behavior. When forming a map between neural
and behavioral data, one must consider the
type of connections that must be built, such as
the number of brain regions and how they are
connected to the mechanisms in a cognitive
model. For example, one may consider the
joint activation of only a single brain region
(top row), a single cognitive mechanism (left
column), many brain regions (bottom row),
and many cognitive mechanisms (right
column).
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to the evidence accumulation process in an accumulator model. Spe-
cifically, the authors mapped the firing rate of visually responsive
neurons within the FEF onto perceptual evidence and the firing rate of
movement-related neurons onto evidence accumulation, driving the
decision process. Here, the neural activity served as a direct input to the
behavioral model, subverting the need for latent processes representing
evidence accumulation, such as drift rate and starting point. This al-
lowed for a more explicit test of whether visually responsive and
movement-related neurons in ocular motor areas of the brain could
predict the onset and location of a saccade in a perceptual decision
making task, rather than attempting to explain this process post-hoc by
interpreting latent parameter estimates and mapping them onto the
proposed underlying mechanisms. Since this initial investigation, sev-
eral other examples have provided convincing links between the neu-
ronal activity in the ocular motor areas and the dynamics of accumu-
lator models (Purcell et al., 2010, 2012; Purcell and Palmeri, 2016;
Schall et al., 2011).

In addition to exploring how the neuronal activity of the FEF could
map onto the evidence accumulation process, the direct input approach
has been useful in distinguishing between competing accumulator
model dynamics, expanding our understanding of how subjects com-
plete the task. By exploiting the constraint imposed between the neural
and behavioral data, the authors were able to test the types of trans-
formations of the neural data that were needed to best account for the
behavioral data. Specifically, they tested assumptions about how evi-
dence was accumulated over time, such as independent race and
counter models (Smith and Van Zandt, 2000; Vickers, 1979), diffusion
and random walk models (Laming, 1968; Link and Heath, 1975;
Nosofsky and Palmeri, 1997; Ratcliff, 1978; Ratcliff and Rouder, 1998),
competing accumulator models (Usher and McClelland, 2001), and
gated models (Purcell et al., 2010, 2012; Schall et al., 2011).

Direct input models are most directly related to causal models in the
sense that they typically involve direct transformations of the neural
signal into decision variables, such as the rate of accumulation in se-
quential sampling models. Once a transformation has been specified
within the model, any fluctuations in the neural data manifest directly
as fluctuations in the behavioral response. While in principle this ap-
proach has a more concrete link, it places strong assumptions on the
veridicality of the neural data, while still treating the behavioral data as
probabilistic. This creates some statistical issues when generating the
behavioral metrics, as the length of the neural data are explicitly linked
to the latency of the behavioral response. For example, Purcell et al.
(2010) defined the decision variable as a stochastic process whose
primary drive was a direct function of a single unit recording. One can
simulate the model using the single unit data up until the length of the
neural data has been exceeded. However, if the decision model has not
reached a criterion to produce a prediction for the observed behavioral
data, how does one go about extrapolating the neural data to continue
the stochastic simulation? One approach is to pool information about
the single unit data across trials to create an aggregated signal from
which simulations can be performed within for example, a condition of
the experiment. The pooling approach ensures that a decision can be
reached, but it also treats across-trial variability in the neural signal as
noise, which distorts the high resolution that single-unit recordings
provide. Another solution is to treat the neural data as probabilistic,
which in turn creates a statistical rather than purely causal link. Be-
cause treating both neural and behavioral data as probabilisitic is more
consistent with what we refer to as a joint model, we save the discussion
of this alternative approach until later (see Cassey et al., 2016).

2.2. Indirect input

The field of reinforcement learning developed an approach to find
neural (often fMRI) correlates of internal model representations
(Gläscher and O’Doherty, 2010; O’Doherty et al., 2007). For example,
the Rescorla-Wagner model (Rescorla and Wagner, 1972) of classical

conditioning characterizes learning as a process of sequentially up-
dating the expected value associated with presented stimuli. The up-
dating process depends on the mismatch between the expected value
and actual outcome (the prediction error), modulated by a learning rate
parameter that can be estimated using behavioral data. The resulting
model produces trial-by-trial expected values and prediction errors,
which can be regressed against neural data to find neural correlates of
internal representations. Multiple applications of this approach suggest
critical roles of ventral striatum in encoding prediction errors and or-
bitofrontal and mediofrontal cortex in encoding expected value (Daw
et al., 2006; Gläscher et al., 2009; Hampton et al., 2006; O’Doherty
et al., 2003; Tanaka et al., 2004).

Internal model representations also provide a means to perform
model discrimination. Mack et al. (2013) addressed the debate (Minda
and Smith, 2002; Zaki et al., 2003) on whether category representations
are based on exemplars, or on prototypes (also see Palmeri, 2014).
Prototype theory (Posner and Keele, 1968; Reed, 1972) holds that ca-
tegory representations are based on abstract prototypes that bear re-
semblance to all members of the category, while exemplar theory
(Medin and Schaffer, 1978; Nosofsky, 1986) argues that category re-
presentations are based on episodic traces formed during learning.
Computational models of both theories fit behavioral data equally well,
yet the inner representations of both models differ. Mack et al.
exploited this discrepancy using multivariate pattern analysis (MVPA)
to decode both models’ inner representations from fMRI data obtained
while participants performed an object categorization task. The results
showed that neural data resembled the inner representations of ex-
emplar theory much more closely than those of prototype theory.

Relating internal model representations to neural activity is also a
prominent method in the field of vision. For example, the recent success
of deep neural networks (DNNs; Kriegeskorte, 2015; LeCun et al., 2015;
Yamins and DiCarlo, 2016) in predicting object category spawned re-
search lines to investigate how well DNN representations of visual ob-
jects correspond to representations in human cortex (Cadieu et al.,
2014; Cichy et al., 2016; Güçlü and van Gerven, 2015; Khaligh-Razavi
and Kriegeskorte, 2014; Yamins et al., 2014). In one study, Güçlü and
van Gerven (2015) transformed DNN representations into predicted
neural responses, and correlated these with actual neural responses
across the ventral stream of the visual pathway. They showed that the
gradient of increasing complexity of object representations across layers
in the DNN closely matched the increasing complexity of object re-
presentations across the ventral stream. These and similar approaches
with other encoding models (Kay et al., 2013a,b; Kay and Yeatman,
2017) help us understand which kind of computations the brain per-
forms to process sensory information into meaningful representations.

2.3. Parametric maps

Where the indirect input approach relates internal model re-
presentations to neural data, another approach is to regress the cogni-
tive model parameters themselves onto neural data (Forstmann et al.,
2008, 2010a,b, 2016; Boehm et al., 2014; Ho et al., 2012; Mansfield
et al., 2011; Mulder et al., 2014, 2012; Summerfield and Koechlin,
2010; van Maanen et al., 2011; White et al., 2014, 2012; Rodriguez
et al., 2015; Turner et al., 2018a). Generally, the aim is to explore
neural mechanisms underlying cognitive processes. In a now classic
example, Forstmann et al. (2008) used this approach to study neural
adjustments underlying the speed-accuracy trade-off (SAT) in percep-
tual decision-making. The SAT refers to the ability to increase accuracy
at the cost of speed and vice versa (Bogacz et al., 2010; Heitz and
Schall, 2012). Experiments studying the SAT generally instruct parti-
cipants to stress either speed or accuracy in each upcoming decision-
making trial. Decision-making models are then used to quantify the
difference in response caution between SAT instructions, and this dif-
ference serves as a measure of participants’ flexibility in adjusting their
behavior.
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Forstmann et al. (2008) found that individual variability in response
caution adjustments correlate with individual variability in blood
oxygenated level dependent (BOLD) responses in striatum and pre-
supplementary motor area. Multiple follow-up studies (Mansfield et al.,
2011), for example using structural MRI measures (Forstmann et al.,
2010b, 2011) or focusing on within-subject variability by calculating
trial-by-trial adjustment in response caution (Boehm et al., 2014; van
Maanen et al., 2011; Turner et al., 2015), provided additional evidence
for a role of these areas in control of response caution. These results are
especially interesting as they support prominent theories of action se-
lection in the basal ganglia (Alexander, 1986; Bogacz and Larsen, 2011;
Frank, 2006; Lo and Wang, 2006; Ratcliff and Frank, 2012; O’Reilly and
Frank, 2006).

Perceptual decision-making models allow researchers to quantify
other latent processes as well. Various studies (Forstmann et al., 2010a;
Mulder et al., 2012, 2014; Summerfield and Koechlin, 2010) focused on
the neural mechanisms that allow for flexible adjustment of behavior
due to biasing information. Typically, participants were presented with
a cue providing either prior information (i.e., the cued choice option is
more likely to be correct), or potential pay-off (i.e., the associated re-
ward with the cued choice option is higher). After quantifying the
amount of choice bias using decision-making models, individual dif-
ferences in bias were correlated with differences in neural measures.
The results suggest that in addition to frontoparietal networks (Mulder
et al., 2012), the orbitofrontal cortex is involved in processing such bias
cues (Forstmann et al., 2010a; Summerfield and Koechlin, 2010). These
results imply a role for the orbitofrontal cortex in encoding expected
reward, which is corroborated by the reinforcement learning literature
described above.

As another example, Turner et al. (2018) examined the relationship
between nonlinear mechanisms in decision processes and the engage-
ment of prefrontal cortex in the intertemporal choice task. In this task,
subjects are asked to choose between a lower valued immediate reward
and a higher valued reward at some point in the future. Similar to the
adjustments made in perceptual models for preferential choice (Usher
and McClelland, 2004; Hotaling et al., 2010; Turner et al., 2018c),
Turner et al. (2018) adapted mechanisms such as lateral inhibition and
leakage (intrinsic to Decision Field Theory (Busemeyer and Townsend,
1993) and the Leaky Competing Accumulator model (Usher and
McClelland, 2001, 2004); see Box 1 to examine a broad range of pos-
sible theoretical explanations of how self-control processes emerge
when making goal-directed decisions. Importantly, their analyses re-
vealed that when subjects engage in a self-controlled decision that
maximizes reward despite a temporal cost, their brains are differen-
tially activated relative to when they make impulsive decisions that
minimize temporal cost and do not maximize reward. After fitting their
models hierarchically to data from many individuals, they determined
that the best explanation for this neural asymmetry was a dynamic,
oscillatory feature selection process (Busemeyer and Townsend, 1993;
Hotaling et al., 2010; Dai and Busemeyer, 2014) combined with active
asymmetric suppression (i.e., through lateral inhibition; Usher and
McClelland, 2001, 2004) of tempting, yet inferior, choice options.
Furthermore, Turner et al. (2018) showed how the difference in the
asymmetry of active suppression was significantly correlated with
fronto-parietal brain areas often engaged in cognitive control
(Botvinick et al., 2001, 2004) on a trial-by-trial level.

3. Joint models enforce statistical reciprocity

As discussed in Section 1, linking propositions are strict logical
statements between physiological and psychological variables. How-
ever, because both neural and behavioral data are noisy and biologi-
cally constrained, strict linking propositions are impossible to in-
stantiate formally (Schall, 2004). As a remedy, our methods of assessing
the strength of a relationship should be based on statistical principles,
where noisy relationships in the data are taken into account.

Importantly, to test which brain regions constitute the bridge locus and
which do not, we must quantify the strength of the relationship by
carefully considering all sources of variability in the neural and beha-
vioral measures. Furthermore, as highlighted in Forstmann et al.
(2011), it is important that the link be reciprocal, as both the physio-
logical and psychological bases of the bridge locus are random vari-
ables.

One new approach for addressing the statistical uncertainty of the
bridge locus while simultaneously imposing a reciprocal link between
brain measures and decision variables is the “joint modeling” approach
(Turner et al., 2013, 2015, 2016, 2017; Turner, 2015; Cassey et al.,
2016). Unlike the direct input or parametric map approaches, joint
models enforce a constraint on model parameters based on the random
variation in the neural data. In other words, if one treats the neural data
as a statistical covariate within the model, the estimates of the beha-
vioral model parameters can be better informed. This simple strategy
gives joint models some important advantages. For example, joint
models are better equipped to (1) handle mismatching (i.e., when the
size of the neural data is different from the size of the behavioral data)
and missing data, (2) perform inference on the magnitude of brain-
behavior relationships (i.e., they are not subject to Type I errors as in
the parametric mapping approach), (3) compare hypothesized brain-
behavior relationships across models, and (4) make predictions about
either neural or behavioral data.

Fig. 2 provides an illustration of the joint modeling approach, ap-
plied to 30 s worth of an experiment involving a decision among three
alternatives. Neural and behavioral data are separated into streams, and
each measure is captured by “submodels.” For neural data, candidate
sets of ROIs are defined (left panel) and the time course of their acti-
vation is extracted. A statistical model of how stimulus presentations
(red triangles) affect the BOLD response are specified and fit to the
extracted neural signal (middle). The process of fitting the model to
data procures estimates of activation parameters for each stimulus
presentation. For the behavioral data, a cognitive model is developed
(left), and similarly fit to behavioral data such as choice response time
measures (middle). Parameter estimates quantify how the stimulus
presentations affect the psychological processes during the task. Finally,
to impose statistical reciprocity, a linking function specifies how and
are related (see Box 2).

Of course, there are many different ways of creating a linking
function between the two streams of data, and these linking functions
have different advantages and disadvantages. One aspect of the linking
function that is important for creating divisions in the literature is the
manner in which reciprocity is imposed. For example, links can be
imposed that are partially reciprocal, where only one set of parameters
(e.g., ) are influenced by both streams of data. On the other hand, fully
reciprocal links can be specified such that both sets of parameters (i.e.,

and ) are influenced by both streams of data. The definition is a
technical one, but it distinguishes the types of reciprocity in terms of
how the likelihood function relating model parameters to data is spe-
cified. If the likelihood of a stream of data can be written as a function
of one (i.e., partial) or both (i.e., full) sets of parameters, it is what we
call a joint model. Because the (likelihoods of the) approaches we dis-
cuss in Section 1 cannot be expressed in this way, we do not consider
them to be joint models per se, although clearly the intentions are si-
milar.

Fig. 3 illustrates three different ways of specifying the linking
structure, two of which have been used, and one we will discuss in the
Future Directions section below (Fig. 3; right panel). The left panel
shows an approach we refer to as a Directed joint model, where neural
features are regressed onto model parameters. For example, a linear
plane could be used to relate the activation 1 and 2 of two regions of
interest to a model parameter (bottom panel). Here, the values of 1
and 2 strictly determine the value of , and so the path of influence is
unidirectional, constituting partial reciprocity. Another approach is the
Covariance approach, where a probabilistic linking function is imposed.
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Here, all neural features can interact with one another, as well as the
model parameters. The probabilistic map can be used to specify a dis-
tribution on , where the values of 1 and 2 are used to slice through a
hyper ellipsoid. Here, the path of influence is bidirectional (i.e., double
headed arrows), constituting full reciprocity. Finally, to create more
flexible maps, one could use a Neural Network approach where all
neural features map to “hidden states” before being converted into
model parameters. These linking functions allow for distributed

activation that can be highly nonlinear, yet still only partial reciprocity
is established. We now discuss these linking functions in turn.

3.1. Directed models

The left panel of Fig. 3 illustrates the basic idea behind directed
joint models: parameters of a behavioral model are linked to para-
meters of a neural signal of interest through a deterministic function.

Box 1
Popular decision models describing human behavior.

There are several models that work well to describe choice response time distributions in a variety of decision making paradigms. Three
popular models are the Linear Ballistic Accumulator (LBA; Brown and Heathcote, 2008) model, the Racing Diffusion Model (RDM; Logan et al.,
2014), and the Leaky, Competing Accumulator (LCA; Usher and McClelland, 2001) model. These models make a number of different pro-
cessing assumptions, and the figure below illustrates a few of these important differences. One can view the models as having similar ar-
chitectures, but with increasing degrees of complexity (arranged in increasing order from left to right).

Linear Ballistic Accumulator Model: The left panel shows a graphical representation of the LBA model for two-choice data. Each response
option is represented as a single accumulator (i.e., the red, blue, and green lines). Following the presentation of a stimulus, evidence bal-
listically accumulates for each alternative until one of the alternatives reaches the threshold (top line). The model assumes some initial amount
of evidence is present for each response option, and this amount is randomly distributed across trials. The rate of evidence accumulation itself
is also randomly distributed across trials, but has a mean that is fixed allowing one option to be chosen systematically over other options. The
accumulation process in the model is linear, and each alternative accumulates information independently, meaning that the state of one
accumulator does not depend on any others.

Racing Diffusion Model: The middle panel illustrates a racing diffusion process (Logan et al., 2014), which is a more general case of the DDM.
In the racing diffusion process, evidence for each alternative accumulates independently, as in the LBA. However, the DDM assumes that
evidence accumulates in a perfectly anti-correlated fashion, meaning that evidence for one alternative is evidence against the other alternative.
This feature of the DDM makes it difficult to apply directly to multi-alternative choice. The DDM adds to the LBA an assumption about within-
trial variability in the accumulation process. The middle panel illustrates this stochastic process by the wavy paths through evidence space as a
function of time.

Leaky Competing Accumulator Model: The LCA model was developed as a neurologically plausible way to describe the dynamics of response
competition. Within the LCA, several nonlinearities complicate the accumulation process. Most importantly, the accumulators compete with
one another in a way that is state-dependent: as one accumulator gathers more evidence, it can inhibit other accumulators, causing their rate of
accumulation to slow and even become negative. In the illustration above, this competitive dynamic can be seen by inspecting the interaction
of the accumulators, where the green accumulator dominates first the red accumulator, and later the blue accumulator. Like the DDM, the LCA
assumes within-trial variability. Traditional applications of the LCA do not usually assume between-trial variability in the drift rate, and only
occasionally assume between-trial variability in starting point. The LCA model also assumes that the accumulation of evidence is “leaky”,
meaning that some information is lost during the integration of sensory information.

Fig. 2. Illustration of joint modeling approach.
The figure shows a hypothetical example con-
sisting of 30 s worth of an experiment invol-
ving a decision among three alternatives. For
neural data, regions of interest are defined
(left) and the blood oxygenated level depen-
dent (BOLD) response can be extracted.
Statistical models can be fit to the observed
BOLD time course (middle), and parameters
for say, neural activation, can be estimated.
For behavioral data, a cognitive model is de-
veloped (left) with mechanisms that are cog-
nitively meaningful. The model can then be fit
to data (middle), and parameters for say,
drift rate, can be estimated. Finally, joint
models specify how the neural parameters
are related to the cognitive model parameters
through a linking function. In each model
schematic, red triangles indicate stimulus pre-
sentations.
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Box 2
Linking functions relating brain to behavior.

In describing neural data N , one approach is to use a statistical model such as the general linear model (Friston et al., 2002; Penny and Friston,
2004), or topographic latent factor analysis (Gershman et al., 2011). These models have a set of parameters that control their shape in ways
that can closely match observed neural data. On the other hand, one can use theoretical models of cognitive processes with parameters to
describe behavioral data B. To complete the process of linking the two streams of data, joint models were proposed as a way to directly relate
parameters describing neural data to parameters describing behavioral data . Turner et al. (2013) proposed a completely generic function of
the following form:

( , ) ( ). (1)
Here, the parameter(s) serve to control the shape of the structure of the link between and . The connection enforced by the over-

arching distribution is concrete: one must make a specific assumption about the relationship between and when considering the
underlying cognitive processes involved. As the article has suggested, there are many ways to specify this link, where some links are prob-
abilistic, deterministic, or based on machine learning techniques.

The left panel of Fig. Fig. 3 illustrates the first type of joint model we discussed in this article, an approach we refer to as “Directed”
(Cavanagh et al., 2011; Nunez et al., 2015, 2017; Frank et al., 2015). The Directed approach uses a set of parameters to describe the
functional properties of neural data N through some statistical model that also modulates the behavioral model parameters through a linking
function , such that

= ( ). (2)
In the applications described in this article, the linking function usually takes the form of a multivariate regression model. For example,

suppose the parameters i k, describe a set of K activations on Trial i from several regions of interest (i.e., …k K{1, 2, , }). One could assume a
generic linear combination of these activations gives rise to the behavioral parameters of interest, such that

= + + + +
= + .

i i i K i K

k
k i k

0 1 ,1 2 ,2 ,

0 ,

Here, the activation on each trial for each ROI is scaled by k and shifted by 0 to best capture the neural data, while also generating a good
prediction for behavioral data through the parameters . This functional form can be viewed as a single-level perceptron model (Minsky and
Papert, 1969) that maps a set of inputs to a set of outputs .

If one cannot assume that there is a direct link between neural and behavioral model parameters, another approach is to specify a
probabilistic link between the two parameters. For example, Turner and colleagues (Turner et al., 2013, 2015, 2016; Palestro et al., 2018) have
used the multivariate normal distribution to simultaneously model multivariate patterns in neural activation through the form

…( , , , , ) ( , ),i i i i K k,1 ,2 ,

where is a set of means for the model parameters, and contains information for the relationship between every pairwise combination of
parameters in the set of model parameters. As the complexity of this linking function grows rapidly with increasing number of ROIs (i.e.,
quadratic complexity), Turner et al. (2017) investigated methods for decomposing into a factor loading matrix , factor variance matrix ,
and residual terms , such that

= + .
This approach has the advantage of constraining the correlation structure on the basis of the model parameters, where the factors within

can directly represent parameters from a cognitive model. The factor analytic approach was show to greatly reduce the complexity of the
linking function, while preserving the model's out-of-sample generalizability.

Fig. 3. Different statistical links between brain
and theory. There are many ways to specify a
linking function between neural and beha-
vioral data (see Box 2). The left panel shows a
generic application of a linear regression
model. The middle panel shows a multivariate
normal linking function that allows variability
along each dimension to affect the strength of
association. The right panel shows possible
new directions for joint models, where multi-
layer connections between neural data and
model parameters can be made to allow for
distributed activation and more complex de-
tection of key neural features.
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In this way, Directed joint models are quite similar to the direct input
and parametric mapping approaches above, but the key difference is
that the linking mechanism allows variation in to statistically affect
variation in . Furthermore, consistent with the identification of the
bridge locus, we may have different linking structures where several
brain regions are related to one or more model parameter. Importantly,
the link between and is reciprocal. Not only do the neural data have
a direct effect on the parameters , but because the precise form of the
linking function makes a strong commitment to a prediction about
behavioral data, so too do the behavioral data influence the parameters
.

At this point, several applications of these directed models have
been reported, and they have been particularly effective in perceptual
decision making tasks (Cavanagh et al., 2011; Nunez et al., 2015, 2017;
Frank et al., 2015; van Ravenzwaaij et al., 2017; Ratcliff et al., 2016;
Herz et al., 2017; Hawkins et al., 2017). For example, Nunez et al.
(2015) used EEG data on a perceptual decision making experiment as a
proxy for attention. They controlled the rate of flickering stimuli pre-
sented to subject and measured power of the EEG signal at these fre-
quencies; a measure known as steady-state visual evoked potential. The
power on these frequencies is known to be modulated by attention.
Importantly, Nunez et al. showed that individual differences in atten-
tion or noise suppression was indicative of the choice behavior, speci-
fically it resulted in faster responses with higher accuracy.

In a particularly novel application, Frank et al. (2015) showed how
models of reinforcement learning could be fused with the DDM to gain
insight into activity in the subthalamic nucleus (STN). In their study,
Frank et al. used simultaneous EEG and fMRI measures as covariates in
the estimation of single-trial parameters. Specifically, they used pre-
defined regions of interest including the presupplementary motor area,
STN, and a general measure of mid-frontal EEG theta power to con-
strain trial-to-trial fluctuations in response threshold, and BOLD activity
in the caudate to constrain trial-to-trial fluctuations in evidence accu-
mulation. Their work is important because it establishes concrete links
between STN and pre-SMA communication as a function of varying
reward structure, as well as a model that uses fluctuations in decision
conflict (as measured by differences in expected rewards) to adjust
response threshold from trial-to-trial.

While Fig. 3 illustrates how the parameters modulate the para-
meters , other models assume the reverse influence, where the beha-
vioral parameters inform the neural parameters . As a concrete ex-
ample, Cassey et al. (2016) extended the single-unit modeling work of
Purcell et al. (2010) by linking firing parameters of single unit re-
cordings to evidence accumulation dynamics of a decision model.
Cassey et al. modeled data from a seminal experiment by Roitman and
Shadlen (2002) containing behavioral recordings of two monkeys in a
simple decision-making task. The neural data consisted of single-cell
neural recordings from the lateral intraparietal area of the cortex. On
each trial, a random dot kinematogram appeared on the screen and the
monkey indicated whether the coherently moving dots were drifting
left or right. Response times and choices were recorded from each trial
as well as the timing of action potentials from a set of neurons in the
lateral intraparietal area of the cortex. The joint model builds on the
work of Purcell et al. (2010, 2012) by assuming that an evidence ac-
cumulation model can provide a tight link between the observed neural
firing rate and behavioral responses. In contrast to Purcell et al. (2010,
2012) where the neural data are used directly as input to an evidence
accumulation model, the model also included an explicit statistical
model of the single unit spike trains. Given this implementation, de-
scriptions of the neural data can be informed by the neuron's properties,
such as which neuron was being recorded, and from which monkey.
The joint model by Cassey et al. (2016) was hierarchical, and the
parameters of the neural submodel were allowed to vary across neurons
and monkeys.

3.2. Covariance models

Directed joint models are convenient because of their simplicity, and
because they establish a causal role of neural activation in decision
making. However, sometimes causal links are too restrictive, and instead
what is needed is a probabilistic linking function rather than a determi-
nistic one. For example, the activity in the LIP area has served as the
neural basis for the evidence accumulation process (Roitman and Shadlen,
2002; Shadlen and Kiani, 2013; Shadlen and Newsome, 2001), but Katz
et al. (2016) have shown that when LIP areas are superficially lessioned in
nonhuman primates, patterns of decision making variables remain un-
affected. This finding might suggest that while LIP is related to decision
variables, they may not be causally linked (Huk et al., 2017).

As Fig. 3 indicates, directed approaches can potentially be too
constrained, making the linking structure inflexible for potentially
capturing highly complex interactions. As alluded to in Fig. 1, some-
times it will be important to capture multivariate tendencies across
several ROIs, or to map brain activity onto multiple model parameters.
One way to capture multivariate tendencies is the Covariance approach,
which has been used productively to link multiple measures of neural
data to pairwise combinations of model parameters (Turner et al., 2013,
2015, 2016, 2017, 2018; Cassey et al., 2016; Palestro et al., 2018). For
example, Turner et al. (2013) used structural diffusion weighted ima-
ging data to explain differences in patterns of choice response time data
across subjects. They showed how a joint model equipped with in-
formation about the interconnectivity of brain areas could make accu-
rate predictions about a subject's behavioral performance in a cross
validation test (i.e., the behavioral data were withheld).

Turner et al. (2015) extended this approach to build in brain state
fluctuations measured with fMRI into the DDM. The problem Turner
et al. (2015) addressed centered on a lack of information about within-
trial accumulation dynamics. In behavioral choice response time ex-
periments, following the presentation of a stimulus, researchers can
only observe the eventual choice and response time. These data are
then used to estimate parameters of a cognitive model, following an
assumption that the data observed on each of these trials arises from the
same psychological process. However, this assumption – known as
stationarity – is a strong one, and is seldom observed in empirical data
(Peruggia et al., 2002; Craigmile et al., 2010). Turner et al. (2015) used
a multivariate model to describe the joint activation of a set of brain
regions of interest, and used this description to enhance the classic
DDM. In a cross validation test, they showed that their extended model
could generate better predictions about behavioral data than the DDM
alone, demonstrating that neurophysiology can be used to improve
explanations about trial-to-trial fluctuations in behavior.

In another application, Turner et al. (2016) used the joint modeling
framework to perform multimodal data fusion at the individual-subject
level. In the study, subjects were assigned to groups that dictated which
type of neural measures would be collected: (1) EEG, (2) fMRI, or (3)
both EEG and fMRI. Within all groups, subjects completed an inter-
temporal choice task, providing both behavioral data in the form of
choice response times and neural data in accordance with their group
assignment. For the subjects providing both EEG and fMRI, Turner et al.
used a repeated measures design where subjects returned to the lab and
neuroimaging modalities were counterbalanced across individuals. In
using the joint model, they assumed that the common relationship of all
the measurements (i.e., behavior, EEG, and fMRI) was the mental ac-
tivity underlying each decision. Using this assumption, Turner et al.
created one hierarchical joint model of all three groups, and showed
that this model performed better in terms of model fit and cross vali-
dation of individual subjects’ data compared to models that only con-
sidered one (i.e., behavioral only) or two (e.g., behavior and EEG only)
modalities of information. Importantly, Turner et al. showed how re-
peated measures experimental designs can be used to productively in-
tegrate information from EEG, fMRI, and behavioral data both within
and between individuals.
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4. Future extensions: distributed activation

Although Covariance joint models are more flexible than Directed
joint models, they still may not provide the best linking function in
some scenarios. By capturing all pairwise correlations among ROIs and
model mechanisms, they can be computationally complex to fit to data
(Turner et al., 2017a). In fact, this complexity has limited Covariance
joint models to ROI-based analyses, as whole-brain analyses are cur-
rently infeasible. While ROI-based analyses can be a productive way to
integrate results across studies, they completely ignore potentially in-
teresting coactivations that may be distributed across the brain (Haxby
et al., 2000; Norman et al., 2006). For example, Huk et al. (2017)
suggest several reasons why the firing rates of single unit neurons re-
corded from LIP should not be interpreted as being directly related to
decision variables per se, but rather motor preparation signals. Instead,
Huk et al. (2017) advocated for the notion that the integration of mo-
tion information is distributed across the brain. While such distributed
correlation of evidence variables has been observed in ROI-based joint
analysis of human fMRI data (Turner et al., 2015, 2017), finer levels of
analysis such as whole-brain and temporal dynamics are needed to
advance the field.

To capture distributed activations, even more flexible linking
functions may be necessary. As noted in Turner et al. (2018), neural
networks may provide an interesting opportunity for detecting multi-
variate coactivation of cortical areas that are not spatially proximal. As
illustrated in the right panel of Fig. 3, Neural Network extensions are
not unlike Directed approaches; in fact, one can view Directed ap-
proaches as a single-layer perceptron model, an early form of connec-
tionist models. Much like the history of the perceptron (Minsky and
Papert, 1969; McClelland, 2009), there are likely many types of func-
tions that Directed models are unable to capture. One of the major
problems that connectionist frameworks such as PDP models addressed
was linearly separable mapping functions such as the XOR operation. In
the XOR problem, a map is constructed between two inputs x1 and x2
and an output y. When either =x 11 or =x 12 , =y 1, but if x1 ever
equals x2 (i.e., = =x x 11 2 or = =x x 01 2 ), then =y 0. Simple perceptron
models are unable to address this type of mapping. The solution to the
XOR problem was to include a hidden layer to allow for a more complex
mapping function between input and output layers. Analogously,
hidden layers may be an essential component to advance Directed joint
models for more complex multivariate interactions with cognitive me-
chanisms. As we see it, Neural Network models, or highly nonlinear
multivariate regression techniques in general, serve as a method of
agnostically mapping the activation from many neural features into key
decision dynamics. There is nothing particularly special about Neural
Network models per se, as similar nonlinear multivariate regression
techniques could extend Directed joint models to capture similar pat-
terns (see Box 2).

To capture temporal dynamics, one approach would be to model the
temporal dependency among regions of interest using techniques such
as Dynamic Causal Models (Friston, 2002; Friston et al., 2003), or more
generally, Multivariate Dynamical Systems (Ryali et al., 2011). These
techniques often require strong assumptions about the set of con-
nectivity paths worth considering, or how activation maps to a hemo-
dynamic signal (e.g., the Balloon model, see Buxton et al., 1998;
Mandeville et al., 1999; Friston et al., 2000). Although temporally
causal models are generally difficult to fit to data, considerable progress
is being made to improve the feasibility of testing these dynamical
approaches (Sugihara et al., 2012), and so relating temporal dynamics
of brain behavior to the temporal structure of decision models may be
the next frontier for imposing reciprocity in brain-behavior dynamics.

5. Conclusions

To connect neuroscientific measures to psychological theory, a new
wave of researchers have carefully considered how to inspect and

interpret highly complex interactions across a sea of data. Many re-
searchers have looked to computational models that instantiate psy-
chological theories through a set of mathematical expressions, making
their predictions for data in completely new experiments transparent.
As the field has continued to develop, new statistical techniques have
been constructed with the intention of bridging mechanisms from ab-
stract computational models to concrete neurophysiological responses.
These powerful new frameworks allow researchers to understand the
complexities of brain data in terms of the psychological theories they
assume. Some of these frameworks inherently assume hierarchical
Bayesian architectures, which have been shown to magnify the re-
solution of data by the borrowing of “statistical strength.” In closing,
techniques such as joint modeling provide the telescope by which
neural data may be interpreted through the lens of a cognitive model.
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