
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Bayesian power equivalence in latent growth curve models

Stefan, A.M.; von Oertzen, T.
DOI
10.1111/bmsp.12193
Publication date
2020
Document Version
Final published version
Published in
British Journal of Mathematical & Statistical Psychology
License
CC BY

Link to publication

Citation for published version (APA):
Stefan, A. M., & von Oertzen, T. (2020). Bayesian power equivalence in latent growth curve
models. British Journal of Mathematical & Statistical Psychology, 73(S1), 180-193.
https://doi.org/10.1111/bmsp.12193

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1111/bmsp.12193
https://dare.uva.nl/personal/pure/en/publications/bayesian-power-equivalence-in-latent-growth-curve-models(a371cb40-56e5-45ab-a0f0-bdada4b9b006).html
https://doi.org/10.1111/bmsp.12193


British Journal of Mathematical and Statistical Psychology (2019), 73, 180–193

© 2019 The Authors. British Journal of Mathematical and Statistical Psychology

published by John Wiley & Sons Ltd on behalf

www.wileyonlinelibrary.com
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1Department of Psychology, University of Amsterdam, The Netherlands
2Department of Psychology, University of the Bundeswehr, Germany

Longitudinal studies are the gold standard for research on time-dependent phenomena in

the social sciences. However, they often entail high costs due to multiple measurement

occasions and a long overall study duration. It is therefore useful to optimize these design

factors while maintaining a high informativeness of the design. Von Oertzen and

Brandmaier (2013, Psychology and Aging, 28, 414) applied power equivalence to show that

Latent Growth Curve Models (LGCMs) with different design factors can have the same

power for likelihood-ratio tests on the latent structure. In this paper, we show that the

notion of power equivalence can be extended to Bayesian hypothesis tests of the latent

structure constants. Specifically, we show that the results of a Bayes factor design analysis

(BFDA; Sch€onbrodt & Wagenmakers (2018, Psychonomic Bulletin and Review, 25, 128) of

two power equivalent LGCMs are equivalent. This will be useful for researchers who aim

to plan for compelling evidence instead of frequentist power and provides a contribution

towards more efficient procedures for BFDA.

1. Introduction

Researchers design experiments to gain knowledge of the world. In a world of limited

resources, it is ethical to conduct these experiments efficiently (Halpern et al., 2002).

Hunter and Hoff (1967) define research efficiency as ‘the amount of useful information

obtained per unit cost’. Often, longitudinal studies entail especially high costs. These

accrue either due to a long overall study duration, for examplewhen a treatment has to be

administered over a long period of time, or due to a large number of measurement

occasions, for example when non-reusable testing material is spent at each testing event.

It is therefore especially important to plan longitudinal studies carefully so that an optimal
balance between study costs and the expected gain in information can be achieved

(Brandmaier et al., 2015).

Longitudinal designs can be statistically evaluated with a sub-group of structural

equation models (SEMs; for an overview see e.g., Baltes et al., 1988) called Latent Growth

CurveModels (LGCMs; see e.g., Duncan&Duncan, 2009). In a simple LGCM, the values of

a variable across several measurement occasions (xi) are modeled as a combination of a
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latent intercept (I) and a latent slope (S). The intercept has a constant influence on the

measurement occasions, while the slope adds time-dependent linear changes (see

Figure 1). To add nonlinear changes, a quadratic or higher-order term can be introduced

(Duncan & Duncan,2009). For example, Lindenberger and Ghisletta (2009) investigated
cognitive and sensory decline in elderly participants with an LGCM. In this context, the

intercept parameter captured the participants’ initial abilities and the slope parameter

captured the extent of the linear time-dependent decline.

An advantage of LGCMs is that they allow the direct estimation of between-subjects

variability in the latent intercept and slope, described as the variance of the intercept (r2
I )

and the variance of the slope (r2
S) in the model. These random effects represent the

individual differences in initial performance and change, respectively (Rogosa & Willett,

1985). In an LGCMwhere the intercept reflects the initial status of the observed variable,
the intercept-slope covariance (rIS) reflects the extent to which individual differences in

the initial status correlate with subsequent change (Rovine & Molenaar, 1999). Thus, in

the example used earlier (Lindenberger & Ghisletta, 2009), the variance of the intercept

can be interpreted as the variability of cognitive and sensory abilities of participants at the

beginning of the study. The variance of the slope corresponds to differences in the

steepness of the cognitive decline between participants. A positive covariance between

intercept and slope in the example would show that participants with higher initial

abilities suffer from a more rapid decline.
In a frequentist setting, an important aspect of the quality of a design is its statistical

power, which is defined as the long-term probability of correctly rejecting the null

hypothesis under a given population effect size that differs from zero. The statistical

power of a design depends on the size of the effect in the population, on the significance

level a of the hypothesis test, on the sample size N, and on the measurement design

Figure 1. Schematic representation of a Latent Growth Curve Model (LGCM). More measurement

occasions can be added as depicted for xt. Latent variables represent the intercept (I)with variancer2
I

and slope (S) with variance r2
S . Figure available under a CC-BY4.0 license at https://osf.io/hkt4p/.
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(Brandmaier, et al., 2018; Cohen, 1992). For most traditional hypothesis tests, such as a

z-test or a t-test, it is possible to calculate the statistical power analytically (Murphy et al.,

2014). However, for most SEMs there is no analytical solution available, so the statistical

power of a model has to be estimated via numerical approximations (e.g., Saris & Satorra,
1993) or through simulations (e.g., Hertzog, et al., 2008, Muth�en & Muth�en, 2002).

Von Oertzen (2010) introduced the concept of power equivalence, which describes

that two designs have the same statistical power to detect a true effect. Power equivalence

can be used to find research designs that are most resource efficient among designs with

the same power. For example, vonOertzen and Brandmaier (2013) illustrated howpower

equivalence facilitates finding a cost-optimal solution among multiple longitudinal

designs. In longitudinal designs, power equivalence can be established by balancing the

overall duration of the study and the number of measurement occasions. To keep the
power constant, moremeasurement occasions are required if the overall study duration is

shortened. By comparing multiple power-equivalent longitudinal designs based on data

and cost estimates from the Berlin Aging Study (BASE; Ghisletta, et al., 2006), vonOertzen

and Brandmaier (2013) showed that the overall study costs could be reduced by 16%

compared to the original design while keeping the statistical power with respect to the

variance of slopes constant. Thus, power equivalence can facilitate the planning of future

studies in two ways: First, instead of conducting multiple potentially resource-intensive

power analyses for different designs, a power analysis has to be computed only once for a
theoretically infinite number of power-equivalent designs. Second, knowing that certain

designs do not differ in an important aspect of design quality, researchers can focus on

minimizing the costs (Hunter & Hoff, 1967).

Conceptually, power equivalence as applied in von Oertzen and Brandmaier (2013)

can be described by the following procedure. Any LGCM can be reduced to a power

equivalent model with a minimum number of observed parameters, from which further

power equivalent models can be derived. These power equivalent models balance

different design parameters, for example the number of measurement occasions ( j = 1,
. . ., k) and the time distance between measurement occasions, modeled in the path

parameters hS ? xj, so that the power to detect an effect (e.g., r2
S > 0) is equivalent.1

This is reflected in the effective error variancer2
eff which is shared by all power-equivalent

models. Figure 2 schematically depicts this trade-off: A linear trend ismeasuredwith three

power equivalent designs which differ in their number of measurement occasions and

their overall study duration.

In recent years, the replicability crisis (Pashler & Wagenmakers, 2012) as well as

continuing criticism regarding the frequentist hypothesis testing framework (e.g.,
Edwards, et al., 1963; Wagenmakers, 2007) have led to a growing interest in Bayesian

methods for statistical inference.2 The single most important quantity in Bayesian

hypothesis testing is the Bayes factor (Kass & Raftery, 1995). Mathematically, the Bayes

factor (BF10) is defined as the ratio of the marginal likelihood of the data under the

alternative model (pðDjH1ÞÞ and the marginal likelihood of the data under the null model

(pðDjH0ÞÞ. It provides a continuous quantification of the evidence in favor of one

statistical model compared to another statistical model.

1Note that although j in theory can go down to j = 1, in practical cases j needs to be at least equal to the number of
latent variables (e.g., two for a linear LGCM, or three for a quadratic LGCM) to estimate all distribution parameters
of the latent variables.
2 An easily accessible introduction to Bayesian inference can be found in Etz & Vanderkerckhove (2018).
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Sincemost researchers aim to collect compelling evidence in a study, both very large or

very small Bayes factors can be regarded as a desirable outcome of a study. For example, a

Bayes factor of BF10 = 10 indicates a tenfold increase inprior odds toposterior odds in favor

of the alternative hypothesis after having observed the data, while a Bayes factor of

BF10 = 1/10 indicates a tenfold increase in prior odds in favor of the null hypothesis. How
large the Bayes factors get that an experiment yields, depends on the tested models

(described by likelihoods and prior distributions), on the population effect size, on the

amount of collected data, that is, the number of observations in the sample, and on the

measurement design (Stefan, et al., 2019). Assuming that themodels are determined by the

research question, only the sample size andmeasurement design can be directly influenced

by the researcher. This shows that researchers who use Bayesian statistics to evaluate their

data are also in the need to balance the costs and the information gain of their designs – in
other words that design planning is an important topic from a Bayesian viewpoint, too.

Howcan researchers find an adequate sample size ormeasurement design so that their

study likely yields compelling evidence, but is also designed economically? Sch€onbrodt &
Wagenmakers (2018) proposed a framework called ‘Bayes Factor Design Analysis’ (BFDA)

that enables researchers to find the expected Bayes factors of their design. Their approach

is based on Monte Carlo simulations where data are repeatedly simulated under a

population model (‘design prior’) and a Bayesian hypothesis test is conducted for each of

these samples. BFDA is applicable to both sequential Bayesian designs, where the sample

size is gradually increased until a prespecified Bayes factor is reached, and fixed-N designs,
where the sample size is specified prior to data collection. For the latter more traditional

sampling procedure, a BFDA results in a distribution of Bayes factors that enables

researchers to assess the informativeness of their planned design.

In this paper, we show that the notion of power equivalence can be extended to

Bayesian hypothesis tests. Specifically, we show that the results of a BFDA for a fixed-N

design (Sch€onbrodt&Wagenmakers, 2018) of twopower equivalentmodels as definedby

von Oertzen (2010) are equivalent. Our findings are not only relevant on a conceptual

level as they instantiate a bridge between frequentist and Bayesian methods. They also
provide Bayesianswith a possibility of design justification in longitudinal settings and help

to save resources in design planning because computationally expensive BFDAs need to

be conducted only once for power equivalent designs.

50 10 15 20

Time

3 measurement occasions
5 measurement occasions
7 measurement occasions

Linear tre
nd over tim

e

Figure 2. Measurement occasions of three power equivalent models measuring a linear trend. The

power equivalent models were computed for r2
i ¼ 2, r2

e ¼ 1, and three, five, and seven

measurement occasions. All designs assume a first measurement occasion at time t = 0.

Figure available under a CC-BY4.0 license at https://osf.io/hkt4p/.
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Our paper is structured as follows: First, we will formally prove the equivalence of

BFDA results for power equivalent models. In a second step, we will substantiate our

proof with a simulation for power equivalent LGCMs. Then, we will provide an

application example that illustrates howBayesian power equivalence can facilitate design
planning.Wewill discuss the implications and limitations of our findings at the end of this

article.

2. Formal proof of BFDA equivalence for power equivalent models

In this section, we show formally that two power equivalent models with the same
parameter set h will also produce the same distribution of the Bayes Factor when

comparing two hypotheses about h under data generated by a population model. We

assume that both hypotheses are given by a prior distribution p1 and p1 for h, where as

usual one or both can be point hypotheses, i.e., degenerated prior distributions with the

mass fixed at any specific point.

Power equivalence on multivariate normal models, as defined in von Oertzen (2010),

canbe expressed as a combination of twobasic power equivalent operations. The first one

is a linear transformation of the observed variables, the second an omission of observed
variableswith a probability distributionwhich is constantwith respect to h, andwhich are

independent of other variables. For example, in an LGCM, the linear transformation

transforms themeasurementmodel into aminimal model with one observed variable that

is dependent on the latent slope and a number of variables that are independent of the

latent slope (and hence of the slope variance parameter). An example for a power

equivalent transformation of an LGCMcanbe seen in Figure 3. Themathematical details of

the calculation can be found in the Appendix.

Let (S,m) be the estimated covariance matrix and mean of a sample and (R, l) of a
model. In the following, we will write LR;lðS;mÞ for the minus two log likelihood, i.e.,

LR;lðS;mÞ ¼ �2 log LðS;mjR; lÞ:
We start by showing two simple lemmas.

Lemma1. For anymultivariate normalmodel with covariancematrixR andmean l,
an orthogonal transformation Q on the model space does not change the likelihood

function.

Proof . Theminus two log likelihood of amultivariate normal with parameter l andR and

a dataset with mean m and covariance matrix S per participant is

LR;lðS;mÞ ¼ c þ lnðjRjÞ þ TrðR�1SÞ þ ðm� lÞTR�1ðm� lÞ:
Transforming all four distribution parameters with Q results in
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LQRQT ;QlðQSQT ;QmÞ ¼ c þ lnðjQRQT jÞ þ TrðQR�1QTQSQT Þ
þðm� lÞTQTQR�1QTQðm� lÞ

¼ c þ lnðjQRQT jÞ þ TrðQR�1SQT Þ þ ðm� lÞTR�1ðm� lÞ;

where the determinant and the trace do not change by an orthogonal transformation,

therefore,

�2 log LðQSQT ;QmjQRQT ;QlÞ ¼ c þ lnðjRjÞ þ TrðR�1SÞ þ ðm� lÞTR�1ðm� lÞ
¼ LR;lðS;mÞ: h

Lemma 2. For anymultivariate normalmodel with covariancematrixR andmean l,
omitting observed variables which have distributions that are constant with respect to

some parameter set h and are independent of all other parameters does not change the

likelihood ratio of any two parameter values h1 and h2.

Proof . For simplicity of notation, we prove that the difference of the minus two log

likelihoods is constant. Let R ¼ R1ðhÞ 0

0 R2

� �
be the separation of R and l ¼ l1ðhÞ

l2

� �
be the separation of l into a first part that depends on h and a second, independent part

that does not. We separate the data distribution accordingly. Note that the covariances
between the two blocks in the data distribution are not relevant for the likelihood, i.e., we

can write

(a) (b)

Figure 3. Power equivalent reduction of an LGCM. Panel A shows an LGCM with three

measurement occasions which can be reduced to theminimal power equivalent model displayed in

panel B. Figure available under CC-BY4.0 license at https://osf.io/hkt4p/.
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LRðhÞ;lðhÞðS;mÞ ¼ c þ lnðjR1ðhÞjÞ þ TrðR1ðhÞ�1
S1Þ þ ðm1 � l1ðhÞÞTR1ðhÞ�1ðm1 � l1ðhÞÞ

þ lnðjR2jÞ þ TrðR�1
2 S2Þ þ ðm2 � l2ÞTR�1

2 ðm2 � l2Þ
When taking the difference of the minus two log likelihoods for h1 and h2, the second

part of the equation and c cancels, so that the difference solves to

LRðh1Þ;lðh1ÞðS;mÞ � LRðh2Þ;lðh2ÞðS;mÞ ¼ lnðjR1ðh1ÞjÞ þ TrðR1ðh1Þ�1
S1Þ

þðm1 � l1ðh1ÞÞTR1ðh1Þ�1ðm1 � l1ðh1ÞÞ
�lnðjR1ðh2ÞjÞ � TrðR1ðh2Þ�1

S1Þ
�ðm1 � l1ðh2ÞÞTR1ðh2Þ�1ðm1 � l1ðh2ÞÞ

¼ LR1ðh1Þ;l1ðh1ÞðS1;m1Þ � LR1ðh2Þ;l1ðh2ÞðS1;m1Þ:
h

We conclude that the likelihood ratio remains constant under both base power

equivalent operations, andhenceunder all combinations of those. Since theBayes factor is

the ratio of two prior-weighted likelihoods, we conclude further that the Bayes factor is

unaltered by power equivalent transformations for any data set (S,m) and parameter sets
h1 and h2. Thus, in particular, the distribution of the Bayes factor is identical for any priors

p1 and p2 and any data distribution:

Corollary 3. If ðRAðhÞ; lAðhÞÞ and ðRBðhÞ; lBðhÞÞ are two power equivalent multivari-

ate normal models A and B, then under any distribution for data sets (S,m) and prior

distributions p1 and p2 to be compared, the corresponding distribution of the Bayes

factor is identical for both models.

Proof . For simplicity, we omit the explicit separation of S and m in S1 and S2 and m1 and

m2, respectively, because the irrelevant parts are ignored by the likelihood function (see

proof of Lemma 2). For any specific outcome (S,m) of the random variable representing

the data, let (S*, m*) be the power equivalent transformation of the data as explained at the

beginning of this section. The Bayes factor for the first model is given by

BFA12
ðS;mÞ ¼

R
h1
LðS;mjRAðh1Þ; lAðh1ÞÞp1ðh1Þdh1R

h2
LðS;mjRAðh2Þ; lAðh2ÞÞp2ðh2Þdh2

which can be rewritten as

h
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BFA12
ðS;mÞ ¼

Z
h1

LðS;mjRAðh1Þ; lAðh1ÞÞp1ðh1ÞR
h2
LðS;mjRAðh2Þ; lAðh2ÞÞp2ðh2Þdh2

dh1

¼
Z
h1

1Z
h2

LðS;mjRAðh2Þ; lAðh2ÞÞp2ðh2Þ
LðS;mjRAðh1Þ; lAðh1ÞÞp1ðh1Þ

dh2

dh1

¼
Z
h1

1Z
h2

LðS�;m�jRBðh2Þ; lBðh2ÞÞp2ðh2Þ
LðS�;m�jRBðh1Þ; lBðh1ÞÞp1ðh1Þ

dh2

dh1

¼
R
h1
LðS�;m�jRBðh1Þ; lBðh1ÞÞp1ðh1Þdh1R

h2
LðS�;m�jRBðh2Þ; lBðh2ÞÞp2ðh2Þdh2

¼ BFB12
ðS�;m�Þ:

Since the Bayes factor is identical for bothmodels for any specific outcome of the data,

its distribution under any random distribution of (S,m) is identical for both power

equivalent models.

3. Simulation study

Weperformed a simulation study to illustrate the equivalence of Bayes factor distributions

for power equivalent LGCMs. As in vonOertzen and Brandmaier (2013), we concentrated

on a single parameter of interest: r2
S , the interindividual variance in the latent slope

parameter. The focal Bayesian hypothesis test therefore compared the two hypotheses

H0:r2
S ¼ 0 andH1 : r2

S � p1 where p1, is a prior distribution that allows the parameterr2
S

to vary. We operationalized this prior distribution as a gamma distribution with a shape

parameter of k = 1 and a rate parameter of b = 0.5. This prior places most weight on
parameter values between 0 and 6 and can be considered as an example for an informed

prior for typical effect sizes in psychology (see e.g., Duncan, et al., 2006; Iddekinge, et al.,

2009; von Oertzen & Brandmaier, 2013). In this special case, all parameters of the model

apart from r2
S are considered to be known and fixed. Thus, the Bayes factor can be

calculated through a simple integration procedure.

For our simulation study, we conducted a total of 36 BFDAs,where each BFDA result is

based on 1000 Bayes factors. All BFDAs were performed using the following Monte Carlo

simulation algorithm:

1. Find three power equivalent models with the given parameters for r2
E and r2

I ;

2. simulate 1,000 datasets for each of the models given a certain population parameter

(design prior) for r2
S ;

3. compute the Bayes factor for each of the datasets.

We compare the results of a fixed-N BFDA for 3 power equivalent LGCMs under 12

different populationmodels (designpriors). The threepower equivalentmodels have 7, 5,

and 3 equally distanced measurement occasions, respectively, and were computed using

the equations provided in von Oertzen and Brandmaier ( 2013; see the Appendix below).

In the simulations,we varied the variance of the interceptr2
I , the residual variancer

2
E, and

the true variance of the slope (r2
S | H1). All BFDAs were conducted for a sample size of

N = 300.
Figure 4 shows the distributions of log Bayes factors for the three power equivalent

models under all simulated conditions. Overall, the distributions are nearly identical for
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the power equivalent models which illustrates the formal proof of BFDA equivalence

conducted in the previous section of this article. Generally, the Bayes factors are very
large, which happens due to the relatively large dataset and the assumption that several

important parameter values of themodel are already known.There are small differences in

the Bayes factor distributions that can be explained through the random variation in the

simulation process.

The simulation code as well as the simulation results are openly accessible on https://

osf.io/hkt4p/.

4. Application example: Effects of a mindfulness training

In this section, an applied example is discussed that illustrates how the notion of power

equivalence can be used to facilitate a-priori design analyses for longitudinal studies. We

will build on a study by Kiken et al (2015) who investigated the psychological effects of a

mindfulness training. Mindfulness is a cognitive state of nonjudgmental awareness in

which an individual pays attention to the thoughts, emotions, and sensations of the
moment. Kiken et al (2015) measured state mindfulness with the Toronto Mindfulness

Scale (Lau et al.,2006) at seven equally distanced measurement occasions during an

ongoing mindfulness training that was directed at increasing the participants’ general

level of mindfulness. Using an LGCM, they concluded that while the training led on

average to an increase in mindfulness, there were noticeable differences between

individuals regarding the amount of change, i.e., there was considerable variability in the

slope of state mindfulness.

logBF
1675 2118 2425 2678

σI
2 = 1, σE

2 = 1, (σS
2|H1) = 0.5

logBF
106 193 254 303

σI
2 = 1, σE

2 = 10, (σS
2|H1) = 0.5

logBF
1254 1635 1871 2090

σI
2 = 10, σE

2 = 1, (σS
2|H1) = 0.5

logBF
−3 21 52 87 118

σI
2 = 10, σE

2 = 10, (σS
2|H1) = 0.5

logBF
3799 4655 5269 5754

σI
2 = 1, σE

2 = 1, (σS
2|H1) = 1

logBF
444 596 705 794

σI
2 = 1, σE

2 = 10, (σS
2|H1) = 1

logBF
2909 3245 3662 4107 4470

σI
2 = 10, σE

2 = 1, (σS
2|H1) = 1

logBF
168 204 254 312 361

σI
2 = 10, σE

2 = 10, (σS
2|H1) = 1

logBF
7998 9744 10933

σI
2 = 1, σE

2 = 1, (σS
2|H1) = 2

logBF
1112 1402 1601 1764

σI
2 = 1, σE

2 = 10, (σS
2|H1) = 2

logBF
6368 7704 8647 9507

σI
2 = 10, σE

2 = 1, (σS
2|H1) = 2

logBF
505 570 660 764 851

σI
2 = 10, σE

2 = 10, (σS
2|H1) = 2

Figure 4. BFDAs for power equivalent models yield almost identical results. Figure shows the

distribution of the log Bayes factors for power equivalent models with 3 (colored red), 5 (colored

green), and 7 (colored blue) measurement occasions. Simulations were conducted with 1,000

iterations anddifferent populationparameters for the variance of the interceptr2
i , error variancer

2
e ,

and variance of the slope r2
S on a fixed sample size of N = 300. Figure available under a CC-BY4.0

license at https://osf.io/hkt4p/.
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In this example application, we assume that researchers developed a new training

method that is supposed to be equally effective for all participants. As the researchers

would like to quantify evidence in favor of the null hypothesis (r2
S ¼ 0), they decide to use

Bayesian hypothesis testing (Wagenmakers et al, 2018). When planning the study, they

have two goals: Making sure that their envisioned sample size is large enough to obtain

strong evidence in favor of the null hypothesis (BF01 � 10) if the null hypothesis is true and
minimizing theoverall study costs. For this example,we roughly estimate that the costs for

eachmeasurement occasion are $10per participant (e.g., for participant compensation or

data entry), and that the running costs are $500 per week (e.g., for renting lab space,

employing assistants to run the study).We further assume that the envisioned sample size

of the researchers is N = 50. Thus, when planning the study, two design questions come

up: (1) Is a sample size of N = 50 enough to achieve strong evidence in favor of the null

hypothesis when the null hypothesis is true, and (2) which of the power equivalent

designs is most cost-efficient?

First, the researchers can now conduct a BFDA based on the design and results of the

original study, that is seven equally distanced measurement occasions, a variance of

intercepts ofr2
I ¼ 43:6, and an error variance ofr2

E ¼ 21:45. The results for a sample size

ofN = 50 show that the Bayes factor ðBF10Þwill be smaller than 0.1 in 99.8% of the cases,

Table 1. Power-equivalent models for testing the variance of slopes in a mindfulness training based

on results of Kiken et al. (2015)

Waves Assessment time Wave costs Running costs Total costs

3 7.28 1,500 3,642 5,142

7 6.00 3,500 3,000 6,500

10 3.55 5,000 1,773 6,773

−20 −15 −10 −5 0

log BF10

Evidence for H0 Inconclusive evidence

Figure 5. Bayes factor distribution resulting from a BFDA based on the results of Kiken et al. (2015)

for a design with a fixed sample size of N = 50 and a true population effect size of r2
S ¼ 0.

Figure available under a CC-BY4.0 license at https://osf.io/hkt4p/.
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that is, there is a high chance to obtain strong evidence in favor of the null hypothesis if the

null hypothesis is true (see Figure 5). Being convinced by the high degree of

informativeness, the researchers can now proceed to find the most cost-efficient design

with the samepower.Using power equivalence, the researchers can comeupwith several
power-equivalent measurement designs. Table 1 shows three power-equivalent designs

with 3, 7, and 10measurement occasions, respectively (see theAppendix for details about

the computation). All these designs share the same Bayes factor distribution based on the

BFDA of the original design. However, they differ in their respective costs. As we can see

from the total costs in Table 1, the measurement design with three measurement

occasions is the most cost-efficient. Prolonging the overall study duration by 1.2 weeks,

but reducing the number of measurement occasions to three can therefore lead to a cost

reduction of roughly 20%. There is no need to recalculate the BFDA because the
researchers already know that all power-equivalent designs are equally informative.

5. Discussion

Reducing study costs while keeping the results informative is an important practical

objective of experimental design (Hunter & Hoff, 1967). In longitudinal studies, a cost
reduction can often be achieved by finding a trade-off between the total duration of the

study and the number ofmeasurement occasions. In a frequentist setting, researchers can

optimize this trade-off while keeping the design informative by comparing several power

equivalent models (von Oertzen, 2010; von Oertzen & Brandmaier, 2013). While these

models all have the same statistical power (Cohen, 1992), they exhibit different

combinations of overall study length and number of measurement occasions. In this

paper, we showed that the notion of power equivalence can be transferred to a Bayesian

hypothesis testing framework. Specifically, we could show that power equivalence
models yield the same Bayes factor distributions in a Bayes Factor Design Analysis (BFDA;

Sch€onbrodt & Wagenmakers 2018). Therefore, power equivalent designs are equally

informative both from a frequentist and Bayesian viewpoint. This shows that power

equivalent models can also be used in Bayesian design planning to negotiate trade-offs

between costs and informativeness in longitudinal studies.

Our findings can be interpreted as an extension of both power equivalence (von

Oertzen & Brandmaier, 2013; von Oertzen, 2010) and BFDA (Sch€onbrodt & Wagenmak-

ers, 2018). From the perspective of power equivalence, we provide a straightforward
generalization of the approach and show that it can also be used in the Bayesian process

design planning. This highlights the relevance of the approach and raises the question

whether further generalizations are possible. For example, the general notion of power

equivalence could be generalized to statistical models other than Latent Growth Curve

Models (LGCMs). Our results show that this would be a relevant contribution to design

planningmethodsboth froma frequentist and aBayesian viewpoint. From theperspective

of BFDA, our findings provide a first step towards a simplification of the procedure. Since

the approach is based on Monte Carlo simulations, conducting a BFDA can be
computationally expensive. Finding models that yield the same BFDA results can

substantially facilitate theprocess of Bayesian designplanning because aBFDAneeds to be

conducted only once for all of these power equivalent models. Our results show that

finding such power equivalent models is possible. Future research could be directed at

finding more conditions for equality of BFDA results and to extend our results to

sequential Bayesian designs.
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Bymakingpower equivalence available to a new statistical domain, our study increases

its practical applicability to the planning of experimental designs. Additionally,wemake it

easy for researchers to optimize their study designs based on power equivalence and

BFDA by providing the code for all analyses conducted in this paper online (see https://
osf.io/hkt4p/). By using well-documented functions, we hope to encourage researchers

to reuse our code and adapt it to their own practical applications. However, currently, the

practical applicability of power equivalence in experimental design is still restricted by

two important limitations. Firstly, the mathematical derivation for power equivalence

requires that parameterswhich are not part of the hypothesis (in our example the variance

of the intercept r2
I and the error variance r2

E) are fixed. In practice, this is a strong

assumption. However, if these parameters are not known, they (or the effective errorr2
eff )

can be estimated prior to the computation of power equivalence. A second limitation is
that currently power equivalence requires a fixed structure matrix (von Oertzen, 2010),

so it is only directly applicable to models like LGCMs, Change Score Models, Dual Change

Score Models, Latent Differential Models, and basic models (e.g., ANOVAs). Nevertheless,

these describe a considerable part of SEMs used today.

From a broader perspective, our findings illustrate that despite of methodological

differences and occasional heated debates between frequentist andBayesianmethods and

their respective proponents (see e.g., Wagenmakers, et al., 2008), often relevant insights

can be gained from describing the world from both perspectives. We hope that by
showing how the notion of power equivalence and the BFDA method can be combined,

we will have made a contribution towards an increased feasibility of Bayesian

experimental planning. Eventually, we hope that the existence of straightforward

methods for design planning can encourage more researchers to plan their study designs

for efficiency and informativeness.
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Appendix:

Computation of power equivalent models

Equations for the computation of power equivalent LGCMs following von Oertzen and
Brandmaier (2013). For any original model with measurement occasions at told, we can

construct a power equivalent model with ~n measurement occasions at tnew.

tnew ¼ k � ~t; ð1Þ

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
E

r2
eff

� r2
I ~nþ r2

E

ðr2
I ~nþ r2

EÞ
P~n

j¼1
~t2j � r2

I ð
P~n

j¼1
~tÞ2

s
;

~tj ¼ ðj � 1Þ �maxðtoldÞ
~n� 1

;

r2
eff ¼

r2
Eðr2

I ~nþ r2
EÞ

ðr2
I ~nþ r2

EÞ
P~n

j¼1 ðketjÞ2 � r2
I ð
P~n

j¼1
~tjÞ2

:

ð2Þ

The residual variancer2
E and the intercept variancer

2
I are considered to be knownand

fixed and do not differ between models.

In our simulations, we used power equivalent models with 7, 5, and 3 measurement

occasions. The power equivalent models with 5 and 3 measurement occasions were

derived from the model with 7 measurement occasions at t = 0, 1,..., 6.

In our application example, we used a design with 7 measurement occasions at t = 0,

1,..., 6 as a starting point and derived power equivalent models with 3 and 10

measurement occasions from this model using the equations above. The variance of the

interceptr2
I and the error variancer

2
E were derived fromKiken, et al. (2015) andwere set

to r2
I ¼ 43:6 and r2

E ¼ 21:45.‘
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