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Nonlinear Indicator-Level Moderation in Latent Variable Models

Maria Bolsinovaa and Dylan Molenaarb

aACTNext by ACT, Inc.; bUniversity of Amsterdam

ABSTRACT
Linear, nonlinear, and nonparametric moderated latent variable models have been devel-
oped to investigate possible interaction effects between a latent variable and an external
continuous moderator on the observed indicators in the latent variable model. Most moder-
ation models have focused on moderators that vary across persons but not across the indi-
cators (e.g., moderators like age and socioeconomic status). However, in many applications,
the values of the moderator may vary both across persons and across indicators (e.g.,
moderators like response times and confidence ratings). Indicator-level moderation models
are available for categorical moderators and linear interaction effects. However, these
approaches require respectively categorization of the continuous moderator and the
assumption of linearity of the interaction effect. In this article, parametric nonlinear and
nonparametric indicator-level moderation methods are developed. In a simulation study, we
demonstrate the viability of these methods. In addition, the methods are applied to a real
data set pertaining to arithmetic ability.
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Introduction

Traditional latent variable models have been used to
operationalize a psychological construct in terms of its
observed indicators. The general idea is that the indi-
cators are regressed on a latent variable, representing
the construct, resulting in indicator-specific intercept
and slope parameters (and in the case of continuous
indicators the indicator-specific residual variance
parameters). Well-established latent variable models
exist for dichotomous indicators [e.g., the 2-parameter
normal ogive model (2PNOM), Lord & Novick, 1968],
ordinal indicators (e.g., the graded response model,
Samejima, 1969), and continuous indicators (e.g., the
linear factor model, Spearman, 1904).

Moderated latent variable models

With these latent variable models in place, there is
growing interest in testing for possible interaction
effects between the latent variable and an external
moderation variable (e.g., gender or age) on the
observed indicators. We see two reasons for the devel-
opment of these so-called moderated latent variable
models. First, tests on moderation of the parameters
in a latent variable model, like the 2PNOM or the lin-
ear factor model, constitute the primary idea of tests

on measurement invariance (Meredith, 1964, 1993;
Muthen, 1989). Measurement invariance (or, the
absence of differential item functioning (DIF,
Mellenbergh, 1989) refers to the prerequisite that the
parameters from a latent variable model should not be
moderated by a background variable, as this will ham-
per the comparison of subjects’ observed indicator
scores in terms of the underlying latent variable.
Although the initial developments of the statistical
toolkit for establishing measurement invariance were
not explicitly conducted in a moderated latent variable
modeling framework, recently, this correspondence
has been made explicit by Bauer (2017) and Curran
et al. (2014).

Another reason for the development of moderated
latent variable models is a substantive one. That is,
theories from various applied fields predict interac-
tions between observed and latent variables, a notion
that can statistically be properly tested using a moder-
ated latent variable model. For instance, in the field of
behavior genetics, it has been found using moderated
latent variable models that the heritability of intelli-
gence, which is a latent variable, is moderated by soci-
oeconomic status (SES) in such a way that intelligence
is more heritable for subjects of higher SES (e.g.,
Turkheimer, Haley, Waldron, d’Onofrio, &
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Gottesman, 2003). In addition, in the field of intelli-
gence research, age differentiation (Garrett, 1946)
refers to the prediction that intelligence is a weaker
source of individual difference for older ages. This
prediction has been tested by Facon (2006) using cate-
gorized age, and by Tucker-Drob (2009) using con-
tinuous age as a moderator. Another example is from
personality research where it has been hypothesized
that personality is moderated by IQ with less person-
ality variance for higher levels of IQ. In Murray,
Booth, and Molenaar (2016), this hypothesis was
tested using a moderated latent variable model, but no
overall evidence for the personality–IQ interaction
was found.

Traditional moderation approaches

If we accept the importance of moderated latent vari-
able models in tests on measurement invariance and
substantive hypotheses, question arises as to which
moderation approaches are readily available. In the
case of discrete moderators like gender, tests on
the interaction effect between the latent variable and
the moderator are straightforward using multi-group
latent variable models for continuous data (e.g.,
J€oreskog, 1971), ordinal data (e.g., Lee, Poon, &
Bentler, 1989), or dichotomous data (e.g., Muthen &
Christoffersson, 1981). In these models, differences in
the intercept parameters between groups reflect a
main effect of the moderator on the observed indica-
tors, and differences in the slope parameters between
groups reflect an interaction between the latent vari-
able and the moderator on the observed indicators. In
the context of dichotomous data, various item
response theory-based methods have been developed
for testing whether the model parameters differ
between groups (e.g., Lord, 1980; Mellenbergh, 1989;
Thissen, Steinberg, & Gerrard, 1986) which is usually
referred to as DIF or item bias (see Millsap, 2011, for
an overview of the existing approaches to test-
ing DIF).

In the case of continuous moderators, an intuitive
approach is to categorize the continuous moderator
variable and test the differences in the intercepts and
slope parameters using the multi-group methods.
However, several authors have argued against categor-
ization of continuous variables (see, e.g., Cohen, 1983;
MacCallum, Zhang, Preacher, & Rucker, 2002;
McClelland, Lynch, Irwin, Spiller, & Fitzsimons, 2015)
as it lowers the information concerning individual dif-
ferences and therefore affects the power to detect a
possible effect of that variable. In addition, cutoff

points are arbitrary, which may complicate the com-
parison of results across studies (Royston, Altman, &
Sauerbrei, 2006). Therefore, effort has been devoted to
develop models for continuous moderators which
avoid the necessity of categorization. Latent variable
models have been proposed in which the intercept
and slope parameters are a linear function of the
moderator, resulting in a baseline parameter and a
moderation parameter for both the intercept and the
slope parameters (Bauer & Hussong, 2009; Mehta &
Neale, 2005; Molenaar, Dolan, Wicherts, & van der
Maas, 2010; Neale, Aggen, Maes, Kubarych, &
Schmitt, 2006; Purcell, 2002; Rabe-Hesketh, Skrondal,
& Pickles, 2004). The moderation parameter of the
intercept reflects the main effect of the moderator,
and the moderation parameter of the slope parameter
reflects the linear interaction effect.

In the nonlinear moderation model, the assumption
of a linear dependence of the intercept and slope
parameters on the moderator variable can be relaxed.
That is, adding higher-order powers of the moderator
as additional moderator variables enables tests on
quadratic or cubic interactions (see, e.g., Purcell, 2002;
Tucker-Drob, 2009). However, one is still tied to the
parametric form of the interaction. To explore the
relation between the intercept and slope parameters
on the one hand, and the moderator on the other,
research has focused on nonparametric approaches.
Specifically, Hildebrandt, Wilhelm, and Robitzsch
(2009), H€ul€ur, Wilhelm, and Robitzsch (2011), and
Hildebrandt, L€udtke, Robitzsch, Sommer, and
Wilhelm (2016) proposed a latent variable model in
which the dependence of the slope and intercept par-
ameter on the moderator variable is estimated using
methodology from nonparametric regression analysis
(Fox, 2015; Wu & Zhang, 2006). In an application of
these methods, Briley, Harden, Bates, and Tucker-
Drob (2015) found the heritability by SES interaction
discussed above to be characterized by substantial
nonlinear shifts, while the interaction was commonly
assumed to be strictly linear before that.

Indicator-level approaches

Interestingly, all moderation models above have
focused on moderators that vary across persons but
not across the indicators (e.g., moderators like age
and SES). However, in (potential) applications, the
values of the moderator may vary both across persons
and across indicators. For instance, in intelligence
research, Partchev and de Boeck (2012) and
DiTrapani, Jeon, De Boeck, and Partchev (2016)
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hypothesized that the item-specific response times of
a cognitive ability test interact with the latent cogni-
tive ability variable reflecting that respondents alter-
nate between controlled processes (the slower
responses) and automated processes (the faster
responses). As respondents may respond relatively fast
on one item (indicating an automated process) and
relatively slow on the next (indicating controlled pro-
cess), a person-specific moderator (e.g., the mean
response time of the full test) will not suffice in the
analysis. That is, the response times constitute indica-
tor-specific moderators that account for indicator-spe-
cific moderation effects. Other existing examples of
indicator-level moderators include measures of answer
changes (Jeon, De Boeck, & van der Linden, 2017)
and confidence ratings (Gvozdenko, 2010). In add-
ition, indicator-level moderators can be constituted
by, for instance, verbally reported response processes,
number of actions in interactive items, number of
item clicks, number of eye fixations on the areas of
interest, inspection times, response changes, certainty
scores, or physiological measures.

The development of methods to test for interac-
tions between such indicator-level moderators and the
latent variable has recently started to evolve across
similar lines as described above for the traditional
moderation models. Approaches have been proposed
that require categorization of the indicator-level mod-
erators (DiTrapani et al., 2016; Partchev & de Boeck,
2012) and models have been proposed by specifying
linear functions between the intercept and slope par-
ameter and the indicator-level moderator (Bolsinova,
de Boeck, & Tijmstra, 2017; Bolsinova, Tijmstra, &
Molenaar, 2017; Goldhammer, Steinwascher, Kroehne,
& Naumann, 2017). These existing indicator-level
approaches focus only on categorical moderators, or
continuous linear moderators. However, as with the
traditional moderation models, the assumption of lin-
earity of indicator-level moderation models might be
violated in practice. In such cases, using linear models
may result in invalid conclusions about the relation-
ship between the parameters of the latent variable
model and the indicator-specific moderator. For
instance, one might conclude that the intercept
increases with the values of the moderator (e.g., that
slower responses on an intelligence test are more often
correct), while it might be that it increases only up to
some value of the moderator and decreases after that
value, or that the increase is not linear. However,
parametric nonlinear and nonparametric approaches
are not yet developed for indicator-specific moder-
ation. Therefore, in this article, we propose modeling

the relationship between the indicator-specific moder-
ator and the parameters of the latent variable model
in a more flexible way.

Developing a parametric nonlinear approach and
a nonparametric indicator-level approach

The development of parametric indicator-level nonlin-
ear models is relatively straightforward as the existing
parametric indicator-level linear moderation approach
can be extended to include higher-order interactions.
However, as these interactions are indicator-specific, it
is not obvious that the resulting model is identified and
performs satisfactorily in recovering the true relation
between the moderator and the indicator. In addition,
development of the nonparametric indicator-level mod-
eration approach is not straightforward, as the trad-
itional nonparametric moderation approach cannot
simply be extended to include one moderator for each
indicator. The nonparametric moderation is based on a
binning procedure which is feasible because there is
only one moderator. In the case of indicator-specific
moderators such a binning procedure will result in a
grid where the dimensions of the grid grow exponen-
tially with the number of indicators. Such a procedure
is infeasible in practice. Taken together, we therefore
think that studying the parametric nonlinear extension
and a feasible nonparametric approach to indicator-
level moderation is a worthwhile endeavor. The outline
of this article is as follows. First, the existing moderated
latent variable models are formally presented. Next, the
parametric nonlinear and nonparametric approach for
indicator-level moderation will be derived and estima-
tion for these new moderation models will be discussed.
Each of these approaches will be applied to a data set
including both the responses and the response times to
an arithmetic test. Then, these results will be used in a
simulation study to demonstrate the viability of the
indicator-level moderation models. We end with a gen-
eral discussion.

Moderated latent variable models:
existing approaches

In the traditional (nonmoderated) generalized linear
latent variable model, the conditional expectation of
the i-th observed indicator, denoted by Yi, given the
latent variable, denoted by g, is specified via a link
function gð�Þ and a linear function:

g E Yi j gð Þ½ � ¼ kigþ �i; (1)

where ki and �i are the indicator-specific slope (also
referred to as the factor loading) and intercept. The
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slope parameter indicates the strength of the relation-
ship between the observed indicator and the latent
variable. The intercept parameter determines the con-
ditional expectation of the indicator when the latent
variable is equal to zero, which is usually chosen to be
equal to the expected value of the latent variable in
the population. Various latent variable models are
special cases of the general model above, depending
on the choice for the link function, gð:Þ, and the
shape of the distribution for the residuals (see
Mellenbergh, 1994). For instance, if the link function
is taken to be the identity link, the model above is
equal to the linear factor model for continuous indica-
tors; in the case of a probit link, the two-parameter
normal-ogive model (2PNOM) for binary indicators
arises, and in the case of a cumulative probit link, the
model simplifies to a graded response model for
ordinal indicators. For ordinal indicators with C cate-
gories, there are C–1 intercept parameters for
each indicator.

Let y denote an N�K data matrix with the
observed data of N persons on K indicators, and ypi
the value of the i-th indicator from the p-th person
(i.e., a realization of the random variable Yi for person
p). In latent variable models, conditional independ-
ence of the observed indicators given the latent varia-
bles is typically assumed. The marginal likelihood of
the data matrix y can be computed as follows:

f y j k; �ð Þ ¼
YN
p¼1

ðYK
i¼1

f ypi; ki; �i; g
� �

u gð Þdg; (2)

where f ðypi; ki; �i; gÞ is the conditional density of the
observation ypi given the latent variable and uðgÞ is
the population distribution of the latent variable,
which is often assumed to be standard normal.1 In
the case of the linear factor model the conditional
density is assumed to be normal:

f ypi; ki; �i; g
� � ¼ 1ffiffiffiffiffiffiffiffiffiffi

2pr2i
p exp � ypi� kigþ �ið Þ� �2

2r2i

( )
;

(3)

where r2i is the additional indicator-specific parameter
which determines the conditional variance of the indi-
cator given the latent variable (i.e., the residual vari-
ance). In the case of the graded response model for

ordinal indicators, the conditional density is multi-
nomial:

f ypi; ki; �i; g
� � ¼YC

c¼0

U kigþ �icð Þ � U kigþ �i c�1ð Þ
� �� �I ypi¼cð Þ

(4)

where Uð�Þ is the standard normal cumulative distri-
bution function, the category-specific intercept param-
eters are ordered within each indicator, �i0 ¼ 1 and
�iC ¼ �1. In the case of the 2PNOM for binary indi-
cators, the conditional density is Bernoulli:

f ypi; ki; �i; g
� � ¼ U kigþ �ið Þypi 1�U kigþ �ið Þð Þ1�ypi :

(5)

Moderation can be introduced in the generalized
linear latent variable model above by making the slope
and intercept parameters a function of the moderator,
Z, that is (see, e.g., Hildebrandt et al., 2016):

g E Yijg;Zð Þ½ � ¼ fki Zð Þgþ f�i Zð Þ; (6)

with

VAR YijZð Þ ¼ f ln r2i½ � Zð Þ (7)

in the case of continuous Yi. fkið:Þ; f�ið:Þ, and f ln½ri�ð:Þ
model the functional relationship between the moder-
ator and the slope parameters, the intercept parame-
ters, and the log-residual variance, respectively. Note
that we model the log-residual variance to ensure that
the residual variance itself is strictly positive.

Equation (6) is a general form of a traditional moder-
ation model, in which the value of the moderator varies
across persons and the same moderator applies to all
indicator variables. In indicator-level moderation mod-
els, it is assumed that there are as many moderators as
there are indicator variables (K). Congruently to the
person-level approach above, in the indicator-level
moderation model the slope and the intercept parame-
ters depend not on the value of the moderator Z, com-
mon for all the indicators, but on the value of the
moderator which is now indicator-specific, denoted by
Zi. To obtain the general form of an indicator-level
moderation model, one needs to substitute Z with Zi in
Equation (6). The indicator-level moderation models
assume that the parameters of each indicator only
depend on the corresponding moderator, and inde-
pendence is assumed between Zi and Yk for all i 6¼ k.

Model interpretation

In the general moderation model in Equation (6), the
main parameters of the latent variable model are a
function of a moderator. For the intercepts, this effect

1Note that the mean and the variance of the latent variable distribution
are constrained for identification purposes. Alternatively, the parameters
of Yi can be constrained for some arbitrary i, that is, ki ¼ c1; �i ¼ c2,
where c1>0 and c2 are arbitrary values.
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reflects the main effect of the moderator on the
observed indicators. In most applications, this effect is
not of primary interest. For instance, in the intelli-
gence by age interaction example (i.e., age differenti-
ation; Tucker-Drob, 2009), the intercepts in the latent
variable model are commonly found to be moderated
by age. This simply reflects that there is a correlation
between intelligence and age, which is well known.
However, if age moderates the slope parameters of the
latent variable model in such a way that the slopes are
smaller for higher ages, this reflects that the latent
variable “intelligence” manifests itself differently across
age with smaller intelligence variance for higher ages.
Thus, the key interest in moderation models is to
establish moderation of the slope parameters to study
the interaction between the latent variable and the
moderator. Moderation of the intercepts, although not
of key interest, should always be included in the
model to validate the test on the interaction effect.
That is, an interaction effect is difficult to interpret in
the absence of its main effect (Nelder, 1994;
Purcell, 2002).

The example above focused on person-level moder-
ation and whether a latent variable manifests itself dif-
ferently for different persons (i.e., persons that differ
on the person-level moderator). For indicator-level
applications, parameter interpretation is similar, how-
ever, the key question is whether a latent variable
manifests itself differently for different persons-indica-
tor combinations. In indicator-level moderation, a
subject may be high on the moderator on one

indicator but relatively low on the moderator of the
next indicator. For instance, in the intelligence
example, DiTrapani et al. (2016) found the slope and
intercept parameters of a matrix-reasoning test to be
moderated by the item-specific response times. This
indicates that the matrix-reasoning latent variable
manifests itself differently in the observed indicators
for faster responses than for slower responses. Thus,
subjects may be high on the moderator of one item
(relatively slow response) and low on the moderator
on the next item (relatively fast response), see Figure
1 for a graphical representation of the difference
between person-level moderation and indicator-level
moderation. As the figure shows, the crucial difference
between the two modeling frameworks is that in the
traditional moderation framework for each person a
single value of the moderator is considered, while in
indicator-level moderation the moderator varies both
across persons and across indicators.

In the case of continuous indicators, the residual
variances are additional parameters in the latent vari-
able model. Moderation of the residual variances is
generally not considered in tests on interactions, simi-
larly as in regression analysis and path analysis where
it is assumed that the residual variances are constant
over moderator variables (homoscedasticity).
However, in testing for strict measurement invariance,
homoscedastic residual variances are a necessary con-
dition. If the residual variances are heteroscedastic,
one speaks of weak measurement invariance
(Meredith, 1993). Thus, moderation of the residual
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Figure 1. Indicator-level moderation modeling (on the right) as opposed to traditional moderation modeling (on the left); trad-
itional moderation modeling uses a single moderator which varies across persons, indicator-level moderation modeling uses indica-
tor-specific moderators.
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variances is not strictly necessary in testing for inter-
actions, but it should ideally be considered when
establishing strict measurement invariance (see e.g.,
Bauer, 2017, for a possible approach).

Moderation by a step function

As discussed in the previous section, an intuitive
approach to model the dependence of ki and �i on Z
is to categorize the continuous moderator Z and to fit
the latent variable model to the data of each group
using a multi-group approach (e.g., J€oreskog, 1971).
That is, the function fkiðZÞ above is given by the fol-
lowing step function:

fki Zð Þ ¼
k0i Z � s1
k1i s1<Z � s2
::: :::
k C�1ð Þi Z>sC�1

8>><
>>: (8)

in which sc are the thresholds for c ¼ 1; 2; :::;C�1 at
which the continuous moderator is categorized into C
categories. The resulting parameters k0i; k1i; :::; kðC�1Þi
reflect the slope parameters in the different subgroups. A
similar step function can be specified for f�iðZÞ, resulting
in parameters �0i; �1i; :::; �ðC�1Þi, and for f ln½ri�ðZÞ result-
ing in parameters ln½r20i�; ln½r21i�; :::; ln½r2ðC�1Þi�.

Similarly as in the multigroup approach to trad-
itional moderation, indicator-level moderation models
have been specified by assuming categorized modera-
tors (see Partchev & de Boeck, 2012 and DiTrapani
et al., 2016, for a possible approach in the case of
dichotomous indicators and dichotomous modera-
tors). The functional relationship between the parame-
ters of the latent variable model and the indicator-
specific moderator in this model can be represented
similarly as in Equation (8), by replacing the moder-
ator common for all indicators by the indicator-level
moderator, Zi, and replacing the thresholds by the
indicator-specific thresholds, sci.

Moderation by a linear function

A linear moderation model retains the continuous
nature of the moderator. Such a model is specified by
(see Bauer & Hussong, 2009; Mehta & Neale, 2005;
Molenaar et al., 2010; Neale et al., 2006; Purcell, 2002;
Rabe-Hesketh et al., 2004):

fki Zð Þ ¼ k0i þ k1iZ; (9)

f�i Zð Þ ¼ �0i þ �1iZ; (10)

where �0i is the intercept parameter of the moderation
model and �1i accounts for the main effect of the
moderator on the observed indicators, Yi. In addition,

k0i is the slope parameter in the moderation model,
and k1i is a moderation parameter which accounts for
the interaction effect between g and Z on Yi. As dis-
cussed by, for instance, Purcell (2002) and Tucker-
Drob (2009), it is straightforward to extend the model
above to include higher-order powers of the moder-
ator with additional parameters k2i; k3i; :::, and
�2i; �3i; :::, depending on the powers of Z that are
added (Z2, Z3,… ). In addition, in the case of continu-
ous indicators, it is straightforward to introduce a
dependency of lnðr2i Þ on Z as follows:

f ln r2i½ � Zð Þ ¼ b0i þ b1iZ: (11)

Similarly to the traditional linear moderation mod-
els, an indicator-level moderation model has been
specified by assuming linear functions between the
latent variable model parameters and the indicator-
level moderators (see Bolsinova, Tijmstra, et al., 2017;
Goldhammer, 2015, for an approach in the case of
dichotomous indicators). That is, in Equations (9) and
(10) a common moderator Z is replaced with indica-
tor-specific moderator Zi. Alternatively, a linear model
for the log of the slope parameter has also been used
(see Bolsinova, de Boeck, et al., 2017).

Moderation by a nonlinear function: parametric
and nonparametric approaches

Linear moderation approaches discussed in the previ-
ous section do not suffer from the problem of infor-
mation loss due to categorization, but they restrict the
relationship between the moderator (or its transform-
ation) and the parameters (or their transformations)
to be linear. To go beyond these restrictions, the lin-
ear moderation model in Equations (9) and (10) has
been extended to include higher-order powers of the
moderator resulting in additional parameters k2i; k3i,
:::, and �2i; �3i; :::, depending on the powers of Z that
are added (see, e.g., Bauer & Hussong, 2009; Purcell,
2002; Tucker-Drob, 2009). However, this has only
been done for traditional moderation models, not for
indicator-specific moderators.

Nonlinear parametric models are still rather
restrictive since they specify the relationship between
the moderator and the parameters of the latent vari-
able model to be a polynomial function. Alternatively,
one may want to approach the relationship between
the moderator and the parameters from a more flex-
ible and exploratory perspective, which can be done
in a local structural equation modeling approach
(Hildebrandt et al., 2009; Hildebrandt et al., 2016;
H€ul€ur et al., 2011). The idea of local structural
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equation models is to estimate separate models for
different values of the moderator, called focal points.
If a moderator is categorical and there are only a few
categories, then it boils down to estimating a multi-
group model. However, if a moderator is continuous
there will not be enough observations at each focal
point to estimate separate models. Instead, observa-
tions can be weighted around the focal points and the
model parameters can be estimated separately for each
focal point on the basis of the weighted sample of the
observations. Hence, local structural equation model-
ing allows exploration of the relationship between the
moderator and the parameter of the latent variable
model in a very flexible way.

A parametric nonlinear approach and a
nonparametric approach to indicator-
level moderation

As appears from the existing approaches previously
discussed, the parametric nonlinear and nonparamet-
ric moderation approaches are established for modera-
tors that vary across persons but not across indicators.
However, in the case of indicator-level moderation,
only linear or categorization approaches are available.
In this section, we derive a nonlinear parametric
approach and a nonparametric approach to indicator-
level moderation.

Parametric nonlinear indicator-level moderation

The assumption of linearity of the moderation effect
of the indicator-level moderator can be relaxed by
including higher-order effects as follows:

fki Zið Þ ¼ ki0 þ
XR
r¼1

kirZ
�
ir; (12)

with the analogous expression for f�iðZiÞ and
f ln½r2i �ðZiÞ, where Z�

i1;Z
�
i2; :::;Z

�
iR are the standardized

(i.e., having standard deviation of 1) orthogonal poly-
nomials of degree R over the set of values of the mod-
erator Zi. We use orthogonal polynomials instead of
fZi;Z2

i ; :::;Z
R
i g to facilitate parameter estimation and

interpretation. If R¼ 1 the model reduces to an indi-
cator-level linear moderation model, if R¼ 2 the
model reduces to a quadratic indicator-level moder-
ation model, etc. It may be noted that the model in
Equation (12) can in principle be seen as a generalized
linear model, but we follow Bauer and Hussong
(2009) and refer to it as a nonlinear moderation
model because it allows for nonlinear relationship

between the indicator-specific moderator and the indi-
cator and for nonlinear moderation effects.

Nonparametric indicator-level moderation

The goal of indicator-level moderation is for each
observed indicator i to explore the relationship
between the moderator Zi and the indicator-specific
slope and intercept. Extending the idea of local struc-
tural equation modeling, for each observed indicator
we define the focal points Fi1; :::; FiJ of the moderator
and obtain the estimates of kij and �ij at each of these
focal points by weighting the observations ypi using
the distance between the value of the observed moder-
ator zpi of person p and the value of the moderator at
the j-th focal point. While in traditional nonparamet-
ric moderation each person receives a single weight
for each focal point, in indicator-level moderation,
weights are assigned to each combination of a person
and an indicator separately. Different weighting func-
tions can be used, among which the Gaussian kernel
function is rather convenient and intuitive (Gasser,
Gervini, Molinari, Hauspie, & Cameron, 2004). The
idea behind using the Gaussian kernel is that the
observations that are close to each other are more
similar than the observations that are further apart.
The closer to the focal point, the higher the weight
that the observation receives. In this way the estimates
of the latent variable model parameters are more
influenced by the observations near the focal point
and less influenced by the observations further away
from it. The relationship between the latent variable
model parameters and the indicator-level moderator is
approximated by estimating the parameters at each
focal point.

For each indicator i and each focal point j a vector
of weights wij is defined with each element computed
as follows:

wpij ¼ exp � zpi�Fijð Þ2

2 hSDZiN
�1

5

� �2
8<
:

9=
;; (13)

where wpji is the weight of the observation of person
p on indicator i when obtaining the estimates of
parameters of i-th indicator at the focal point Fij, zpi
is the realization of the i-th indicator-level moderator
for person p, h is the bandwidth factor, and SDZi is
the standard deviation of the i-th moderator.

The bandwidth factor determines the standard
deviation of the normal density function used to
weigh the observations. It determines how far from
the focal points the observation has to be to have a
relatively large weight and therefore, a relatively large
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impact on the estimated model parameters. The band-
width factor serves as a smoothing parameter: the
larger it is, the smoother the relationship between the
moderator and the latent variable model parameters is
estimated to be. When h is large, the noise in the esti-
mates is reduced, but so is the ability of the method
to pick up on the meaningful but nuanced trends in
the data, and the strength of the moderation effect
might be underestimated. If h ! þ1, then the model
parameters will be estimated to be the same at each
focal point, and there will be no effect of the moder-
ator. The smaller h is, the noisier the estimated rela-
tionship between the moderator and the model
parameters is. Hence, the estimates more closely
match the local subsets of data, but the chance of
picking up on statistical noise is also increased. It
must be noted that this tradeoff is not specific for
nonparametric moderation, but is inherent in kernel
regression methodology in general (see, e.g., Hart,
2013; Li & Racine, 2007). The factor h¼ 1.1 has been
proposed in the nonparametric density estimation lit-
erature (see, e.g., Silverman, 1986). Alternatively, the
value of h¼ 2 has been used in local structural equa-
tion modeling (Briley et al., 2015; Hildebrandt et al.,
2009). In this article, we use both values and compare
the results.

Similar to the traditional nonparametric moder-
ation approach (Hildebrandt et al., 2016), the signifi-
cance of the moderation effect can be tested using a
permutation test (Good, 2005). To perform the per-
mutation test, one needs to estimate the nonparamet-
ric relationship between the moderator and the
indicator-specific parameters repeatedly on permuted
data sets, in which the data y are kept intact, while
for each indicator the values of the corresponding
moderator are reassigned to different persons in the
sample. To make inferences about the significance of
the moderation effect on, for example, the slope of
the i-th indicator, one needs to compare the standard
deviation among the estimates of ki1; :::; kiJ obtained
in the observed data with the standard deviations of
the estimates of the slope parameters in the permuted
data sets. The proportion of data sets in which the
standard deviation is larger for the permutation data
than for the observed data can be used as the p-value
for testing the hypothesis of the absence of the mod-
eration effect. Note that although compared to trad-
itional moderation we have more moderators, we do
not estimate more effects than in traditional moder-
ation models and do not perform more permutation
tests than Hildebrandt et al. (2016). In addition to the
permutation test, one can also use bootstrapping (see,

e.g., Efron, 1979) to investigate the uncertainty about
the estimated relationships between the indicator-level
moderator and the model parameters.

Estimation

In this section, we describe how the parametric non-
linear and nonparametric relationships between the
indicator-specific moderator and the parameters of
the latent variable model can be estimated. We take a
pragmatic approach when choosing the estimation
method: the parametric moderation model is esti-
mated using a Bayesian procedure since it is a model
with a large number of parameters which complicates
the use of frequentist methods, and for estimating the
nonparametric relationship between the moderator
and the model parameters we use maximum likeli-
hood estimation because in this case it is computa-
tionally more efficient. We will focus on binary
indicator variables as the resulting models are argu-
ably the most challenging models as they are compu-
tationally more demanding than the latent variable
models for continuous indicators.

Parametric moderation

To estimate the indicator-level R-degree polynomial
moderation 2PNOM, we propose using Gibbs sam-
pling (see, e.g., Casella & George, 1992; Geman &
Geman, 1984). Gibbs sampling allows one to obtain
samples from the joint posterior distribution of the
model parameters and use these samples to approxi-
mate the posterior means of the parameters which can
be used as their point estimates and credible intervals
which can be used as measures of uncertainty about
the parameters.

The joint posterior distribution of the model
parameters is proportional to the product of the likeli-
hood and the prior distribution:

f k; m j y; zð Þ / f k; mð Þ
YN
p¼1

ðYK
i¼1

f ypi j ki�; mi�; g; zpi
� � N g; 0; 1ð Þdg;

(14)

where k and m are the K � ðRþ 1Þ matrices contain-
ing the baseline slopes and intercepts, respectively, in
the first column and the effects of the moderator on
the slopes and the intercepts in the remaining col-
umns, respectively. Here, ypi is binary and the condi-
tional probability of ypi¼ 1 given g is specified by
the 2PNOM.

As a prior distribution for the indicator-specific
sets of parameters we use a hierarchical multivariate
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normal prior:

f k; mð Þ ¼
ð ðYK

i¼1

N 2Rþ2 ki�; mi�½ �T ; l;R
� �

f lð Þf Rð ÞdldR;

(15)

where l and R are the hyper-mean and hyper-covari-
ance matrix. Using a hierarchical prior allows one to
investigate the relationship between the different
model parameters since the hyper-parameters can be
also estimated. For example, using the posterior distri-
bution of the covariance between k�0 and k�1 one can
make inferences about the relationship between the
baseline slope and the linear moderation effect. For
the hyper-mean and the hyper-covariance, we use a
vague multivariate normal and a vague inverse-
Wishart prior, respectively.

In the Gibbs sampler after setting initial values for
the model parameters, they are consecutively sampled
from their full conditional posterior distributions
given the current values of all other parameters. The
conditional posteriors for the distribution in Equation
(14) do not have a closed form. To simplify the condi-
tional posteriors, data augmentation (Tanner &
Wong, 1987) is implemented. First, for each binary
data point ypi an augmented continuous variable
xpi�NððkTi�z�pÞgp þ mTi�z

�
pÞ; 1Þ is introduced (Albert,

1992), defined in such a way that ypi ¼ Iðxpi 	 0Þ.
Second, parameters gp of each person are sampled.
Third, the hyper-parameters l and R are also
sampled. Hence, in the data augmented Gibbs
Sampler samples are obtained from the following joint
posterior distribution:

p k; m; g;l;R; x; j y; zð Þ: (16)

All full conditional posteriors of this joint posterior
have a closed form: truncated normal for xpis, normal
for gps, multivariate normals for ½ki�; mi��T and l, and
Inverse-Wishart for R. The exact specification of ini-
tial values and the steps of the Gibbs Sampler can be
found in Appendix A. R and C code for estimating
the R-degree polynomial indicator-level moderation
model can be found in the supplementary materials.

Nonparametric moderation

While in traditional nonparametric moderation the
model is estimated once for each focal point, when
the moderator is indicator-specific the procedure
needs to be iteratively repeated for each indicator. To
start the procedure one needs to initialize the values
of the parameters for each combination of a person
and an indicator, that is, define the N�K matrices of

person-by-indicator-specific slopes and intercepts,
denoted by k� and m�, respectively. The initial values
can be set as follows: estimate the model without the
moderation effects and set each k�pi and ��pi to be equal
to the estimates of the slope and the intercept of the
i-th indicator in the model without the moder-
ation effects.

After initialization, one first repeatedly obtains the
estimates of kji and �ji for i 2 ½1 : K� and for j 2 ½1 : J�
by maximizing the log-likelihood:

lnq kij; �ij ; y; k�; m�;wij
� � ¼XN

p¼1

ln
ð
f ypi; kij; �ij; g
� �wpij

YK
k 6¼i;k¼1

f ypk; k
�
pk; �

�
pk; g

� �
N g; 0; 1ð Þdg;

(17)

where the observations of indicator i are weighed by
wij, while for the indicators k 6¼ i the current values of
the person-by-indicator-specific slope and intercept
parameters for the k-th indicator, k��k and ���k, are
used. In this study, we used numerical integration to
approximate the integral in Equation (17) (Gauss-
Hermite quadrature with six nodes) and general-pur-
pose optimization R-function “optim” to find the val-
ues of kij and �ij that maximize the log-likelihood.

Next, one updates the values of k��i and m��i as fol-
lows:

k�pi ¼
ki1 if zpi<Fi1;

kij þ zpi�Fijð Þ ki jþ1ð Þ�kij
Fi jþ1ð Þ � Fij

if Fij � zpi � Fi jþ1ð Þ;8j 2 1; J�1½ �;
kiJ if zpi>FiJ ;

8>>><
>>>:

(18)

with a similar specification for ��pi. If zpi is outside of
the range of the focal points, then k�pi and ��pi are set
to be equal to the parameters at the nearest focal
point, and if zpi is between Fij and Fiðjþ1Þ, then k�pi and
��pi are computed using piece-wise linear regression.
The values outside the range of the focal points are
set to be equal to the parameters at Fi1 and Fij because
if one uses the regression-based values, extremely low
(! �1) or extremely high (! þ1) values may be
obtained which may be unrealistic in practical applica-
tions. Given the results of the simulation studies,
piece-wise linear approximation was considered accur-
ate enough. However alternatively one may consider
fitting a higher degree polynomial regression and use
the values on the smooth curve connecting the esti-
mates at the focal points for k�pi and ��pi.

The procedure needs to be repeated more than
once to get rid of the effect of the starting values.
However, our simulations have shown that the esti-
mates of ki1; :::; kiJ and �i1; :::; �iJ are already stable
after the second repetition. R and C code for the
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indicator-level nonparametric moderation can be
found in the supplementary materials.

Illustrative example

Data and method

To illustrate the differences between the moderation
methods we used the data from a computerized arith-
metic test which was part of the central exams in the
Netherlands at the end of secondary education. The same
data were used by Bolsinova and Maris (2016). From the
data of a test version with 60 items administered to
10,367 persons we removed the last 10 items which many
respondents did not reach (this was done since the
response behavior under strong time pressure might be
different from the rest of the test) and removed all per-
sons with missing values on the remaining 50 items.

The resulting data set consisted of responses from
9697 persons to 50 arithmetic items. Here, ypi is the
binary response accuracy (1: correct; 0: incorrect) of
person p to item i. In addition to the response accur-
acy, the data set included item-level response times
which were used as a moderator for illustrating the
moderation methods (i.e., here, zpi is response time of
person p on item i). The 2PNOM with the standard
normal distribution for the latent variable (i.e., arith-
metic ability) was used in this application.

The 2PNOM without moderation effects, the linear
moderation model, the parametric nonlinear models
(quadratic and cubic) and the model for the dichotom-
ized moderator (split at the item-level median) were fit to
the data using Gibbs Samplers with 10,000 iterations each
(including 5000 of burn-in). Modified AIC and BIC2

(mAIC and mBIC) were used for model comparison.
Furthermore, the nonparametric moderation

method for investigating the relationship between
response time and the slope and intercept parameters
was applied to the data. For each item in the nonpara-
metric method, we used 20 equally spaced percentiles
(from the 2.5th to the 97.5th percentile) of the distri-
bution of the response times as focal points.
Additionally, we performed the permutation test with
100 replications to evaluate the significance of the
moderation effects. Moreover, we used 100 bootstrap
samples (each time 9697 persons were sampled with
replacement from the available sample) to graphically
evaluate the uncertainty about the estimated

relationships. The above described procedure was per-
formed twice: with h¼ 1.1 and h¼ 2.

Results

Convergence of the models was evaluated using visual
inspection of the trace plots and the running mean
plots, which did not provide evidence for the absence
of convergence. As an example, Figure 2 shows for the
most complex model (cubic moderation) the plots for
the parameters of item 10. The black lines show the
values of each parameter throughout the iterations and
the red lines show the running means. It can be seen
that the running means stabilize after the burn-in and
the sampled parameter values fluctuate around these
means covering the range of the posterior distribution.

To further assess convergence, we ran five add-
itional chains with more iterations (20,000 each
including 5000 burn-in) for each model with varying
starting values and assessed convergence using the
Gelman–Rubin diagnostic (Gelman & Rubin, 1992).
For the model without a moderation effect, for the
linear moderation model, and for the model with the
dichotomized moderator, all parameters showed good
convergence. In the quadratic and the cubic models,
the convergence diagnostics indicated that the item
parameters of 47 and 48 items, respectively, showed
good convergence. For the remaining three and two
items the diagnostics indicated some convergence
issues, which upon inspection showed that for both
models two different sets of solutions were found
across chains with three out of five chains stuck in a
local maximum. When convergence was evaluated for
the two chains which were not stuck in the local max-
imum all item parameters did not show lack of con-
vergence. For both models, the results found for their
original chain matched the results of the respective
best chains. Thus, there do not appear to be any con-
vergence issues in the original results, and hence for
each model we proceeded with the analysis of the
results of the original chain.

In Table 1, the models with and without the mod-
eration effects are compared in terms of the informa-
tion criteria. All models with moderation effects
performed better than the model without the

Table 1. Information criteria for the fitted models: modified
AIC (mAIC) and modified BIC (mBIC).
Model No. of parameters mAIC mBIC

No moderation 100 517569.2 518287.2
Dichotomised moderator 200 509162.2 510598.1
Linear moderation 200 510277.4 511713.3
Quadratic moderation 300 504072.8 506226.7
Cubic moderation 400 500613.8 503485.6

2The information criteria are referred to as modified since instead of the
maximum likelihood estimates of the parameters, the posterior means of
the parameters were used. The utility of these criteria for model selection
of linear indicator-level moderation models was demonstrated by
Bolsinova, de Boeck, et al., (2017).
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moderation effects which indicates that in this applica-
tion, response accuracy is not independent of response
time. The linear model performed better than the
model with a dichotomized moderator. However, the
assumption of linearity of all moderation effects can be
rejected since the models with higher-order effects have
smaller mAIC and mBIC than the linear model. The
model-based uncertainty about the estimated functional
relationship between the moderator and the model
parameters can be evaluated by inspecting the posterior
distributions of the moderation effects. Figure 3 shows
examples for some of the parameters (slopes of items 5
and 7, and intercepts of items 3 and 27). Each gray

line is based on one sample from the posterior distri-
bution of model parameters, and the black line is based
on the posterior means.

The conclusion of the presence of the moderation
effects also follows from the permutation tests per-
formed with the nonparametric moderation method.
Among the p-values of the permutation tests, 48 and
49 of them were significant for the effect on the inter-
cept parameter for h¼ 1.1 and h¼ 2, respectively,
indicating a significant main effect of Zi on Yi. In
addition, 33 and 35 tests were significant for the effect
on the slope parameter for h¼ 1.1 and h¼ 2, respect-
ively, indicating a significant interaction effect

Figure 2. Example of the convergence plots (traceplots in black and running mean plots in red): parameters for item 10 in the
cubic moderation model.
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between Zi and g. As an illustration of the permuta-
tion test, Figure 4 shows the relationship between
response time and the parameters of the latent vari-
able model for some of the items. The effect was sig-
nificant, for example, for the slope parameter of item
5 and the intercept parameter of item 3. On the
contrary, the effect on the slope parameter of item 7
and the effect on the intercept parameter of item 27
were not significant. For these items, Figure 5 also
shows the estimated relationships in the bootstrap
samples. The estimated relationship for k7 and �27
in the bootstrap samples fluctuates around a hori-
zontal line. One can also see that the uncertainty
about the estimated relationship is larger when
h¼ 1.1, compared to h¼ 2, and that the estimated
effect is stronger with h¼ 1.1.

Figures 6 and 7 show examples of the estimated
relationship between the response time and the slope
and the intercept parameters as obtained from the dif-
ferent methods. For some items there are no large dif-
ferences between the linear model and the nonlinear
models (see the slope parameter of item 45 and the
intercept parameter of item 5). However, for other
items there is a large discrepancy between the linear
and nonlinear models (see the slope parameter of
item 34 and the intercept parameter of item 48). The

slope of item 34 first increases with response time and
then decreases. The quadratic and the cubic models
accommodate this change of the direction of the effect,
but they do not closely match the relationship estimated
with the nonparametric method. The intercept param-
eter of item 48 first increases steeply but there seems to
be hardly any difference in the intercept parameters
given the response times above 200 s. For this effect the
parametric nonlinear models give a rather good approxi-
mation. Furthermore, one can see from the figures that
the assumption of the stability of the parameters within
the categories of the moderator does not seem to hold. If
we compare the results for the two different values of h,
we see that the general patterns of the estimated relation-
ships are very close to each other, but with h¼ 2 the
effect is weakened and small differences between the
neighboring focal points are smoothed out.

Simulation study

Methods

In this simulation study, the viability of the paramet-
ric nonlinear and nonparametric methods is investi-
gated. In order to obtain simulated data under a
realistic relationship between the latent variable model
parameters and the continuous moderator, we used

Figure 3. Example of the evaluation of the model-based uncertainty of the functional relationship between the moderator and
the model parameters in the cubic moderation model. Response time is on the x-axis, and the latent variable model parameters
are on the y-axis: slopes of items 5 and 7, and intercepts of items 3 and 27. Each gray line is based on a sample from the poster-
ior distribution of the model parameters, and the black lines are based on the posterior means of the model parameters.
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the moderator values and estimates of the person-by-
indicator-specific slopes and intercepts from the illus-
trative example. In the simulation study, we again
used the latent variable model for binary indicators,
specifically the 2PNOM to illustrate the viability of
nonlinear moderation.

From the empirical data set with 50 indicators we
selected 24 indicators with different patterns for the
relationship between the indicator-specific moderator
and the slope and intercept parameters. Additionally,
we considered an indicator with no moderator effect
on the parameters of the latent variable model, with

a constant slope parameter of 0.58 (i.e., matching a
slope of 1 in the two-parameter logistic model) and a
constant intercept equal to 0 for which we used the
values of the moderator of one of the remaining 26
indicators in the arithmetic test.

Two scenarios were considered: (1) the data were
generated using the cubic moderation model; (2) the
data follow a latent variable model with person-by-
indicator-specific slope and intercept parameters, k�

and m�.3 In both scenarios, the true parameter values

Figure 4. Example of permutation tests for the effects of the response time (on the x-axis) on the latent variable model parame-
ters (on the y-axis): slopes of items 5 and 7, and intercepts of items 3 and 27; black lines represent the relationship estimated in
the observed data, and each gray line presents the relationship estimated in each of the permuted data sets. The results are
shown for the two values of the bandwidth factor (h¼ 1.1 on the left and h¼ 2 on the right).

3We used the results with the bandwidth h¼ 1.1.
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were equal to the parameter estimates of the selected
24 indicator variables in the real data illustration in
the cubic moderation model and the nonparametric
moderation method respectively.

In each replication, N persons were drawn from
the available data set of 9657 persons and their
response times were used in the simulation as the val-
ues of the indicator-specific moderator. In the first
scenario, for each combination of a person and an
indicator, we computed the slope and the intercept
parameters using the corresponding value of the mod-
erator and the estimates of the parameters of the
cubic moderation model. In the second scenario, the

estimates of the person-by-indicator-specific slope and
intercept parameters, k�pi and ��pi, of the selected N
persons obtained with the nonparametric method
were used to generate the data of the indicator varia-
bles. For each person, a value for the latent variable
was drawn from the standard normal distribution.
The values of the indicators were generated according
to the 2PNOM.

Three conditions with different N were considered:
1000, 2000, and 4000 persons. In each condition, 100
data sets were generated. In each generated data set,
we estimated a cubic moderation model (a Gibbs
Sampler with 10,000 iterations and 5000 burn-in was

Figure 5. Example of bootstrapping for the effects of the response time (on the x-axis) on the latent variable model parameters
(on the y-axis): slopes of items 5 and 7, and intercepts of items 3 and 27; black lines represent the relationship estimated in the
observed data, and each gray line presents the relationship estimated in each of the bootstrap samples. The results are shown for
the two values of the bandwidth factor (h¼ 1.1 on the left and h¼ 2 on the right).
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used, see Appendix A for details) and the relationship
between the parameters of the latent variable model
and the indicator-specific moderator was investigated
using the nonparametric method, both with h¼ 1.1
and h¼ 2. As focal points, we used the 20 equally
spaced percentiles (from the 2.5th to the 97.5th) of
the distribution of the indicator-specific moderator in
the full data set.

The goal of the simulation study was to investigate
the recovery of the true relationship between the

indicator-specific moderator and the parameters of
the latent variable model. The estimates of the focal
point-specific slope and intercept parameters were
compared to their true values. For each indicator, we
computed the weighted absolute bias, variance and
mean squared error of the indicator-specific parame-
ters at the 20 focal points, separately for the slope and
for the intercept parameters. The weights for each
focal point were determined by the kernel density esti-
mates at that point.

Figure 7. Example of the relationship between the moderator (zpi; response time in seconds) and the intercept of items 5 and 48.
Different lines represent different models.

Figure 6. Example of the relationship between the moderator (zpi; response time in seconds) and the slope parameter of items 34
and 45. Different lines represent different moderation methods.
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Results

Table 2 shows the results for recovery of the indica-
tor-specific parameters averaged across the indicators.
Additionally, Figures 8–11 show examples of how the
estimates differ across the estimation methods and the
sample sizes. One can see that generally the estimated
curves follow the patterns of the true relationship.
Furthermore, increasing sample size helped reduce
variability of the estimated curves.

When the data were generated under the cubic
model, the parametric method performed better than
the nonparametric method. The bias was small and can
probably be at least partly explained by the shrinkage
effect, since the hierarchical prior was used for the
indicator-specific parameters. The variance was also
smaller than that under the nonparametric method,
which is not surprising, since the cubic model specifies
the parametric shape of the relationship between the
parameters of the latent variable model and the moder-
ator and therefore restricts the range of possible func-
tions. With the nonparametric method the variance
was larger, since it allows for more flexibility in the
shape of the moderation effect. Furthermore, bias was
larger with the nonparametric method. When estimat-
ing kij and �ij at a particular focal point, observations
removed from the focal point also influence the results,
therefore there was less variation in the estimated focal
point-specific parameters than in the true ones. This
effect is more pronounced for h¼ 2 than for h¼ 1.1.
With h¼ 2 strong effects are heavily underestimated.
For example, in Figure 8 in the bottom row of the
results of the nonparametric method, one can see that
at the lowest and the highest focal points, the intercepts
were overestimated, while in the middle they were

underestimated. Thus, the strength of the moderation
effect is underestimated by this method. The difference
between the results with h¼ 1.1 and h¼ 2 depends on
the curvature of the moderation function. For example,
in Table 2 one can see that the difference between the
bias with h¼ 1.1 and h¼ 2 was larger for the inter-
cepts, than for the slopes, since the moderation effect
were generally stronger for the intercepts.

When the data were generated using the person-
by-indicator-specific slopes and intercepts estimated
with the nonparametric method, the benefits of the
cubic model become less prominent. The variance of
the estimates was smaller under the cubic model,
however, for those indicators for which a cubic regres-
sion was not a good approximation of the underlying
relationship between the moderator and the parame-
ters of the latent variable model, the bias under the
parametric model was larger than the bias under the
nonparametric method. Figures 10 and 11 show that
while the parametric model forces a particular shape
on the relationship between the moderator and the
parameters of the latent variable model and, hence,
cannot recover the true shape of the relationship, the
relationship estimated with the nonparametric method
very closely matches the true relationship for h¼ 1.1.
With larger sample size the difference in the variance
of the estimates under the parametric and the nonpara-
metric methods becomes smaller. Since the nonpara-
metric method has smaller bias, the overall quality of
the estimates as captures by the mean squared error is
better for this method compared to the parametric
method when sample size is large. In conclusion, when
the true relationship deviates from the cubic model
and the sample size is large, it is more beneficial to use
a more flexible nonparametric approach, which has
larger variance, but also smaller bias.

Discussion

The methods presented in this article allow researchers
to move beyond the assumptions of linearity of the
moderation effects and homogeneity of the indicator-
specific parameters of the latent variable model within
artificially created categories of the moderator. As our
illustrative example shows, it is not uncommon for the
relationship between the indicator-specific moderator
and the parameters to be nonlinear. Furthermore, while
sometimes a quadratic or a cubic model can give a
good approximation of the moderation effect, in other
cases the patterns of the relationship may not be accur-
ately represented by these parametric models.
Therefore, having an exploratory nonparametric tool

Table 2. Parameter recovery.

Scenario Method N
Slope Intercept

Bias Var MSE Bias Var MSE

1 Parametric 1000 0.015 0.008 0.008 0.010 0.006 0.006
2000 0.008 0.004 0.004 0.006 0.003 0.003
4000 0.005 0.002 0.002 0.003 0.002 0.002

Nonparameteric
h¼ 1.1

1000 0.033 0.012 0.014 0.033 0.008 0.011
2000 0.026 0.007 0.008 0.029 0.004 0.007
4000 0.025 0.004 0.005 0.027 0.002 0.004

Nonparameteric
h¼ 2

1000 0.041 0.007 0.010 0.065 0.005 0.017
2000 0.033 0.004 0.006 0.057 0.002 0.012
4000 0.031 0.002 0.004 0.050 0.001 0.009

2 Parametric 1000 0.049 0.008 0.013 0.054 0.006 0.011
2000 0.050 0.004 0.009 0.055 0.003 0.009
4000 0.052 0.002 0.007 0.054 0.001 0.007

Nonparameteric
h¼ 1.1

1000 0.041 0.013 0.016 0.036 0.008 0.012
2000 0.036 0.007 0.010 0.033 0.004 0.007
4000 0.031 0.004 0.006 0.030 0.002 0.005

Nonparameteric
h¼ 2

1000 0.054 0.008 0.014 0.071 0.005 0.020
2000 0.048 0.004 0.009 0.062 0.002 0.014
4000 0.044 0.002 0.007 0.054 0.001 0.010
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for studying the relationship between the indicator-spe-
cific moderator and the parameters of the latent vari-
able model is very useful. The estimated nonparametric
relationship might be less strong than the true relation-
ship, but the bias of the nonparametric method would
be smaller than the bias in the parametric model when
the shape of the true relationship is far from the speci-
fied parametric shape.

The nonparametric approach allows one to investi-
gate the relationship between the moderators and the
parameters of the latent variable model in an explora-
tory way and use what has been learned in this
explanatory step in further research. The results of the
nonparametric method can be used to inform the
parametric model in further confirmatory studies
about what degree polynomial is needed to

approximate the relationship between the indicator-
specific moderator and the parameters of the model.

When specifying the weights for the nonparametric
estimation of the relationship between the indicator-
specific moderator and the parameters, in this study a
normal density kernel was used, which assumes that
observations, for example, one unit below and one
unit above the focal point are equally similar to the
observations at the focal point. Alternatively, one
might assume that observations with values, for
example, twice as large or twice as small as the value
of the focal point are equally similar to the observa-
tions at the focal point. In that case, it would be better
to use a log-transformation for the indicator-specific
moderator. Choosing the method for specifying the
weights depends on the application at hand.

Figure 8. Recovery of the relationship between the moderator (on the x-axis) and the intercept of item 11 (on the y-axis): each
black line represents the estimated relationship from one replication, the red line represents the true relationship (data were gen-
erated under the cubic model); each row represents a separate moderation method (parametric, nonparametric with the band-
width of h¼ 1.1, and nonparametric with h¼ 2), and column represents different sample size (N).
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When choosing the value for the bandwidth factor
we followed recommendations from the nonparamet-
ric regression literature and from local structural
equation modeling. Both h¼ 1.1 and h¼ 2 were used
in the empirical data analysis. The results show that
although the results are smoother with h¼ 2, the gen-
eral trends of the relationship are similar regardless of
the exact value of h. Furthermore, the results of the
permutation tests are also very similar. As a general
recommendation for users of the method we suggest
different values of h and checking whether the same
conclusions would be made about general patterns of
relationship between the indicator-level moderator
and the parameters of the latent variable models are
the same. While the exact values of �ij and kij are sen-
sitive to the exact choice of h (see, e.g., the results of

the simulation study, where the MSE of nonparamet-
ric method was different with different h), the general
pattern of relationship which is of primary interest is
often similar for h¼ 1.1 and h¼ 2. An alternative to
using fixed values of h would be adapting one of the
data-driven methods for bandwidth selection from
nonparametric regression and kernel density estima-
tion literature (see, e.g., Bowman, 1984; Chiu, 1991,
1992; Hall, Marron, & Park, 1992; Hall, Sheather,
Jones, & Marron, 1991; Park & Marron, 1990; Rice,
1984; Rudemo, 1982; Scott & Terrell, 1987; Sheather
& Jones, 1991). However, in the case of indicator-level
moderation it is computationally very expensive to
compute the exact predicted value of the latent vari-
able model parameters for each combination of the
person with the indicator which complicates the

Figure 9. Recovery of the relationship between the moderator (on the x-axis) and the slope of item 15 (on the y-axis): each black
line represents the estimated relationship from one replication, the red line represents the true relationship (data were generated
under the cubic model); each row represents a separate moderation method (parametric, nonparametric with the bandwidth of
h¼ 1.1, and nonparametric with h¼ 2), and column represents different sample size (N).
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application of these methods. Further research is
needed to develop data-driven methods for optimal
selection of the bandwidth factor h that would be suit-
able for nonlinear moderated latent variable models,
not only for the indicator-level moderation discussed
in this article, but also for traditional nonparameteric
moderation (Briley et al., 2015; Hildebrandt
et al., 2009).

In this article, we used the latent variable model for
binary indicators in the illustrative example and the
simulation study. However, our methods can also be
adapted to be used in the context of continuous indica-
tors or ordinal indicators. Furthermore, while in this
study we considered a unidimensional latent variable
model in which the conditional expectation of the

observed indicator is modeled with an intercept and a
single slope parameter, the methods described here can
be readily extended to more complex multidimensional
latent variable models and structural equation models.
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Appendix A. Gibbs sampler for the indicator-
level R-degree polynomial moderation 2PNOM

As starting values we use maximum likelihood estimates of
the slopes and intercepts in the nonmoderated model for
k�0 and ��0, respectively, EAP-estimates of the person
parameters for gps, 0 for all the effect parameters (e.g., k�1)
and for l, and an identity matrix for R. Initial values do
not have to be specified for xpis since they are sampled in
the first step.

After initialization, the parameters (and the augmented
data) are consecutively sampled from their full conditional
posterior distributions which are specified in the
steps below:

Step 1. For each combination of person p with indicator
i sample, the augmented variable xpi from its full condi-
tional posterior which is a truncated normal distribution
where the truncation depends on the value of ypi (below
zero for correct and above zero for incorrect):

f xpi j k; m; g;l;R; y; z
� � ¼ f xpi j ki; mi�; gp; ypi; zpi

� � ¼
N xpi; kTi�z

�
pi

� �
gp þ �Ti� z

�
pi

� �
; 1Þ ypiI xpi 	 0ð Þ�

þ 1�ypið ÞI xpi<0ð ÞÞ: (19)

Note that given the matrix of augmented data x the
model parameters are independent of the data y.

Step 2. For each person p sample gp from its full condi-
tional posterior which is a normal distribution:

f gp j k; m; g; l;R; y; x; z� � ¼ f gpjk; �; yp�; zp�
� �

¼ N gp;

XK
i¼1

kTi�z
�
pi xpi��Ti� z

�
pi

� �
XK
i¼1

kTi z
�
pi þ 1

; 1

0
BBBBB@

1
CCCCCA

(20)

Step 3. For each indicator i sample the parameters
½ki�; mi�; �T from a multivariate normal distribution with pos-
terior covariance matrix

Xi ¼ vTv þ R�1ð Þ�1
; (21)

where v ¼ ½ g g
z��i1 g
z��i2 g
z��i3 1 z��i1 z��i2 z��i3 �,
and posterior mean vector

fi ¼ Xi v
Tx�i þ R�1l

� �
: (22)

Step 4. Sample the covariance matrix of the vector of
parameters:

R�IW K þ 2Rþ 4; I2Rþ2 þ
XK
i¼1

ki� mi�
	 
T � l
� �

ki� mi�
	 
� lT
� � !

:

(23)

Step 5. Sample the mean vector of the parameters:

l�N 8

�
KR�1þ I8

100

� ��1

R�11T ki� �i�
	 
� �

; KR�1þ I8
100

� ��1�
:

(24)
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