
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

An In-Class Demonstration of Bayesian Inference

van Doorn, J.; Matzke, D.; Wagenmakers, E.-J.
DOI
10.1177/1475725719848574
Publication date
2020
Document Version
Final published version
Published in
Psychology Learning and Teaching
License
CC BY-NC

Link to publication

Citation for published version (APA):
van Doorn, J., Matzke, D., & Wagenmakers, E-J. (2020). An In-Class Demonstration of
Bayesian Inference. Psychology Learning and Teaching, 19(1), 36-45.
https://doi.org/10.1177/1475725719848574

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1177/1475725719848574
https://dare.uva.nl/personal/pure/en/publications/an-inclass-demonstration-of-bayesian-inference(9c5315fd-b2e9-4deb-8e83-d797fbebfaca).html
https://doi.org/10.1177/1475725719848574


Article

An In-Class Demonstration
of Bayesian Inference

Johnny van Doorn
University of Amsterdam, the Netherlands

Dora Matzke
University of Amsterdam, the Netherlands

Eric-Jan Wagenmakers
University of Amsterdam, the Netherlands

Abstract

Sir Ronald Fisher’s venerable experiment ‘‘The Lady Tasting Tea’’ is revisited from a Bayesian perspec-

tive. We demonstrate how a similar tasting experiment, conducted in a classroom setting, can famil-

iarize students with several key concepts of Bayesian inference, such as the prior distribution, the

posterior distribution, the Bayes factor, and sequential analysis.

Keywords

Bayesian methods, binomial test, education

Over 80 years ago, Sir Ronald Fisher conducted the famous experiment ‘‘The Lady Tasting
Tea’’ in order to test whether his colleague, Dr Muriel Bristol, could taste if the tea infusion
or the milk had been added to the cup first (Fisher, 1937, p. 11). Dr Bristol was presented
with eight cups of tea and the knowledge that four of these had the milk poured in first.
Dr Bristol was then asked to identify these four cups. Fisher analyzed the results using null
hypothesis significance testing:

1. Assume the null hypothesis to be true (i.e., Dr Bristol lacks any ability to discriminate the
cups).

2. Calculate the probability of encountering results at least as extreme as those observed.
3. If that probability is sufficiently low, consider the null hypothesis discredited.

This probability is now known as the p-value and it features in many statistical analyses
across empirical sciences such as biology, economics, and psychology (for recent critique, see
Benjamin et al., 2018; Wasserstein & Lazar, 2016).
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Decades later, Dennis Lindley (1993) used an experimental procedure similar to that of
Fisher to highlight some limitations of the p-value paradigm. Specifically, the calculation of
the p-value depends on the sampling plan, that is, the intention with which the data were
collected. Consider the Lindley setup: the lady is offered six pairs of cups, where each pair
consists of a cup where the tea was poured first, and a cup where the milk was poured first.
She is then asked to judge, for each pair, which cup has had the tea added first. A possible
outcome is the sequence RRRRRW, indicating that she was right for the first five pairs, and
wrong for the last pair. However, as Lindley demonstrated, the original sampling plan is
crucial in calculating the p-value. Was the goal to have the lady taste six pairs of cups – no
more, no less – or did she need to continue until she made her first mistake? The observed
data are compatible with either sampling plan; yet in the former case, the p-value equals
0.109, whereas in the latter case the p-value equals 0.031. The difference lies in the inclusion
of more extreme cases. In the ‘‘test six cups’’ plan, the only more extreme outcome is
RRRRRR (i.e., the binomial sampling distribution), whereas for the ‘‘test until error’’
plan the more extreme outcomes include sequences such as RRRRRRW and
RRRRRRRW (i.e., the negative binomial sampling distribution). It seems undesirable
that the p-value depends on hypothetical outcomes that are in turn determined by the
sampling plan. Harold Jeffreys summarized: ‘‘What the use of p implies, therefore, is that
a hypothesis that may be true may be rejected because it has not predicted observable results
that have not occurred. This seems a remarkable procedure’’ (Jeffreys, 1961, p. 385; see also
Berger & Wolpert, 1988).

In this article we revisit Fisher’s experimental paradigm to demonstrate several key con-
cepts of Bayesian inference, specifically the prior distribution, the posterior distribution, the
Bayes factor, and sequential analysis. Furthermore, we highlight the advantages of Bayesian
inference, such as its straightforward interpretation, the ability to monitor the result in real-
time, and the irrelevance of the sampling plan. For concreteness, we analyze the outcome of
a tasting experiment that featured 57 staff members and students of the Psychology
Department at the University of Amsterdam; these participants were asked to distinguish
between the alcoholic and the non-alcoholic version of the Weihenstephaner Hefeweissbier,
a German wheat beer. We describe how classroom tasting experiments can acquaint students
with Bayesian inference, noting that beer can be substituted with anything else suitable (e.g.,
red and green M&M’s, Coca Cola and Pepsi, decaf and regular coffee). We analyze and
present the results in the open-source statistical software JASP (JASP Team, 2019).

The Tasting Experiment

On a Friday afternoon, May 12th 2017, an informal beer tasting experiment took place at
the Psychology Department of the University of Amsterdam. The experimental team con-
sisted of three members: one to introduce the participants to the experiment and administer
the test, one to pour the drinks, and one to process the data. Participants tasted two small
cups filled with Weihenstephaner Hefeweissbier, one with alcohol and one without, and
indicated which one contained alcohol. Participants were also asked to rate the confidence
in their answer (measured on a scale from 1 to 100, with 1 being completely clueless and 100
being absolutely sure), and to rate the two beers in tastiness (measured on a scale from 1 to
100, with 1 being the worst beer ever and 100 being the best beer ever). The experiment was
double-blind, such that the person administering the test and interacting with the partici-
pants did not know which of the two cups contained alcohol. For ease of reference, each cup
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was labeled with a random integer between 1 and 500, and each integer corresponded either
to the alcoholic or non-alcoholic beer. A coin was flipped to decide which beer was tasted
first. The setup was piloted with nine participants; subsequently, we tested as many people as
possible within an hour, and also recorded which of the two beers was tasted first. On
average, testing took approximately 30 seconds per participant, yielding a total of 57 par-
ticipants. Of the 57 participants, 42 (73.7%) correctly identified the beer that contained
alcohol; in other words, there were s¼ 42 successes and f¼ 15 failures.1

Theoretical Analysis

In order to assess statistically whether and to what extent participants were able to discrim-
inate between alcoholic and non-alcoholic beer we apply the binomial model, where the rate
parameter � governs the probability of a correct response for each of the participants.
Chance performance corresponds to � ¼ 1=2. Above-chance performance corresponds to
values of � higher than 1=2, with �¼ 1 indicating perfect performance.

In the Bayesian framework, we start by specifying a prior distribution. The prior distri-
bution quantifies our beliefs about the parameter of interest before seeing the data. For
convenience, we may specify a beta distribution: a probability distribution on the domain
½0, 1� governed by two shape parameters, a and b. Setting a ¼ b ¼ 1 yields a uniform distri-
bution, and implies that all values of rate � are equally likely a priori. Setting a> b assigns
more prior probability mass to values of � higher than 1=2, whereas setting a< b assigns
more mass to values of � lower than 1=2.2

The beta prior distribution is then updated to a posterior distribution using Bayes’ rule,
such that values of � that predicted the data well receive a boost in credibility, whereas values
of � that predicted the data poorly suffer a decline (Rouder & Morey 2017; Wagenmakers
et al., 2016):

pð�js, f Þ|fflfflfflffl{zfflfflfflffl}
Posterior

¼ pð�Þ|{z}
Prior

�
pðs, f j�Þ

pðs, f Þ|fflfflfflffl{zfflfflfflffl}
Average prediction

across all �0s

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Prediction for specific �

ð1Þ

The right-most term is the predictive updating factor that quantifies the change from prior
to posterior beliefs brought about by the data. This predictive updating factor indicates how
well each value of � predicted the data, relative to the average prediction across all values of
�. When a specific value of � predicted the data better than average, the posterior density at
that point will be higher than the prior density.

We used the binomial likelihood to assess the quality of each value’s prediction (i.e., the
likelihood of observing s successes and f failures, given a specific value of �). Because we used
the binomial likelihood and a beta prior distribution, the updated posterior distribution will
also be a beta distribution – a property known as conjugacy (Gelman et al., 2003).

The obtained posterior distribution can be used for both parameter estimation and
hypothesis testing. For parameter estimation, either a point estimate or an interval estimate
can be obtained. Commonly used point estimates include the posterior median and posterior
mean. Interval estimation can be done with a so-called credible interval, which is an interval
that contains x% of the posterior mass3 and can be interpreted as follows: there is an x%
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probability that the true parameter lies in this interval. For example, if we obtain a 95%
credible interval of ½0:6, 0:9� for �, we can be 95% sure that the true value of � lies between
0.6 and 0.9.

The posterior distribution can also be used for hypothesis testing, where the traditional
goal is to examine specific values of �. For instance, we can test the hypothesis H0 : � ¼ 1=2
(i.e., chance performance) by comparing its predictive adequacy to that of an alternative
hypothesis H1 : � 6¼ 1=2. In other words, H0 represents the idealized position of a skeptic
who believes that the data can be accounted for purely by chance. This ‘‘chance only’’ model
is pitted against an alternative that allows � to take on values different from 1=2.

As before, hypotheses that predict the data well receive a boost in credibility, whereas
hypotheses that predict the data poorly suffer a decline. In the Bayesian framework, hypoth-
esis testing is traditionally achieved through the Bayes factor (Etz & Wagenmakers, 2017;
Kass & Raftery, 1995).4 The Bayes factor can be seen as a weighing of one hypothesis’
predictive quality relative to that of another. The following equation illustrates this principle,
and is very similar to equation (1):

pðH1js, f Þ

pðH0js, f Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Posterior beliefs
about hypotheses

¼
pðH1Þ

pðH0Þ|fflffl{zfflffl}
Prior beliefs

about hypotheses

�
pðs, f jH1Þ

pðs, f jH0Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Bayes factor

ð2Þ

It is important to note here that the Bayes factor is a relative metric of the hypotheses’
predictive quality. For instance, if the Bayes factor equals 5, this means that the data are 5
times as likely under H1 than under H0. The relative nature of the Bayes factor stands in
stark contrast with the frequentist paradigm, where only the null hypothesis is under
consideration.

The computation of the Bayes factor is usually not straightforward; however, when the two
hypotheses are nested, a convenient computational shortcut can be used, known as the
Savage–Dickey density ratio (Dickey & Lientz, 1970; Wagenmakers et al., 2010). The shortcut
entails that the Bayes factor equals the ratio of the prior density and the posterior density at
the test value �0. For instance, in the current study, �0 ¼ 1=2 so we have the following ratio:

BF10 ¼
pð� ¼ 1=2Þ

pð� ¼ 1=2jdataÞ
ð3Þ

where the numerator indicates the prior ordinate and the denominator indicates the poster-
ior ordinate evaluated at the test value, � ¼ 1=2. BF denotes the Bayes factor, and the
subscript indicates which hypotheses are compared. BF10 indicates the Bayes factor in

favor of H1 i:e:, pðdatajH1Þ

pðdatajH0Þ

� �
, whereas BF01 indicates the Bayes factor in favor of H0

i:e:, pðdatajH0Þ

pðdatajH1Þ

� �
. For instance, if BF10 ¼ 1=5, then BF01 ¼ 5.

We stress that the mathematical details are not critical for students’ understanding of the
Bayesian procedures. The following section shows how the example and the associated
graphs suffice to clarify the key Bayesian concepts at an intuitive level.

Bayesian Inference with JASP

When the statistical explanation does not resonate with students, a practical demonstration
of the analysis might. This can be done with the statistical software JASP, which offers a
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graphical user interface for conducting Bayesian (and frequentist) analyses. In order to analyze
the collected data, the Bayesian binomial test can be used, which can be found under the menu
labeled ‘‘Frequencies’’. Several settings are available for the binomial test, allowing students to
explore different analysis choices. Figure 1 presents a screenshot of the options panel in JASP.
For this analysis, we specify a test value of 1=2 (i.e., chance performance), and a ¼ b ¼ 1 for
the prior distribution of � under H1. Note that in a sensitivity or robustness analysis, other
values for a and b may be explored to assess their impact on the posterior distribution.

The null hypothesis postulates that participants performed at chance level, whereas the
alternative hypothesis postulates that this is not the case. For instance, in the case of two-
sided hypothesis testing, the hypotheses are specified as follows

H0 : � ¼ 1=2

H1 : � � betað1, 1Þ
ð4Þ

However, since we wish to test whether or not participants’ discriminating ability exceeds
chance, we can specify the alternative hypothesis to allow only values of � greater than 1=2
(note the ‘+’ in the subscript):

Hþ : � � betað1, 1ÞIð1=2, 1Þ ð5Þ

where I indicates truncation of the beta distribution to the interval ½1=2, 1�.
Figure 2 illustrates the results of the binomial test. The left panel shows the prior and the

posterior distribution of � for the two-sided alternative hypothesis, along with the median
and credible interval of the posterior distribution. The posterior median equals 0.731 and the
95% credible interval ranges from 0.610 to 0.833, indicating a substantial deviation of �
from 1=2. For each value of �, the change from prior distribution to posterior distribution is

Figure 1. The input panel for the Bayesian binomial test in JASP. The upper-left box displays all available

variables. The upper-right box displays the tested variables. Below are other options, such as setting the

test value, the alternative hypothesis, and the shape parameters of the beta prior.
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quantified by predictive adequacy: for those values of � that predict the data better than
average, the posterior density exceeds the prior density (see equation (1)). The left panel
shows inference for the two-sided alternative hypothesis (i.e., H1 : � 6¼ 1=2) compared to the
null hypothesis (i.e., H0 : � ¼ 1=2). The resulting Bayes factor is 122.65 in favor of the
alternative hypothesis, that is, the observed data are about 123 times more likely to occur
under H1 than under H0.

The right panel shows inference for the one-sided positive hypothesis (i.e., Hþ : � � 1=2)
compared to the null hypothesis: the resulting Bayes factor is 225.26 in favor of the alter-
native hypothesis. Note that the posterior distribution itself has hardly changed: the poster-
ior median still equals 0.731 and the 95% credible interval ranges from 0.610 to 0.833.
Because virtually all posterior mass was already to the right of 1=2 in the two-sided case,
the posterior distribution was virtually unaffected by changing from H1 to Hþ. However, in
the right panel, Hþ only predicts values greater than 1=2, which is reflected in the prior
distribution: all prior mass is now located in the interval ð1=2, 1Þ, and as a result, the prior
mass in the interval ð1=2, 1Þ has doubled. Since the posterior density at the point of testing is
the same in both panels, but the prior density is doubled in the right panel, the Bayes factor
for the directed hypothesis doubles as well.

The experimental procedure also highlights one of the main strengths of Bayesian infer-
ence: real-time monitoring of the incoming data. As the data accumulate, the analysis can be
continuously updated to include the latest results. In other words, the results may be updated
after every participant, or analyzed all at once, without affecting the resulting inference. To
illustrate this, we can use Equation 1 to compute the posterior distribution for the first nine
participants of the experiment for which s¼ 6 and f¼ 3. Specifying the same beta prior
distribution as before, namely a truncated beta distribution with shape parameters
a ¼ b ¼ 1, and combining this with the data, yields a truncated beta posterior distribution
with shape parameters a ¼ 6þ 1 ¼ 7 and b ¼ 3þ 1 ¼ 4.5 The resulting posterior distribu-
tion is presented in the left panel of Figure 3. Now, we can take the remaining 48 participants
and conduct the Bayesian binomial test. Because we already have knowledge about the

Figure 2. Bayesian binomial test for the rate parameter �. The probability wheel at the top illustrates

the ratio of the evidence in favor of the two hypotheses. The two gray dots indicate the prior and pos-

terior density at the test value—the ratio of these is the Savage–Dickey density ratio. The median and

the 95% credible interval of the posterior distribution are shown in the top-right corner. The left panel

shows the two-sided test and the right panel shows the one-sided test. Both figures from JASP.

(a) H0 :� betað1; 1Þ and (b) H0 :� betað1; 1ÞIð1=2; 1Þ.
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population’s rate parameter �, namely the results of the first nine participants, we can
incorporate this in the analysis through the prior distribution, following Lindley’s maxim
‘‘today’s posterior is tomorrow’s prior’’ (Lindley, 1972).

In this case, we can specify a truncated beta prior distribution with a¼ 7 and b¼ 4, and
update this with the data of the remaining 48 participants using Equation 1. Out of the 48
participants, 36 were correct, and 12 were incorrect. Updating the prior distribution with this
data yields a posterior distribution with shape parameters a ¼ 7þ 36 ¼ 43 and
b ¼ 4þ 12 ¼ 16, which is exactly the same posterior distribution obtained when analyzing
the full data set at once. This two-step procedure is illustrated in Figure 3. The left panel
shows the prior distribution (i.e., the truncated beta distribution with a ¼ 1, b ¼ 1) and the
posterior distribution for the first nine participants. The right panel shows the inference for
the remaining 48 participants, while incorporating the knowledge gained from the first nine
participants in the prior distribution by specifying a truncated beta distribution with
a ¼ 7, b ¼ 4.

The ability to monitor the data in real-time and update the inference accordingly prevents
wasteful data collection: if there is sufficient evidence to discredit either hypothesis with 50
observations, why collect another 10? Wasteful testing is a serious issue, and monitoring the
evidence is important in fields such as medicine, biology, and industry. The Bayesian frame-
work for planning experiments is discussed in more detail by Rouder (2014), Schönbrodt &
Wagenmakers (2018), and Schönbrodt et al. (2017). Figure 4 shows the evolution of the
Bayes factor as more data are collected. Initially the evidence is inconclusive, but after 30
participants the evidence increasingly supports H1.

Concluding Remarks

This article has outlined a teaching tool for familiarizing students with the basics of Bayesian
inference. The educational advantage of the Bayesian binomial test is that both the

Figure 3. Sequential updating of the Bayesian binomial test. The left panel shows results from a one-

sided Bayesian binomial test for the first n¼ 9 participants (s¼ 6, f¼ 3). The shape parameters of the

truncated beta prior were set to a¼ 1 and b¼ 1. The right panel shows results from a one-sided bino-

mial test for the remaining 48 participants. Here, the specified prior is the posterior distribution from

the left panel: a truncated beta distribution with aþ s ¼ 7 and bþ f ¼ 4. The resulting posterior distri-

bution is identical to the posterior distribution in Figure 2(b). In order to obtain the total Bayes factor

in Figure 2(b), the component Bayes factors in Figures 3(a) and 3(b) can be multiplied (Jeffreys, 1937).

Both figures from JASP. (a) n = 9 and (b) n = 57.
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likelihood function and the parameterization of the prior and posterior distributions are

intuitive and straightforward. The tasting experiment allows students to analyze their own

data, collected on the fly, making the inferential process more concrete and relevant. Table 1

summarizes the concepts that are introduced during the tasting experiment, as well as how

these concepts can be practically demonstrated. The experiment is aimed at introducing

college-level students to these concepts. We have positive experiences using it as a teaching

tool in both introductory workshops and undergraduate courses in Bayesian inference.

Table 1. Bayesian concepts that students will learn during the tasting experiment and how

these concepts can be demonstrated

Bayesian Concept Demonstration

1. Irrelevance of sampling plan for Bayesian

updating

Analyzing the data as they come in

2. Evidence for H0 is possible, as it is for H1 Computing the Bayes factor

3. Conjugate prior distribution Using the binomial likelihood to update a

beta prior distribution

4. Savage-Dickey density ratio for computa-

tion of Bayes factors

Interpreting posterior plots (e.g., Figure 2)

5. Analysis of sensitivity of results to choice

of prior distribution

Changing the parameters of the beta prior

distribution and observing the corres-

ponding changes in the posterior distri-

bution and the Bayes factor

6. Bayesian one-sided testing Specifying different alternative hypotheses

7. Principle of parsimony in Bayesian

inference

Comparing two-sided results with one-

sided results; comparing H0 with H1

Figure 4. Sequential analysis, showing the evolution of the Bayes factor as n, the number of observed

participants, increases. After an initial period of inconclusiveness, the Bayes factor strongly favors H1.

Figure from JASP.
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We have created an Open Science Framework repository that contains the original data
set, as well as a fully annotated JASP-file that presents additional analyses, such as a t-test on
the difference in ratings for the alcoholic and non-alcoholic beer. The repository can be
found at http://tinyurl.com/yyyc928g.
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Notes

1. Three video recordings of the procedure are available at http://tinyurl.com/yyyc928g.
2. A Shiny app to examine the shape of different beta distributions is available at http://shinyapps.

org/, under ‘‘A first lesson in Bayesian inference.’’
3. Two popular ways of creating a credible interval are the highest density credible interval, which is

the narrowest interval containing the specified mass, and the central credible interval, which is
created by cutting off 100�x

2 % from each of the tails of the posterior distribution. In the remainder

of this article, we use the central credible interval.
4. For an alternative procedure to test parameter values, see, for instance, Kruschke (2011, 2018).

5. Due to the property of conjugacy, where the posterior distribution has the same form as the prior
distribution, the shape parameters of the beta posterior distribution can be obtained by summing

the a and b parameters of the prior distribution with the observed number of successes and failures,

respectively.
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