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Abstract

Causal discovery algorithms infer causal re-
lations from data based on several assump-
tions, including notably the absence of mea-
surement error. However, this assumption is
most likely violated in practical applications,
which may result in erroneous, irreproducible
results. In this work we show how to obtain an
upper bound for the variance of random mea-
surement error from the covariance matrix of
measured variables and how to use this up-
per bound as a correction for constraint-based
causal discovery. We demonstrate a practical
application of our approach on both simulated
data and real-world protein signaling data.

1 INTRODUCTION

The discovery of causal relations is a fundamental ob-
jective in science, and the interest in causal discovery
algorithms has increased rapidly since they were first es-
tablished in the 1990s [Pearl, 2000, Spirtes et al., 2000].
In practice, it may happen that their predictions are not
reproducible in independent experiments. In this article
we show that the presence of measurement error may be
a possible explanation for incorrect and inconsistent out-
put and we propose a solution aimed to mitigate its ram-
ifications.

The presence of measurement error complicates causal
discovery, because measured quantities are typically not
causes of one another, even when the variables that they
represent are. Consider the example in Figure 1, and sup-
pose that exercise E is a variable that can be controlled
in an experiment, weight loss W can be measured very
precisely, but the amount of burned calories C cannot be
observed directly. Suppose we do have a measured quan-
tity C̃ = C + MC with MC a measurement error. Even

though exercise and weight loss are independent condi-
tional on burned calories, they are not when we condition
on the measurement C̃. If MC is large, one might even
find that the measurements of the calories are indepen-
dent of exercise conditional on the weight loss. A re-
searcher who is unaware of the measurement error could
then draw incorrect conclusions (e.g. weight loss causes
the burning of calories).

E C W

C̃

Figure 1: Example of causal discovery in the presence
of measurement error. Gray shaded nodes are observed
variables, white nodes are latent variables.

The example in Figure 1 illustrates the crucial differ-
ence between measurement error and disturbance terms
that are usually considered in causal models. In partic-
ular, the fluctuations that are due to measurement error
do not propagate to effect variables (e.g. measurement
noise MC in C̃ cannot be seen in E), whereas the effects
of unmodeled causes do.

Following [Scheines and Ramsey, 2016, Zhang et al.,
2017, Pearl, 2010] and [Kuroki and Pearl, 2014], we fo-
cus on random measurement error, an independent ran-
dom variable that adds noise to the measurement of one
variable in a model. We present a method that identi-
fies an upper bound for the variance of random measure-
ment error. This result builds on previous work where
the identification of sets of variables that are d-separated
by a common latent variable using vanishing tetrad con-
straints is considered, see [Silva et al., 2006, Pearl, 2010,
Bollen, 1989, Sullivant et al., 2010]. Uncertainty regard-
ing the size of the measurement error can be propagated
to an uncertainty in the partial correlations of the latent
variables that are yet unperturbed by measurement error,
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see also [Harris and Drton, 2013]. This uncertainty can
then be taken into account when performing statistical
tests so that we have outputs: dependent, independent, or
unknown. Although these types of outputs for indepen-
dence tests have been already used in previous work, e.g.
[Triantafillou et al., 2017], in that case the thresholds for
the different decisions were hyperparameters of the algo-
rithm, while we provide an adaptive and more principled
way to set them. Similarly to previous work, our ap-
proach relies on strong faithfulness [Spirtes et al., 2000,
Kalisch and Bühlmann, 2007, Maathuis et al., 2010] but
crucially it does not require causal sufficiency, i.e. the ab-
sence of unmeasured confounders, as Zhang et al. [2017]
do.

In this work, we propose a practical correction method
for measurement error in the context of constraint-based
causal discovery. We demonstrate the effectiveness of
our approach in identifying causal structures using Local
Causal Discovery (LCD) [Cooper, 1997] both on sim-
ulated data and real-world protein signaling data. Al-
though we focus on one particular causal discovery algo-
rithm, our ideas can be applied to other constraint-based
causal discovery algorithms as well, but we consider this
to be outside of the scope of this paper.

2 PRELIMINARIES

For the remainder of this paper, variables will be denoted
by capital letters and sets of variables by bold capital let-
ters. We will assume that the data-generating processes
described here can be modeled by a causal graph G with
nodes V and directed and bidirected edges E, where
some of the variables in V may be latent. When there is
a directed edge from a variableX to a variable Y , we say
thatX is a direct cause of Y . When there is a sequence of
directed edges fromX to Y with all arrowheads pointing
towards Y we call it a directed path, and we say that X
is an ancestor of Y . Bidirected edges between two vari-
ablesX and Y are used to represent hidden confounders.
Conditional independence betweenX and Y while con-
trolling for variables in Z is denoted by X ⊥⊥ Y |Z. If
Z d-separatesX from Y , we denote this asX ⊥ Y |Z.

In the absence of measurement error, the following
commonly made assumptions allow us to relate condi-
tional (in)dependences between disjoint sets of variables
X,Y , and Z to d-separation in an underlying causal
graph G [Pearl, 2000, Spirtes et al., 2000]. Throughout
the remainder of this paper we will assume that the com-
mon assumptions hold.

Assumption 1 (Common Assumptions).

1. There are no directed cycles in the causal graph.

2. Causal Markov Property: For all disjoint sets of
variables X,Y ,Z: X ⊥ Y |Z =⇒ X ⊥⊥
Y |Z.

3. Causal Faithfulness: For all disjoint sets of vari-
ablesX,Y ,Z: X ⊥⊥ Y |Z =⇒ X ⊥ Y |Z.

4. No selection bias is present.

Local causal discovery The LCD (Local Causal Dis-
covery) algorithm is a straight-forward and efficient
search method to detect one specific causal structure
from experimental data using dependence relations be-
tween variables in V [Cooper, 1997].1 LCD uses both
(conditional) independences and background knowledge
to recover causal relations from data.

The LCD algorithm looks for triples of variables
(X,Y, Z) for which (a) X is not caused by any ob-
served variable and (b) the following (in)dependences
hold: X 6⊥⊥ Y , Y 6⊥⊥ Z, and X ⊥⊥ Z | Y . We hence-
forth call such triples LCD triples. Under the common
assumptions, the causal model that corresponds to this
independence pattern is shown in Figure 2.

X Y Z

Figure 2: An LCD triple has the above causal structure,
with at least one of the dashed arrows present.

Conditional (in)dependence testing In practice,
constraint-based causal discovery algorithms rely on a
statistical test to assess the (in)dependence relationships
between variables. For data that has a multivariate
Gaussian distribution, a (conditional) independence cor-
responds to a vanishing (partial) correlation coefficient.
For random variables (X1, . . . , XD) ∼ N (µ,Σ), the
Pearson partial correlation can be calculated from the
inverse covariance matrix, which we will denote by
Λ = Σ−1.

Conventionally, one calculates a p-value pT for the (con-
ditional) dependence between variables, so that depen-
dence relations can be determined by{

X 6⊥⊥ Y | Z if pT < α

X ⊥⊥ Y | Z if pT > β,
. (1)

where α and β are thresholds for dependence and inde-
pendence respectively. The nature of the relation is unde-
cided when α ≤ pT ≤ β. Usually only a single threshold
α = β = 0.01 or α = β = 0.05 is used.

1Triantafillou et al. [2017] give an conservative variant of
LCD with an application to protein signaling data.



3 CAUSAL DISCOVERY UNDER
MEASUREMENT ERROR

In this section we illustrate some possible negative ef-
fects of random measurement error on constraint-based
causal discovery. To that end, we analyze the behav-
ior of partial correlations for increasing measurement er-
ror in a simple model. We consider random measure-
ment error, which is a vector of independent noise vari-
ables M = (M1, . . . ,Mn). The measurements of the
random vector X = (X1, . . . , Xn) are then given by
X̃ = (X̃1, . . . X̃2) = X +M . This means that a mea-
surement node X̃i is always child-less and has precisely
two parents: Xi and the measurement error source Mi.

In many practical applications, it is reasonable to assume
that the measurement noise has a Gaussian distribution.
For instance, when the measurement noise is the sum
of many small independent sources of error, the mea-
surement error approximates a normal distribution be-
cause of the central limit theorem. In this article we
consider the case where the measurement error is Gaus-
sian so that the measurement noise variables are given
by M = (M1, . . . ,Mn) ∼ N (0,ΣM ), where ΣM is a
diagonal matrix.

3.1 MOTIVATIONAL EXAMPLE

We illustrate the effects of measurement error on the fol-
lowing structural causal model:

X1 = E1

X2 = β12X1 + E2

X3 = β23X2 + E3

X̃2 = X2 +M2

whereX1 andX3 are not affected by measurement error.
In this model E1, E2, and E3 are normally distributed
noise variables and M2 is a normally distributed random
measurement error. The observed variables are X1, X̃2,
and X3, where the second represents the corrupted mea-
surement of X2. The corresponding causal graph is dis-
played in Figure 3.

Note that in the random measurement error model,
(X1, X2, X3) has the causal structure of an LCD triple,
but (X1, X̃2, X3) does not. Therefore X1 ⊥⊥ X3 |X2

and the partial correlation for the latent unmeasured vari-
ables satisfies ρ13|2 = 0. Let Σ̃ be the covariance matrix
of (X1, X̃2, X3) and Λ̃ its inverse. Then we have that

ρ̃13|2 = − Λ̃13√
Λ̃11Λ̃33

=
−β12β23Σ̃11var(M2)

|Σ̃|
√

Λ̃11Λ̃33

6= 0,

for non-zero parameters, so that X1 6⊥⊥ X3 | X̃2.

X1

X2 X3

X̃2

E2 E3

M2

E1

β 1
2

β23

Figure 3: Causal graph of a model with random mea-
surement error on X2. Gray shaded nodes are observed
variables (the others are latent), and coefficients along-
side the arrows represent the coefficients in the model.

Remark 1. A statistical test with conventional thresh-
olds would conclude that X1 and X3 are conditionally
dependent conditional on the measurement X̃2, if the
measurement error is large enough. If we would incor-
rectly assume that there is no measurement error, so that
X2 = X̃2, then the Markov assumption would appear to
be violated.

3.2 EMPIRICAL STUDY

For a better understanding of the impact of measurement
error on causal discovery, we consider the effect of vary-
ing the measurement error variance var(M2) relative to
the total variance of the measurement X̃2 on the partial
correlations in the motivational example.

Figure 4 shows the effect of increasing relative ran-
dom measurement error on different partial correlations,
where the dotted lines represent the α = 0.05 thresh-
old at different sample sizes. It can be seen that for zero
measurement error (so that X̃2 = X2), only the yellow
line is below the red and black dotted lines. In that case
a conventional statistical test would indicate that all vari-
ables are marginally dependent and X1 ⊥⊥ X3 | X̃2, so
that (X1, X̃2, X3) is an LCD triple, and the directed edge
from X̃2 to X3 can be detected. For relative measure-
ment errors larger than ∼ 0.25 this conditional indepen-
dence is no longer detected (because the yellow line is
above the black-dotted line).

In Figure 4 we can also observe that for sample size 100
and a relative measurement error larger than ∼ 0.3, a
conventional statistical test would indicate that X1 ⊥⊥
X̃2 |X3 since the partial correlation ρ̃12|3 ≈ 0 (i.e. be-
low the red dotted line) and all other (partial) correlations
indicate a dependence (i.e. above the red dotted line).
Causal discovery algorithms cannot recover the correct
causal structure from these constraints. In fact, the LCD
algorithm would conclude that (X1, X3, X̃2) is an LCD
triple so that there must be a directed edge in the reversed
direction.
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Figure 4: Partial correlations in the random measurement
error model in Figure 3. The dotted lines represent the
critical values for the correlation at a significance level
of α = 5% for different sample sizes. The parameter
settings were β12 = 0.6, β23 = 1.2 and all noise vari-
ables had variance 1.0.

Remark 2. The results of constraint-based causal dis-
covery may depend on the sample size. This can be bet-
ter understood by observing that the dependences that
are identified by a statistical test, depend both on the size
of the measurement error and the sample size. This may
lead to inconsistent causal discoveries, which cannot be
reproduced on new datasets.

This example shows how measurement error interferes
with detecting the correct causal structures, which may
lead to edge deletions, insertions or reversals. Note that
although we focused on the LCD algorithm here, the con-
clusions that we draw are more generally applicable to
constraint-based causal discovery algorithms.
Remark 3. For relative measurement error of ∼ 0.25
a conflicting set of (in)dependences arises for n = 100.
Since both the yellow and purple line are below the red
dotted line, a statistical test would indicate that X1 ⊥⊥
X3 | X̃2 and X1 ⊥⊥ X̃2 |X3, while all variables are
marginally dependent. But there is no model that satis-
fies the common assumptions and these (in)dependences.

4 ERROR BOUND DETECTION

Recall that the true covariances ofD random variables Σ,
measurements Σ̃ and random measurement errors ΣM

are related as follows:

ΣM = Σ̃− Σ = diag(m1, . . . ,mD)

where m1, . . . ,mD > 0 are the variances of the random
measurement error associated with each variable. In this
section we show how, under certain conditions, an upper
bound for the variance of random measurement error can
be obtained from observational data with random mea-
surement error.

Remark 4. Given an (unbiased) estimate of ΣM , we can
simply adjust the covariance matrix Σ̃ as suggested by
Pearl [2010]. In practice such an estimate of the covari-
ance matrix of measurement error may not be available.

We consider latent random variables X1, . . . , X4 and
their corresponding measurements X̃1, . . . , X̃4 ∈ V
with true covariance matrices Σ and Σ̃ respectively. Our
upper bound result relies on Lemma 1 which is due to
Silva et al. [2006] and gives conditions2 under which
there exists a latent variable that d-separates the mea-
sured variables X̃1, . . . , X̃4.

Lemma 1. Let X1, . . . , X4 be variables in a linear-
Gaussian model and let X̃1, . . . , X̃4 be their measure-
ments with random measurement error. If the corre-
lations satisfy ρ̃ij 6= 0 for all i, j ∈ {1, . . . , 4} and
Σ̃12Σ̃34 = Σ̃13Σ̃24 = Σ̃14Σ̃23, then there exists a node
L in the true underlying DAG such that X̃i ⊥ X̃j |L for
all i 6= j ∈ {1, . . . , 4}.

Proof. The proof can be found in Silva et al. [2006].

When there exists a node L that d-separates X̃1, . . . , X̃4,
then the causal graph and latent structure are represented
by the causal graph in Figure 5. This follows from the
fact that the variables with measurement error X̃i can
only have incoming arrows from Xi and Mi and never
have any outgoing arrows. Because L d-separates all X̃i

there can be no collider at L.

Before we present our upper bound result, we introduce
an adjusted covariance matrix:

Σ̃(u, j) = Σ̃− u diag(ej),

where j ∈ {1, 2, 3, 4} and ej is a standard basis vector.
For all u such that Σ̃(u, j) is a valid covariance matrix,
the adjusted partial correlations ρ̃uik|j may be calculated

from Λ̃(u, j) = (Σ̃(u, j))−1 as follows:

ρ̃uik|j = − (Λ̃(u, j))ik√
(Λ̃(u, j))ii(Λ̃(u, j))kk

. (2)

Theorem 1 shows how the adjusted partial correlation is
related to the underlying causal graph in Figure 5. Corol-
lary 1 shows how we can use adjusted partial correlations
to find an upper bound for the measurement error on one
variable.

2These conditions are known as tetrad conditions in the lit-
erature, see Bollen [1989], Sullivant et al. [2010], Drton et al.
[2008], Sullivant et al. [2010]
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Figure 5: Causal graph of upper bound pattern for model
with random measurement error, where at least one of
the dashed edges is present. The indexes 1, . . . 4 can be
permuted. Noise variables E1, . . . , E4 may be present
but are not drawn. Measurement errors M1, . . . ,M4 are
present but not drawn.

Theorem 1. Let X1, . . . , X4, X̃1, . . . , X̃4 and ρ̃ij be as
in Lemma 1. The true underlying DAG is as in Figure 5 if
and only if there exists u > 0 such that ρ̃u13|2 = ρ̃u14|2 =
ρu34|2 = 0.

Proof. The proof can be obtained by explicitly calculat-
ing the adjusted partial correlations and applying Lemma
1. A complete proof can be found in the supplementary
material.

Corollary 1. Letm2 be the variance of the measurement
error on X2. If ρ̃u

∗

13|2 = ρ̃u
∗

14|2 = ρ̃u
∗

34|2 = 0 for some
u∗ > 0 then m2 ≤ u∗.

Proof. Follows from the proof of Theorem 1.

These results can also be applied in a practical, more gen-
eral setting. If data is generated from a random measure-
ment error model for variables V , we consider subsets
of four variables. If we can find an adjustment u∗ on the
covariance matrix of this subset of variables so that the
adjusted partial correlations in Theorem 1 vanish, then
Corollary 1 implicates that this adjustment is an upper
bound for the variance of random measurement error. To
ensure that the causal structure of these four variables is
as in Figure 5, we can test for the constraints in Lemma
1 (see [Bollen, 1989, Silva et al., 2006, Thoemmes et al.,
2018]). When all variables are measured in a similar
manner, it may be reasonable to assume that the variance
of the measurement error is the same for all variables.
Under this assumption, the upper bound for the measure-
ment error can be extended to an upper bound for the
measurement error variance on all variables.
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Figure 6: Simulation results for measurement error upper
bound detection.

Data simulations To empirically test the performance
of the upper bound, we simulated 10000 datapoints for
10000 random models with causal structures as in Fig-
ure 5 with parameters chosen uniformly from the inter-
val [−1, 1] and error variances chosen uniformly from
the interval [0.5, 1]. We added random measurement er-
ror to each variable (the same variance was used for all
variables) and minimized the sum of adjusted partial cor-
relations in Corollary 1 to obtain an upper bound. The
result in Figure 6 shows that this leads to a correct upper
bound on the variance of the measurement error.

5 STRONG FAITHFULNESS

In this section we prove that conditional independences
cannot be reliably detected in the presence of measure-
ment error. We then discuss the strong faithfulness as-
sumption and its repercussions. In the next section we
will present our error correction method, which relies
on an upper bound for measurement error and the strong
faithfulness assumption.

Lemma 2 shows that for two dependent (sets of) vari-
ables, a conditional independence between these vari-
ables can never be detected if the conditioning set is
subject to measurement error, unless the faithfulness as-
sumption is violated.

Lemma 2. Let X,Y and Z̃ be three sets of (disjoint)
variables. If Z̃ has measurement error with non-zero
variance, then the (in)dependences

X 6⊥⊥ Y X ⊥⊥ Y |Z̃,

must be due to a violation of the faithfulness assumption.

Proof. A faithfulness violation occurs whenX ⊥⊥ Y |Z̃
but Z̃ does not d-separate X and Y . Since X and Y
are dependent in the data there must be an open path be-
tween them by the Markov assumption. By definition
of random measurement error the variables in Z̃ are leaf
nodes. Therefore Z̃ cannot block the path between X
and Y , so thatX 6⊥ Y |Z̃.



Under the assumption that all variables in the model have
the same measurement error variance (e.g. because they
are subject to the same source of measurement error), the
variance of the measurement error must be zero when-
ever a marginal dependence and a conditional indepen-
dence is detected, as shown in Proposition 1.
Proposition 1. Let X̃, Ỹ and Z̃ be three sets of (dis-
joint) variables with measurement errors that have equal
(possibly zero) variances. Under the faithfulness as-
sumption, if X̃ 6⊥⊥ Ỹ and X̃ ⊥⊥ Ỹ |Z̃, then the mea-
surement error on all variables has zero variance.

Proof. Follows directly from Lemma 2.

Since constraint-based causal discovery algorithms rely
both on the faithfulness assumption and on the results of
conditional independence tests, poor performance is to
be expected when variables are measured with error. In
this article, we consider the strong faithfulness assump-
tion [Spirtes et al., 2000] instead.
Assumption 2. (Strong faithfulness) We assume that
the data of the unobserved measurement-error-free vari-
ables is λ-strong faithful to the true underlying causal
graph that generated it. That is, for all disjoint sets of
variablesX,Y ,Z:

|ρX,Y |Z | < λ =⇒ X ⊥ Y |Z.

The example in Figure 4 illustrates how the strong
faitfhulness assumption may alleviate some of the nega-
tive effects of measurement error, but may aggravate the
risk of detecting wrong conditional independences. If the
data is λ-strong faitfhul, then it is also µ-strong faithful,
where 0 < µ ≤ λ, and µ can then be treated as a tuning
parameter. In Figure 4, for zero relative measurement
error, the data is µ-strong faithful for any µ up to λ ∼
0.25. For µ = 0.25 we find from the partial correla-
tions thatX1 ⊥⊥ X̃3 | X̃2 upto a relative measurement er-
ror of approximately 0.3, but for large enough measure-
ment error we may also wrongly detect that X1 ⊥⊥
X̃2 |X3.3

The tuning parameter thus represents a trade-off between
detecting as many as possible of the true conditional in-
dependences and wrongfully detecting conditional inde-
pendences. For the identification of LCD triples this
means that for small µ and data that is corrupted by mea-
surement error, we cannot detect the true LCD triples,
while for large µ we may detect false LCD triples, be-
cause we detect conditional independences between vari-
ables that are actually dependent.

3Small enough correlations correspond to d-separations in
the underlying graph by the strong faithfulness assumption.
By the causal Markov assumption, d-separations correspond to
conditional independences.

6 ERROR PROPAGATION

In this section we consider propagation of an error bound
on random measurement error to partial correlations. If
the strong faithfulness assumption holds, the effective-
ness of tuning the threshold parameter λ depends on
the size of the measurement error. By taking measure-
ment error into account, we aim to alleviate the adverse
effect of wrongfully detecting conditional independences
by including the possibility to adaptively assign ‘un-
kown’ to a statistical test result. In that case we could get
the best of both worlds: detect the correct conditional in-
dependences and assign ‘unknown’ or ‘dependent’ to the
conditional dependences.

We start by defining an adjusted covariance matrix for
three variables. Let m = (m1,m2,m3) be the vari-
ances of the random measurement errors (M1,M2,M3)
on the latent (unmeasured) variables (X1, X2, X3), and
suppose that u∗ = (u∗1, u

∗
2, u
∗
3) is an upper bound such

that m � u∗.4 Suppose that Σ̃ is the true covariance
matrix of the measured variables X̃1, X̃2, X̃3 ∈ V . The
adjusted covariance matrix is given by

Σ̃(u) = Σ̃− uT I, (3)

where I denotes the identity matrix, when Σ̃(u) has an
inverse, otherwise Σ̃(u) = Σ̃.

For 0 � u � u∗ we can find minimal and maximal
absolute values of partial correlations based on Λ̃(u) =
(Σ̃(u))−1. We define

ρ̃min
12|3 = arg min

0�u�u∗

∣∣∣∣∣∣ (Λ̃(u))12√
(Λ̃(u))11(Λ̃(u))22

∣∣∣∣∣∣ , (4)

ρ̃max
12|3 = arg max

0�u�u∗

∣∣∣∣∣∣ (Λ̃(u))12√
(Λ̃(u))11(Λ̃(u))22

∣∣∣∣∣∣ . (5)

Under the λ-strong faithfulness assumption, the condi-
tional (in)dependence relations can be determined as fol-
lows: {

X1 6⊥⊥ X2 |X3 if ρ̃min
12|3 > λ

X1 ⊥⊥ X2 |X3 if ρ̃max
12|3 < λ,

. (6)

The nature of the relation is undecided when ρ̃min
12|3 < λ

and ρ̃max
12|3 > λ.5

Although we consider a measurement error correction in
cases where only one variable is conditioned upon, our

4� is the component-wise inequality between two vectors.
5In practical applications the covariance matrix Σ̃ is esti-

mated from data. The added uncertainty can be taken into ac-
count by using bootstrapping to obtain confidence intervals for
ρ̃min
12|3 and ρ̃max

12|3.



ideas can be trivially extended to accommodate larger
conditioning sets when an upper bound on the measure-
ment error is known for all variables involved6.

7 DATA SIMULATIONS

We now evaluate the effects of a measurement error cor-
rection on simulated data. For detailed descriptions of
the simulation settings, we refer to the supplementary
material.

7.1 CONDITIONAL INDEPENDENCE TESTING

To illustrate the effectiveness of the measurement er-
ror correction in identifying conditional (in)dependence
relations, we generated data for three variables
(X1, X2, X3) from linear-Gaussian acyclic causal struc-
tures, possibly with latent confounders. We only con-
sidered triples that satisfied the λ-strong faithfulness as-
sumption for λ = 0.1 and X1 6⊥⊥ X2 and X2 6⊥⊥ X3.

We simulated 2000 models where half of the models sat-
isfied X1 ⊥⊥ X3 |X2. From each model we generated
10000 samples and added normally distributed random
measurement error to each variable with varying vari-
ance. The conditional (in)dependence between X̃1 ⊥⊥
X̃3 | X̃2 was tested in various ways: using a threshold
on the p-value α = 0.05, using a threshold λ = 0.1 on
the partial correlation, and using the same threshold with
a measurement error correction with an upper bound on
the measurement error of t times the true variance. We
then calculated the error rate as the number of incorrect
classifications relative to the total number of tests. Note
that the amount of conditional (in)dependence relations
that are assigned ‘unknown’ increases with the size of the
measurement error and the tightness of the upper bound.
For an evaluation of the amount of ‘unknown’ classifica-
tions we refer to the supplementary material.

Figure 7a shows that the measurement error correction
slightly reduces the error rate for conditional depen-
dences, and 7b shows that the error rate of detecting in-
correct conditional dependences is greatly reduced.

7.2 APPLICATION TO LCD

Typically, when data is λ-strong faithful to the true un-
derlying causal graph, the value of λ is not known and
λ is therefore used as a tuning parameter instead. We
generated triples (X1, X2, X3) as in the previous simu-
lation, but only selected triples where X1 was not caused

6In that case one considers a larger adjusted covariance ma-
trix, and since the partial correlations are calculated from the
covariance matrix one can use the same scheme to find mini-
mal and maximal values for the absolute partial correlation.

by X2 and X3. We added measurement error with a
fixed variance. We then applied the LCD algorithm, test-
ing conditional independences as in the previous section.
We evaluated the results by checking whether the causal
structure of the triples was correctly identified. Figure
7c shows that the precision of the algorithm with the
measurement error corrected test results outperforms the
standard methods.

We also consider the more realistic case where multiple
variables are measured, the upper bound for the variance
of the measurement error is not known in advance, and
the data is not necessarily λ-strong faithful. To that end
we simulated 10000 datapoints from a random acyclic
model with 15 variables, where one variable was not
caused by any of the other variables. We added mea-
surement error to each variable with a fixed variance.

For the upper bound detection, we first tested whether the
tetrad constraints vanished using Wishart’s test [Wishart,
1928] at the 5% level, and then used the result in
Corollary 1 to obtain an upper bound for the measure-
ment error. When we found multiple upper bounds (for
multiple variables) we chose the median as an upper
bound for the measurement error on all variables. Fi-
nally we applied the LCD algorithm, testing marginal
(in)dependences with a t-test at the 5% level and con-
ditional (in)dependences as in the previous experiments
and using the detected upper bound. If we were not able
to detect an upper bound, we assigned ‘unknown’ to ev-
ery test result. We checked how often a correct causal
structure was identified. In 200 repetitions of the ex-
periment the upper bound was incorrect in only 3 cases
and no upper bound was detected in 39 cases. Figure 7d
shows that all methods score significantly better than the
random baseline and that the precision for detecting LCD
triples increases significantly when we use the measure-
ment error correction.

8 PROTEIN SIGNALING NETWORKS

We present an application of our ideas to real-world pro-
tein signaling data that could be corrupted by measure-
ment error. We used a dataset concerning the influence of
protein abundances on the properties of a protein signal-
ing network in human kidney cells [Lun et al., 2017], and
obtained an upper bound for the variance of random mea-
surement error from this data. In absence of a reliable
ground truth for this experiment, we validated the results
of a measurement error correction applied to the LCD
algorithm by comparing it to a baseline derived from in-
terventions in the data.

Data description For conditions j = 1, . . . , 20 the
abundance of a different protein labeled (GFP)j was



0 0.2 0.4 0.6 0.8 1
0.00

0.01

0.02

0.03

0.04

Measurement Error

E
rr

or
R

at
e

(a) Conditional dependences.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Measurement Error

E
rr

or
R

at
e

α
λ
t = 1.0
t = 1.5
t
baseline

(b) Conditional independences.

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

(c) Application to LCD.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

0.1

0.2

0.3

0.4

Recall
Pr

ec
is

io
n

(d) Upper bound detection and application to LCD.

Figure 7: Simulation results. Figures a and b show the error rate for detecting conditional dependences and indepen-
dences in the presence of measurement error for λ-strong faithful data. It is assumed that λ = 0.1 is known, and
α = 0.05. Figure c shows the precision-recall curve for detecting LCD triples from λ-strong faithful data subject to
measurement error with fixed variance and a given upper bound, where λ and α are used as tuning parameters. Figure
d shows the precision-recall curve for simulations of 15 variables, where we first apply the upper bound detection and
then the measurement error correction and α and λ are treated as tuning parameters. The baseline is at 0.016.

over-expressed and then measured [Lun et al., 2017].
The abundances of an additional 34 phosphorylated pro-
teins Pi were measured after stimulation of the network.
We relabeled conditions j so that over-expression of a
protein (GFP)j corresponds to the measured phosphory-
lated abundance Pj .

The abundance of an over-expressed protein typically
differed between cells and not every cell was affected
[Lun et al., 2017]. Because of the experimental design,
(GFP)j is not caused by the abundance or phosphoryla-
tion of the other proteins, which allowed us to treat the
abundance of (GFP)j as an intervention variable.

Typically ∼ 10000 single cells were measured for each
condition. We assume that the data-generating process
can be approximated by a linear-Gaussian model after
pre-processing. For details about data pre-processing we
refer to the supplementary material.

Upper bound detection We considered all proteins
under over-expression of the SRC protein, for which
strong signaling relations were present (see also [Lun
et al., 2017]). For all 4-tuples ((GFP)SRC, Pi, Pj , Pk)
that were all marginally dependent at the 1% level (us-
ing a t-test), we tested whether all three tetrads vanished
using Wishart’s test at the 5% level. We found that these

constraints were satisfied for the 4-tuple ((GFP)SRC,
pS6K, pMAPKAPK2, pMAP2K3).

This allowed us to apply the results presented in Sec-
tion 4 to obtain an upper bound. The upper bounds for
the variance of measurement error that we found were
0.10 for pS6K, 0.15 for pMAPKAPK2, and 0.14 for
pMAP2K3.7 Since all proteins were measured with the
same device, we assumed that the variance of the mea-
surement error is the same for each variable, so that 0.14
is a suitable upper bound for the measurement error on
any variable.

Although the detected upper bound was large for weak
signals, the proteins with stronger signals typically had
variances > 1, so that the relative amount of measure-
ment error for proteins with strong signaling relations
amounted to less than 10%.

Baseline To validate the results of LCD, we created a
baseline from the interventions (corresponding to over-
expression of certain proteins) in the dataset. A reason-
able assumption is that (GFP)j is a direct cause of Pj ,

7Each of the detected other bounds corresponds to adjusting
the corresponding variable, as in Corollary 1. Other triples that
satisfied the constraints gave similar or (much) higher upper
bounds for the measurement error.



because the higher the abundance of a protein, the more it
can be phosphorylated. Under the assumption that over-
expression of a protein Pj does not alter the network
structure [Lun et al., 2017] and that (GFP)j does not di-
rectly cause any of the other proteins Pi, with i 6= j, we
have that Pj is a cause of Pk, whenever (GFP)j and Pk

are dependent.

We constructed a baseline for cause-effect pairs (Pj , Pk),
where we considered 7 phosphorylated proteins Pj that
were over-expressed in one of the conditions as cause
variables and all 34 phosphorylated proteins as effect
variables. The subset of proteins that was used to con-
struct the baseline follows the recommendations in Lun
et al. [2017]. We considered a pair (Pj , Pk) a causal pair,
if a t-test indicated that (GFP)j and Pk were dependent
at a level of 10−4. This resulted in 231 possible cause-
effect pairs, 71% of which were cause-effect pairs in the
baseline.

Methods and results We applied the LCD algorithm
to the data to identify causal pairs (Pj , Pk) by treat-
ing (GFP)i as an intervention variable for conditions
i ∈ {1, . . . , 20}, with i 6= j and i 6= k. Since central
proteins in the network were over-expressed, true causal
pairs were expected to appear under multiple conditions.
To make our results more robust, we only made a posi-
tive prediction if a causal pair was predicted for at least
2 conditions. We applied three methods of conditional
(in)dependence testing in combination with the LCD al-
gorithm: a threshold α on the p-value of t-tests, a thresh-
old λ on the absolute value of partial correlations, and a
threshold λ on partial correlations with a measurement
error correction using the upper bound u = 0.14.

By treating λ and α as tuning parameters and taking the
baseline as ground truth, we calculated a precision-recall
curve for each method of conditional (in)dependence
testing. The results are displayed in Figure 8, which
shows that α and λ − u have comparable pr-curves.
For this dataset there seems to exist a threshold α that
is already able to distinguish between conditional in-
dependences and dependences. We can see that both
λ − u and α significantly outperform random guessing,
but λ does not. Although the differences between the
methods are not significant, this seems to indicate that
a measurement-error correction improves the precision
at low recall for conditional independence testing with a
fixed threshold on (partial) correlations.

9 CONCLUSION

In this paper we demonstrated that measurement error,
when not taken into account, can fool causal discovery
methods into wrongfully inserting, deleting or reversing
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Figure 8: LCD applied to protein signaling data with α or
λ as tuning parameter and a measurement-error correc-
tion. The results are compared with the random baseline,
the gray-shaded areas represent one and two standard de-
viations from the random baseline.

edges in the predicted causal graph. We showed that reg-
ular statistical tests with conventional thresholds would
fail to detect conditional independences between the un-
corrupted variables from the measurement data when
measurement error is present. We also proposed a cor-
rection method aimed at mitigating the negative effects
of measurement error.

The key result that we presented in this work is that, un-
der certain conditions, we can find an upper bound for
the variance of the measurement error from data that has
been corrupted by measurement error. We show that this
uncertainty can be propagated into an uncertainty regard-
ing the partial correlations to correct for measurement er-
ror. We showed a successful application of our approach
on simulated data.

We also applied our ideas to a real-world protein sig-
naling dataset, and we found an upper bound for the
variance of the measurement error in this dataset. We
found that our approach gave significantly higher preci-
sion than a random baseline. However, also the conven-
tional method without correction for measurement error
seems to work well on this dataset. Nevertheless, it is
our belief that taking measurement error into account is
a promising step towards successful real-world applica-
tions of (constraint-based) causal discovery.

Acknowledgements

This work was supported by the European Research
Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agree-
ment 639466). We thank Ioannis Tsamardinos, Sofia Tri-
antafillou and Karen Sachs for providing useful feedback
on initial drafts of this work.



References
J. Pearl. Causality: models, reasoning, and inference.

Cambridge University Press, 2000.

P. Spirtes, C. Glymour, and R. Scheines. Causation, pre-
diction, and search. MIT Press, 2000.

R. Scheines and J. Ramsey. Measurement error and
causal discovery. CEUR workshop proceedings, 1792:
1–7, 2016.

K. Zhang, M. Gong, J. Ramsey, K. Batmanghelich,
P. Spirtes, and C. Glymour. Causal discovery in the
presence of measurement error: identifiability condi-
tions. In UAI workshop on causality, 2017.

J. Pearl. On measurement bias in causal inference. In
Proceedings of the Twenty-Sixth Conference on Un-
certainty in Artificial Intelligence, 2010.

M. Kuroki and J. Pearl. Measurement bias and effect
restoration in causal inference. Biometrika, 101(2):
423–437, 2014.

R. Silva, R. Scheines, C. Glymour, and P. Spirtes. Learn-
ing the structure of linear latent variable models. Jour-
nal of Machine Learning Research, 7:191–246, 2006.

K.A. Bollen. Structural equations with latent variables.
John Wiley & Sons, Inc., 1989.

S. Sullivant, K. Talaska, and J. Draisma. Trek separation
for Gaussian graphical models. The Annals of Statis-
tics, 38(3):1665–1685, 2010.

N. Harris and M. Drton. PC-algorithm for nonparanor-
mal graphical models. Journal of Machine Learning
Research, 14:3365–3383, 2013.

S. Triantafillou, V. Lagani, C. Heinze-Deml, A. Schmidt,
J. Tegner, and I. Tsamardinos. Predicting causal re-
lationships from biological data: applying automated
causal discovery on mass cytometry data of human im-
mune cells. Scientific reports, 7(1):12724, 2017.
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