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Nonparametric control of the conditional performance in statistical
process monitoring

Rob Goedhart, Marit Schoonhoven, and Ronald J.M.M. Does

Department of Operations Management, University of Amsterdam, Amsterdam, The Netherlands

ABSTRACT
Because the in-control distribution and parameters are generally unknown, control limits
have to be estimated using a Phase I reference sample. Because different practitioners
obtain different samples, their control limit estimates will vary and, consequently, also their
control chart performance. We propose the use of nonparametric tolerance intervals in stat-
istical process monitoring to guarantee a minimum control chart performance with a pre-
specified probability. We evaluate the performance of the proposed limits for various
distributions and sample sizes. Note that this nonparametric set-up includes control charts
for location and dispersion. Moreover, we compare the performance with other existing
methods involving data transformations and a bootstrap procedure. It turns out that the
use of nonparametric tolerance intervals performs very well in statistical process monitoring,
especially when moderately large sample sizes are available in Phase I.
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1. Introduction

The goal of statistical process monitoring (SPM) is to
make a distinction between common and special causes
of variation. Generally, it is unknown in advance which
variation is common. To this end, various control chart
techniques have been developed that estimate the in-
control behavior of the data. The first and probably
easiest example of such a technique is the Shewhart
control chart based on 3-sigma limits. Under the
assumptions of normally distributed data and known
in-control parameters, this control chart yields a false-
alarm rate (FAR) of 0.27 percent or, equivalently, an
in-control average run length (ARL) of 370.4.

For a long time, these numbers were commonly
accepted as performance indicators of the Shewhart con-
trol chart. However, the parameters l and r of a normal
distribution are generally unknown and need to be esti-
mated using a Phase I reference sample. Quesenberry
(1993) recognized this and investigated the effect of sample
size on estimated control chart limits. However, an import-
ant effect of parameter estimation was neglected there. As
different practitioners use different Phase I data, the esti-
mated control limits will vary across practitioners.

Consequently, the performance of the control chart in
Phase II in terms of FAR and ARL will vary across practi-
tioners as well. This variation in control chart perform-
ance becomes smaller as more data are collected, as the
estimates then become more accurate (cf., Saleh,
Mahmoud, Keefe, et al. 2015). For other research on con-
trol chart performance when parameters are estimated, we
refer to the literature overviews of Jensen et al. (2006) and
Psarakis, Vyniou, and Castagliola (2014). Next to param-
eter estimation, there are many other important aspects
and considerations regarding Phase I data collection and
analysis that have to be taken into account. An overview
of these issues is given by Jones-Farmer et al. (2014).

In order to compensate for the effect of parameter
estimation, several researchers have proposed the use of
adjusted control limits. Albers and Kallenberg (2004a,
2004b, 2005) provide two different approaches to adjust
the limits, which they name the bias criterion and the
exceedance probability criterion. The bias criterion aims
to provide a predefined in-control performance (often in
terms of ARL or FAR) in expectation. This approach is
also used in Goedhart, Schoonhoven, and Does (2016)
and Diko et al. (2017). Although this does account for
some aspects of the estimation uncertainty, it still does
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not compensate for poor control chart performance
caused by the large variation between practitioners.

The exceedance probability criterion provides a more
suitable alternative. Rather than providing a prespecified
in-control performance in expectation, it aims to guaran-
tee a minimum performance with a specified probability.
In terms of the ARL (FAR), this means that the in-con-
trol ARL (FAR) is at least (most) equal to a minimum
performance threshold with a prespecified probability.
This criterion has been rapidly adopted in various
research. In the case of the Shewhart control chart for
individual observations, constructing control limits based
on this criterion is equivalent to the construction of a
tolerance interval for the population (cf., Goedhart,
Schoonhoven, and Does 2017, 2018). However, the
exceedance probability criterion can also be applied in
other settings, such as the bootstrap method described in
Jones and Steiner (2012), Gandy and Kvaløy (2013), and
Saleh, Mahmoud, Jones-Farmer, et al. (2015).

When the data are normally distributed, the previ-
ously mentioned methods provide a suitable adjust-
ment to compensate for the effect of parameter
estimation. Although tolerance intervals have been
derived for various distributions, the distribution of a
data set under consideration is in general unknown
and has to be estimated along with its parameters.
When the distributional assumptions are violated,
these adjustments are no longer appropriate and yield
unsatisfactory control chart performance.

In this article, we estimate the control limits based
on nonparametric tolerance intervals and determine the
corresponding exceedance probabilities. We compare
the results with several options that make use of adjust-
ments developed for normally distributed data and
transformations to normality, as well as more general
parametric methods involving bootstrap. Although non-
parametric methods typically require somewhat larger
sample sizes, they prevent performance issues caused by
a violation of the underlying distributional assumptions.

This article is organized as follows. In Section 2, we
elaborate further on the effect of parameter estimation.
Next, in Section 3, we illustrate the proposed nonpara-
metric control chart design. In Section 4, we discuss
some alternative methods and make a comparison. In
Section 5, we demonstrate the application of the pro-
posed procedure with a practical example. Finally, in
Section 6, we provide some concluding remarks.

2. Parameter estimation and
tolerance intervals

The upper control limit (UCL) and lower control limit
(LCL) for the original Shewhart control chart for

individual observations are based on the process
parameters l and r and are of the form

UCL ¼ lþ Kr
LCL ¼ l�Kr

[1]

where K ¼ U�1ð1�a=2Þ: In the original setting K¼ 3,
which yields a FAR of a ¼ 0:0027 or, equivalently, an
in-control ARL of ARL0 ¼ 370:4 for normally distrib-
uted data. In practice, l and r are generally unknown
and have to be estimated by some estimates l̂ and r̂
respectively. As each Phase I sample yields different
estimates, the estimated control limits and their corre-
sponding performance actually become random varia-
bles (see also Saleh, Mahmoud, Keefe, et al. 2015). We
denote estimated control limits in general by ^UCL
and ^LCL:

In order to compensate for the random character
of the control chart performance, Albers and
Kallenberg (2004b) proposed the exceedance probabil-
ity criterion. This states that there should be only a
small probability p for some performance measure Y
to be worse than a prespecified minimum perform-
ance threshold Y0. Examples of such performance
measures are the conditional FAR and ARL, condi-
tioned on the Phase I parameter estimates and
denoted by CFAR and CARL, respectively. If we con-
sider Y ¼ CFAR and Y0 ¼ atol; then, for some ran-
dom variable X, this criterion implies

P CFAR > atolð Þ ¼ P 1� P ^LCL � X � ^UCL
� �

> atol
� �

¼ p:

[2]

For a random variable X, this criterion is equivalent
to the construction of a tolerance interval with a
coverage of at least 1�atol with probability 1�p: Note
also that CARL equals the reciprocal of CFAR, so that
using Y ¼ CARL and Y 0 ¼ CARL0 is equivalent to
using Y ¼ CFAR and Y0 ¼ atol ¼ 1=CARL0: For more
details on this, we refer to Goedhart, Schoonhoven,
and Does (2017, 218). In these articles, as well as in
the tolerance interval literature (e.g. Krishnamoorthy
and Mathew 2009), the criterion is satisfied by adjust-
ing the control limit constant K, taking into account
the sample size and the estimators being used. These
adjustments are shown to work well for normally dis-
tributed data in the corresponding literature.

However, it is obvious from Eq. [1] that this form
of control limits will not work as well for other distri-
butions, as it is designed under normal theory.
Especially for skewed data, the symmetrical character
of these control limits will cause issues with control
chart performance. A first way to overcome this is by
introducing probability limits, as is done, for example,
for S-charts when the data are normally distributed
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(e.g., Montgomery 2013). These limits are based on
the distribution of the characteristic of interest. It is
also possible to derive limits based on the exceedance
probability criterion for these statistics, as is done, for
example, in Goedhart, da Silva, et al. (2017).
Moreover, Krishnamoorthy and Mathew (2009) derive
parametric tolerance intervals for a wide range of dis-
tributions, which can be applied in a similar fashion.

Although these parametric tolerance intervals pro-
vide a solution for various data distributions, in prac-
tice, the problem is that the distribution of the data is
generally unknown and has to be estimated along
with its parameters. As mentioned in Albers,
Kallenberg, and Nurdiati (2004), the total estimation
error can be split up in two different distinct errors,
the model error (ME) and the stochastic error (SE).
The first is caused by incorrect assumptions on the
distributional form, while the latter is the error result-
ing from parameter estimation. With nonparametric
methods, the ME vanishes and the variation is caused
by the SE only. While the first is strongly dependent
on the distribution under consideration, the latter can
be reduced by collecting larger samples.

Most nonparametric methods revolve around the
use of order statistics, such as the nonparametric
tolerance intervals described in Krishnamoorthy and
Mathew (2009). Other proposed methods, such as
the bootstrap procedure of Gandy and Kvaløy
(2013), are often only partially nonparametric.
Although bootstrapping the Phase I sample may be
performed in a nonparametric way, a key aspect of
this method is to determine the required limits for
each bootstrap replication. This, in turn, requires
some distributional assumptions in order to be
accurate for small samples. For this reason, Gandy
and Kvaløy (2013) advised using a parametric
instead of nonparametric bootstrap procedure for
Shewhart-type control charts. We will elaborate on
this further in Section 4.2.

A major advantage of nonparametric control charts
is that they can be applied to individual observations
as well as subgroup statistics. For example, when
treating subgroup standard deviations as individual
observations, one can apply a nonparametric control
chart to monitor the standard deviation. The same
can be done for various other statistics as well (e.g.,
the average, range, or other robust estimators for
location or dispersion), regardless of the distribu-
tion under consideration. Because the nonparamet-
ric setup does not give severe restrictions for the
charting statistic X in [2], this makes the approach
very general.

3. Nonparametric control limits

There is a wide range of literature available on non-
parametric control charts; see, for example, Qiu
(2018). However, most of these control charts do not
incorporate the exceedance probability criterion. For
this reason, we consider nonparametric tolerance
intervals in this section. For more information on
nonparametric statistical process control in general,
we refer to Chakraborti, Van der Laan, and Bakir
(2001), Chakraborti, Qiu, and Mukherjee (2015), and
Qiu (2018).

The nonparametric tolerance intervals as described
in Krishnamoorthy and Mathew (2009) are con-
structed using order statistics. In particular, each limit
is determined by a single order statistic. Although this
method entirely rules out the ME caused by model
misspecification, it is obvious that this increases the
SE compared with parametric methods. Other disad-
vantages of using only a single order statistic for each
limit is that this approach generally leads to rather
conservative estimates, or to cases where the desired
coverage probability can’t be guaranteed because of
small sample sizes. These issues are addressed in
Young and Mathew (2014), who suggested construct-
ing tolerance limits based on interpolated and
extrapolated order statistics, depending on the sample
size. In this section, we explore their procedure for
determining the required limits and evaluate its
performance.

3.1. Estimation of control limits

The first step is to determine whether one should
interpolate or extrapolate. This is done by determining
the minimum Phase I sample size requirement for the
construction of a two-sided nonparametric tolerance
interval based on unweighted order statistics, as in
Krishnamoorthy and Mathew (2009). Note that, in
this article, we consider a Phase I sample consisting of
m individual observations. However, as mentioned
earlier, one could also apply the same procedure to
subgroup statistics from a sample of m subgroups by
treating them as m individual variables. If the sample
size available is large enough, one should interpolate
to make the estimated interval less conservative. If the
sample size is not large enough, one has to extrapolate
to reach a desired exceedance probability. The sample
size m is sufficient when the following equation holds:

m�1ð Þ 1� atolð Þm�m 1� atolð Þm�1 þ 1 � 1�p [3]

where atol is the performance threshold for CFAR,
and 1�p is the prespecified probability of achieving at
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least this performance. For a derivation of Eq. [3], we
refer to Section 8.6.1 of Krishnamoorthy and Mathew
(2009). Solutions to this equation can, for example, be
determined relatively easily with the function distree.-
est() included in the R-package tolerance (see also
Young and Mathew 2014). In Table 1, we provide an
overview of m2ðatol; pÞ; the minimum sample size
requirement for a two-sided tolerance interval based
on unweighted order statistics, for several values of
atol and p. We now make a distinction between the
limits when interpolating (m � m2ðatol; pÞ) and when
extrapolating (m<m2ðatol; pÞ).

3.1.1. Interpolated control limits
When m � m2ðatol; pÞ; consider a two-sided tolerance
interval [XðrÞ;XðsÞ] as a starting point, where XðjÞ
denotes the j-th order statistic from a Phase I sample
Xi, with i ¼ 1; ::;m; and with r and s yet to be deter-
mined. This interval yields a coverage probability of

P B � k� 1ð Þ � 1�p [4]

where B�Binðm; 1�atolÞ and where k ¼ s�r is the
smallest integer for which Eq. [4] holds. In terms of
Eq. [2], this is equivalent to PðCFAR > atolÞ � p for
^LCL ¼ XðrÞ and ^UCL ¼ XðsÞ: Next, the two intervals

[Xðrþ1Þ;XðsÞ] and [XðrÞ;Xðs�1Þ] are considered, which
yield a coverage probability of PðB � k� 2Þ<1�p:
Linear interpolation is then used at both sides of the
original tolerance interval to obtain

k1 ¼ 1�pð Þ�P B � k� 2ð Þ
P B � k� 1ð Þ � P B � k� 2ð Þ ¼

1�pð Þ�P B � k� 2ð Þ
P B ¼ k� 1ð Þ

X r�ð Þ ¼ k1X rð Þ þ 1�k1ð ÞX rþ1ð Þ
X s�ð Þ ¼ k1X sð Þ þ 1�k1ð ÞX s�1ð Þ

[5]

Note that k1 2 ½0; 1�; such that Xðr�Þ 2 ½XðrÞ;Xðrþ1Þ�
and Xðs�Þ 2 ½Xðs�1Þ;XðsÞ�: The proposed two-sided non-
parametric tolerance interval is then given by the
shortest interval of [Xðr�Þ;XðsÞ] and [XðrÞ;Xðs�Þ]. ^LCL
and ^UCL are then set equal to the lower and upper
limits of this interval, respectively.

When choosing s and r, it is common to set s ¼
m�r þ 1 so that the tolerance interval [XðrÞ;XðsÞ] cor-
responds to the truncated sample range (see, e.g.,
Wilks 1941; Krishnamoorthy and Mathew 2009; and

Young and Mathew 2014). This interval starts at the
r-th smallest and ends at r-th largest observations,
which means that r – 1 observations are being
trimmed on both sides of the ordered data. The
value r should thus be taken equal to the maximum
integer value such that Eq. [4] holds for k ¼ s�r
and s ¼ m�r þ 1:

However, for some parameter combinations of atol,
p, and m, this does not lead to the shortest possible
tolerance interval with at least the required coverage
probability. In particular, recall that the coverage
probability depends only on k ¼ s�r and not on the
absolute values of s and r. Furthermore, note that
the total number of observations that are trimmed
from both sides equals m�k�1: When the restric-
tion s ¼ m�r þ 1 is dropped, and solving for k to be
the minimum integer value that satisfies Eq. [4],
this number could be odd. This means that it is
possible to obtain a tolerance interval with a smaller
coverage probability than the truncated sample
range, but still greater than the nominal coverage
probability. The two most logical choices in this
case are [Xðrþ1Þ;XðsÞ] and [XðrÞ;Xðs�1Þ]. For each of
these two intervals, the interpolation procedure is
performed, resulting in four possible interpolated
intervals. The proposed two-sided nonparametric
tolerance interval is then given by the shortest of
these four intervals. The control limits are then set
equal to the lower and upper limits of this interval,
respectively. In Section 5, we use a real data set to
illustrate the described procedure.

Note that, as discussed, when the sample size
increases, there will be a point where an additional
observation can be trimmed from the ordered data
in order to obtain the required intervals for inter-
polation. This causes a jump in the coverage prob-
ability of these intervals, that is, PðB � k�1Þ and
PðB � k�2Þ; which is inherent to the discrete nature
of the binomial distribution. This has the conse-
quence that the coverage probability does not
always converge monotonically to p when m
increases. Instead, the path of convergence looks
more like a sawtooth. This is also observed in the
results in Section 3.2.

3.1.2. Extrapolated control limits
When m<m2ðatol; pÞ; the coverage probability of
[Xð1Þ;XðmÞ] is not sufficient and one has to extrapo-
late. Note that the coverage probability of [Xð1Þ;XðmÞ]
equals PðB � m� 2Þ and that the coverage probability
of the intervals [Xð1Þ;Xðm�1Þ] and [Xð2Þ;XðmÞ] equals
PðB � m� 3Þ: Then, with linear extrapolation, the
following results are obtained

Table 1. Minimum required sample size m2ðatol; pÞ for two-
sided tolerance intervals based on unweighted order statistics.

p

atol 0.2 0.1 0.05

0.05 59 77 93
0.01 299 388 473
0.005 598 777 947
0.0027 1109 1440 1756
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k2 ¼ � 1�pð Þ�P B � m� 2ð Þ
P B � m� 2ð Þ � P B � m� 3ð Þ

¼ � 1�pð Þ�P B � m� 2ð Þ
P B ¼ m� 2ð Þ

X 1�ð Þ ¼ k2X 2ð Þ þ 1�k2ð ÞX 1ð Þ
X m�ð Þ ¼ k2X m�1ð Þ þ 1�k2ð ÞX mð Þ

[6]

Note that, in this case, k2<0; such that Xð1�Þ<Xð1Þ
and Xðm�Þ>XðmÞ: The two-sided nonparametric toler-
ance interval proposed by Young and Mathew (2014)
is then equal to [Xð1�Þ;Xðm�Þ]. For a nonparametric
control chart, one can thus set the ^LCL and ^UCL
equal to the lower and upper limits of this interval,
respectively.

3.2. Performance of the proposed limits

In this section, we evaluate the performance of these
methods for various distributions. Although Young
and Mathew (2014) already provide an extensive
evaluation, their results are focused on theory on tol-
erance intervals. In that setting, values for atol of inter-
est are generally in the order of 0.05 to 0.5 while, in
statistical process monitoring, the interest lies much
further in the tails. For that reason, we focus mainly
on the results for atol ¼ 0:0027: However, we have
also included the values 0.05, 0.01, and 0.005 because
it is sometimes advisable to be more lenient with the
demands placed on the control chart.

The evaluation of the proposed control limits is
done for various distributions. In particular, we con-
sider the standard normal distribution, a lognormal
distribution with l ¼ 0 and r ¼ 1, a chi-square dis-
tribution with 4 degrees of freedom (v24), and a t-dis-
tribution with 4 degrees of freedom (t4). The standard
normal distribution illustrates the performance when
normal theory is applicable. The lognormal distribu-
tion provides a common skewed alternative. The v24
provides another skewed alternative and gives a good
indication of the performance of these control limits
for various estimators of dispersion. Note that, if the
data are normally distributed, many estimators of dis-
persion are (approximately) distributed according to a
scaled chi-square or chi distribution, as also discussed
in Goedhart, da Silva, et al. (2017). In that case, for
the chosen degrees of freedom (df¼ 4), this distribu-
tion corresponds to that of scaled standard deviations
of subgroups of size 5. The t4 provides a symmetrical
alternative to the normal distribution, but with heavier
tails. Also, similarly to the v24; various test statistics for
location are based on the t-distribution, such that the

chosen df¼ 4 could represent various statistics in sub-
groups of size 5.

In order to assess the performance of the proposed
limits, we have performed a simulation study. In par-
ticular, for various combinations of m and atol
together with p¼ 0.1 and p¼ 0.2, we have applied the
following procedure

1. A data set consisting of m observations is drawn
from the specified distribution.

2. The control limits ^LCL and ^UCL are estimated
according to Eqs. [5] and [6], depending on the
value of m, as described in the previous section.
This method is available in the R-package toler-
ance with the function nptol.int().

3. The probability Pð ^LCL � X � ^UCLÞ; where X is a
future (Phase II) in-control observation, is deter-
mined using the original distribution of the data.

4. Steps 1 to 3 are repeated for 10,000 different
Phase I samples and the proportion for which
1�Pð ^LCL � X � ^UCLÞ>atol is calculated. This
proportion should be approximately equal to p
according to the criterion described in Eq. [2].

The results of the described procedure are given in
Table 2 for p¼ 0.1 and Table 3 for p¼ 0.2. Recall that
the values displayed should be approximately equal to
p. The values indicated in italic font type indicate that
the result is based on extrapolated control limits, as
not enough samples were available in that case for

Table 2. Exceedance probabilities for proposed control limits
for p¼ 0.1.

atol

m 0.05 0.01 0.005 0.0027

Normal 100 0.0932 0.2374 0.1672 0.0927
250 0.1124 0.1612 0.2459 0.2146
500 0.0733 0.0906 0.1646 0.2477
1000 0.0820 0.0972 0.0872 0.1526
1500 0.1127 0.1089 0.0948 0.0988
2500 0.0915 0.0802 0.1088 0.1034

v24 100 0.0836 0.2236 0.1579 0.0814
250 0.1028 0.1630 0.2261 0.1862
500 0.0990 0.0808 0.1609 0.2299
1000 0.0903 0.0871 0.0799 0.1494
1500 0.1037 0.0973 0.0879 0.0884
2500 0.0966 0.0939 0.0954 0.0987

Lognormal 100 0.0728 0.2355 0.1809 0.0963
250 0.0942 0.1705 0.2428 0.2200
500 0.0958 0.0738 0.1646 0.2401
1000 0.1000 0.0900 0.0725 0.1613
1500 0.0983 0.0900 0.0850 0.0912
2500 0.1032 0.1002 0.0872 0.0943

t4 100 0.0904 0.2756 0.2165 0.1243
250 0.1013 0.1794 0.2867 0.2617
500 0.0769 0.0803 0.1775 0.2744
1000 0.0745 0.1022 0.0798 0.1705
1500 0.1094 0.1082 0.0914 0.0909
2500 0.0845 0.0781 0.1013 0.0999
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interpolation. As can be seen in the tables, the
obtained values are, in general, close to their desired
value. However, one can still observe a deterioration
of the performance when atol becomes smaller, given
the sample sizes considered. While we observe only
small deviations from p when atol ¼ 0:05; these devia-
tions are substantially larger for atol ¼ 0:0027: Also,
for atol ¼ 0:0027; the performance is not entirely con-
sistent for the smallest sample sizes under consider-
ation, as we observe quite some different values for
the sample sizes m¼ 100, 250, and 500. As we
increase the sample size to larger values, such as
m¼ 1,500, the performance moves closer to the
desired level. This is, of course, not entirely unex-
pected because of the sample sizes and atol values
under consideration. For example, estimating a toler-
ance interval with a coverage of 1�0:0027 ¼ 0:9973
based on order statistics from a sample of m¼ 250
observations is not as accurate as we would like. Note
also that m2ðatol; pÞ; the minimum sample size
requirement when using Krishnamoorthy and Mathew
(2009), equals 1,440 for atol ¼ 0:0027 and p¼ 0.1, as
can be seen in Table 1. When the interpolation Eq.
[5] is applied, the results for p¼ 0.1 are very accurate.

Moreover, contrary to other parametric methods,
the distribution under consideration only has a small
impact on the performance. The differences in results
between the distributions are caused by the fact that
the linear interpolation and extrapolation are approxi-
mations with an accuracy that depends on the

underlying distribution. However, when interpolated
control limits are used, the coverage probability will
be bounded between PðB � k� 1Þ and PðB � k� 2Þ
(i.e., the coverage probability of the intervals used for
interpolation) regardless of the distribution.

As observed, the proposed control limits provide a
better performance in terms of exceedance probability
when sample sizes are larger. Moreover, the variation
between the resulting CFAR values becomes smaller
as sample sizes are increased, due to a smaller SE.
This is illustrated as well in Figure 1. For atol ¼
0:0027; p¼ 0.1, and various sample sizes under con-
sideration, this figure shows the variation between
CFAR values obtained from the different simulated
Phase I samples by means of boxplots. We have used
the results from the normally distributed data, but the
results for other distributions are similar. The hori-
zontal dotted line indicates the location of atol, which
should be close to the ð1�pÞ-quantile of the boxplots
(the actual value can be obtained from Table 2). We
have left out the case m¼ 100 due to the large vari-
ation present there, which would make the rest of the
boxplots more difficult to compare.

As can be observed, increasing the sample sizes
results in less variation and less extreme CFAR values.
Although perhaps more difficult to detect directly,
these extreme CFAR values occur close to zero as
well, which can be seen from the location of the bot-
tom side of the box and/or whisker. For m¼ 250, it is
obvious from the box that there are many low CFAR
values. For m¼ 100, these values are even more fre-
quent. This is mainly caused by the fact that the
extrapolations will go further beyond the furthest
order statistics obtained when sample sizes are small.
For example, for m¼ 100 and atol ¼ 0:0027; the actual
coverage probability of ½Xð1Þ;Xð100Þ� is equal to 0.03.
When one desires p¼ 0.1, the required coverage prob-
ability would be 0.9, which thus requires a very large
extrapolation. Because the extrapolation is linear, this
may result in rather extreme estimates of the control
limits. This is undesirable, as it may lead to a substan-
tial deterioration in control chart performance in out-
of-control situations. On the other hand, when sample
sizes are sufficient so that the control limits can be
derived by interpolation, the estimated limits will
never go beyond the smallest/largest order statistics
obtained from the sample, which prevents such
extreme estimates. Therefore, when the Phase I sam-
ple size is small (e.g., m¼ 100), we suggest using
more lenient parameter values (e.g., larger atol and/or
p) rather than extrapolation. Moreover, small samples
are generally a consequence of a difficult or expensive

Table 3: Exceedance probabilities for proposed control limits
for p ¼ 0.2.

atol

m 0.05 0.01 0.005 0.0027

Normal 100 0.1124 0.2664 0.1855 0.1056
250 0.1954 0.2192 0.2714 0.2368
500 0.1612 0.1239 0.2174 0.2665
1000 0.2146 0.1325 0.1218 0.2129
1500 0.2066 0.2039 0.1228 0.2015
2500 0.2028 0.1732 0.1397 0.1435

v24 100 0.1654 0.2484 0.1728 0.0927
250 0.1973 0.2127 0.2605 0.2179
500 0.1887 0.1703 0.2132 0.2613
1000 0.1958 0.1856 0.1721 0.2014
1500 0.1931 0.1920 0.1853 0.1677
2500 0.1919 0.1890 0.1968 0.1996

Lognormal 100 0.1835 0.2747 0.1923 0.1107
250 0.1979 0.2235 0.2679 0.2379
500 0.1964 0.1765 0.2165 0.2725
1000 0.2016 0.1944 0.1769 0.2089
1500 0.2016 0.1928 0.1962 0.1582
2500 0.1967 0.1989 0.1967 0.2015

t4 100 0.1338 0.3115 0.2441 0.1397
250 0.1944 0.2350 0.3113 0.2883
500 0.1657 0.1331 0.2247 0.3114
1000 0.2138 0.1432 0.1397 0.2075
1500 0.2022 0.1998 0.1412 0.1775
2500 0.2037 0.1748 0.1485 0.1538
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sampling procedure or a low-frequency process. In
such cases, there will most likely also be more time
between consecutive Phase II observations, so that a
higher false-alarm rate is acceptable. If these issues are
not present, it is advisable to collect a larger Phase I
sample first.

In general, the conditional performance approach
considered in this article leads to slightly wider con-
trol limits. This effect is also investigated by, for
example, Gandy and Kvaløy (2013) and Goedhart,
Schoonhoven, and Does (2017). While this is, of
course, beneficial for the in-control performance, it
means that out-of-control signals are obtained less fre-
quently. This tradeoff is inherent to control charts.
However, the parameters (e.g., atol and p) can easily
be adjusted to balance this tradeoff.

4. Alternative methods

In this section, we discuss alternative methods that
aim to satisfy Eq. [2]. First, we discuss methods based
on normal theory, after which we elaborate more on
the bootstrap procedure proposed by Jones and
Steiner (2012) and Gandy and Kvaløy (2013). For
parametric methods, SE will be smaller compared
with nonparametric methods due to better use of
available information. However, ME plays a bigger

role there because deviations from the model assump-
tions might be larger than the actual decrease in SE.
Moreover, the errors can differ in size for different
distributions. At the end of this section, we include a
performance comparison using a numerical study.

4.1. Normal tolerance interval methods
and extensions

Various publications have been devoted to tolerance
intervals for normal populations; see also
Krishnamoorthy and Mathew (2009). Recently,
Goedhart, Schoonhoven, and Does (2018) proposed
new control limits based on this theory. However, in
practice, the problem is that data often aren’t close to
being normally distributed. To this end, we evaluate
some techniques that aim to make normal theory
applicable. In particular, we discuss the application of
the Central Limit Theorem (CLT) on subgroup aver-
ages to create an approximately normally distributed
dataset, as well as transformations to normality as
proposed for SPM by Chou, Polansky, and Mason
(1998). The intention of such techniques is to retain
the relatively small SE compared with completely non-
parametric models, but reducing the accompanying
ME caused by deviations from normality.

Figure 1. Boxplots of CFAR for normally distributed data with atol ¼ 0:0027 and p¼ 0.1, when applying nonparametric con-
trol limits.
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As the use of subgroups is a common practice in
SPM during data collection, one could argue using the
subgroup averages as individual observations and
apply the CLT. Often, subgroups of size 5 are recom-
mended in SPM, while a sample size of 30 is generally
deemed enough for the CLT to apply. Especially with
the recent developments in increasing data availability,
one could argue that collecting such amounts of data
should not be a problem. However, although the CLT
works well for the major (middle) part of the data, it
is of less use when the far tails are of interest. As
recently shown by Huberts et al. (2018), in some
cases, it might even require subgroups of more than
1,000 observations before the control chart perform-
ance is satisfactory for application in SPM. Therefore,
we will not elaborate further on this option in
this article.

Another option to make the use of techniques
developed for normally distributed data viable is to
transform the data such that a normal distribution is
appropriate. One of the most applied transformations
in statistics is the Box–Cox transformation, originating
from Box and Cox (1964). This method is used to
transform data into a symmetrical distribution.
Although this generally lowers the deviation from
normality, the resulting transformed data are often far
from normally distributed. Similar conclusions can be
found in Sakia (1992), among others.

A method that specifically intends to transform
data to normality in the field of SPM was proposed
by Chou, Polansky, and Mason (1998). They proposed
transformations based on the Johnson system of dis-
tributions, and provided a step-by-step procedure
revolving around the Shapiro–Wilk test for normality.
Transformations are only applied when normality of
the data is rejected in the first step. One can use this
procedure in combination with the suggested control
limits in Goedhart, Schoonhoven, and Does (2018). A
more detailed description of the procedure can be
found in Appendix A.

4.2. Bootstrap procedure

In the previous Subsection 4.1, we have described sev-
eral methods that aim to make the normal tolerance
interval theory applicable. Another option is to derive
parametric limits for various other specific distribu-
tions, as is done in Krishnamoorthy and Mathew
(2009). In their book, they considered the lognormal,
Gamma, two-parameter exponential, and the Weibull
distribution. However, in practice, the distribution of
the data is unknown and still has to be estimated. To

this end, we consider methods that aim to provide a
more general parametric model in order to find the
required limits. Such methods have to be flexible with
regard to the location, shape, skewness, and kurtosis
of the distribution under consideration. A well-known
system of distributions that allows for such flexibility
is the Pearson system, which consists of different
types of distributions. An alternative that has one sin-
gle distribution type based on four parameters to be
estimated is given in Low (2013).

The next step is to derive tolerance limits for these
general models. To do this, they can be combined
with the Gandy and Kvaløy (2013) bootstrap proced-
ure. The idea of the bootstrap procedure is that first,
a distribution is fitted to the data. This fit is then
assumed to be the true distribution, after which boot-
strap samples are drawn from the assumed distribu-
tion. These bootstrap samples provide an estimate of
the estimation uncertainty accompanying the Phase I
data. Then, in each bootstrap replicate, one has to
determine the required limits in order to provide a
desired result in the assumed distribution of the Phase
I sample. This, however, requires some distributional
assumptions to be accurate, as it requires estimation
of extreme (e.g., atol=2 and 1�atol=2) quantiles of the
assumed Phase I distribution. Thus, even when the
bootstrap samples are drawn in a nonparametric way
(using the empirical cdf), determining the required
limits for each bootstrap sample is not accurate when
done nonparametrically. To still remain general with
the distributional assumptions, one can combine the
bootstrap method with the Pearson system of distribu-
tions. A detailed description of the applied procedure
can be found in Appendix B. Note that, instead of the
Pearson system of distributions, one could also con-
sider other general parametric methods such as that
considered by Low (2013). However, our results in
that case were similar.

4.3. Performance comparison

In order to assess the performance of the methods
proposed in this section, we have evaluated the pre-
scribed procedures for various settings. For the in-
control situation, we illustrate the results for the limits
from Goedhart, Schoonhoven, and Does (2018), both
with (denoted Chou) and without (denoted Normal)
the transformation proposed in Chou, Polansky, and
Mason (1998), as well as the Gandy and Kvaløy
(2013) bootstrap procedure (denoted GK) described in
Section 4.2. Also, we consider the same distributions
as in Section 3.2. For the out-of-control situation, we
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make a performance comparison for when normal
theory is applicable.

4.3.1. In-control performance
For various sample sizes m together with p¼ 0.1 and
atol ¼ 0:0027; we have assessed the exceedance prob-
ability criterion as described in Eq. [2]. Note that, in
this comparison, we only consider atol ¼ 0:0027
because we are interested in the application of these
methods in SPM. We have applied the following pro-
cedure for each parameter combination:

1. A dataset consisting of m observations is drawn
from the specified distribution.

2. The methods under consideration are applied to
determine the estimated control limits ^LCL and
^UCL for each method.

3. The probability Pð ^LCL � X � ^UCLÞ; where X is a
future (Phase II) in-control observation, is deter-
mined using the original distribution of the data.

4. Steps 1 to 3 are repeated for 1,000 different Phase
I samples, and the proportion for which
1�Pð ^LCL � X � ^UCLÞ>atol is calculated. This
proportion should be approximately equal to p
according to the criterion described in Eq. [2].

The results of the described procedure can be
found in Table 4. We have also included the results
from Table 2 (denoted by YM) for comparison pur-
poses. Recall that the values displayed in the tables
should be approximately equal to p. As can be

observed from the table, the performance for the para-
metric methods is not very stable for this small value
of atol, as the outcomes vary substantially. It can also
be seen that the nonparametric control limits from
Section 3 perform best for every distribution except
the normal distribution, as the values are in general
closest to p. It is of course not unexpected that the
other methods perform better for normally distributed
data. The control limits of Goedhart, Schoonhoven,
and Does (2018) are derived specifically for this case,
while the Johnson transformation from Chou,
Polansky, and Mason (1998) is only applied when the
normality assumption is rejected. The Pearson system
also subsumes the normal distribution as a special
case in various types. Although the Pearson system
also subsumes the t-distribution and the chi-square
distribution as special cases, these are each only incor-
porated in a single type of the Pearson system.
Because the type has to be estimated as well in the
bootstrap procedure, this yields some extra estimation
uncertainty, resulting in an unsatisfactory performance
for these distributions. The lognormal distribution is
not incorporated in the Pearson system and the corre-
sponding results are very unsatisfactory for the boot-
strap procedure. Due to the highly skewed character
of the lognormal distribution, small deviations in the
estimation of the limits lead to large changes in the
CFAR or CARL.

We also observe some influence of the sample size
m on the performance. However, increasing the sam-
ple size to values such as 2,500 does not seem to over-
come the performance issues corresponding to small
values of atol for the parametric methods. Taking these
aspects in consideration, together with the fact that
the distribution of the data is generally unknown, we
argue that the proposed limits in Section 3 yield a
more stable and satisfying performance when moder-
ately large sample sizes are available. When sample
sizes are small, one has to lower the demands placed
on the control chart performance, which can be done
through parameter settings (e.g., p and atol). Especially
when combined with subgroup or aggregated statis-
tics, this may not be unreasonable. For example, con-
sider a process for which an observation is collected
once every day. For a control chart with individual
observations, atol ¼ 0:0027 corresponds to about one
false signal per year. When using some weekly (aggre-
gated) statistic, such as an average, instead of the indi-
vidual daily observations, the same value of
atol ¼ 0:0027 would lead to a false signal about once
every 7 years. In order to remain with the one false
signal per year, one has to increase atol accordingly.

Table 4. Comparison of exceedance probabilities for atol ¼
0:0027 and p¼ 0.1.

m Normal Chou GK YM

100 0.0990 0.0970 0.3830 0.0927
250 0.0960 0.1180 0.1830 0.2146

Normal 500 0.1090 0.1210 0.0900 0.2477
1,000 0.1000 0.1150 0.0880 0.1526
1,500 0.1000 0.1200 0.0890 0.0988
2,500 0.0960 0.1310 0.0870 0.1034
100 0.9910 0.4590 0.8630 0.0814
250 1.0000 0.4030 0.7900 0.1862

v24 500 1.0000 0.3700 0.6870 0.2299
1,000 1.0000 0.3010 0.6260 0.1494
1,500 1.0000 0.2900 0.5500 0.0884
2,500 1.0000 0.2590 0.4650 0.0987
100 0.9800 0.3860 1.0000 0.0963
250 0.9960 0.3730 1.0000 0.2200

Lognormal 500 0.9990 0.3520 1.0000 0.2401
1,000 0.9990 0.3190 1.0000 0.1613
1,500 1.0000 0.3220 1.0000 0.0912
2,500 0.9990 0.3270 1.0000 0.0943
100 0.9880 0.4910 0.5550 0.1243
250 0.9940 0.3950 0.2650 0.2617

t4 500 0.9980 0.4590 0.2240 0.2744
1,000 0.9990 0.5660 0.2310 0.1705
1,500 0.9980 0.6420 0.2610 0.0909
2,500 1.0000 0.7360 0.2990 0.0999
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This holds for every situation where observations are
aggregated, regardless of the actual time difference
between observations. Thus, when the Phase I sample
size is small, when aggregating observations, or when
using subgroup statistics, we recommend using
increased values of atol.

4.3.2. Out-of-control performance
In order to compare the out-of-control performance,
we have evaluated the alarm rates of the proposed
methods under normality and compared this to the
alarm rates of the method from Goedhart,
Schoonhoven, and Does (2018), which is designed for
normal theory. We consider a Phase I data set that
follows a standard normal distribution and a Phase II
data set where a shift of size d in the mean has
occurred, such that the latter follows a Nðd; 1Þ distri-
bution. Note that d ¼ 0 means that the process is in-
control, in which case the alarm rate is actually the
false-alarm rate. For p¼ 0.1 and various combinations
of m, atol, and d, we have determined the average
alarm rate for each method, as an indicator for the
out-of-control capability of the control chart. In par-
ticular, for all considered parameter combinations, we
have applied the following procedure:

1. A dataset consisting of m observations is drawn
from the specified distribution (i.e., N(0, 1)).

2. The methods under consideration are applied to
determine the estimated control limits ^LCL and
^UCL for each method.

3. The conditional alarm rate 1�Pð ^LCL � Y �
^UCLÞ is determined, where Y is a future (Phase

II) out-of-control observation drawn from a
Nðd; 1Þ distribution.

4. Steps 1 to 3 are repeated for 10,000 different
Phase I samples, after which the average alarm
rate is calculated as the average over all the condi-
tional alarm rates. The higher this value is, the
better the out-of-control detection capability.

The results of this procedure are displayed in Table
5. As can be observed, the method for normal theory
has slightly higher alarm rates compared with the pro-
posed method. This holds for almost all combinations
of atol, m, and d (also in-control), but is most visible
for smaller sample sizes. Moreover, the relative differ-
ences between the average alarm rates of the two
methods are slightly larger when considering smaller
values of atol, thus moving further in the tails of the
distribution. Obviously, the method designed for nor-
mal theory yields a better performance for normally

distributed data, as it is able to exploit extra informa-
tion (i.e., distribution) regarding the process under
consideration. However, in the cases where its per-
formance excels (i.e., smaller values of m and atol),
deviations from normality are more difficult to detect
and have more impact on the control chart
performance.

5. Application of the proposed control chart

In this section, we demonstrate the application of the
proposed control chart using data from an applica-
tion. A data set is available of the torque of Torque-
to-Yield bolts that are used as fasteners in engines at
a subsidiary of PACCAR (a global truck company).
The bolts are tightened at several different positions
of the engines using a specific fastening procedure. At
several moments during this procedure, the torque is
measured (in Newton-meter) for each bolt. We con-
sider the first moment of measurement here. The
measurements are performed by a process engineer to
set up the process monitoring. It is important to
detect out-of-control situations, such as trends or
anomalies in the applied torque, as this can indicate
problems with either the bolt(s) or the fastening pro-
cedure. For example, the performance of the used
wrenches can deteriorate over time, which may result
in fasteners being too tight or too loose.

To this end, an initial Phase I dataset of m¼ 1,632
observations is collected by the process engineer to

Table 5. Comparison of average alarm rates for p¼ 0.1.
d

0 1 2

atol m YM Normal YM Normal YM Normal

100 0.0284 0.0333 0.1094 0.1266 0.3890 0.4347
250 0.0354 0.0384 0.1320 0.1418 0.4434 0.4667

0.05 500 0.0376 0.0415 0.1387 0.1499 0.4604 0.4820
1,000 0.0410 0.0439 0.1485 0.1560 0.4790 0.4928
1,500 0.0434 0.0449 0.1544 0.1585 0.4907 0.4973
2,500 0.0444 0.0460 0.1570 0.1610 0.4939 0.5013
100 0.0069 0.0055 0.0321 0.0359 0.1463 0.2053
250 0.0057 0.0067 0.0346 0.0429 0.1784 0.2329

0.01 500 0.0055 0.0075 0.0354 0.0466 0.2005 0.2474
1,000 0.0066 0.0081 0.0421 0.0497 0.2291 0.2574
1,500 0.0073 0.0084 0.0451 0.0510 0.2409 0.2620
2,500 0.0075 0.0088 0.0464 0.0525 0.2458 0.2665
100 0.0029 0.0025 0.0130 0.0204 0.0634 0.1422
250 0.0035 0.0032 0.0211 0.0249 0.1205 0.1649

0.005 500 0.0029 0.0036 0.0206 0.0276 0.1303 0.1771
1,000 0.0027 0.0039 0.0216 0.0297 0.1469 0.1872
1,500 0.0031 0.0041 0.0241 0.0306 0.1591 0.1913
2,500 0.0035 0.0043 0.0268 0.0317 0.1727 0.1953
100 0.0010 0.0013 0.0051 0.0125 0.0240 0.1014
250 0.0017 0.0016 0.0112 0.0153 0.0648 0.1199

0.0027 500 0.0018 0.0018 0.0139 0.0172 0.0915 0.1309
1,000 0.0015 0.0021 0.0131 0.0186 0.0991 0.1387
1,500 0.0014 0.0022 0.0126 0.0193 0.1015 0.1421
2,500 0.0016 0.0023 0.0149 0.0200 0.1158 0.1457
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construct the control limits. These data have been
checked for possible errors and anomalies. A time ser-
ies plot of the data is shown in Figure 2(a). Figure
2(b) shows a histogram of the data, with a normal dis-
tribution fit on top of it. At first glance, the normal
distribution appears to be a proper fit. However,
Figure 2(c) shows a normal probability plot where it
can be seen that the normal distribution is still not
able to model the extreme tails well. We found similar
(or worse) results for other distribution functions fit-
ted to this data. Of course, in practice, these distribu-
tion functions never provide the ‘correct’ model, but
only adequate and useful models. While this is gener-
ally sufficient to model the bulk of the data, this does
not hold for the extreme tails considered in SPM.
Although the difference may not appear to be very

large, minor deviations in the extreme tail have sub-
stantial consequences in terms of the ARL. As dis-
cussed in Section 4.3, deviations in model
assumptions lead to a deterioration of the control
chart performance. Especially for moderate to large
sample sizes, such as available here, the use of the
proposed nonparametric methods therefore seems
more appropriate, as these are not sensitive to such
model deviations.

The next step is to determine the control limits
that should be used to monitor this process using the
procedure described in Section 3. For this dataset, this
results in the following steps:

1. First, we determine our parameters. We have
m¼ 1,632 and choose a ¼ 0:0027 and p¼ 0.1. From

Figure 2. Time series plot, histogram, and normal probability plot of the Phase I data of torque values.
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Eq. [3] and Table 1, it follows that m ¼ 1632>
m2ð0:0027; 0:1Þ ¼ 1440; so that we have enough
observations to construct interpolated control limits.

2. Next, given the parameters, we determine the
smallest integer value k for which Eq. [4] holds.
In this case, this value is equal to k¼ 1,631. This
means that the maximum number of observations
that can be trimmed from the ordered data equals
m�k�1 ¼ 0: Consequently, we need r¼ 1 and
s ¼ m ¼ 1632; so that we start with the tolerance
interval ½Xð1Þ;Xð1632Þ�: In this case, this interval is
equal to ½161:71; 162:11�:

3. After that, we determine k1, Xðr�Þ; and Xðs�Þ
according to Eq. [5]. Let B�Binðm; 1�atolÞ as in
Section 3.1.1. The coverage probability of
½Xð1Þ;Xð1632Þ� is then equal to PðB � k� 1Þ ¼
0:9343; and the coverage probability of
½Xð1Þ;Xð1631Þ� and ½Xð2Þ;Xð1632Þ� is equal to PðB �
k� 2Þ ¼ 0:8160: We then find k1 ¼ 0:7101 from
Eq. [5]. Next, using Xð2Þ ¼ 161:74 and Xð1631Þ ¼
162:10; we find Xð1�Þ ¼ 161:7187 and Xð1632�Þ ¼
162:1071: This means that we obtain the intervals
½Xð1Þ;Xð1632�Þ� ¼ ½161:7100; 162:1071�
and ½Xð1�Þ;Xð1632Þ� ¼ ½161:7187; 162:1100�:

4. Finally, we determine the control limits using
the shortest of the two obtained intervals in the
previous step. This is equal to ½161:7187; 162:1100�;
such that we find ^LCL ¼ 161:7187 and
^UCL ¼ 162:1100:

Note that, if we had chosen p¼ 0.2 instead, we
would have obtained k¼ 1,630 in step 2 above. This
would mean that the maximum number of observa-
tions that can be trimmed from the ordered data
would equal 1 instead of 0. With the restriction s ¼
m�r þ 1; the initial tolerance limits would still be
Xð1Þ and Xð1632Þ: However, as described in Section
3.1.1, removing this restriction makes it possible to
construct intervals with a smaller coverage probability,
but still more than the nominal desired value 1�p; by
trimming an observation of the ordered data on one
of the two sides. This would give the intervals
½Xð1Þ;Xð1631Þ� and ½Xð2Þ;Xð1632Þ� as starting points. The
next step would then be to perform the interpolation
procedure for both of these intervals and choosing the
shortest of the four resulting intervals.

The obtained limits can be used to monitor this
process. As an illustration, we have a Phase II sample

Figure 3. Control chart for Phase II monitoring of torque values. Proposed control limits (dashed), control limits adjusted for nor-
mally distributed data (straight line), and unadjusted control limits (dotted lines) are indicated.
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available consisting of 34 observations, as is illustrated
in Figure 3. For comparison purposes, we have also
indicated the unadjusted control limits according to
Eq. [1] with a ¼ 0:0027 (resulting in the standard
3-sigma limits), as well as the adjusted control limits
from Goedhart, Schoonhoven, and Does (2018) with
atol ¼ 0:0027 and p¼ 0.01. As Phase I estimators, we
consider the sample average (161.92) and standard
deviation (0.0577) of the data. The resulting
unadjusted lower and upper control limits then equal
161.7469 and 162.0931, respectively. Because of the
large sample size, the control limit constant as calcu-
lated from Goedhart, Schoonhoven, and Does (2018)
is not very different from 3, with a value of 3.07.
Using this value results in lower and upper control
limits of 161.7429 and 162.0971, respectively. As can
be seen, the proposed control limits are slightly wider
than the unadjusted limits and the Goedhart,
Schoonhoven, and Does (2018) limits. However, one
should note that the latter two sets of limits are only
appropriate for normally distributed data. As can be
observed, there are no out-of-control signals for this
Phase II data set for either set of control limits.

6. Concluding remarks

To correct for the effect of parameter estimation, we
propose the application of nonparametric tolerance
intervals in statistical process monitoring. Because an
appropriate data distribution and its corresponding
parameters are generally unknown, they have to be
estimated using a Phase I reference sample. Because
of the variability induced by sampling (stochastic
error), the estimated control limits will vary for differ-
ent Phase I samples. This leads to different control
chart performance for different practitioners.

We propose control limits based on nonparametric
tolerance intervals in order to satisfy the exceedance
probability criterion introduced by Albers and
Kallenberg (2004a). This criterion aims to control the
control chart performance by guaranteeing at least a
prespecified control chart performance with a prespe-
cified probability. The proposed control limits per-
form well in satisfying this criterion in general,
especially when moderately large Phase I samples
are available.

A major advantage of nonparametric control charts
is that they can be applied to any monitoring statistic
of interest, by treating subgroup statistics as individual
observations. In that way, the proposed control chart
can be applied to X, �X ; R, and S control charts or

even other statistics, regardless of the distribution
under consideration.
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Appendix A: Chou, Polansky, and Mason
(1998) Transformations to normality

In this article, we have discussed the transformation to nor-
mality as described in Chou, Polansky, and Mason (1998).
The procedure for this transformation is as follows:

1. First, test the data for normality using the
Shapiro–Wilk test. If normality is not rejected, proceed
to step 3. Otherwise, continue with step 2.

2. Transform the data as described in Chou, Polansky,
and Mason (1998). This can be done, for example, with
the R-package RE.Johnson.

3. Compute the average and standard deviation of the
(transformed) data and use these to construct
the control limits using Goedhart, Schoonhoven,
and Does (2018) with the input parameters m, atol
and p.

4. If the data were transformed, transform the control
limits back to their original scale by inverting the
transformation used in step 2. If not, no further actions
are required.

Appendix B: Bootstrap procedure

In this article, we have discussed the application of the
bootstrap procedure of Gandy and Kvaløy (2013) in com-
bination with the Pearson system of distributions. The pro-
cedure for this transformation is as follows:

1. Fit a Pearson distribution on the data set based on the
first four central moments. Procedures to do this are
available in various statistical software programs, such
as the function pearsonFitM from the R-package
PearsonDS. We denote this fitted distribution as F̂ :

2. From the fitted distribution F̂ ; draw mB (e.g., 500 or
1,000) bootstrap samples of size m each. For each boot-
strap sample, fit a Pearson distribution, similarly to
step 1. Denote the fitted distribution of the bootstrap
sample as ~F :

3. For each bootstrap sample (i ¼ 1; :::;mB), determine
the required value aB;i such that F̂ð~F�1ðaB;i=2ÞÞ þ

368 R. GOEDHART, M. SCHOONHOVEN, AND R. J. M. M. DOES



1�F̂ð~F�1ð1� aB;i=2ÞÞ ¼ atol: Note that, for two-sided
control charts, determining the limits through adjusting
the chosen quantiles a=2 and 1�a=2 seems to be the
most reasonable choice for correcting equally on both
sides, as treating the LCL and UCL separately may lead
to an infinite number of solutions. Note also that, due
to the bounded character of some of the Pearson distri-
bution types, this equation does not always have a solu-
tion. This happens in particular for highly skewed
distributions. When this is the case, set aB;i ¼ atol=100
or some other small value. The reason to choose such a

rather small value is that, when it occurs rarely, it
won’t impact the outcome of the bootstrap procedure
(see the next step). However, when it’s not rare, it
means that such small quantiles are actually required to
control the performance, but going for even smaller
values would result in control limits converging to
infinity on one side.

4. Determine the required adjusted value aadj as the p-
quantile of the vector aB obtained in the previous step.
Then construct control limits according to ^LCL ¼
F̂
�1ðaadj=2Þ and ^UCL ¼ F̂

�1ð1�aadj=2Þ:
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