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1
Introduction

Black holes are the most extreme objects in the Universe. Although direct evidence
of the their existence was obtained only in the second half of the 20th century, the
concept of ‘invisible bodies’ had been advanced already in the 18th century by John
Michell and Pierre-Simon Laplace (Montgomery et al. 2009). From a purely mathe-
matical point of view, a black hole can be seen as the vacuum solution of Einstein’s
field equations, with all the mass of the object concentrated in a central singular-
ity. According to the ‘No-hair Theorem’ this solution is characterised by only three
parameters: the mass (M), the angular momentum, and the electrical charge. This
singularity is hidden behind the event horizon, a surface from within which nothing
can escape, not even light.

As the interior is unobservable, astrophysical black holes can be defined based on
the properties of the region down to the event horizon, including the event horizon
as a one-way membrane. For a non-spinning black hole the event horizon is a sphere
with radius R = 2GM/c2. In the case of spinning black hole the radius of the event
horizon is rh = 1 +

√
1− a2, where rh is expressed in units of gravitational radii

(Rg = GM/c2) and where the black hole angular momentum is aGM2/c. The spin
parameter a has an allowed absolute range from 0 (non-spinning) to just below 1
(maximally spinning; Thorne 1974). Astrophysical black holes formed from gravita-
tional collapse are expected to be nearly neutral, since any significant electric charge
would be neutralized by attracting particles of opposite charge from the surrounding
plasma. Thus they are characterized by only two numbers: the mass, and the spin.
General Relativity defines a radius inside which there are no stable circular orbits.
This is called the innermost stable circular orbit (ISCO) and depends on black hole
spin, which can take values from RISCO = Rg for a = 1 via RISCO = 6 Rg for a = 0
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1 Introduction

(Schwarzschild) to RISCO = 9 Rg for a = −1 (maximally retrograde; negative values
of the spin are used to indicate retrograde orbits).

Black holes as we observe them in the Universe are classified according to their
mass. Stellar mass black holes range from a few to several tens of Solar masses and can
be discovered orbiting a companion in a binary system. The other category of black
holes is much more massive: typically 106 − 109 Solar masses. These supermassive
black holes are observed in the nuclei of galaxies including our own Milky Way galaxy.
The discovery of gravitational waves brought evidence of binary black hole systems
whereby two stellar mass black holes merge to form a single (probably isolated) black
hole.

The black hole systems discussed in this thesis are all powered by accretion. The
material around the black hole, either coming from a binary companion star (in black
hole binaries or BHB) or from the gas of the host galaxy (in active galactic nuclei or
AGN), is dragged into the black hole by its gravitational attraction. If the infalling
matter carries angular momentum relative to the black hole, it will form an accretion
disc, which can be extremely efficient in converting gravitational potential energy
into emitted radiation. In the Newtonian approximation, a test mass m orbiting
a black hole of mass M at radius R has gravitational potential energy −GMm/R

and kinetic energy (1/2)GMm/R. Therefore, if material drifts toward the black
hole with radial velocity vr << vφ, half the gravitational potential energy lost is
converted to kinetic energy with the rest in principle free to be radiated. In the
same approximation, an accretion disc extending from R = ∞ to R = Rin with
mass accretion rate Ṁ will radiate a luminosity Ldisc = GMṀ/(2Rin) = c2Ṁ/(2rin),
where rin ≡ Rin/Rg. Therefore the luminosity of an accretion disc that extends down
to the ISCO depends only on the mass accretion rate Ṁ and the spin of the black
hole, and in principle nearly half of the rest mass energy of the disc can be converted
to radiation. A useful mass accretion rate scale is provided by defining the Eddington
luminosity LEdd ≈ 1.26 × 1038(M/M�) erg s−1, which is the limiting luminosity for
a steady, spherically symmetric flow where the radiation pressure is balanced by the
gravitational force. The accretion can be unstable and/or asymmetric and then may
exceed the Eddington limit. However, as the limiting luminosity scales linearly with
black hole mass, it is clear that AGN can be much more luminous than black hole
binaries.

Characterizing black holes (measuring their mass and spin) by studying the ac-
cretion processes is important for understanding the formation mechanisms and the
evolution of the black holes and their host systems. Stellar mass black holes are a fun-
damental ingredient in the study of the evolution of their stellar progenitors. When
massive stars1 (& 20M�) come to the end of their nuclear (fusion) fuel, the radiation
pressure in the star’s interior can no longer match gravity, and gravitational collapse

1Although the possibility of black hole formation for lower mass has been discussed in the literature
(e.g. O’Connor & Ott 2011)
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1.1 Spectral Emission

ensues. Simulations of what happens after depletion of the nuclear fuel (e.g., whether
there is a supernova explosion or not) can be constrained using the characteristics of
the final product (Janka 2012 and references therein). Black hole mass can also be
used to estimate the importance of mass loss processes of the stellar progenitor, such
as winds, in particular in the final stages of its evolution (e.g. Belczynski et al. 2010).
The black hole spin derives from the angular momentum of the progenitor star and
the gravitational collapse / supernova explosion, so these processes can be constrained
by measuring the spin (Chan et al. 2018). Supermassive black holes, on the other
hand, preserve information on how the host galaxy grew (e.g. Salpeter 1964), and
what its dynamic evolution was (e.g. Rees 1984). The growth mechanism of the a
supermassive black hole involves the radiative accretion efficiency and thus its spin
(King & Pringle 2006; King et al. 2008). The formation and evolution of galaxies and
galaxy clusters have implications for cosmological theories.

Accreting black holes can also serve as a laboratory to study General Relativity in
the “strong field regime”. According to Einstein’s theory the spacetime around a spin-
ning black hole is described by the Kerr metric. This leads to very specific predictions
for the trajectories and energy shifts of the photons produced in the accretion process,
so that by analyzing the electromagnetic radiation it is possible to study this metric
and look for possible deviations from the theory’s predictions (e.g., Bambi 2017).

1.1 Spectral Emission

The energy spectrum of a source is its flux per unit photon energy as a function of
photon energy. The flux can be expressed either as specific photon flux (dN/dE) or
as specific energy flux (E dN/dE). In this section I will refer to the flux as the specific
photon flux (if not specified). The energy spectrum is an important tool to identify
the various radiative processes that contribute to the total flux, and to characterise
the physical circumstances in the emitting regions. The emission of accreting black
holes covers the entire electromagnetic spectrum, but the work in this thesis focuses
on the X-ray emission around 0.5 − 30 keV. The radiation in this energy range is
emitted by the regions very close to the black hole where its impact is stronger.

1.1.1 Disc Emission

From simple considerations in Newtonian gravity similar to those used in the previ-
ous section, the material of the accretion disc accreting from R+ dR to R with mass
accretion rate Ṁ loses potential energy, and the luminosity free to be radiated is
dL(R) = GMṀ/2R2× dR. Since the disc is optically thick, any photon that escapes
to reach an observer at infinity must have had many interactions within the disc and
therefore the locally radiated spectrum is a blackbody, so dL(R) = dAσSBT

4. As the
area of the emitting region is dA = 2×2πR×dR, where the factor 2 is because the emis-
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1 Introduction

sion happens on both surfaces of the disc, it follows that T 4(R) = GMṀ/(8πR3σSB).
Shakura & Sunyaev (1973) derived that the temperature profile has an extra factor
3 (1 − (Rin/R)1/2) if zero stress at the disc inner radius Rin is assumed. This fac-
tor therefore derives from the inner boundary condition. Novikov & Thorne (1973)
calculated all the relativistic corrections. So, the maximum temperature is approxi-
mately T 4

max ∝ GMṀ/(8πR3
inσSB), where the precise radius where Tmax is attained

and the constant of proportionality depends on the inner boundary condition. In
the previous section I derived that the disc luminosity is L = c2Ṁ/(2rin). Therefore
a disc with a given inner boundary condition and a given inner radius in units of
Rg (e.g. the ISCO) accreting at a given fraction of the Eddington limit, will have
a peak temperature that scales with black hole mass as T 4

max ∝ 1/M . If a 10M�
black hole has peak disc temperature 1 keV, then a 108M� black hole has peak disc
temperature Tmax = 10−7/4keV = 0.0178 keV, which is in the UV. In both types of
black hole system, this theoretically derived radiation has been observed. Stellar mass
black holes show a thermal state where a thermal component dominates the energy
spectrum (Remillard & McClintock 2006). It has been shown that this component
is well fitted using the multi-temperature accretion disc model (Mitsuda et al. 1984;
Makishima et al. 1986; Kubota et al. 2005). The spectral energy distribution of AGN
shows thermal emission from UV to optical region, known as “the big blue bump”,
which is thought to be emitted from the optically thick accretion disc feeding the
black hole (Shields 1978; Malkan 1983). Laor (1990) showed that in several AGN the
optical-UV continuum is consistent with thin accretion disc models.

1.1.2 Comptonized Emission

From an observational point of view the X-ray energy spectrum of accreting black
holes shows evidence of a hard excess. Seyfert galaxies, which are relatively nearby
AGN that show broad and narrow emission lines (Peterson 1997), always show this
component which is approximately constant over timescales of days or weeks. In
black hole binaries, instead, the contribution of the spectral components changes as
the source transitions from the ‘hard’ state to the ‘soft’ state over days or weeks (see
Done et al. 2007 for a review). These two states are respectively described by an
energy spectrum dominated by hard emission, with disc emission below 1 keV (hard
state), and a disc emission dominated energy spectrum, with just a small hard tail
(soft state). In this thesis I focus on the hard state and do not investigate the details
of this transition. However, it is worth noting that in AGN it is not possible to detect
this type of long time scale variability because the timescales are much longer due to
the bigger size of the systems.

In this section I focus on the spectral component that describes the hard part of
the X-ray energy spectrum which is thought to be due to inverse Compton emission
for both BHBs and AGN. This emission is due to seed photons from the disc that
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1.1 Spectral Emission

illuminate a region of optically thin (τ ∼ 1) hot electrons, usually referred to as
the corona, where they are up-scattered (inverse Compton effect). The geometry
of this region is not clear (see Section 1.1.4), however, it is part of the accretion
process and therefore connected to the disc sharing the accretion energy. The spectral
shape of the Comptonized radiation depends on the number of scatterings that the
seed photons have with the electrons and how much energy the photons gain per
scattering. The probability for a photon to interact with an electron when passing
a distance R through a medium containing n electrons per unit volume, each with
an interaction cross-section σ, is set by the optical depth τ = nσR, which is the
number of electrons in the volume σR. The probability for a photon to escape without
undergoing any scatterings is e−τ , and therefore a fraction 1−e−τ of the seed photons
experience at least one scattering. For τ << 1, this becomes 1 − e−τ ∼ τ . Of these
scattered photons, a fraction ∼ τ will have at least one more interaction, therefore
a fraction ∼ τ2 of the seed photons will interact at least twice, and so on. For a
thermal population of electrons, the fractional gain in photon energy per scattering
is A ≈ 1 + 4Θ + 16Θ2 (Blumenthal & Gould 1970; Rybicki & Lightman 1979; Done
2010) where Θ = kTe/mec

2 is the normalized electron temperature, defined as the
energy of the peak of the thermal electron distribution as a fraction of the electron
rest mass energy. Fig 1.1 demonstrates how the sum of multiple scatterings leads
to a power-law spectrum (specific photon flux), F (x) ∼ x−Γ, where x is defined as
x = hν/mec

2. Since each scattering order has a lower photon number than the last
by the same fraction ∼ τ and a higher energy than the last by the same fraction A,
it is simple to see that logF (x) is a linear function of log x, and Γ ∼ log τ/ logA.

This power-law description is valid until the characteristic normalized photon en-
ergy of a scattering order becomes x ∼ 3Θ, at which point photons no longer gain
energy from collisions. This leads to a high energy cut-off in the spectrum that can be
roughly modeled with an exponential, F (x) ∼ x−Γe−x/(3Θ), although the cut-off for a
self-consistently calculated thermal Comptonised spectrum is sharper (e.g. the model
nthcomp; Zdziarski et al. 1996). Thus the slope is determined by the optical depth
and the temperature of the hot electrons, whereas the high energy cut-off depends
only on the electron temperature.

The power-law description of the spectral shape is a good approximation only
when there is overlap between the scatterings; if τ is too small or Θ is too large then
Comptonization produces a more irregular spectrum with a ‘jump’ for every scatter-
ing. Other models have been developed to treat the cases where a phenomenological
power-law is not sufficient, for example comptt (Titarchuk 1994) and eqpair (Coppi
1999). Although we may expect some sources to deviate from a smooth power-law
behaviour, the observed hard X-ray emission is almost always well described by this
phenomenological model. This is naturally explained if the corona is slightly inhomo-
geneous in e.g. temperature and optical depth.
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1 Introduction

Figure 1.1: Emission energy spectrum for multiple Compton scattering events in the case of τ << 1.
The incident photons have energy x0. A fraction τ of them experiences at least one scattering, τ2

at least two scatterings and so on. The fractional energy gain per scattering is A. When the energy
of the photons equals the typical electron energy, 3Θ, the following scatterings do not increase their
energy, leading to a cut-off in the spectrum. The plot is in logarithmic scale. Image adapted from
Ghisellini (2013).

1.1.3 Reflected Emission

Some of the radiation from the corona is seen directly by the observer, and this
represents the continuum component in the spectrum. Some of the radiation, instead,
illuminates the accretion disc where it is re-emitted with a specific spectral shape. This
spectral component is called reflection, even though this term could be misleading
because the illuminating spectrum is actually reprocessed rather than reflected. The
reflection spectrum was studied for the first time in X-ray binaries in the case of
Her X-1, where Basko et al. (1974) considered the reprocessing of radiation from the
accretion disc by the atmosphere of the companion star. Guilbert & Rees (1988)
and Lightman & White (1988) argued that similar reprocessing could occur in the
atmosphere of the accretion disc. There are two main processes that contribute to
shape the reflection spectrum: photo-electric absorption and electron scattering. The
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1.1 Spectral Emission

former dominates at low energies where the cross-section of the heavy elements is
larger than the electron scattering cross-section. Photons in this low energy regime,
upon interacting with bound atoms in the disc, are most likely to excite an electron
from the K-shell (n = 1). This imprints absorption edges on the reflection spectrum.
The resulting ion is unstable, so an electron from a higher energy shell, most likely
the L-shell (n = 2), decays to fill the gap in the less energetic K-shell. During this
transition, either a photon is emitted, imprinting a fluorescence line on the reflection
spectrum, or an outer shell electron is ejected via Auger ionisation. The latter has
higher probability for low atomic number elements, and thus lines at low energy are
more suppressed than those at higher energies from heavier elements. Since iron is the
heaviest astrophysically abundant element, its fluorescence line features are the most
prominent, in particular the Kα emission line, which corresponds to the transition
from the L to the K shell. The photo-electric cross-section decreases as E−3 and at
around 10 keV is equal to the electron scattering cross-section. Above this energy,
the scattering process dominates, increasing the number of photons that are reflected.
The highest energy photons are still scattered, but they lose energy, which introduces
a high energy cut-off to the reflection spectrum (similar to that described in the
previous section). The combination of the iron K edge at 7.1 keV and this high
energy turn over leads to the characteristic Compton hump between 20 − 50 keV.
Fig. 1.2 shows a typical reflection spectrum produced by a layer of neutral gas with
Solar abundances (black line).

The shape of the reflection spectrum is dependent on the ionisation state of the
reflecting material, which is usually described by the ionisation parameter

ξ =
4πFx
ne

, (1.1)

where Fx and ne are respectively the illuminating 13.6 eV to 13.6 keV flux and the
electron number density in the disc. This can be understood as setting the probability
of a photon interacting with an ion instead of a bound atom that has had time
to recombine since its last interaction. Since the photo-electric absorption cross-
section is anti-correlated with the ionisation state, increasing the ionisation parameter
increases the reflection continuum (see Figure 1.2, blue and red lines). Moreover at
very high ionisation, even the emission lines of the heavy elements become faint (see
Figure 1.2, green line). One of the most advanced models to compute the reflection
spectrum emerging from an X-ray illuminated accretion disc is xillver (García &
Kallman 2010; García et al. 2013a). This model simultaneously solves the equations
of radiative transfer, energy balance, and ionisation equilibrium in a Compton-thick,
plane-parallel medium. Most reflection models to date have assumed ξ to be constant
with disc radius, which is unlikely to be the case in reality. Assuming a specific
geometry for the illuminating region and a radial density profile in the disc, it is
possible to self-consistently calculate the ionisation parameter as a function of radius.
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Figure 1.2: Dashed line: incident energy spectrum. Solid lines: restframe reflection energy spectra
from solar abundance gas. The different colors are for different ionisation levels of the gas, from
neutral (black line) to completely ionised (green line). The energy spectra are computed with the
xillver model.

In this thesis, I explore some of the effects of including a self-consistently calculated
ionisation profile in reflection models.

However, this is not the final reflection spectrum of an accretion disc around a
black hole. The emission conveys several dynamic effects that skew in particular the
emission lines. Fig. 1.3 shows an overview of the effects that modify the emission line
profile and all of them depend on the distance of the emission point from the black
hole. In a rotating disc the line splits into a double peak profile due to Doppler shifts,
even in a non-relativistic limit. The energy of the photons emitted by the disc patches
moving towards the observer is blueshifted in the spectrum, whereas the photons from
the portion of the disc moving away from the observer are redshifted. This effect is
stronger closer to the center of the disc because the orbital velocity is higher there.
Close to the black hole, relativistic alterations dominate the line profile. Special rela-
tivity causes the beaming of the blueshifted photons, increasing the flux that arrives
to the observer. On the other side the redshifted photons experience the opposite
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1.1 Spectral Emission

0.5 1 1.5

Line profile

Gravitational redshiftGeneral relativity

Transverse Doppler shift
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Special relativity
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Figure 1.3: Sketch of how a delta line emitted at νem is distorted by the dynamic and relativistic
effects. From the top to the bottom panel it is shown the Newtonian Doppler shift, the relativistic
Doppler shift that accounts for time dilation and the relativistic beaming of the blue peak and the
redshift due to General Relativity. The bottom panel illustrates an example of the final line profile
emitted by the accretion disc. Image adapted from Fabian et al. (2000).

effect, decreasing their flux. This produces an asymmetry of the line. Special rela-
tivistic transverse Doppler shifts and general relativistic gravitational redshifts shift
the entire profile towards the lower-energy (’red’) part of the spectrum. This forms
a characteristic tail of the emission line called the ‘red wing’, which is more promi-
nent the closer the emission comes from the black hole. In the time-averaged energy
spectrum, the emission line is the average of all these effects, leading to a broadened
and skewed line profile (bottom panel in Fig. 1.3). Since the contributions to the
line depend on radius, the average is weighted by the radial profile of flux irradiating
the disc. This is usually proportional to R−β with β either calculated assuming a
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1 Introduction

certain geometry of the illuminating corona or considered as a free parameter in the
model and set by the observations. Another very important parameter is the extent
of the disc, in particular the location of its inner radius. The shape of the line profile
provides a diagnostic for this radius, and therefore the black hole spin parameter if
Rin = RISCO. The final spectral shape of the reflection component is the convolution
of the restframe reflection spectrum with the line profile if the intrinsic spectrum is
a delta line, where all the features are distorted by the dynamical and relativistic
effects.

1.1.4 Coronal Geometry

The literature presents an extensive debate about the geometry of the corona, which
is thought to be similar for AGN and hard state BHBs. The structure of this region
is important to determine the contribution of the different spectral components. The
disc and corona interact, in that the disc is thought to be the source of seed photons for
the corona, and the up-scattered photons illuminate the disc to produce the reflection
component. Thus, the geometry ‘disc + corona’ has been developed in different
flavours to justify both the spectral shape and the variability observed. I list here a
few of the most common geometry models in the literature (see Fig. 1.4):

Sandwich corona The hot corona embeds a colder accretion disc. Haardt &
Maraschi (1993) studied the radiative transfer in this geometry and showed that
soft thermal photons emitted by the cold layer are the source of cooling for the hot
electrons in the corona. On the other hand, half of the high-energy photons heat the
underlying layer of the disc. The electrons are confined close to the accretion disc by
the magnetic field in analogy to the corona of the Sun (Field & Rogers 1993). This
model produces the observed spectrum of Seyfert galaxies only when all the gravita-
tional potential energy is dissipated in the corona (Poutanen 1998). Similar caveats
have been found applying this geometry to BHBs (Dove et al. 1997).

Patchy corona This is an irregular corona composed of multiple regions spread
around the accretion disc (Haardt et al. 1994). The clumpy corona does not com-
pletely cover the disc, so that the cooling by the thermal disc photons is less efficient
than with a total covering corona. Thus, it is easier to emit hard spectra. The coro-
nal patches, active regions with geometries such as hemispheres, can be produced by
flares or coronal loops (Stern et al. 1995).

Inner flow The disc is divided into two regions: an inner hot geometrically thick
optically thin zone and an outer cold geometrically thin optically thick zone (Shapiro
et al. 1976). The outer part of the disc produces the thermalized photons that are
Comptonized by the inner flow. The reason for the transition between the two zones
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1.1 Spectral Emission

Figure 1.4: Sketch of possible geometries for the disc + corona system. From the top, Sandwich
corona: the accretion disc is embedded in the corona; Patchy corona: the corona is formed by active
regions which do not completely cover the disc; Inner flow : the corona is a geometrically thick
extension of the disc; Lamppost corona: the ultra-compact corona is placed on the disc symmetry
axis above the black hole. Image adapted from (Reynolds & Nowak 2003).

is not clear, but has been proposed to involve disc evaporation (Meyer & Meyer-
Hofmeister 1994) or other instabilities (e.g. Potter & Balbus 2017). In this configura-
tion only a portion of the thermal radiation would reach the internal corona leading
to less drastic cooling than with the sandwich geometry.

Lamppost corona In this case the corona is a point-like source placed above the
disc on its symmetry axis (Matt et al. 1991, 1992). This geometry still considers seed
photons from the accretion disc, but their cooling effect is less because of the smaller
corona, making it possible to reproduce the observed hard spectra (e.g. Duro et al.
2011). For an illuminating point-like source it is possible to self-consistently calculate
the radial emissivity profile of the accretion disc. Due to relativistic effects, this is
steeper than r−3, as is required by observations (Fabian et al. 2004; Wilkins & Fabian
2011; Miller et al. 2013). I will employ the lamppost geometry for much of this thesis,
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because it is simple enough to be computationally tractable. Physically, such a com-
pact corona may take the form of an over-density at the base of the outflowing jet
(Markoff et al. 2005; Kara et al. 2019), which we see downstream far from the black
hole via radio emission (e.g. Fender 2010).

Spectral analysis is used to measure the parameters of accreting black holes; e.g.
black hole spin, inclination and iron abundance of the disc. However, it is difficult to
measure the mass of the central black hole. The only spectral component sensitive
to the mass is the multi-temperature blackbody, but for this component the mass is
degenerate with rin, the distance to the source and the inclination angle. The reflec-
tion component depends on distances in units of the gravitational radius, which scales
with the mass of the black hole. Therefore the only way to measure the mass using
this component is by calibrating the physical length of the gravitational radius. The
X-ray timing characteristics of these systems, on the other hand, depend directly on
the physical size of the system. Hence considering the spectral and timing properties
together can provide the calibration of the gravitational radius required to measure
the mass using the X-ray signal.

1.2 Timing Properties

Another technique to study accreting black holes involves considering the time vari-
ability of the emitted radiation. In spectral analysis, the flux variations of the light
curve are averaged over the length of the observation. However, the count rate de-
tected by the telescope is not constant, but varies down to relatively short timescales,
∼ (0.01 − 10)M/M� s. This rapid variability most likely originates in the regions
close to the black hole, and therefore is a fundamental piece of information to probe
the physical properties of the black hole and the accretion disc.

Fourier analysis of X-ray time-series is a convenient tool to study this variability.
In the frequency domain accessed by such Fourier analysis, it is easier to disentangle
the different processes that contribute to the total variability. Even though Fourier
techniques suffer from some artifacts such as aliasing and windowing effects, they make
it possible to decompose the data in terms of variations on different timescales. In
the next section I describe the Fourier cross-spectrum technique, which is particularly
useful to compare the variability simultaneously taking place in different energy bands.
With this technique it is possible to reconstruct how the energy spectrum varies on
short time scales.

1.2.1 Cross-Spectrum

Let us divide an observed light curve x(t) into adjacent time-series of identical length.
A single time-series is defined as xk, expressed in counts per unit time, with N time
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bins of width dt with k = 1, ..., N . The discrete Fourier transform is defined as

Xj =
1

N

N∑
k=1

xke
i 2π jk/N (1.2)

where Xj is evaluated at each Fourier frequency νj = j/(N dt) and j = −N/2 +

1, ..., N/2. Low Fourier frequencies correspond to long timescale variability, whilst
high Fourier frequencies correspond to short timescale variability. The length of the
time-series (T = N dt) determines the lowest Fourier frequency that this technique
can probe. The highest frequency is called the Nyquist frequency and it is set by the
time resolution (dt) of the time series as νNy = 1/(2 dt).

The Fourier cross-spectrum technique compares two time-series (xk yk), which are
two of the segments of the observed light curves (x(t) y(t)), and finds the timescales
where they vary together: the cross-spectrum measures the level of variability corre-
lation between two light curves and the time lag between these variations. Using this
technique to study the variability in two simultaneous light curves in different energy
bands will tell if there are timescales that are connected between the two light curves
and how they are correlated. The cross-spectrum is defined in the Fourier domain, as

Cj = XjY
∗
j (1.3)

where the upper case letters are the Fourier transform of the light curves and the ∗

denotes the complex conjugate. Cj is a complex quantity, therefore, it defines am-
plitudes and phases as a function of Fourier frequency. It turns out that black hole
rapid variability is a stochastic process, so it is more relevant to study the average
properties than a single realization. Therefore the ensemble of cross-spectra calcu-
lated from the adjacent segments of the two initial light curves are averaged together
to obtain a single cross-spectrum of the process. It is also possible to average further
the cross-spectrum over a range of Fourier frequencies. Statistically there is no differ-
ence between the two averages, since the adjacent Fourier frequencies are statistically
independent one another as well as the adjacent light curve segments.

The amplitude of the averaged cross-spectrum isA(ν) =
√

(Re[C(ν)])2 + (Im[C(ν)])2

where Re[] and Im[] denote real and imaginary part. It represents the amount of cor-
related variability at each Fourier frequency. The amplitude due to any uncorrelated
contributions to the signal in the two light curves, such as the Poisson noise due to
counting statistics, tends to zero. The phase difference between two light curves as
a function of Fourier frequency is φ(ν) = arctan[Im[C(ν)]/Re[C(ν)]]. The phase lags
can be converted to ‘time lags’, µ(ν), by dividing by frequency µ(νj) = φ(νj)/(2πνj)

for an easier interpretation of the data. However, the phase lag is limited to the range
−π to π, so for true physical time lags exceeding ±1/(2νj), care should be taken in
the interpretation of µ. In particular, when the value is close to these limits, the
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phase lag, and hence the µ calculated from it can flip from positive to negative (or
vice versa). This arises because there is no difference between two periodic waves
that are shifted by half a period, either backwards or forwards. Therefore, when the
true time lag at a specific Fourier frequency (ν0) increases from just less to just more
than half a cycle, 1/(2ν0), or vv., the calculated time lag µ shows a large jump and
changes sign in an unphysical way. The process repeats at values of the true time
lag that are exactly an integer number of cycles larger or smaller, so multiple jumps
can be observed. This effect is called phase-wrapping and it is an artifact that arises
due to the periodic nature of the sinusoids used to decompose the signal in Fourier
analysis, similar to car wheels appearing to rotate backwards when viewed over lower
frequency frame rate.

1.2.2 Time Lags

In this Section I describe the time lags in accreting black holes starting from what is
expected in terms of the geometry that I outlined above. According to the geometry
of the system the X-ray continuum photons reflected by the disc towards the observer
have a longer path than the inverse Compton photons that travel directly to the
observer. This should produce a time lag between the light curves in the energy bands
dominated by the reflected emission and light curves dominated by the continuum
emission. The first studies of the X-ray variability in terms of the cross-spectrum
were on X-ray binaries (GX 5-1 and Cyg X-2; van der Klis et al. 1987). Miyamoto
et al. (1988) first found that in the black hole binary Cygnus X-1 ‘hard’ light curves
(extracted from high energy X-rays) lag behind the ‘soft’ light curves (extracted from
low energy X-rays). These positive lags (also called hard lags) are much larger than
what is expected from the reverberation mechanism unless the distance between the
disc and the corona is thousands of Rg (Kotov et al. 2001). Lyubarskii (1997) proposed
that these lags are instead due to propagating mass accretion rate fluctuations. In this
mechanism, independent viscosity fluctuations are produced at different radii in the
disc, where they trigger fluctuations in the mass accretion rate, and therefore in the
luminosity. The timescale of the fluctuations depends on the viscous timescale which
is a function of radius, with longer timescales at larger radii and shorter timescales
closer to the black hole. Since the matter in the accretion disc is accreting, these
fluctuations propagate towards the center, thus the variability at at each radius is the
product of the mass accretion rate fluctuations produced locally and the fluctuations
propagated from radii further out. This means that the high energy emission coming
from the the inner part of the accretion disc is characterized by both short timescale
and long timescale variability, the latter lagging the same variability observed from
the outer regions of the disc by the time it takes for the long timescale fluctuations to
propagate in. This type of lag has been observed in both stellar mass black holes (e.g.
Nowak et al. 1999) and supermassive black holes (Papadakis et al. 2001; McHardy

14



1.2 Timing Properties

et al. 2004). Following Lyubarskii (1997), detailed models have been developed to
reproduce light curves caused by propagating mass accretion rate fluctuations (Kotov
et al. 2001; Arévalo & Uttley 2006; Ingram & van der Klis 2013). These models
are computationally time consuming because they have to simulate the radial disc
structure and propagate the fluctuations at the viscous timescales. However, Ingram
& van der Klis (2013) calculate the asymptotic result of averaging an infinite number
of realizations analytically, making it possible to fit to the data (Rapisarda et al. 2016,
2017a,b).

The first hint of reverberation lags was found by McHardy et al. (2007) who discov-
ered evidence for two components in the lag vs frequency spectrum of Ark 564. This
result was confirmed by the clear detection of negative lags in 1H0707-495 (Fabian
et al. 2009). The upper panel of Figure 1.5 shows the lag of the soft energy band
relative to the hard energy band as a function of frequency in Ark 564 (Kara et al.
2013a). The lag is positive (hard lags soft) at low frequencies and negative (soft lags
hard) at high frequencies. This type of lag must come from a different process than
mass accretion rate propagating fluctuations. Since one of the interpretations of the
soft excess in the AGN spectra is connected to the reflected emission, it was imme-
diately suggested that negative lags were due to the reverberation process involving
the light crossing time between reflected photons and direct photons (Fabian et al.
2009). At long timescales the lags are dominated by the intrinsic variability of the
accretion flow, but this variability is weaker at short timescales allowing the rever-
beration to show up. This behaviour of the lag as a function of frequency has been
observed in several AGN (De Marco et al. 2013a), revealing a correlation between
the magnitude of the negative lag and the mass of the black hole. This correlation
is naturally explained by the reverberation process since the size of the system scales
with the mass.

Further investigations into the nature of these lags include the analysis of the lag
as a function of energy. This analysis involves computing the cross-spectrum of light
curves from multiple energy bands with the same reference band. This is usually
the light curve of the total energy range from which the subject light curve has been
subtracted in order to avoid the zero-lag component due to the trivial correlation
of the subject Poisson noise band with itself, which would dilute the lag (for the
step-by-step procedure see Uttley et al. 2014). The lag energy spectrum was first
studied for both the hard lag and the soft lag frequency regime in AGN. Zoghbi et al.
(2012) were the first to discover the iron Kα line feature in the lag energy spectrum
of NGC 4151. Furthermore in the same observation they found that the core of the
line lags behind the red wing of the line as expected from the reflection response of
the disc. The relativisticly broadened part of the line is emitted from the inner part
of the disc whereas its narrow core comes from the outer regions. The bottom panels
of Figure 1.5 show the lag energy spectra of Ark 564 in two frequency ranges. The
reflection feature appears only at high frequencies, whereas at low frequencies the lag
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Figure 1.5: Evolution of the lags as a function of frequency and energy in Ark 564. Top panel:
lag vs frequency between 1.2 − 4 keV and 0.3 − 1 keV. The lag starts positive at low frequencies
and becomes negative at high frequencies, suggesting two different processes. Bottom panels: lag vs
energy in the low frequency range (blue, left) and in the high frequency range (red, right), the ranges
are highlighted in the top panel. The low-frequency spectrum shows a featureless lag, whereas the
Fe Kα signature of a reflection spectrum shows up in the high-frequency spectrum indicating it is
caused by the reverberation. This confirms the two different origins of the lags. Image adapted from
Kara et al. (2013a).

energy spectrum is featureless and with a monotonic shape. This is an additional
confirmation that the two types of lag are caused by to two different processes which
need specific modelling. The iron line in the lag energy spectrum has been detected
in several Seyfery galaxies (Kara et al. 2016). Alternative explanations have also been
put forward for the soft lag. Miller et al. (2010) proposed that the X-ray source is
partially covered by distant optically thick clouds. The reverberation from material
up to a few light-hours from the central source produces the observed lags. However,
this model has difficulties to explain the Fe Kα feature in the lag spectrum. More
recently Mizumoto et al. (2018) proposed that the Fe-K lags could be produced by a
fast (0.2 c) outflowing, highly ionised wind.

In view of the expectation of similar geometry of the accretion flows onto stel-
lar mass black holes and supermassive black holes, they should show the same be-
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haviour, but at different timescales. The Fourier frequencies of the processes scale
inversely with the mass. So the high frequencies where the reverberation lag is ex-
pected (∼ 300M�/M Hz) in stellar mass black holes are very challenging to probe
even with most of the current instruments due to the high time resolution required.
Nevertheless the energy dependence of the variability has been studied analyzing the
variability amplitude. Revnivtsev et al. (1999) showed how the iron line becomes
weaker at shorter timescales because the fastest continuum variability is washed out
in the reflected emission by the finite size of the reflector. Kotov et al. (2001) noticed
a structure around the iron line energy in the lag energy spectrum of Cygnus X-1,
although it resembles an absorption-like feature. De Marco et al. (2017) analyzed
XMM-Newton data of GX 339–4 finding hints of Fe Kα reverberation, although the
poor signal to noise at high frequency did not allow a strong claim. The first evidence
of the reverberation signature in stellar mass black holes was therefore found in the
thermal reprocessing of the incident radiation by the disc. Again in GX 339–4 Uttley
et al. (2011) found that the soft (below 1 keV) photons, whose variability is linked to
the variability in the disc, lag the power-law photons with time lags of milliseconds.
This happens only at frequencies above 1 Hz. This picture is consistent with fluctua-
tions propagating through the disc to the inner corona on the viscous timescales and
photons from the corona being thermally reprocessed by the disc with delays equal
to the light travel time. De Marco et al. (2015) confirmed this result in in GX 339–4
and H1743–322 and found that the reverberation lag decreases as the luminosity of
the source increases, implying that either the reprocessing region or the illuminating
region moves gradually closer the black hole. It is worth noting that the thermal
reprocessing time may not be negligible due to the many scattering events needed to
thermalise the radiation. This would contribute to the observed lag, which is then
not only caused by the light crossing time. The reprocessing of the reflected emission
to create the reflection features involves fewer scatterings therefore it is less likely to
be an important factor in the lags.

In June 2017 the Neutron star Interior Composition Explorer (NICER Gendreau
et al. 2016) was launched with the X-ray Timing Instrument on board, which has an
unprecedentedly high time resolution (40 ns). Together with the capability of col-
lecting large numbers of photons and a very good telemetry rate, this instrument is
able to access the very short timescales of the reverberation lags with good spectral
resolution and high signal to noise. In early 2019 Kara et al. (2019) found a clear
detection of the iron Kα line in the lag energy spectrum of MAXI J1820+070. Fig-
ure 1.6 shows that the iron line feature emerges at the frequencies corresponding to
the negative lag in the lag vs frequency spectrum for different observations (different
colors). It is worth noting that the lag vs energy spectra also show the feature of the
thermal reverberation below 1 keV. So far the behaviour in black hole binaries seems
remarkably similar to that which has been observed in AGN.
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Figure 1.6: Evolution of lags as a function of frequency and energy in MAXI J1820+070. Left
panel: lag vs frequency spectrum between 0.5−1 keV and 1−10 keV energy bands in six subsequent
observations during the 2018 outburst (the colors code the increasing hardness ratio from red to
fuchsia). The points are connected with a Bezier join to guide the eye. Positive lags (hard band
follows the soft band) dominate at lower frequencies, negative lags at high frequencies. Right panels:
lag vs energy in the frequency ranges indicated by the horizontal lines in the left panel (only negative
lag frequencies are considered). All six observations show an Fe Kα lag due to reverberation. The
horizontal line indicates the minimum lag of the first observation. Images from Kara et al. (2019).

1.2.3 Modelling

In the previous section I presented the phenomenology of the lags observed in stellar
mass and supermassive black holes. Even though it seems clear that there are two dis-
tinct types of lags which dominate in two different time scale regimes, they probably
both contribute in both regimes and certainly the transition is not sharp. Therefore,
in order to constrain the characteristics of these systems we model the intrinsic lags of
the continuum emission together with the reverberation lags. The following chapters
in thesis present the reltrans model which is able to account for both types of vari-
ability. In this section I introduce the concept of the model and the technique that has
been used to developed it. Combining mass accretion rate fluctuations propagating
through the accretion flow and the reverberation process, accounting self-consistently
for the energy and timing emission is extremely challenging in terms of computing
time. The idea behind reltrans is to use a simple analytic prescription to account
for the hard lag. In previous work, the variability of the inverse Compton compo-
nent has been described as a variability of the normalisation at constant spectral
slope. However, if the slope of this component fluctuates as well as the normalisa-
tion, this can produce an intrinsic lag (see Chapter 2) with the characteristics of the
hard lags observed in the data. Furthermore every patch of the disc sees a slightly
different inclination of the illuminating continuum causing non-linear effects both in
the time-averaged energy spectrum and in the lag energy spectrum. The pivoting of
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the continuum component is due to the heating and cooling of the corona caused by
fluctuations in the mass accretion rate and the Compton cooling in the corona, the
former caused by the propagating fluctuations in the disc that eventually reach the
corona, the latter by photons coming directly from the ‘cold’ outer disc.

The best way to account for the variations in the disc in response to these slope
variations is through the transfer function. This is the Fourier transform of the time-
energy response function, which itself is the dependence on time and energy of the
radiation emitted by the disc in response to a delta-function flash of the incident high
energy cut-off power-law radiation from the illuminating source. So, this technique
combines the time-dependent response of the disc with its energy-dependent response.
The former accounts for the energy-averaged response of an accretion disc to a flash
of illuminating radiation, computing the geodesics of the photons from continuum
source to each patch of the disc and from there to the observer. The latter is the
time-averaged spectral response of the disc that accounts for the emission line profile
of each patch of the disc, resulting in the relativistically broadened line profile studied
in Section 1.1.3. The inner part of the disc responds before the outer part and the
emitted line profile is broader because of the stronger relativistic effects. The response
of the outer part comes later and the line profile is narrower. Hence, at low Fourier
frequencies we see the response of all the disc, while at high Fourier frequencies we look
at the inner parts of the disc and the outer parts are filtered out. Cackett et al. (2014)
studied the detailed response of the iron Kα line as a function of frequency. The shape
of the transfer function depends on the characteristic parameters of the system such
as the mass and spin of the black hole and the geometry of the accretion disc. In this
thesis we use this mathematical tool to describe analytically how our prescription for
the hard lags affects the time and the energy dependence of the reflection component.
The time dependence of the observed reflection spectrum is expressed in terms of
a convolution, which becomes a multiplication in the Fourier domain. Moreover,
Taylor expanding both continuum and reflection components keeps the mathematical
expression of the emitting radiation as a function of energy and time linear and makes
it possible to describe the pivoting effect in terms of a sum of transfer functions.
This procedure is mathematically described in the following chapters and it has the
advantage of maintaining an analytic description of the model.

1.3 Thesis Outline

The scope of this thesis is to improve our current understanding of accreting black
holes using spectral timing analysis of the X-ray reflection. In the following chapters I
describe how we pursued this objective, particularly focusing on X-ray reverberation,
which allows parameters of the system to be measured such as the mass of the black
hole.
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Chapter 2 presents the mathematical prescription to account for the pivoting hard-
ness of the continuum emission and shows how it can produce the hard lags observed
in Cygnus X-1. Furthermore, it demonstrates how these hardness fluctuations affect
the reverberation lags. The proof-of-principle fit to the observed Cygnus X-1 corre-
lated variability shows good agreement between the data and the model, although
some residual structures are still present.

Chapter 3 presents the fully relativistic reltrans model, which calculates the
reverberation lags and correlated variability amplitudes in an arbitrary Fourier fre-
quency range. The model includes a self-consistently calculated radial ionisation pro-
file of the disc and accounts for a different emission angle and high energy cut-off in
every patch of the disc. It also includes a proper treatment of the telescope response
matrix and the Galactic absorption which can affect particularly the soft part of the
time lag spectrum.

Chapter 4 presents a mass measurement of the Cygnus X-1 black hole using the
X-ray reverberation modelled with reltrans. The model includes the non-linear ef-
fects due to the power-law pivoting in order to make it possible to fit a wider range of
Fourier frequencies. The best fit favours the model with the more physical assump-
tion of a radial ionisation profile instead of constant ionisation in the disc. The fit
constrains the black hole mass for different assumptions made on the radial ionisation
profile and all the values are compatible with the dynamical measurement within 3
σ. Setting a realistic upper limit on the ionisation peak based on the illuminating
flux and the density of the disc leads to mass values that are closer to the dynamical
measurement.

Chapter 5 presents a reltrans analysis of Mrk 335. We first model the reverbera-
tion lag and the time-averaged spectrum simultaneously, which we show can constrain
the mass of the central supermassive black hole. The model favours a lower mass (a
few million Solar masses) than what has been measured with other techniques (such
as optical reverberation mapping). However, when we also consider the correlated
variability amplitudes the model is unable to fit the characteristic reverberation fea-
tures that show up in the data, and can not constrain the black hole mass. In order to
solve this issue we plan to experiment with more realistic geometries in future versions
of the model.
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Abstract

Accreting black holes show characteristic reflection features in their X-ray spectrum,
including an iron Kα line, resulting from hard X-ray continuum photons illuminating
the accretion disk. The reverberation lag resulting from the path length difference
between direct and reflected emission provides a powerful tool to probe the innermost
regions around both stellar-mass and supermassive black holes. Here, we present
for the first time a reverberation mapping formalism that enables modeling of en-
ergy dependent time lags and variability amplitude for a wide range of variability
timescales, taking the complete information of the cross-spectrum into account. We
use a pivoting power-law model to account for the spectral variability of the contin-
uum that dominates over the reverberation lags for longer time scale variability. We
use an analytic approximation to self-consistently account for the non-linear effects
caused by this continuum spectral variability, which have been ignored by all pre-
vious reverberation studies. We find that ignoring these non-linear effects can bias
measurements of the reverberation lags, particularly at low frequencies. Since our
model is analytic, we are able to fit simultaneously for a wide range of Fourier fre-
quencies without prohibitive computational expense. We also introduce a formalism
of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally
avoids some mistakes/inaccuracies previously common in the literature. We perform
proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.



2 Black hole reverberation

2.1 Introduction

In black hole X-ray binaries (BHBs) and active galactic nuclei (AGN), the central
black hole is thought to be fed, at least in part, by an optically thick accretion disc
that radiates a multi-temperature blackbody spectrum (Shakura & Sunyaev 1973).
This disc emission peaks in soft X-rays for BHBs and optical soft X-rays for AGN. In
both cases, a different component dominates the hard X-ray radiation, which is often
described by a cut-off power-law. This continuum emission is thought to originate
from the Compton up-scattering of comparatively cool photons by hot electrons lo-
cated in an optically thin (τ ∼ 1) region close to the black hole, often referred to as
the corona (Eardley et al. 1975; Thorne & Price 1975). Some fraction of these contin-
uum photons illuminate the disc to be scattered into our line-of-sight, giving rise to a
characteristic reflection spectrum that imprints features onto the observed spectrum
including a prominent iron Kα fluorescence line at ∼ 6.4 keV and a reflection hump
peaking at ∼ 30 keV. This reflection spectrum provides a powerful diagnostic for the
dynamics of the accretion disc, since it is distorted by the gravitational pull of the
black hole and Doppler shifts from rapid orbital motion (Fabian et al. 1989). Rapid
variability of the system provides another powerful diagnostic, particularly because
any fluctuations in the continuum should be followed, after a light-crossing delay, by
similar fluctuations in the reflection spectrum. Characterization of these reverbera-
tion lags provides another tool to map the accretion disc.

Reverberation lags can be probed by studying the Fourier frequency dependent
time lags between different energy bands, since bands with a greater contribution from
reflection should slightly lag those dominated by the continuum. The time lags can
be calculated from the argument of the cross-spectrum between each energy channel
and a common reference band (Uttley et al. 2014). It has long been known that
hard photons lag soft photons for comparatively low Fourier frequencies (below ∼
300[M�/M ] Hz), both in BHBs (e.g. Miyamoto & Kitamoto 1989; Nowak et al. 1999)
and AGN (e.g. Papadakis et al. 2001; McHardy et al. 2004; Epitropakis & Papadakis
2017). However, these lags do not show any reflection features in the lag-energy
spectrum and for this reason they are thought to be associated with intrinsic variation
of the continuum spectral shape. This is commonly interpreted as propagation of mass
accretion rate fluctuations towards the black hole on a viscous timescale (Lyubarskii
1997; Kotov et al. 2001; Arévalo & Uttley 2006; Ingram & van der Klis 2013; Rapisarda
et al. 2016). This intrinsic continuum lag reduces with increasing Fourier frequency,
leaving the opportunity to detect a reverberation signature at high frequencies. Such
lags have been detected for AGN, first in the form of soft-excess emission (∼ 0.2−0.9

keV) lagging the continuum dominated band (∼ 1 − 4 keV) (Fabian et al. 2009),
and later in the form of an iron K feature in the lag-energy spectrum at ∼ 6.4 keV
(Zoghbi et al. 2012; Kara et al. 2016). The latter is the cleanest measurement, since the
proposed reflection origin of the soft X-ray excess in AGN is not universally accepted,
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with alternative models invoking an extra Compton up-scattering component (Page
et al. 2004; Done et al. 2012), while it is very difficult to reproduce the iron K feature
in the lag-energy spectrum without using the reflection mechanism. Reverberation
lags have not yet been clearly detected for BHBs (even though De Marco et al. 2017,
recently found hints of FeK reverberation), since the smaller size of these systems
leads to the lags being shorter (∼ millisecond) and only dominant over the continuum
lags for higher Fourier frequencies. However, Uttley et al. (2011) and De Marco et al.
(2015); De Marco & Ponti (2016) found that the disc blackbody emission lags the
continuum emission in GX 339−4 and H1743−322 by a few milliseconds, which they
attribute to reprocessed photons being re-emitted as thermalised radiation.

The reverberation signature also depends on Fourier frequency, since fast vari-
ations in the driving continuum are washed out in the reflected emission by path
length differences between photons reflecting from different parts of the disc. This
means that the iron K feature in the lag-energy spectrum should be broader at higher
Fourier frequencies, since rapid variability is washed out for reflection from all but
the smallest, most rapidly rotating and gravitationally redshifted disc radii. Indeed,
Zoghbi et al. (2012) found just this for the iron K lags in NGC 4151. Further infor-
mation is contained in the variability amplitude of the reflected emission relative to
the continuum. Revnivtsev et al. (1999) and Gilfanov et al. (2000) found that the
relative variability amplitude of the reflected emission in Cygnus X-1 decreases at
higher Fourier frequencies, as expected (see Section 2.4).

An elegant way to model reverberation is to calculate a response function, defined
as the energy and time dependent reflected emission resulting from a δ−function flash
in the driving continuum (e.g. Campana & Stella 1995; Reynolds et al. 1999; Kotov
et al. 2001). If the disc properties are approximately independent of the irradiating
flux, the reflected flux responding to an arbitrary driving continuum signal is given by
a convolution between the driving signal and the response function. The convolution
theorem therefore means it is most convenient to consider the Fourier transform of the
response function, referred to here as the transfer function (e.g. Oppenheim & Schafer
1975). This function, which can in principle be constrained from energy and Fourier
frequency dependent amplitude and phase of the observed cross-spectrum, contains
information about the accretion geometry. However, the dominance of continuum
lags at low frequencies makes this challenging. Authors have therefore previously
modelled the lags only at high Fourier frequencies (e.g. Cackett et al. 2014), used an
ad hoc prescription to account for the continuum lags (Emmanoulopoulos et al. 2014;
Epitropakis et al. 2016), or only considered amplitude and not phase (Gilfanov et al.
2000). Progress has been made in modelling the intrinsic continuum lag with prop-
agating fluctuations and taking account of reverberation lags in specific geometries
(Wilkins & Fabian 2013; Wilkins et al. 2016; Chainakun & Young 2017). However
this is computationally expensive, particularly for the purpose of fitting lag-energy
spectra for a large range of Fourier frequencies. Here, we present a simple analytic
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way to model the continuum lags, and self-consistently take into account the impact
of those lags on the reverberation signal. We model the continuum lags as perturba-
tions in the continuum power-law index and account for the changes in the reflection
spectrum caused by these perturbations with a first order Taylor expansion. A similar
pivoting power-law model was considered by Poutanen (2002), but he assumed the
energy dependent reflection to continuum ratio to be independent of the illuminated
continuum. Our formalism allows us to fit to data, considering lags and amplitude
for a large range of Fourier frequencies without prohibitive computational cost.

In Section 2.2 we introduce the cross-spectral method that we use to compute the
model and analyse the data. We highlight some common inaccuracies that can occur
with similar techniques, and show that such inaccuracies can be easily avoided by
modelling real and imaginary parts of the cross-spectrum rather than the amplitude
and phase. In Section 2.3, we present our model formalism. In Section 2.4, we explore
our model parameters, focusing on the importance of the non-linear effects resulting
from variations in the energy dependence of the reflection disc caused by variations in
the hardness of the driving continuum. In Section 2.5, we perform proof of principle
fits to Cygnus X-1 data.

2.2 Cross-Spectrum Method

This Section briefly reviews the spectral timing techniques previously used, before
describing our technique that allows amplitude and phase as a function of energy and
frequency to be modelled. We also describe how our method naturally corrects some
mathematical inaccuracies often encountered in the literature.

First we define a set of complex cross-spectra 〈C (E, ν)〉 as a function of energy
and frequency

〈C (E, ν)〉 = 〈S (E, ν) F ∗ (ν)〉, (2.1)

where S (E, ν) is a set of Fourier transforms of the signal light curve in different en-
ergies E, and F (ν) is the Fourier transform of the signal in an arbitrary reference
band. Starred quantities and angle brackets denote the complex conjugate and en-
semble averaging respectively. The phase lag for each energy band relative to the
reference band is

φ(E, ν) = arg [〈C (E, ν)〉] . (2.2)

Many works have focused on analysing the phase-lag with reverberation models (Ko-
tov et al. 2001; Poutanen 2002; Zoghbi et al. 2011; Emmanoulopoulos et al. 2014;
Wilkins et al. 2016; Chainakun & Young 2017). Although these studies constrain
model parameters by fitting either lag-frequency or lag-energy spectra (sometimes
both), they all neglect the information included in the cross-amplitude.
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2.2 Cross-Spectrum Method

With a suitable choice of normalization, the variability amplitude (in units of
absolute rms) as a function of energy and frequency,

√
〈|S (E, ν) |2〉, can be calculated

directly (Revnivtsev et al. 1999) by measuring the power spectrum averaged over the
frequency range ∆ for each energy channel√

〈|S (E, ν) |2〉 =
√

[〈P (E, ν)〉 − Pnoise (E)] ∆ (2.3)

where the P (E, ν) and Pnoise (E) are respectively the power spectra and Poisson noise
measured for each energy channel (see e.g. van der Klis 1989; Uttley et al. 2014). The
correlated variability amplitude, a related quantity, can be calculated with higher
signal-to-noise using the covariance spectrum (Wilkinson & Uttley 2009; Uttley et al.
2014)

|〈G(E, ν)〉| =
√

∆ |〈C (E, ν)〉|√
〈P (ν)〉 − Pnoise

= γc(E, ν)
√
〈|S (E, ν) |2〉, (2.4)

where γc(E, ν) is the coherence between each energy channel and the reference band,
and 〈P (ν)〉 and Pnoise are respectively the power spectrum and Poisson noise con-
tribution for the reference band (in units of absolute RMS squared per Hz) 1. So,
the covariance is the correlated variability amplitude, which is related to the variabil-
ity amplitude through the coherence function (Vaughan & Nowak 1997). Since the
coherence function is often close to unity for accreting compact objects (e.g. Nowak
et al. 1999), the covariance gives a good estimate of the variability amplitude, and
its error bars are smaller if a high count rate reference band is chosen (Wilkinson &
Uttley 2009).

Many authors have modelled the variability amplitude as a function of energy
and frequency (frequency resolved spectroscopy : e.g. Gilfanov et al. 2000; Axelsson
et al. 2013), either using the power spectrum or the covariance. This approach, as
with the lag modelling, provides strong constraints, but now neglects the information
contained in the phase lags. Although past works have discussed both amplitude
and phase together in the context of reverberation (e.g. Uttley et al. 2011; Kara
et al. 2013b), none so far have used quantitative fitting of models for the energy and
frequency dependent amplitude and phase to data.

We consider both the amplitude and phase jointly by considering the complex
covariance, defined as

〈G (E, ν)〉 =

√
∆ 〈C(E, ν)〉√
〈P (ν)〉 − Pnoise

. (2.5)

We fit models to data for the real and imaginary parts of 〈G (E, ν)〉 as a function of
energy, for a number of discrete frequency ranges (following Rapisarda et al. 2016;

1Pnoise does not have the angle brackets because it is estimated theoretically from the assumption
of pure Poissonian counting noise.
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2 Black hole reverberation

Ingram et al. 2016). Fitting for real and imaginary parts rather than amplitude and
phase naturally avoids some mistakes and inaccuracies commonly found in the lit-
erature. This is because the linearity inherent in the Fourier transform operation is
preserved. For instance, in order to fit to data, the model must be adjusted for the
instrument response. This is a trivial operation in our case, involving simply convolv-
ing real and imaginary parts of the model complex covariance with the instrument
response, meaning that the model can simply be loaded into e.g. xspec as if it were a
spectral model (in order to do this correctly it is important to choose a normalization
such that the modulus of the Fourier coefficients is in units of absolute rms). For the
amplitude and phase it is not possible to apply the same procedure. In particular
with the amplitude, it has become commonplace in the literature to account for the
instrument response by convolving the model for

√
〈|S (E, ν) |2〉 with the instrument

response. We show in Appendix A.1 that this is mathematically incorrect, unless
φ(E, ν) = 0 (which is often approximately true, but non-zero phase lags are of phys-
ical interest and can in practice be as large as 180◦ e.g. Cygnus X-2: Mitsuda &
Dotani 1989). If there would be a need to fit directly for phase and/or amplitude,
the correct procedure would be to convolve real and imaginary parts of the complex
covariance (or cross-spectrum) with the instrument response and then compare the
modulus and the argument of this ‘folded’ complex covariance (or cross-spectrum) to
amplitude and phase measured from the observed data.

Another advantage of our method is that 〈G (E, ν)〉 can be easily modelled as the
sum of multiple spectral components. Although it has become commonplace in the
literature to model 〈|S (E, ν) |〉 as a sum of components, this is not mathematically
correct in general, since the components should really be complex quantities summed
as vectors on the complex plane (see Appendix A.1). Therefore summing spectral
components of the amplitude is only appropriate if the phase difference between all
complex components is zero. Kotov et al. (2001) point out that the error is small if one
component is small compared with the other, but this is often not the case. Similarly,
multiple components are often required to model the observed lags. For example, one
component may contribute the continuum lags and the other the reverberation lags.
We note that it is mathematically incorrect to simply add the lags of two different
spectral components, even in a small angle approximation. There are many instances
in the literature where it is not clear whether or not this mistake has been made
(e.g. Poutanen 2002; Zoghbi et al. 2011; Emmanoulopoulos et al. 2014); although
Epitropakis et al. (2016) explicitly show that their treatment is mathematically correct
in the framework of the linear transfer function model they employ (lags associated
with separate additive spectral components, as defined in Appendix A.1, are not
calculated in their treatment). These difficulties are naturally avoided for our method
(see also Rapisarda et al. 2016; Ingram et al. 2016).
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2.3 Model Formalism

We consider emission from two main components: a continuum cut-off power-law
spectrum emitted by a point-like source (this could approximately represent a spec-
trum due to inverse-Compton scattering), and the same radiation reflected from the
disc (or rather scattered in the disc atmosphere). We do not consider intrinsic ther-
mal disc emission, under the assumption that this peaks outside of our considered
energy range (> 3 keV). We first describe the two components separately and then
we consider them together to probe the non-linear effects resulting from variability
of the continuum shape. In this section we define the theoretical model we use to
describe the data. Therefore we drop the angle brackets and we can write |S (E, ν) |
as a prediction of

√
〈|S (E, ν) |2〉. In the whole paper E refers to the photon energy

seen by the observer and Eem to the energy emitted in the local frame co-moving with
the disc plasma.

2.3.1 Continuum

The continuum emission is due to photons that are Compton up-scattered by hot
electrons. In the case of the continuum emission we consider E = Eem. This is
a relatively crude approximation that is routinely made in the literature, since the
continuum is almost featureless (apart from the high energy cut-off) and therefore the
energy shifts are less important than the reflection spectrum (although see Niedźwiecki
et al. 2016, for a discussion on this point). The spectrum of this emission can be
described as a power-law, cut off at energy Ecut, that varies in time as

D (E, t) = A (t)E−Γ+β(t)e−
E/Ecut . (2.6)

D expresses the specific photon flux of the continuum at the observer, and we consider
the normalization A (t) and the power-law index −Γ+β (t) to both be time dependent.
Ecut could also be variable in general, but for simplicity we assume this to be constant.
We also note that Eq. 2.6 differs somewhat at high energies from the true shape
of a spectrum generated through Compton up-scattering of photons by a thermal
population of electrons (e.g. Zdziarski et al. 2003), but will suffice for our purposes.

Fluctuations in the normalization and the power-law index could be due to, e.g.
fluctuations of the mass accretion rate in the disc, or variation in the temperature of
the Comptonising region. Another way to produce these fluctuations is through the
rising of compact magnetic flares from the accretion disc (Poutanen & Fabian 1999),
although the observed linear rms-flux relation rules out a simple model in which these
flares are statistically independent (Uttley et al. 2005).

Here, we simply use Eq. 2.6 as a mathematical model to describe what varies with
time in the continuum emission. This model was briefly considered by Kotov et al.
(2001) who noted the observed phase lags (in Cygnus X-1) are not consistent with a
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2 Black hole reverberation

simple scenario in which β(t) ∝ A(t); instead there must be a delay between β(t) and
A(t) oscillations and this was explored in more detail by Körding & Falcke (2004)
(also see Shaposhnikov 2012; Misra & Mandal 2013, for similar models applied with
different purpose).

We use the lamppost geometry (Matt et al. 1992) in which the continuum is
emitted isotropically by a point source situated on the black hole spin axis and with
a stationary, cylindrically symmetric thin prograde disc in the equatorial plane. This
drastically simplifies our calculations.

2.3.2 Reverberation

Some fraction of the continuum photons are reflected from the disc into our line of
sight. Suppose the ionization structure of the disc does not change much on short
timescales. Then the reflection spectrum observed from a patch of the disc of area
subtending a solid angle according to the observer of dΩ (r, φ), where coordinates (r, φ)

are respectively disc radius and azimuth, is

dR(E, t|r, φ) =ε (r) g3 (r, φ)A
(
t− τ(r, φ)

)
R
(
E/g(r, φ)|Γ− β (t− τ(r, φ))

)
dΩ. (2.7)

The reflection energy spectrum varies with time because the incident continuum ra-
diation does. In Eq. 2.7, R (E/g|Γ− β) represents the plasma restframe reflection
energy spectrum (in units of specific flux) emerging from the X-ray illuminated disc at
coordinate (r, φ) and g (r, φ) ≡ E/Eem is the blue shift resulting from Doppler & rel-
ativistic effects. The factor g3 (r, φ) accounts for Doppler boosting, and gravitational
redshift of photons travelling from disc to observer, while ε (r) is the geometrical cor-
rection for the flux of photons travelling from source to disc (both g and ε are defined
in the Appendix A.2). In Eq. 2.7, and throughout this paper, we express distances in
units of Rg = GM/c2. The observed variations of the normalization and the power-
law index of the continuum radiation are delayed by an interval τ (r, φ). This is the
time difference between the reflected and the direct signals reaching the observer (see
Appendix A.2). A given value of τ defines iso-delay curves on the disc that the ob-
server sees to be simultaneously illuminated with the same continuum normalization
A and power-law index −Γ + β. This is the only correction we apply to the incident
emission, so we ignore that every radius of the disc sees a different energy shift in
the continuum energy spectrum due to gravitational redshift or blueshift, causing a
different incident flux and power-law cut-off for every radius of the disc. We use the
model xillver (García & Kallman 2010; García et al. 2013a) to calculate R. This
model calculates the reflection spectrum by solving the equations of radiative trans-
fer, energy balance, and ionization equilibrium in a Compton-thick, plane-parallel
medium, being irradiated by a cut-off power-law spectrum.
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The observed reflection spectrum can be calculated by integrating Eq. 2.7 over
the entire disc surface. This can be simplified greatly by ignoring variations in the
power-law index, i.e. setting β = 0. In this case, the variations in both the contin-
uum and reflected radiation are linear and we can therefore calculate the observed
reflection spectrum time series by convolving the restframe spectrum time series with
the response function. In this case, we can write

R (E, t) = A (t)⊗ w (E, t) , (2.8)

where the operation ⊗ denotes a convolution in the time domain (see Appendix A.3
for the definition) and w(E, t) is the response function. Here, we use a simplified
calculation of the response function employing the Kerr metric to calculate the energy
shift as a function of r and φ, but using a flat spacetime for calculating the light travel
time of both continuum and reflection photons. In this case, dΩ = r dr dφ cos (i) /D2,
where i is the inclination angle (defined as the angle between the observer’s line-of-
sight and the disk normal) and D is the distance to the observer. We can therefore
write

w (E, t) =

∫ 2π

0

∫ rout

rin

K (r) g3 (r, φ) δ (t− τ (r, φ))

R (E/g(r, φ)|Γ) r dr dφ, (2.9)

where K (r) ≡ ε (r) cos (i) /D2. A simple example of such a response function is
reported in Fig. 2.1, where R is a δ−function at 6.4 keV. Although this is an over-
simplification of the restframe spectrum, it allows us to see the modifications to a
narrow emission line as a function of time and energy. A more realistic scenario
(Fig. 2.2) is when R is calculated using xillver. The response function is drawn in
the central panels of both the two figures, while the sides panels represent the time
averaged spectrum (right side panels) and impulse-response function i.e. the response
function integrated over energy (bottom panels). We will describe these plots in detail
with all the parameters used to compute w (E, t) in Section 2.4.

With the response function formalism we are able to write the time dependence of
the observed reflection spectrum in terms of a convolution, which by the convolution
theorem corresponds to a multiplication in the Fourier domain. The time dependence
of the reflection spectral shape arises entirely due to the response function which
provides the corrections to the restframe energy spectrum. The linearity assumption
(i.e. β = 0) has been used for most previous reverberation mapping studies (e.g.
Cackett et al. 2014; Emmanoulopoulos et al. 2014; Epitropakis et al. 2016). In the
following section, we introduce for the first time a non-linear effect (i.e. β 6= 0).

2.3.3 Non-linear effects

In the previous Section we set β = 0 as has been done in the literature. This means
that the response function has been calculated assuming there are no phase lags asso-
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Figure 2.1: Central panel: Response function calculated for three different values of rin of the disc:
1.2Rg (blue), 10Rg (green), and 50Rg (red). For all three functions we consider a disc with i = 45◦

and rout = 106Rg illuminated by a flash of emission from a point like source at height h = 10 rg
above a black hole with spin a = 0.998. Here R = δ (E − 6.4 keV). Right panel: Time integrated
spectrum (i.e. line profile). Bottom panel: Energy integrated flux (i.e. impulse response function).

Figure 2.2: Central panel: Response function for a disc with i = 45◦, rin = 10 rg, and rout = 106Rg

illuminated by a flash from a point like source at height h = 10Rg above a black hole with spin
a = 0.998. Here R is calculated using xillver with the parameters specified in the text. Right
panel: Time integrated spectrum (i.e. energy spectrum). Bottom panel: energy integrated flux (i.e.
impulse-response function).
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ciated with the continuum. However, neither AGN nor BHBs show any feature in the
lag spectrum indicative of reverberation lags for frequencies below ∼ 300[M�/M ] Hz,
with the lag spectrum instead dominated by featureless continuum lags (e.g. Kotov
et al. 2001; Walton et al. 2013).

We model non-linear variation of the continuum spectrum with a variation of the
power-law index; i.e. β 6= 0. We can see from Eq. 2.7 that the shape of the reflection
spectrum now depends on time not just because of the response function, but also
because it depends on the variable power-law index. Therefore Eq. 2.7 becomes non-
linear for β 6= 0 and the simple transfer function formalism is not useful any more.
We can, however, linearise. Following Kotov et al. (2001), we can Taylor expand the
continuum spectrum to get

D (E, t) ' A (t)E−Γe−
E/Ecut [1 + β (t) lnE] , (2.10)

where we keep terms up to first order. We can take this further, and also Taylor
expand the restframe reflection spectrum

R (Γ− β (t) |E) ' R (E|Γ)− β (t)
∂R (E|Γ)

∂Γ
, (2.11)

where we compute ∂R/∂Γ numerically. We explicitly test if it is reasonable to ignore
higher order terms in the Taylor expansion in Appendix A.3. Since these expressions
are both linear, we can once again employ the response function formalism using
Eq. 2.11 to obtain a second response function (i.e. first order approximation whereas
w is the zero-order approximation):

w1 (E, t) =

∫ 2π

0

∫ rout

rin

K (r) g3 (r, φ) δ (t− τ (r, φ))

R (E/g(r, φ)|Γ2)−R (E/g(r, φ)|Γ1)

Γ2 − Γ1
r dr dφ, (2.12)

where Γ2 = Γ + ∆Γ/2, Γ1 = Γ− ∆Γ/2 and ∆Γ sets the Γ range where the variation of
the restframe reflection spectrum as a function of Γ is supposed to be linear. To keep
the linearity even after the Fourier transform we define B (t) = A (t)β (t). Since β
is arbitrary, we are free to introduce the more useful arbitrary variable B. The total
emitted spectrum is simply S(E, t) = D(E, t) + R(E, t) and its Fourier transform
after the linearization can be written as

S (E, ν) =A (ν)
[
E−Γe−

E/Ecut +W (E, ν)
]

+B (ν)
[
E−Γe−

E/Ecut lnE −W1 (E, ν)
]
. (2.13)

Here,W andW1 are the transfer functions i.e. Fourier transform of the response func-
tion. Since the equation is linear in time the convolution converts into a multiplication
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in the frequency domain. We see the light-crossing lags are accounted for in Eq. 2.13
by the transfer functions, and the phase difference between A and B at each frequency
introduces a continuum lag (the explicit derivation of Eq. 2.13 is in Appendix A.3).
We calculate the model complex covariance G(E, ν) by multiplying S(E, ν) (Eq. 2.13)
with the complex conjugate of the Fourier transform F (ν) of an arbitrary reference
band and dividing by its modulus. In the final expression of the complex covariance,
we define the phase angles φA(ν) = arg[A(ν)F ∗(ν)] and φB(ν) = arg[B(ν)F ∗(ν)].
We also define α(ν) =

√
∆|A(ν)| and γ (ν) = |B (ν) |/|A (ν) |. The model complex

covariance then becomes

G (E, ν) = α (ν)

[
eiφA(ν)

[
E−Γe−E/Ecut +W (E, ν)

]
+

γ (ν) eiφB(ν)
[
E−Γe−E/Ecut lnE −W1 (E, ν)

] ]
. (2.14)

Therefore, for each Fourier frequency considered, we model the continuum variation
with four arbitrary parameters: α (ν), γ (ν), φA (ν) and φB (ν). In the fits, these
parameters are constrained by the data, but due to their arbitrary nature they do
not constrain any of the physical parameters in our model. This does not affect
our conclusions on the reflection parameters, which are constrained by the spectral
correlations in the data described by our model. In principle, we could recover from
these parameters the Fourier transform of β (t). However, in practice this involves a
deconvolution (B(ν) = A(ν) ⊗ β(ν)), which requires knowledge of the higher order
variability properties of A(ν) and B(ν) (Körding & Falcke 2004), which we do not
constrain in our modelling. Since this is simply a mathematical model however, β(t)

is of no more physical interest than γ(ν), which can easily be constrained from data.
To fit to the data Eq. 2.14 should be convolved with the instrument response matrix
converting energies E into channel numbers I. Therefore the final expression of the
complex covariance model is

G(I, ν) = α(ν)
[
eiφA(ν)Z(I, ν) + γ(ν)eiφB(ν)Z1(I, ν)

]
, (2.15)

where Z(I, ν) and Z1(I, ν) are respectively the convolution of Z(E, ν) = E−Γe−E/Ecut+

W (E, ν) and Z1(E, ν) = E−Γe−E/Ecut lnE −W1(E, ν) with the instrument response
(see Appendix A.4 for a demonstration that convolving the complex covariance with
the response is equivalent to the actual process where we cross Fourier transforms
of the convolved time series). Note that any additive/multiplicative model (such as
line-of-sight absorption) should be applied before the convolution operation, as shown
in the previous section and in Appendix A.1. We implement this by multiplying the
real and imaginary part of the complex covariance with the absorption component
directly and then convolving with the instrument response.

32



2.4 Model Parameter Exploration

2.4 Model Parameter Exploration

In this Section we explore the parameter space of our model. Although in the following
Section we will use real and imaginary parts of the complex covariance to fit to data,
here we consider time lags and variability amplitude to explore the parameter space,
since these are more intuitive. We can consider two main groups of model parameters:
those that govern the response function and therefore the reverberation lags, and those
that govern the continuum lags. Further parameters govern the restframe reflection
spectrum, which we only briefly discuss but refer the interested reader to García et al.
(2013a). Here, we first summarise the response function parameter dependencies and
then concentrate on the continuum parameters. We then analyse the importance of
accounting for the non-linear effects caused by fluctuations in the reflection energy
spectrum.

2.4.1 Response function

The response function for a lamppost geometry depends on the height h of the point
source, the inclination angle i, the inner (rin) and the outer (rout) radius of the disc,
the dimensionless spin parameter a and the massM of the black hole. The parameter
dependencies of such a response function have already been extensively explored in
the literature (Cackett et al. 2014; Emmanoulopoulos et al. 2014). Therefore, here we
only briefly explore the transfer function and refer the interested reader to previous
papers for more detail. In Fig. 2.1, we show the response function assuming that the
restframe reflection spectrum is simply a δ−function iron line at 6.4 keV. In Fig. 2.2
we instead use xillver to calculate the restframe reflection spectrum, setting the iron
abundance AFe = 1, ionisation parameter log ξ = 3.1, cut-off energy of the incident
power-law Ecut = 300 keV and reflection fraction to 1.0.

For both figures, we set i = 45◦, h = 10, rout = 106 and a = 0.998. Since we
represent time in units of Rg/c, Fig. 2.1 and Fig. 2.2 are independent of black hole
mass. In Fig. 2.1 blue, green and orange represent an inner radius of rin = 1.2, 10

and 50 respectively, while Fig. 2.2 shows the rin = 10 case only. The central panels
show the response function (with shades representing flux), the bottom panels show
the impulse response function, and the right hand panel shows the time-averaged line
profile. The time axis is defined such that the δ−function flash in the continuum
reaches the observer at a time of zero Rg/c. After the continuum flash, the next
photons to reach the observer are those that reflect from the front of the disc (as
seen by the observer), at a radius that depends on h and i. For i = 45◦ and h = 10

this radius is 10Rg. The initial sharp rise in the blue and green curves in Fig. 2.1
therefore occurs at the same time because the inner disc radius for both cases is
6 10Rg. The secondary peak in the impulse response function indicates when we see
the first photons that reflect from the back of the disc. For a small rin, the broadest
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iron line is seen shortly after the continuum flash (∼ 15Rg/c for rin = 1.2), whereas
for rin = 50 the iron line is initially narrow with its width peaking at ∼ 60Rg/c.
This is because gravitational redshift is important for small radii, whereas Doppler
broadening is dominant for larger radii. This can also be seen in the time-averaged
line profile, which is smeared and skewed when the inner radius is small (e.g. blue
line rin = 1.2), while it has the characteristic double horn profile primarily due to
Doppler shifts when the disc is far from the black hole (e.g. orange-red line rin = 50

). If we compare Fig. 2.1 with Fig. 2.2, we see the response functions and line profiles
are very different because we used a different restframe reflection spectrum (we must
compare the green lines because they have the same radius). In contrast, the restframe
reflection spectrum makes little difference to the impulse response function, since this
is the integral of the response function over all energies.

2.4.2 Continuum Variability

The continuum emission depends on the power-law index Γ and cut-off energy Ecut.
We see from Eq. 2.14 that the continuum variations in a frequency range ν − ∆/2

to ν + ∆/2 are governed by the parameters α (ν), γ (ν), φA (ν) and φB (ν). α(ν) is
simply a normalization of the variability amplitude for each frequency; i.e. it does
not affect the phase lags at all and does not affect the energy dependence of the
variability amplitude. Together, the other three parameters govern the energy and
frequency dependence of the phase lags. We note that the four continuum variability
parameters are not independent and one of them can in principle be derived from
the other three using the definition of the reference band (see Appendix A.5). For
the illustrative examples presented in this Section, we always use φA (ν) = 0. This
would, for example, be the case if there were no contributions from reflection and the
reference band were chosen to be at 1 keV.

To explore the continuum parameters, we set the black hole mass to 10M� and
fix the reflection parameters to those used for Fig. 2.2. In Figs. 2.3 and 2.4, we
show the time lag (a) and variability amplitude (b) as a function of energy for a
frequency range 1 − 2 Hz. Here, amplitude is absolute amplitude in units of energy
flux, not fractional amplitude. In Fig. 2.3, we fix φB (ν) = 0.2 rad and different lines
correspond to different values of γ (ν), which controls the amplitude of the power-law
index oscillation. We see that increasing γ (ν) gives a larger absolute value of the
lag. We can see from Eq. 2.14 that setting γ (ν) = 0 leads to no continuum lag at all.
Fig. 2.3b shows that the amplitude spectrum becomes harder when γ is increased. We
can partially understand this by imagining a power-law pivoting around some energy
E0, such that the flux at E0 remains constant and the variations for E > E0 are in
anti-phase with the variations for E < E0. In this case, the variability amplitude
increases with |E − E0|. For a more realistic case in which the power-law index and
the normalisation are varying (with a general phase difference between the variations
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Figure 2.3: Predicted time lags (a) and absolute variability amplitude (b) as a function of energy
for the frequency range 1 − 2 Hz. For both panels, φA = 0 rad and φB = 0.2 rad. The curves have
different values of γ: 0.02 solid line, 0.04 dashed line, 0.06 dotted dashed line, 0.08 dotted line,
0.1 dashed double dotted line. In both panels we use the parameters: Γ = 2, i = 45◦, rin = 10,
rout = 106, h = 10Rg, a = 0.998, M = 10M�, log10 ξ = 3.1, AFe = 1 (respectively ionization and
iron abundance in xillver).

in power-law index and normalisation), there can be no energy at which there is zero
variability amplitude, but there will be an energy at which the amplitude reaches a
minimum. The phase lags will also be anti-symmetric about this energy. We will
call this the pivot energy, E0(ν). Note that the pivot energy can be a function of
frequency. Since the amplitude increases with energy in Fig. 2.3, the pivot energy for
this example is E0(ν) < 1 keV. It is worth noting however that extra complication
occurs when a realistic spectral model including photoelectric absorption and a low
energy cut-off are considered.

In Fig 2.4, we fix γ(ν) = 0.1 and vary φB(ν). We see that increasing φB(ν)

also increases the lags. Panel (b) shows that increasing φB(ν) makes the amplitude
spectrum softer. This can be understood partially as the pivot energy increasing as
φB(ν) is increased. Figs. 2.3a and 2.4a show features around the iron line in the
lag-energy spectrum, which are highlighted with a zoom-in. These result from the
combination of reverberation lags and continuum lags, and also non-linear effects.
The simplest effect comes from the reverberation lag simply being a different value
from the continuum lag. In this case, the total energy spectrum is continuum plus
reflection and so we expect a dip in the lags at the iron line if the reverberation
lag is smaller than the continuum lag, and a peak for the opposite case, since the
reflection dominates the energy spectrum at the iron line energy band. Non-linear
effects further contribute to these features, with the variations in continuum power-
law index causing changes in the shape of the disc reflection energy spectrum. This
combination of effects leads to the dependence of the lag around the iron line on γ(ν)

and φB(ν) being subtle.
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Figure 2.4: Predicted time lags (a) and absolute variability amplitude (b) as a function of energy
for the frequency range 1−2 Hz. For both panels, φA = 0 rad and γ = 0.1. The curves have different
values of φB : 0.2 rad solid line, 0.4 rad dashed line, 0.6 rad dotted dashed line, 0.8 rad dotted line,
1 rad dashed double dotted line. In both panels we use the parameters: Γ = 2, i = 45◦, rin = 10,
rout = 106, h = 10Rg, a = 0.998, M = 10M�, log10ξ = 3.1, AFe = 1 (respectively ionization and
iron abundance in xillver).

2.4.3 The Importance of Non-Linear Effects

Fig. 2.5 shows the lag spectrum for different frequency ranges. The solid lines are pro-
duced with the complete model (both continuum and reverberation lags), while the
dashed lines only include the reverberation lag (there is no variation of the continuum
power-law index). For the dashed dotted lines, we instead calculate the continuum
lags using our pivoting power-law model, but naively do not account for the vari-
ations in continuum power-law index when calculating the reflection spectrum (i.e.
we set W1 = 0 artificially). This allows us to assess the bias caused by not self-
consistently accounting for the non-linear nature of the continuum variations. Here,
we fix γ(ν), φA(ν) and φB(ν) to be constant with frequency (see the figure caption for
all parameter values) and assume the same reflection parameters as those used for the
previous sub-section. We see that, consistent with observational data, the continuum
lags dominate over the reverberation lags for low frequencies, and the decrease of the
continuum lag with frequency allows the reverberation lag to dominate at the highest
frequencies. For low frequencies, the full model does differ quite significantly from the
naive treatment, particularly below ∼ 2 keV for which the full model predicts a steep
break in the lag-energy spectrum. Therefore, ignoring non-linear effects could bias
measurements of the reverberation lags. At high frequencies the models converge,
since the lags are dominated by reverberation lags.

Fig. 2.6 shows the modulus of the complex covariance for a range of Fourier fre-
quencies for the linear model (i.e. γ = 0, meaning there are no continuum lags) and
the full model (γ = 0.1, meaning there are now continuum lags), represented respec-
tively by the dots and the hatching. We see that, for both cases, the iron line feature
is stronger for low frequencies (top lines) than for high frequencies (bottom lines).
This is a result of the finite size of the reflector. Whereas the continuum can vary
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2.5 Example fits to Cygnus X-1 data

on arbitrarily short timescales, the fastest variability is washed out in the reflected
emission by path length differences between rays that reflected from different parts
of the disc (Gilfanov et al. 2000; Cackett et al. 2014). We also see that in terms
of amplitude there is little difference between the two models, aside from the higher
overall variability amplitude for the full model introduced by fluctuations in the con-
tinuum power-law index. The non-linear effects considered here therefore influence
the predicted lags more than the amplitude and could therefore easily be missed when
ignoring the lags.

2.5 Example fits to Cygnus X-1 data

As a proof of principle of our method, we fit the complex covariance for a few hard
state observations of Cygnus X-1 for multiple Fourier frequencies. The data analysis
presented here is intended primarily to show the feasibility of jointly describing the
non-linear continuum and resulting reflection variability using the methods outlined
above. As the model does not contain a description of the relativistic light bending,
the fit results should be interpreted with caution, in particular if they require a
corona/disc geometry close to the black hole. Cygnus X-1 is one of the first black hole
X-ray binaries observed and has been studied extensively during the past decades, in
particular with the Rossi X-ray Timing Explorer (RXTE ). Another motivation to
select this source is the absence of strong low frequency QPOs, which are routinely
seen in many other black hole X-ray binaries. Since there is good evidence that these
signals are due to precession of the inner accretion flow (Ingram et al. 2016), or at least
geometrical in origin (e.g. Heil et al. 2015; Motta et al. 2015; van den Eijnden et al.
2017), they complicate the situation somewhat. In particular, transfer modelling
assumes a stationary geometry, and so it is convenient to avoid observations with
strong QPOs. Following Revnivtsev et al. (1999); Kotov et al. (2001), we use RXTE
observations P10238 recorded between March 26th and 31st 1996 by the proportional
counter array (PCA). In all, this consists of seven observations2. However, since the
two first observations3 have a slightly different spectral slope we only consider these
last five.

The timing data are in the ‘Generic Binned’ mode B_16ms_64M_0_249, which
has 1/64 s time resolution in 64 energy channels covering the whole PCA energy
band. We apply standard RXTE good time selections (elevation greater than 10◦ and
offset less than 0.02◦) and additionally select times when 5 proportional counter units
(PCUs) were switched on, using ftools from the heasoft 6.19 package. This gives
a total exposure time of 56.2 ks (after sorting into segments of contiguous data, the
remaining useful exposure is 46.6 ks). Following the procedure outlined in Section 2.2,

2 Observation IDs: 10238-01-05-00, 10238-01-05-000, 10238-01-06-00, 10238-01-07-00, 10238-01-
07-000, 10238-01-08-00, 10238-01-08-000.

3Observation IDs: 10238-01-05-00,10238-01-05-000.
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Figure 2.5: Time lag as a function of energy for different frequency ranges. The solid lines represent
the lag calculated with the complete model: pivoting power-law in the continuum emission and
contribution of reverberation. The dashed line is the lag only due to the reverberation (no pivoting
power-law in the continuum emission). The dash-dotted line is the lag calculated considering the
non-linear effect in the continuum emission (pivoting power-law) but naively ignoring this effect in
the reverberation lag. The other parameters are φA = 0 rad, φB = 0.2 rad, Γ = 2, i = 45◦, rin = 10,
rout = 106, h = 10, a = 0.998, M = 10M�, log10 ξ = 3.1, AFe = 1.

we calculate the complex covariance for 8 frequency ranges between 0.017 and 32 Hz.
We assume unity coherence for this observation, which is a good assumption for the
hard state of Cygnus X-1 (Nowak et al. 1999; Grinberg et al. 2014). The reference
band is always 2.84−3.74 keV and we consider the energy range 4−25 keV for fitting.
The choice of the reference band is discussed in Appendix A.5.

We use xspec version 12.9 (Arnaud 1996) to fit real and imaginary parts of the
complex covariance as a function of energy, simultaneously for all 8 frequency ranges
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Figure 2.6: Covariance amplitude as a function of energy. The two regions represent frequency
ranges from 0.02 Hz (the two highest curves) to 50 Hz (the two lowest curves). For the hatched
region, we use the full model (pivoting power-law) and for the dotted region we do not include any
continuum lags (NO pivoting model). All the parameters are equal to the ones in Fig. 2.5.

considered. We created an xspec local model for the complex covariance following
the procedure explained in Section 2.3 using a cut off power-law for the continuum
spectrum and xillver for the rest-frame reflection spectrum. We additionally fit
the time-averaged energy spectrum with the DC component of the covariance model,
meaning that we simultaneously fit accross 17 spectra. The energy spectrum is com-
puted adding the PCA standard 2 data of the considered observations with the ftool
addspec and adding in quadrature 0.1% systematic error 4.

For each of these 17 spectra, absorption is accounted for using the multiplicative
model TBabs, assuming the abundances of Wilms et al. (2000). All parameters are
tied to be the same for real and imaginary parts of a given frequency range. The
parameters governing the continuum variations, φA(ν), γ(ν) and φB(ν), are allowed
to vary freely with frequency. For the time-averaged spectrum, φA = φB = γ = 0,

4We add systematic errors only in the time-average energy spectrum. The complex covariance
spectra are dominated by statistical errors so that no systematic errors are needed.
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2 Black hole reverberation

whereas α(ν) is a free normalisation parameter. All remaining model parameters are
tied to be the same for all 17 spectra. We fix the mass of the black hole to 14.8 M�
(Orosz et al. 2011). It is important to note that this analysis is sensitive to black
hole mass and can therefore in future be used as a new method to estimate the mass.
However, that is beyond the scope of this current paper.

We achieved a reduced χ2 = 480.64/460 with the physical parameters in Table 2.1.
For the best fitting model, rin is pegged at its lowest allowed value (1.5). This means
that the model is not able to fully reproduce the shape and normalisation of the iron
line simultaneously over the full range of frequencies considered. The source height
is very close to the black hole (2.4 ± 0.5). As noted above, the values of these two
parameters suggest caution in interpreting our results, as we explore a region close
to the black hole without accounting for all the relevant physics (in particular, light
bending).

To simplify the explored parameter space and to mimic an oblate geometry of
the illuminating corona, we additionally tried tying the inner radius of the disc to
be twice the height of the point source. In this case, the best fit has a χ2/d.o.f. =

484.43/461, the height of the source is pegged to the lowest value. An F-test favours
the first of the two models. The hydrogen column density is a free parameter in our
best fitting model, with the best fit value giving a significantly better χ2 than fixing
NH = 0.6 × 1021cm−2 following Gilfanov et al. (2000). From Table 2.1 it could be
noted that our fit requires a strongly super-solar iron abundance AFe = 4.0 ± 0.1 as
has previously been found in this source (e.g. Duro et al. 2016) 5 and other BHBs
(e.g. GX 339–4: García et al. 2015) 6. The high energy cut-off in our fit is compatible
with what Wilms et al. (2006) found for the hard state of Cygnus X-1. We notice our
value is slightly higher than their average, but the authors used a different model to
fit the spectrum, for example accounting for the reflection with a Gaussian curve. We
find a high reflection fraction compared to e.g. Parker et al. (2015) and Basak et al.
(2017). We expect this result to be highly biased by the absence of light bending in
our model.

The best fitting continuum parameters are plotted in Fig. 2.7. Here, the black
and blue points (φA and γ respectively) correspond to y-axis scale on the left, while
the red points (φB) correspond to the y-axis scale on the right. φA and φB are
in units of radians, whereas γ is dimensionless. We see that all 3 parameters reduce
with frequency. Since our continuum lag model is simply empirical, the direct physical
meaning of these parameters is not immediately clear. It is still interesting to compare
the results in Fig. 2.7 with more physical models.

5Analyzing Cygnus X-1 soft state Tomsick et al. (2014) also found evidence of super-solar abun-
dance although still much lower than our result.

6Although the empirical evidence for these super-solar iron abundances is now very strong, the
physical cause is still unknown. It could result from radiative levitation of the iron atoms in the
inner disc, or perhaps is merely an artifact of some missing physics in the current state-of-the-art
reflection models.
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2.6 Discussion

Figs. 2.8 and 2.9 show the data and best fitting model for 7 of the 8 frequency
ranges considered (the lowest frequency range is very noisy). In Fig. 2.8, we show real
(a) and imaginary (b) parts of the complex covariance, and plot the model with a
higher energy resolution than the data for clarity. We additionally show fit residuals
in the bottom panels. In Fig.2.9, we instead represent the data and model as time lag
(a) and variability amplitude (b). In the lags, we see the characteristic dip at ∼ 6.4

keV for both data and model, which becomes less prominent for higher frequencies.
This occurs mainly because the continuum lags are greater than the reverberation
lags, and so at the iron line the greater contribution from reflection dilutes the overall
time lag. For higher frequencies, the difference between continuum and reverberation
lags reduces and so the dip becomes less prominent. For even higher frequencies, we
expect to see an emission-like feature at the iron line, but unfortunately the maximum
possible Nyquist frequency for this data mode is 32 Hz. For the amplitude, we see
the iron line becomes less prominent for higher frequencies, which is due to the finite
size of the reflector as discussed in Section 2.4.

Fig. 2.8 shows that there are some systematic residuals in the real part of the
complex covariance around the iron line. This seems to be because the amplitude
of the iron line reduces more steeply with frequency in the data compared with the
model. In the model, the accretion geometry (i.e. the source height and disc inner
radius) sets both the frequency dependence of the iron line amplitude and the width
of the iron line. For a smaller inner disc radius, the iron line is broader and the
variability amplitude of reflection drops-off less steeply with frequency. Therefore,
it appears that our small best-fitting inner radius of rin ≈ 1.5 reproduces the broad
iron line seen in the complex covariance and time-averaged spectrum, but predicts
a slower drop-off in reflection variability amplitude with frequency than is observed.
Since the data constrain the broadness of the iron line at all frequencies better than
they constrain the drop off of the line amplitude at high frequencies, our fit returns
a small value for inner radius. These residuals may be fixed in future by considering
light bending, since this would give 1) longer reverberation lags for a given disc inner
radius due to longer path lengths of rays close to the black hole, and 2) a broader
iron line for a given disc inner radius due to the steeper emissivity profile resulting
from focusing of rays close to the black hole.

2.6 Discussion

In this paper we have introduced a formalism to fully utilize X-ray reverberation
mapping as a tool to measure the geometry of accreting black holes, and ultimately
to provide a new means of measuring black hole mass and inner radius of the disc.
The main innovation is that we fit a reverberation model that considers phase lags
and variability amplitude jointly for a wide range of Fourier frequencies for the first
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2 Black hole reverberation

Table 2.1: Best fitting disc parameters obtained from our simultaneous fit to the complex covariance
in 8 frequency ranges (0.017 − 32 Hz) and the time-average spectrum. The χ2 is 480.64 with 460

degrees of freedom. We report 1 σ errors for each parameter value.

NH

(
1022 cm−2

)
Γ h (Rg) rin (Rg)a Incl (deg)

0.2±0.2
0.1 1.603±0.004

0.003 2.4±0.5
0.5 1.5±0.6

0 35.7±1.2
1.3

AFe Ecut (keV) log ξ Reflection Fractionb

4.0±0.1
0.1 241±10

5 3.08±0.01
0.01 −0.93±0.02

0.02

a The parameter is pegged at its minimum allowed value.

b In xillver a negative reflection fractions means the model represents only the
reflection spectrum without the continuum.
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Figure 2.7: Continuum variability parameters as function of Fourier frequency. The black solid
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42



2.6 Discussion

101

Energy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e
 [

C
o
m

p
le

x
 C

o
v
a
ri

a
n
ce

] (a)

101

1

0

1

101

1

0

1

R
e
si

d
u
a
ls

10.05.0 20.0
Energy (keV)

1

0

1

101

Energy

10-3

10-2

10-1

Im
 [

C
o
m

p
le

x
 C

o
v
a
ri

a
n
ce

] (b)

Frequency (Hz)
0.05 - 0.12

0.12 - 0.3

0.3 - 0.8

0.8 - 2.0

2.0 - 5.0

5.0 - 12.4

12.4 - 32.0

101

Energy (keV)

1

0

1

101

Energy (keV)

1

0

1

R
e
si

d
u
a
ls

10.05.0 20.0
Energy (keV)

1

0

1

Figure 2.8: Fit of the real (a) and imaginary (b) part of Cygnus X-1 complex covariance spectrum
for different Fourier frequency ranges. The dots are the data, the solid line is the model with a
better energy resolution. Both the bottom panels show the data minus the folded model in units of
normalised counts per second per keV (command residuals in xspec). The residuals around the iron
line are discussed in the text.

10.05.0 20.0
Energy (keV)

10-5

10-4

10-3

10-2

10-1

la
g
 (

se
c)

(a)

Frequency (Hz)
0.05 - 0.12

0.12 - 0.3

0.3 - 0.8

0.8 - 2.0

2.0 - 5.0

5.0 - 12.5

12.5 - 32.0

10.05.0 20.0
Energy (keV)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
m

p
lit

u
d
e
 (

ke
V

2
/p

h
o
to

n
s/

cm
2
/s

/k
e
V

)

(b)

Figure 2.9: Lag (a) and variability amplitude (b) as a function of energy for different Fourier
frequency ranges. Both data and model have been derived from the fit of real and imaginary part of
the complex covariance spectrum (Fig. 2.8).
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time. In order to do this, we introduce the complex covariance, and show that it is
statistically more convenient to fit for the real and imaginary parts of the complex
covariance than fitting directly for the amplitude and phase lags, which has led to some
previous inaccuracies in the literature (it is still possible to compute the amplitude
and phase lags, which are more physically intuitive, and compare them with other
works). In order to fit for the full range of Fourier frequencies (determined by the
duration and time resolution of the observation) we need to account for the continuum
lags that dominate at low frequencies. We introduce a simple variation in the slope
of the continuum emission (pivoting power-law model), and use a Taylor expansion
to calculate the model analytically whilst still accounting for the variations in disc
reflection spectrum shape caused by fluctuations in the illuminating power-law index.
As noted by Kotov et al. (2001); Körding & Falcke (2004), a pivoting power-law
model is fairly attractive, since it naturally produces time lags with a log-linear energy
dependence, as is regularly observed.

The continuum lags are often assumed to result from propagating mass accretion
rate fluctuations, with perturbations far from the black hole propagating inwards
and modulating new fluctuations generated closer to the black hole (Lyubarskii 1997;
Kotov et al. 2001; Arévalo & Uttley 2006). We note that, if the power-law emitting
region is small compared with the disc inner radius, our adopted lamppost geometry
still provides a good approximation to propagating fluctuations models. However, our
treatment is at odds with sandwich models that consider propagation in a coronal
layer above and below the disc. It could be that propagating fluctuations cause
fluctuations in power-law index, through, for example, accretion rate fluctuations in
the disc giving rise to fluctuations in the luminosity of seed photons (Uttley et al. 2014,
Uttley & Malzac in prep). The fluctuations in power-law index could also result from
fluctuations in electron temperature, seed photon luminosity and/or optical depth of
the Comptonising region.

A few authors have made progress on integrating a propagating fluctuation model
with reverberation modelling. Wilkins & Fabian (2013) consider fluctuations prop-
agating through the corona with different geometries, and calculate reflection from
each region of the corona. This is perhaps the most physically self-consistent treat-
ment in the literature, but requires many response functions and so is computationally
expensive. It will therefore be challenging to attempt the multi-frequency fits that we
present here with such a model. Chainakun et al. (2016a) and Chainakun & Young
(2017) instead explore a ‘two blobs’ model, consisting of two lamppost sources with
different heights and different intrinsic spectra, with the propagation time between
the two sources set as a model parameter. This is of comparable simplicity to our
treatment, indeed both of our formalisms require only two response functions. It
therefore should be possible to also fit this model for the full range of Fourier frequen-
cies, and comparison of our two different formalisms may provide information on the
physical origin of the continuum lags.
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An interesting result we find here is that the low frequency lag spectrum is pre-
dicted to dip dramatically at ∼ 2 keV (see top left of Fig. 2.5), which Uttley et al.
(2011) see for GX 339–4. They attribute it to fluctuations propagating in from the
disc, which could well be the case because of the shape of the covariance spectrum,
but it is interesting to note that we naturally expect this dip at ∼ 2 keV without any
disc component. This is true only if we account for the non-linear effects, indicating
that ignoring them could bias the results. We note, however, that the introduction of
a low energy cut-off in the continuum spectrum of our model could modify the lags
at such low frequency.

Since the model is analytic, fits to data for many frequencies are feasible without
prohibitive computational expense. We fit hard state Cygnus X-1 data, and find
an unphysically low value for the disc inner radius in our best-fit. Moreover the fit
shows some residuals in the iron line energy range of the real part of the covariance
spectrum for low frequencies. In the data, the line appears to be broad, both in the
time-averaged spectrum and for non-zero Fourier frequencies, implying a small disk
inner radius. However, the variability amplitude of the reflection signal drops off
with frequency, which in itself favours a fairly large disk inner radius (Gilfanov et al.
2000). It is this tension that is behind the residuals seen in Fig. 2.8. However, the
transfer function we used to model reflection in this illustrative fit is over-simplified.
In particular, including light bending should go some way to improving the fit as it
both increases the light travel time of reflected X-rays and focuses them to the inner
regions of the disk. In any case, the inclusion of light bending will dramatically alter
the model for our best fitting parameters, and so our results from Section 2.5 should
be seen only as a proof of principle of the method, with further insight delayed until
all GR effects are included in the analysis.

The value of the disk inner radius of Cygnus X-1 in the hard state has long been
a subject of debate in the literature. For example, reflection modelling of the same
NuSTAR dataset gives values of rin ranging from ' 1.3Rg (Parker et al. 2015) to
' 13 − 20Rg (Basak et al. 2017), depending on assumptions about the continuum.
Rapisarda et al. (2017a) obtain a similar result for the inner radius ∼ 20 Rg fitting a
propagating fluctuations model to a hard state observation of Cygnus X-1, although
they did not account for the reverberation effects on the lags. We also note that the
high resolution data used by Parker et al. (2015) reveal absorption features around
the iron line which would not be detectable with RXTE data. Since the absorption
properties of Cygnus X-1 depend on the binary orbital phase (likely due to the wind
from the companion; Grinberg et al. 2015), it is not clear if such absorption features
affect our data. Here, we fixed the black hole mass in our fits but note that this can
be left as a free parameter in future. We also note that the same model can be used
for AGN, and is also sensitive to black hole mass in this case.

Aside from including light bending, a number of other improvements can be made
to our method. More realistic geometries than the lamppost model can be explored
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in future, albeit with the trade-off of extra complexity increasing computational ex-
pense. Our model is designed such that any transfer function can be ported into our
formalism, allowing flexibility. It will also be fairly simple to include variations in cut-
off energy and ionisation parameter. As with power-law index variations considered
here, this can be done using a Taylor expansion, and so will not add prohibitively to
computational cost. Finally, we have assumed that reflection is instantaneous, as is
routinely assumed in the literature. In reality, the reflected flux will take some finite
time to increase when the illuminating flux increases (on top of the light-crossing
time). García et al. (2013b) showed, albeit with a very simple model, that the re-
flection spectrum for a stellar-mass black hole should indeed respond very quickly
(∼ 1 ns) to a rise in the illuminating flux, but the response to a drop in illuminating
flux could take as long as ∼ 1 ms for a very low disc density. The different timescales
occur because the rise time depends on photoionisation, but the fall time depends
on recombination. Therefore, this response time may be relevant for reverberation
mapping.

2.7 Conclusions

We developed a formalism for X-ray reverberation mapping of accreting black holes
that enables characterisation of the full range of cross-spectral properties for a wide
range of Fourier frequencies. We empirically model the continuum lags that dominate
at low Fourier frequencies, and self-consistently account for the effect of the continuum
lags on the reverberation signal. We point out some of previous inaccuracies in the
literature associated with fitting models to the observed energy dependent phase
lag and variability amplitude, and employ real and imaginary parts of the complex
covariance to easily circumvent such problems. As a proof of principle, we have
fitted our model to an RXTE observation of Cygnus X-1 in the hard state. We
assume an on-axis lamppost geometry, and obtain a fit with reasonable χ2, albeit
with systematic residuals around the iron line that would likely be improved by the
inclusion of light bending in the reflection model. We also note that more realistic
geometries will impact these results. Although here we fixed the black hole mass in
our fits to 14.8 M� (following Orosz et al. 2011), we note that the model is sensitive
to the black hole mass. This optimised model for X-ray reverberation mapping using
the information of the cross variability for a wide range of Fourier frequencies can
therefore be used in future as a new way to measure the mass of stellar-mass and
supermassive black holes.
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Abstract

We present the publicly available model reltrans that calculates the light-crossing
delays and energy shifts experienced by X-ray photons originally emitted close to the
black hole when they reflect from the accretion disc and are scattered into our line-
of-sight, accounting for all general relativistic effects. Our model is fast and flexible
enough to be simultaneously fit to the observed energy-dependent cross-spectrum for
a large range of Fourier frequencies, as well as to the time-averaged spectrum. This
not only enables better geometric constraints than only modelling the relativistically
broadened reflection features in the time-averaged spectrum, but additionally enables
constraints on the mass of supermassive black holes in active galactic nuclei and
stellar-mass black holes in X-ray binaries. We include a self-consistently calculated
radial profile of the disc ionisation parameter and properly account for the effect that
the telescope response has on the predicted time lags. We find that a number of
previous spectral analyses have measured artificially low source heights due to not
accounting for the former effect and that timing analyses have been affected by the
latter. In particular, the magnitude of the soft lags in active galactic nuclei may have
been under-estimated, and the magnitude of lags attributed to thermal reverberation
in X-ray binaries may have been over-estimated. We fit reltrans to the lag-energy
spectrum of the Seyfert galaxy Mrk 335, resulting in a best fitting black hole mass that
is smaller than previous optical reverberation measurements (∼ 7 million compared
with ∼ 14− 26 million M�).



3 X-ray reverberation model

3.1 Introduction

Stellar-mass black holes in X-ray binary systems and supermassive black holes in ac-
tive galactic nuclei (AGN) are thought to accrete via a geometrically thin, optically
thick accretion disc, which radiates thermally (Shakura & Sunyaev 1973; Novikov &
Thorne 1973). The hard X-ray spectrum is often dominated by a power-law com-
ponent with a high energy cut off, thought to be due to Compton up-scattering of
comparatively cool photons in a cloud (with optical depth τ ∼ 1− 2) of hot electrons
located close to the black hole (Thorne & Price 1975; Sunyaev & Truemper 1979).
The exact geometry of this cloud is still debated, with suggested models including
a standing shock at the base of the jet (Miyamoto & Kitamoto 1991; Fender et al.
1999), a coronal layer sandwiching the disc (Galeev et al. 1979; Haardt & Maraschi
1991), and evaporation of the inner disc regions to form a hot, large scale height
accretion flow (the truncated disc model ; Eardley et al. 1975; Ichimaru 1977; Done
et al. 2007). In the absence of a consensus on its geometry, the Comptonising region
is often simply referred to as the corona, a convention that we will employ here.

We observe Comptonized radiation that reaches us directly from the corona (the
direct component) in addition to coronal emission that has been reprocessed and
re-emitted in the upper atmosphere of the disc, conventionally called the reflection
component. These ‘reflected’ photons imprint characteristic features onto the ob-
served spectrum including a prominent iron Kα emission line at ∼ 6.4 keV and a
so-called reflection hump peaking at ∼ 20 − 30 keV (e.g. Lightman & Rybicki 1980;
George & Fabian 1991; Ross & Fabian 1993; García & Kallman 2010). The iron line
provides a powerful probe of the disc dynamics and geometry, since its shape is ob-
served to be distorted by photon energy shifts caused by relativistic orbital motion
of disc material and gravitational redshift (Fabian et al. 1989; Laor 1991). If the disc
inner radius inferred from the line profile is sufficiently small, setting it equal to the
innermost stable circular orbit (ISCO) of general relativity (GR) provides an estimate
for the spin of the black hole.

Many studies have used reflection spectroscopy to probe both AGN (e.g. Tanaka
et al. 1995; Reynolds & Nowak 2003; Patrick et al. 2012; Walton et al. 2013; Risaliti
et al. 2013) and black hole X-ray binary (e.g. Miller 2007; Reis et al. 2009; Miller
et al. 2013; Kolehmainen et al. 2014; Plant et al. 2014; García et al. 2015) accretion
flows. This has yielded many measurements of high black hole spin in AGN (e.g.
Reynolds 2019; Middleton 2016), although complex line-of-sight absorption can po-
tentially introduce modelling systematics (e.g. Miller et al. 2008). For the binaries,
spectral modelling studies often conclude that the inner radius moves towards the
black hole as the spectrum evolves from the hard power-law dominated hard state to
the thermal disc dominated soft state on timescales of ∼months (Done et al. 2007;
Plant et al. 2014; García et al. 2015). However, even though there is broad agreement
in the trend in disc inner radius, the measured values themselves vary enormously
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between different studies (García et al. 2015), with potential systematics including
calibration uncertainty (e.g. Done 2010) and the difficulty of disentangling the direct
and reflected components (e.g. Basak et al. 2017).

The degeneracies associated with spectral modelling can be addressed by addition-
ally modelling the light-crossing delay between variations in the direct and reflected
spectral components (Campana & Stella 1995; Reynolds et al. 1999; Uttley et al.
2014). Such reverberation mapping techniques therefore promise better constraints
on the disc geometry (and therefore the black hole spin), but also entirely new con-
straints on black hole mass (Stella 1990). This is essentially because the delays de-
pend on physical distances, whereas the energy shifts are only sensitive to distances
in units of gravitational radii (Rg = GM/c2). Fourier frequency dependent time lags
between energy channels can be calculated from the argument of the cross-spectrum
(van der Klis et al. 1987). It is routinely found that, at low Fourier frequencies
(ν . 1.5 × 10−3c/Rg), hard photons lag soft, both for the binaries (Miyamoto et al.
1988; Nowak et al. 1999; Kotov et al. 2001) and AGN (e.g. Papadakis et al. 2001;
McHardy et al. 2004; Epitropakis & Papadakis 2017). These intrinsic hard lags are
thought to be caused by spectral variability of the direct component rather than re-
verberation, due to their large magnitude and the lack of reflection features in their
energy dependence, and may originate from inward propagation of fluctuations in the
mass accretion rate (Arévalo & Uttley 2006; Ingram & van der Klis 2013; Rapisarda
et al. 2017a; Mahmoud & Done 2018a). Since the hard lags reduce with frequency, it
has been possible to detect reverberation signatures at high frequencies in AGN, first
through soft lags interpreted as the soft-excess of the reflection spectrum lagging the
direct radiation (Fabian et al. 2009; De Marco et al. 2013b), and later through an iron
line feature in the lag-energy spectrum (Zoghbi et al. 2012; Kara et al. 2016). A num-
ber of studies have focused on modelling these high frequency lags in AGN (Cackett
et al. 2014; Emmanoulopoulos et al. 2014; Epitropakis et al. 2016; Chainakun et al.
2016b; Wilkins et al. 2016; Caballero-García et al. 2018). Discoveries of reverbera-
tion signals came a little later for the binaries, since the cross over from intrinsic to
reverberation lags is at a much higher frequency (measured in Hz rather than c/Rg)
for a stellar-mass black hole (due to mass scaling), and therefore the signal is harder
to pick out of the Poisson noise. Still, soft lags, interpreted as reverberation of ther-
mally reprocessed photons, have been detected (Uttley et al. 2011; De Marco et al.
2015 - although this could feasibly result from backwards propagation of accretion
rate fluctuations: Mushtukov et al. 2018), and iron K lags were finally detected for
MAXI J1820+070 by Kara et al. (2019) using the Neutron star Interior Composition
ExploreR (NICER; Gendreau et al. 2016).

Still further information is contained in the energy and frequency dependent vari-
ability amplitude, which can also be measured from the cross-spectrum. This can pro-
vide powerful constraints, since the variability amplitude of reflected emission should
be washed out at the highest frequencies due to destructive interference between rays
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reflected from different parts of the disc (Gilfanov et al. 2000). It is optimal to con-
sider all of these properties simultaneously1. The neatest way to do this statistically
is to jointly model the time-averaged spectrum and the real and imaginary parts of
the energy dependent cross-spectrum (Mastroserio et al. 2018). Here we present a
public xspec model that enables such an analysis. We define two versions of the
model, reltrans and reltransCp, which represent the direct spectral component
respectively as an exponentially cut-off power-law and using the model nthcomp.
We assume a simple lamppost geometry (Matt et al. 1991; Martocchia & Matt 1996),
which allows all GR effects to be properly accounted for without prohibitive compu-
tational expense – although we note that it is simple in our formalism to consider a
number of lamppost sources. Source code and usage instructions can be downloaded
from https://adingram.bitbucket.io/.

We present a detailed derivation of our model in Section 3.2 and explore its prop-
erties in Section 3.3. Our treatment properly accounts for line-of-sight absorption and
the telescope response, and the model accounts for the radial dependence of the disc
ionisation parameter. In Section 3.4 we investigate the importance of these effects.
In Section 3.5, we perform a proof-of-principle fit to the lag-energy spectrum of the
narrow-line Seyfert 1 galaxy Mrk 335 for a single frequency range. We discuss and
conclude our findings in Sections 3.6 and 3.7.

3.2 Derivation of the cross-spectrum in the lamppost
geometry

Here we derive the time-dependent observed energy spectrum assuming an isotropi-
cally radiating lamppost source located on the black hole spin axis a height h above
the hole, and use the Fourier transform to calculate the energy dependent cross-
spectrum as a function of Fourier frequency ν. We assume that the specific (energy)
flux (i.e. energy per unit time per unit area per unit photon energy) seen by a distant
observer as a function of photon energy, E, and time t, both defined in the observer’s
restframe, is given by

S(E, t) = F (E, t) +R(E, t). (3.1)

The first and second terms on the right hand side represent respectively the direct
and reflected spectral components. In this paper, we ignore directly observed disc
radiation, assuming it to be below our X-ray bandpass. This is appropriate for AGN,
and hard state X-ray binaries in the E & 3 keV bandpass.

In this section, we first go over some general considerations of radiation theory
in GR (Section 3.2.1). We then derive the observed time-dependent direct spectrum

1Indeed, also considering the power spectrum additionally provides information on the coherence
between energy bands (e.g. Rapisarda et al. 2016), which we ignore here.
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3.2 Derivation of the cross-spectrum in the lamppost geometry

Source, dAs

Detector, dAdet

dΩs

dΩdet

Figure 3.1: Schematic of a source and detector with surface areas (measured in their own restframes)
dAs and dAdet respectively. The blue line represents a photon path that emerges parallel to the
source surface area vector (in the source restframe) and arrives parallel to the detector surface area
vector (in the detector restframe). Only photons emerging from the source within the solid angle
dΩdet will eventually hit the detector. The solid angles and surface areas are related through the
reciprocity theorem (equation 3.2).

Figure 3.2: Schematic of the on-axis lamppost geometry. A disc patch with area dAd subtends
a solid angle dΩd according to the irradiating source. The disc patch corresponds to an area dαdβ
on the image plane, where α and β are respectively horizontal and vertical impact parameters at
infinity. The bundle of rays within the represented solid angle are assumed to follow the trajectory
(green dashed lines) defined by the initial (δ), incidence (δi), emission (δe) and inclination (i) angles.
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(Section 3.2.2) and the reflection spectrum (Section 3.2.3), before deriving the transfer
function that we will use for our reverberation model (Section 3.2.4), followed by the
kernel used to calculate our transfer function (Section 3.2.5). Finally we will discuss
the so-called reflection fraction (Section 3.2.6).

3.2.1 Reciprocity and Liouville’s theorem

Fig 3.1 shows a schematic of a source with surface area dAs in its own rest frame
and a detector with surface area dAdet in its own rest frame. Photons travel along
null geodesics, which are solutions to the geodesic equation with line element ds2 =

gµνdx
µdxν = 0. Here, gµν is the metric and dxµ is the coordinate interval corre-

sponding to an interval ds/c in proper time. Throughout this paper, we use the Kerr
metric in Boyer-Lindquist coordinates. The position of a photon along its geodesic is
described by the affine parameter λ and its trajectory described by the tangent vector
kµ(λ) = dxµ/dλ. The blue line in Fig 3.1 represents the unique null-geodesic, kµ(λ),
that connects the centre of the source to the centre of the detector. For this example,
the geodesic begins parallel to the source’s surface area vector and ends parallel to
the detector’s surface area vector, but we can generalize by specifying dAdet and dAs
to be respectively the projected area of the detector and source perpendicular to kµ

in the local restframe. The black lines depict the trajectory of photons that emerge
from the centre of the source and hit the edge of the detector, representing a bundle
of photons that diverge from the centre of the source around kµ(λ), subtending a solid
angle dΩdet in the source rest frame (i.e. all the photons in the bundle hit the detector
and all others miss). The red lines depict the trajectory of photons that emerge from
the edge of the source and hit the centre of the detector, representing a bundle of
geodesics that converge onto the centre of the detector around kµ(λ), subtending a
solid angle dΩs in the detector rest frame. This is the solid angle that the source
subtends on the detector’s sky (i.e. all photons from the bundle hit the centre of the
detector and all others miss the centre).

These four quantities are related by the general relativistic reciprocity theorem

g2
sodAdetdΩs = dAsdΩdet. (3.2)

Here gso = Eo/Es is the blueshift2 experienced by photons traveling from source to
detector and Eo and Es are respectively the energy of the photon as measured in the
rest frame of the detector and source (see Appendix B.2 for expressions of blueshift
factors in the Kerr metric). The reciprocity theorem in GR was first derived by
Etherington (1933), and a more concise presentation of the derivation can be found
on pages 631-633 of Ellis (2009, this is a republication of the original 1971 proceeding).
Ellis (2007) provides a useful commentary on the original Etherington paper. This

2i.e. gso > 1 corresponds to a blueshift and gso < 1 to a redshift. Note that gso = 1/(1 + zso),
where zso is redshift defined in the traditional sense of fractional change in wavelength.
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is an intriguing geometrical result, showing that the curvature of spacetime does not
influence the relationship between these solid angles and surface areas: the reciprocity
theorem in GR is the same as that in special relativity for a given blueshift factor.
We can even recover the classical reciprocity theorem by transforming dΩdet into the
detector frame to cancel out the g2

so. The blueshift is calculated as

gso =
(kdet)

µ(udet)µ
(ks)ν(us)ν

, (3.3)

where us and udet are respectively the 4-velocity of the source and detector.
If dN(Es) photons with energies ranging from Es to Es+dEs are radiated isotrop-

ically from the flat source surface in its restframe, a fraction dΩdet/π of them will
cross the detector some time later3. Their energies will be measured to range from Eo
to Eo + dEo in the detector rest frame, meaning that the number of photons crossing
the detector is dNo(Eo) = dN(Es)dΩdet/π. The specific (energy) flux crossing the
detector is therefore

Fo(Eo, to) ≡ EodNo(Eo)

dtodEodAdet

=
gso
π

EsdN(Es)

dtsdEsdAs
dAs

dΩdet
dAdet

=
gso
π
Fs(Es)dAs

dΩdet
dAdet

, (3.4)

where Fs(Es) is the specific flux radiated by the source, dts = gsodto and we have
used dEo/dEs = gso. Rearranging the above equation and applying the reciprocity
theorem (equation 3.2) gives the rather familiar formula

Io(Eo) = g3
soIs(Es), (3.5)

where Io(Eo) and Is(Es) are specific intensities: specific flux per unit solid angle (in
this case Io(Eo) = Fo(Eo)/dΩs and Is(Es) = Fs(Es)/π). This famous result can
also be derived from Liouville’s theorem, which states that the number of photons
per unit volume in phase space is Lorentz invariant (see e.g. Lindquist 1966; Misner
et al. 1973). The derivation presented here is perhaps more intuitive. Integrating
both sides over all observed energies gives the familiar expression for bolometric flux
in terms of bolometric intensity

Fo = g4
soIsdΩs. (3.6)

We can understand intuitively where these four factors of blue shift originate. Two
come from the adjustment to solid angle in the reciprocity theorem (equation 3.2 - and

3This is because the projected area of the source is ∝ cos θ if it is viewed from inclination θ (and
dΩ = d cos θdφ). Therefore the fraction is dΩ/

∫ 2π
0

∫ 1
0 cos θd cos θdφ = dΩ/π
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these two factors can further be understood as special relativistic aberration in the
small angle limit), one comes from the adjustment to the energy of each photon and
one comes from the adjustment to time intervals (i.e. bolometric flux is ∝ EdN/dt).
Finally, all blue shifts in this paper are calculated in the Kerr metric, which is asymp-
totically flat and stationary and therefore does not account for cosmological redshift.
An observer at cosmological redshift z will therefore measure a specific intensity

I(E) =

(
gso

1 + z

)3

Is(Es), (3.7)

and will measure time intervals τ = (1 + z)τo (cosmological time dilation).

3.2.2 Direct spectrum

We assume a spherical X-ray source, with surface area in its own rest frame as, that
isotropically radiates a specific flux

Fs(Es, t
′
o) =

C(t′o)

as
f(Es|Γ, Ecut), (3.8)

where t′o is time in the restframe of an observer at cosmological redshift z = 0. In the
reltrans version of the model, the direct spectrum is

f(E|Γ, Ecut) ∝ E1−Γe−E/Ecut , (3.9)

where the constant of proportionality will be calculated below. The reltransCp
version instead uses the thermal Comptonisation model nthcomp (Zdziarski et al.
1996; Życki et al. 1999), with the Ecut parameter replaced by the electron temperature
kTe. For the purposes of this derivation, we will always use Ecut, on the understanding
that this can be replaced with kTe for the case of the nthcomp version. In order
to evaluate the function f(E) in these two cases, we use the model xillver and
xillverCp respectively (García & Kallman 2010; García et al. 2013a), which we
will also use in order to calculate the restframe reflection spectrum. Our code calls
the relevant xillver model with the reflection fraction parameter set to zero, which
returns the illuminating spectrum used for the calculation of the reflection spectrum.

In this paper, as can be seen in Equation (3.8), we will only consider linear vari-
ability of the source flux. That is, the shape of the direct component of the spectrum
remains constant in time and only the normalisation varies. In future versions, we will
extend our modelling to account for non-linear variations of the spectrum radiated
by the corona using the Taylor expansion technique described in Mastroserio et al.
(2018).

We assume the source is small enough to ensure that any light rays that pass
by either side of it on route to the distant observer are parallel to one another (i.e.
spacetime is approximately flat on the scale of the source area). The projected area
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of the source is therefore dAs = as/4. Substituting this into equation 3.4 gives the
observed specific flux at time to

Fo(Eo, to) =
gso
4π

Fs(Es, t
′
o)as

dΩdet
dAdet

=
C(t′o)

4π
gΓ
sof(Eo|Γ, gsoEcut)

dΩdet
dAdet

, (3.10)

where to = t′o+τso and τso is the time it takes photons to travel from source to detector,
as measured in the detector frame (and assuming z = 0). The second line of the above
equation is exact for an exponentially cut-off power-law illuminating spectrum but
only approximate for an nthcomp spectrum. The final term on the right hand side
accounts for lensing / de-lensing due to light bending. Defining the inclination angle i
as the angle between the black hole spin axis and the trajectory of photons when they
cross the detector (see Fig 3.2, but note that photons reach the detector both directly
and via reflection) and D =

√
dAs/dΩs as the distance between the source and the

detector (and also, to a very good approximation, the distance between the hole and
the detector, since D � h), the detector area is dAdet = D2 sin i di dφ. Defining δ as
the angle, measured in the source rest frame, between the spin axis and the emergent
trajectory of a photon as it is radiated by the source (see Fig 3.2 for an example of
a photon that reflects from the disc, but note that photons with larger δ may reach
the observer directly), we can write

dΩdet
dAdet

=
1

D2

∣∣∣∣d cos δ

d cos i

∣∣∣∣ =
`

D2
, (3.11)

since intervals in azimuth dφ are constant along a geodesic for an on-axis source in
the Kerr metric. We calculate the lensing factor, ` = |d cos δ/d cos i|, numerically
by tracing rays along null geodesics in the Kerr metric, calculated using the publicly
available code ynogk (Yang & Wang 2013), which is based on another publicly
available code geokerr (Dexter & Agol 2009). The observed specific flux is therefore

Fo(Eo, to) = A(t′o)`g
Γ
sof(Eo|Γ, gsoEcut), (3.12)

where we have defined A(t) ≡ C(t)/(4πD2). An observer at a cosmological distance
sees a specific flux

F (E, t) = A(t′)`

(
gso

1 + z

)Γ

f [E|Γ, gsoEcut/(1 + z)], (3.13)

and measures a time interval t−t′ = (1+z)τso. In our model, for consistency with the
relxill family of models (Dauser et al. 2013; García et al. 2014), we specify as a model
parameter the cut-off energy in the observer’s frame, (Ecut)obs = gsoEcut/(1 + z).
When the verbose level is set suitably high, the code prints to screen the value of
the cut-off energy in the source restframe. For reltransCp, we instead specify the
parameter (kTe)obs = gsokTe/(1 + z).
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3.2.3 Reflection spectrum

Fig. 3.2 illustrates the source irradiating a patch of the disc that subtends a solid
angle dΩd in the source rest frame and has a surface area dAd in the reference frame
of the disc patch. Again using equation 3.4, the specific flux crossing the surface of
the disc patch, in the restframe of the disc patch is

Fd,in(Ed, t
′
o) =

C(t′o − τsd)
4π

gΓ
sdf(Ed|Γ, gsdEcut)

dΩd
dAd

. (3.14)

The irradiating flux is all re-processed into the reflection spectrum, which is radiated
an-isotropically from the disc upper surface (µe = cos δe ≥ 0; see Fig. 3.2). The
emission angle-dependent reflected specific intensity Id,out emergent from the disc is
related to the incident flux Fd,in as∫ ∞

0

Fd,in(Ed, t
′
o)dEd = 2π

∫ 1

0

∫ ∞
0

Id,out(Ed, t
′
o|µe)µedEddµe. (3.15)

As alluded to in the previous section, we use xillver or xillverCp to calculate the
reflected specific intensity R(E|µe) for an illuminating specific flux f(E|Γ, Ecut) (we
set the reflection fraction parameter to −1, where the minus sign ensures that the
xillver model returns only the reflection spectrum rather than summing it with the
incident spectrum). The xillver models are normalized such that

1

2

∫ 1

0

∫ ∞
0

µeR(E|µe,Γ, Ecut, log10 ξ)dEdµe

=

∫ ∞
0

f(E|Γ, Ecut, log10 ξ)dE, (3.16)

where ξ(r) = 4πFx(r)/ne(r) is the ionisation parameter, Fx(r) is the 13.6 eV to 13.6

keV illuminating flux and ne(r) is the electron number density.
Inspection of equations (3.14), (3.15) and (3.16) shows

Id,out(Ed, t
′
o|µe) =

1

2

C(t′o − τsd)
2π

gΓ
sd

dΩd
dAd

R(Ed|µe, gsdEcut)
4π

. (3.17)

Once more exploiting the symmetry of the lamppost geometry, we can consider the
case whereby the disc patch is an annulus at r with width dr to find

dΩd
dAd

= 2π
|d cos δ/dr|
dAring/dr

. (3.18)

It is important to note that the angle δ in the equation is defined in the source
restframe, whereas the area dAring is defined in the restframe of the disc annulus. The
radial coordinate is defined in Boyer-Lindquist coordinates. We calculate d cos δ/dr

and τsd numerically using ynogk. We calculate the area differential analytically. In
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3.2 Derivation of the cross-spectrum in the lamppost geometry

Boyer-Lindquist coordinates, the area of a disc annulus with radial extent dr is d2x =

2π
√
gφφgrrdr. The area in the rest frame of the rotating annulus is dAring = γφd2x,

where γφ is the Lorentz factor of the annulus (e.g. Wilkins & Fabian 2012). We
present a derivation for γφ in Appendix B.1, pointing out some very small (largely
inconsequential) errors in previous derivations (Bardeen et al. 1972; Dauser et al.
2013).

According to the stationary observer, the disc patch centered at disc coordinates
r, φ is centered on coordinates on the observer plane α, β and subtends a solid
angle dΩ = dαdβ/D2 (see Fig 3.2). Here α and β are the impact parameters at
infinity. The specific flux seen from the disc patch with coordinates r, φ by the
stationary observer viewing from an inclination angle i (with µ = cos i) is therefore
dRo(Eo, to) = g3

doId,out(Eo/gdo, to − τ)dαdβ/D2, giving

dRo(Eo, to|µ, r, φ) = A[to − τ(r, φ)]g3
do(r, φ)ε(r)

×R[Eo/gdo(r, φ)|µe(r, φ), gsd(r)Ecut, log10 ξ(r)]dαdβ, (3.19)

where

ε(r) =
gΓ
sd(r)

2

|d cos δ/dr|
dAring/dr

(3.20)

is the radial emissivity profile and τ(r, φ) = τsd(r) + τdo(r, φ) − τso. Note that for
equation 3.19 we have used equation (3.5), since dαdβ/D2 is the solid angle subtended
by the disc patch according to the observer in the observer’s restframe. Also note that
the cosine of the emission angle, µe, is a function of r and φ because bending of rays
leads to photons with the same final trajectory having different initial trajectories
(García et al. 2014). The total reflection spectrum seen by the stationary observer is
then calculated by integrating equation (3.19) over all impact parameter values for
which the corresponding geodesic intercepts the disc at radii rin < r < rout.

3.2.4 Transfer function and cross-spectrum

We can express the total reflected specific flux seen by the z = 0 observer asRo(Eo, to) =

A(to)⊗ wo(Eo, to), where ⊗ denotes a convolution and

wo(Eo, to) =

∫
α

∫
β

ε(r)g3
do(r, φ)δ(to − τ(r, φ))

×R[Eo/gdo(r, φ)|µe(r, φ), gsd(r)Ecut, log10 ξ(r)]dαdβ. (3.21)

is the impulse-response function. In Fourier space the convolution is a multiplication,
so it is best to Fourier transform the impulse response function to get the transfer
function

Wo(Eo, ν) =

∫
α

∫
β

ε(r)g3
do(r, φ)ei2πτ(r,φ)ν

×R[Eo/gdo(r, φ)|µe(r, φ), gsd(r)Ecut, log10 ξ(r)]dαdβ. (3.22)
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3 X-ray reverberation model

Setting ν = 0 (The DC component, standing for direct current), gives the time-
averaged spectrum. Generalising to an observer at a cosmological distance gives
R(E, ν) = A(ν)W (E, ν), where

W (E, ν) = (1 + z)−3

∫
α

∫
β

ε(r)g3
do(r, φ)ei2π(1+z)τ(r,φ)ν

×R[Eo/gdo(r, φ)|µe(r, φ), gsd(r)Ecut, log10 ξ(r)]dαdβ, (3.23)

and we note that A(ν) is in general complex. We trace rays defined by given impact
parameter values backwards from the observer plane towards the black hole along
the relevant null geodesic in the Kerr metric (again calculated using ynogk). This
operation automatically accounts for lensing of rays travelling from the disc to the
observer. We consider a 400×400 grid of impact parameters with

√
α2 + β2 ≤ 300 Rg.

We additionally consider a larger grid with 300 Rg <
√
α2 + β2 ≤ rout for which we

calculate geodesics in the Minkowski metric. For rays that cross the disc mid-plane,
we calculate the r, φ and t coordinates at the crossing point. We stop following rays
after the first time they cross the mid-plane, therefore ignoring ghost images, which
are likely blocked in reality by material in the vicinity of the hole. We quote the
formulae for the blueshift factors and angles in Appendix B.2. We also include a
‘boosting factor’ to account for the likelihood that our assumption of an isotropically
radiating source is inappropriate. We specify the factor 1/B as a model parameter,
such that 1/B < 1 roughly corresponds to the source being beamed towards us and
away from the disc.

From the transfer function, we can calculate the energy-dependent cross-spectrum.
This is a series of cross-spectra between the flux at each energy and that in a common
reference band, G(E, ν) = S(E, ν)F ∗r (ν). In our model, this is given by

G(E, ν) = α(ν)eiφA(ν)

[
FA=1(E) +

W (E, ν)

B

]
, (3.24)

where α(ν) and φA(ν) are model parameters for each frequency ν, and FA=1(E) is
given by equation (3.13) with A = 1. We could equally see equation 3.24 as a for-
mula for the complex-covariance (Mastroserio et al. 2018), which is simply the cross-
spectrum divided through by the amplitude of the reference band, S(E, ν)Fr(ν)/|Fr(ν)|.
The only adjustment would be a slight change in the, already fairly arbitrary, mean-
ing of the normalisation parameter α(ν). Finally, line-of-sight absorption is accounted
for using the multiplicative xspec model, tbabs (Wilms et al. 2000), such that the
transmitted cross-spectrum is Gabs(E, ν) = tbabs(E) × G(E, ν). For a given fre-
quency range, our model calculates this transmitted cross-spectrum and outputs, as
a function of energy, the real part of this, the imaginary part, the modulus (energy-
dependent variability amplitude) or the time lag (tlag(E, ν) = arg{G(E, ν)}/[2πν]),
depending on the user-defined mode.

As discussed in Mastroserio et al. (2018), if the reference band is the sum of energy
channels ranging from Imin to Imax that are all well calibrated for the instrument we
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3.2 Derivation of the cross-spectrum in the lamppost geometry

are observing with, the parameter φA(ν) need not be a free parameter, and can instead
be expressed as

tanφA(ν) =
−
∑Imax
J=Imin

=[W (J, ν)]/B∑Imax
I=Imin

FA=1(I) + <[W (I, ν)]/B
. (3.25)

Here, FA=1(I) and W (I, ν) are calculated by convolving tbabs(E) × FA=1(E) and
tbabs(E)×W (E, ν) respectively with the instrument response (see Mastroserio et al.
2018 for details). Our model incorporates both a mode in which φA(ν) is a free
parameter and a mode in which the instrument response is read in and φA(ν) is
calculated self-consistently.

3.2.5 The reflection kernel

Much of the computational expense of evaluating equation (3.22) can be saved by
representing it as a convolution with a kernel. The easiest case to calculate is if we
assume that the shape of the rest frame reflection spectrum depends on neither r nor
φ. This can be done by assuming that the cut-off energy seen by each disc patch is
Ecut rather than gsd(r)Ecut, that δe(r, φ) = i and that the disc ionisation parameter is
independent of radius. Working with logE rather than E, allows the transfer function
to be represented as

W (logE, ν) =

∫ ∞
0

R(logE′)Wδ(log(E/E′), ν)d logE′, (3.26)

where

Wδ(logE, ν) = (1 + z)−3

∫
α,β

ε(r)g3
do(r, φ)ei2π(1+z)τ(r,φ)ν

×δ
[
logE − log

(
gdo(r, φ)

1 + z

)]
dαdβ (3.27)

is the kernel of the transfer function. It is clear that the kernel is simply the transfer
function for a δ−function rest frame reflection spectrum centered at 1 keV. Equation
(3.26) can be recognised as a convolution in logE space, and can thus be written

W (logE, ν) = R(logE)⊗logE Wδ(logE, ν). (3.28)

We compute the convolution using the convolution theorem (i.e. Fourier transforming
both, multiplying and finally inverse transforming), which allows us to exploit the
large gain in speed afforded by using the fast Fourier transform (FFT) algorithm.

In the more general case, we can quantise µe, gsd and log10 ξ by defining a number
of discrete bins for each and writing the transfer function as

W (logE, ν) =
∑
j

∑
k

∑
n

R[logE|µe(j), gsd(k), log10 ξ(n)]

⊗logEWδ(logE, ν|j, k, n), (3.29)
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3 X-ray reverberation model

where Wδ(logE, ν|j, k, n) is given by equation 3.27, except the integrand is only non-
zero for disc patches with µe(r, φ), gsd(r) and log10 ξ(r) in the range specified by the
indices j, k and n. Computing equation 3.29 therefore requires a convolution for each
permutation of j, k and n. Use of the FFT algorithm prevents the computation of so
many convolutions from becoming prohibitively expensive. We will explore the effect
of changing the number of convolutions on the accuracy of the model in section 3.3.3.
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3 X-ray reverberation model

3.2.6 Reflection fraction

It is useful to define a reflection fraction that captures the ratio between reflected and
direct components in the observed spectrum, specifically isolating geometric consider-
ations from radiative transfer considerations. Here, we discuss two definitions of the
reflection fraction: the system reflection fraction, which depends only on the geom-
etry of the system and is independent of the observer, and the observer’s reflection
fraction.

The system reflection fraction, already used by the model relxilllp (Dauser et al.
2013), is

(fR)sys =
cos δin − cos δout

1 + cos δout
, (3.30)

where δin and δout are respectively the values of the angle δ for geodesics from the
source that hit the inner and outer radii of the disc (Dauser et al. 2014). This
definition gives the number of photons that hit the disc divided by the number that
reach infinity in the hemisphere above the disc mid-plane. In the case of Newtonian
gravity, (fR)sys would reach a maximum of unity for a disc extending from rin = 0 to
rout =∞. In full GR however, (fR)sys can be much larger due to focusing of photons
onto the inner regions of the disc (Dauser et al. 2016).

Although the above definition is conveniently simple, it does not fully capture
the relative flux of the direct and reflected spectra as seen by a given observer. We
therefore additionally define an observer’s reflection fraction. In order to exclude the
radiative transfer calculation, we define a reflection spectrum for the case in which
the disc re-emits the incident spectrum isotropically. In this case, we can define
the reflection fraction as the observed bolometric reflected flux divided by the directly
observed bolometric flux. Note that both of these fluxes are considered to be measured
in the observer’s frame. This means that the specific flux re-radiated from a disc
patch is Fd,out(Ed) = Fd,in(Ed) (input spectrum preserved) and the specific intensity
re-radiated from the disc patch is Id,out(Ed) = Fd,in(Ed)/π (isotropic re-radiation).
This gives

(fR)obs =
2

`gso

∫
α,β

g3
do(r, φ)gsd(r)

|d cos δ/dr|
dAring/dr

dαdβ

=
4

`gso

∫
α,β

g3
do(r, φ)g1−Γ

sd (r)ε(r)dαdβ (3.31)

Applying the earlier experiment of taking the simple limiting case of an infinite
slab in Newtonian gravity to equation (3.31) gives (fR)obs = 2 cos i. Averaging over
all cos i in the hemisphere above the disc mid-plane, we find 〈(fR)obs〉 = 1; i.e. source
photons are either radiated into the upper hemisphere to be observed directly, or into
the lower hemisphere to be observed as reflection. The angular dependence, even
when isotropic radiation is assumed, results from the source being a sphere, whereas
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3.2 Derivation of the cross-spectrum in the lamppost geometry

Parameter Units Description Default value

h Rg (+ve) or Rh
(-ve)

Source height 6

a Dimensionless spin pa-
rameter

0.9

i Degrees Inclination angle 30

rin Rg (+ve) or
ISCO (-ve)

Disc inner radius −1

rout Rg Disc outer radius 20000

z Cosmological redshift 0

Γ Photon index 2

log10 ξ ξ has units of
erg cm/s

ionisation parameter or
peak value of ionisation
parameter

3 or 3.75

AFe Solar Relative iron abun-
dance

1

(Ecut)obs keV Observed high energy
cut-off

300

(kTe)obs keV Observed electron tem-
perature

300

Nh 1022cm−2 Hydrogen column den-
sity of material in the
line-of-sight (tbabs)

0

1/B Boosting factor to
adjust the reflection
fraction from lamppost
value

1

M M� Black hole mass 4.6× 107

φA Radians Phase norm - can be
self-consistently calcu-
lated

0

νmin Hz Minimum frequency
transfer function is
averaged over

1× 10−5 or 0

νmax Hz Maximum frequency
transfer function is
averaged over

2× 10−5 or 0

ReIm Sets output 1− 6

Table 3.1: Model parameters for reltrans and reltransCp. Source height and disc inner radius
can be expressed in horizons and ISCOs respectively in order to avoid unphysical parameter combi-
nations during exploration of parameters space. The chosen value of mass corresponds to NGC 4151.
The model calculates the energy dependent cross-spectrum averaged over the frequency range νmin
to νmax. The parameter ReIm sets the model output. The options are: 1) real part, 2) imaginary
part, 3) modulus (i.e. the absolute variability amplitude), 4) time lag (the argument divided by
2πν, where ν = [νmin + νmax]/2), 5) modulus of the folded cross-spectrum, and 6) the time-lag for
the folded cross-spectrum. If either νmin or νmax are set to zero, the time-averaged spectrum is
returned.
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3 X-ray reverberation model

the disc is a slab. This definition of the reflection fraction is similar, but not identical,
to the ‘reflection strength’ defined by Dauser et al. (2016). In our model, we calculate
both reflection fractions and print them to screen if the verbose level is set suitably
high by an environment variable.

Fig 3.3 (left) shows our two definitions of reflection fraction plotted against source
height for a number of parameter combinations. We see that the solid lines represent-
ing (fr)sys, which agree exactly with Fig 3 of Dauser et al. (2016), do not depend on
viewer inclination. The dashed lines representing (fr)obs do depend on viewer posi-
tion. The right panel shows the contribution of the lensing factor. This is strongly
dependent on source height, but only weakly dependent on spin and inclination.

3.3 Model properties

The model parameters of reltrans and reltransCp are listed in Table 3.1. We
also define a number of environment variables, listed in Appendix B.3, that are used
to switch between different modes and control resolution. Each environment variable
has a sensible default value, such that the model is user friendly for the beginner and
flexible for the advanced user. In this section, we explore the model properties and
describe the listed parameters and environment variables. For the sake of intuition
we plot time lags and variability amplitudes, even though it is statistically favourable
when fitting to data to consider real and imaginary parts of the cross-spectrum (In-
gram et al. 2016, 2017; Rapisarda et al. 2017a; Mastroserio et al. 2018).

3.3.1 Emissivity profiles

Fig 3.4 shows the lamppost model emissivity profile and some contributing factors for
a range of parameter combinations. Panel (a) shows the ratio of the area derivative
in the Newtonian case to the relativistic case for three different values of spin. The
difference between the three spin values results entirely from the Lorentz factor of
the rotating disc element, γφ. This plot is very similar, but not identical, to the
corresponding plot in Dauser et al. (2013) (top panel in their Fig 2). The discrepancy
results from small (inconsequential as it turns out) mistakes in the expressions for
γφ in Bardeen et al. (1972) (equation 13.12a) and Dauser et al. (2013) (equation
10). The two expressions are identical except the latter reference drops all ± and
∓ signs, meaning that they agree for prograde spin but differ slightly for retrograde
spin. Upon further investigation, detailed in Appendix B.1, we found a very subtle
mistake in equation (13.12a) of Bardeen et al. (1972), which is again very small and
only relevant for retrograde spin. We find that, for a = −0.99 (which maximises the
magnitude of the error), the Dauser et al. (2013) version actually gives a closer answer
to our new expression than the Bardeen et al. (1972) version, although all three are
very similar.
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Figure 3.4: Contributions to the radial emissivity profile, designed for comparison to Fig 2 in
Dauser et al (2013). a: Ratio of the Newtonian radial derivative to the fully relativistic version for
spin as labelled. b: Contribution to the emissivity of the blueshift factor for h = 10 and a = 0.99. c:
Radial derivative of cos δ for a = 0.99 and h as labelled. The grey dashed lines are the Newtonian
equivalent for h = 1.8 (to be compared with the solid magenta line) and h = 100 (to be compared
with the solid orange line). As expected, this is a better approximation for larger source heights. d:
Emissivity profile for Γ = 2, a = 0.99 and h as labelled in panel c. Again, the grey dashed lines are
the Newtonian equivalent [ε(r) ∝ (h2 + r2)−3/2] for h = 100 and h = 1.8.
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Panel (b) shows the contribution of the blueshift factor for three different values
of Γ, illustrating that a steeper spectrum leads to a steeper emissivity profile. Panels
(c) and (d) show respectively the radial derivative of the cosine of the angle δ and
the overall emissivity profile for various parameter combinations. The grey dashed
lines represent the Newtonian approximations [|d cos δ/dr| = hr(h2 + r2)−3/2 and
ε(r) = h(h2 + r2)−3/2/(4π)] for h = 1.8 Rg (to be compared with the magenta lines)
and h = 100 Rg (to be compared with the orange lines). We see that, as expected,
the full GR solution diverges dramatically from the Newtonian approximation for low
source heights. Our emissivity profiles agree with those presented in Dauser et al.
(2013).

3.3.2 Time-averaged spectrum

Fig 3.5 shows the direct and reflected components of the time-averaged spectrum
calculated by reltrans (black) and the most recent version of relxilllp at the
time of writing (red, dashed). We use the default parameters listed in Table 3.1,
except we set rout = 400 Rg for ease of comparison with relxilllp. relxilllp
accounts for the dependence of emission angle and disc rest frame cut-off energy on
disc coordinates, but assumes a single ionisation parameter. For the purposes of
comparison in this plot, we therefore follow suit (although see sections 3.3.3 and 3.3.3
for further discussion on these dependencies), and use the default number of zones for
both µe and Ecut. For all models, the relative normalisation of reflected and direct
components is calculated self-consistently, rather than set as a model parameter. We
see that relxilllp agrees very well with our model4. Besides benchmarking against
relxilllp, we have also throughly tested our code by comparing it with outputs
calculated using brute-force calculation of the transfer function (i.e. without using
the kernal convolution).

3.3.3 Rest frame assumptions

In this section, we explore the impact of accounting for the coordinate dependence of
the emission angle and high energy cut-off (3.3.3) and ionisation parameter (3.3.3),
before comparing reltrans to reltransCp (3.3.3).

Emission angle and cut-off energy

Fig 3.6 shows the radial dependence of the cosine of the emission angle, µe, for the
default parameters, with the spread being for different disc azimuths. As expected,
µe ≈ cos(i) for very large disc radii, but covers an enormous range for smaller disc

4Model versions of relxillp prior to v1.2.0 have a smaller relative normalization of the reflection
spectrum. This comes partly from an extra factor of 0.5 cos i that is applied to the xillver spectrum
before being convolved with the smearing kernel in the older versions
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Figure 3.5: Time-averaged direct and reflected spectrum for reltrans (black), and the most recent
version of relxilllp (red, dashed). We see good agreement between the two models.
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Figure 3.6: Cosine of the emission angle (black) and incidence angle (red) as a function of radius
for the default parameters (i = 30◦). We see that the emission angle depends on azimuth as well as
radius, whereas the incidence angle is a monotonic function of radius. The grey points at r & 400 Rg
are computed assuming that rays travel in straight lines. The smooth joins from the full GR treatment
used for r . 400 Rg demonstrate that this is a reasonable assumption.
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Figure 3.7: reltrans time-averaged spectrum (a), 1 − 2 × 10−5 Hz time lags (b) and absolute
variability amplitude (c) calculated for the default parameters. Left and right hand panels correspond
to inclination angles of 30◦ and 80◦ respectively. For the black lines, we set the emission angle δe
equal to the inclination angle i and ignore the radial dependence of Ecut as measured in the disc
restframe. For the other lines, we account only for the disc coordinate dependence of µe (red), only
for the Ecut dependence (green), and for both (blue). A single ionisation parameter is used. For the
lags, φA is calculated for a 2− 10 keV XMM-Newton EPIC pn reference band flux.

radii. The relxill family of models for the time-averaged spectrum (García et al.
2014) account for this disc coordinate dependence of the emission angle, and now also
for the radial dependence of apparent Ecut observed in the disc rest frame. Here, we
investigate both effects in the context of the timing properties. Fig 3.7 shows the
time-averaged spectrum (a), time lags (b) and variability amplitude (c) calculated for
i = 30◦ (left) and i = 80◦ (right). The different lines account for neither effect (black),
only emission angle (red), only cut-off energy (green) and both effects (blue). For the
purposes of the variability amplitude calculation, we simply set α(ν) = 1 (this in
itself is unphysical, corresponding to 100% fractional variability, but as an arbitrary
constant it does not have any bearing on our analysis). We see that the Ecut effect is
always subtle, but the emission angle effect can become very large for high inclination
angles (consistent with what García et al. 2014 found for the time-averaged spectrum).
These figures use 10 zones to account for both effects, which we find to be comfortably
enough to reach convergence for all trialled parameter combinations. Since acceptable
accuracy can be achieved by using as few as 5 zones for both quantities, we set 5 as
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the default value for the environment variables MU_ZONES and ECUT_ZONES (see Table
B.1). The user can adjust these values to test for convergence.

Ionisation profile and incidence angle

The ionisation parameter is proportional to the 13.6 eV to 13.6 keV illuminating flux,
Fx(r) ∝ g2−Γ

sd (r)ε(r), divided by the disc electron density ne(r). Whereas the flux is
known exactly in the lamppost model, ne(r) is more uncertain. Shakura & Sunyaev
(1973) define equations for 3 disc zones, where zone A is the innermost region, in
which pressure is dominated by radiation and the opacity is dominated by electron
scattering. Since the emissivity is dominated by the inner regions, we first investigate
the zone A density profile (equation 2.11), ne(r) ∝ α−1r3/2[1−(rin/r)

1/2]−2, where α
is the viscosity parameter [not to be confused with our normalisation parameter α(ν)].
The density profile is very different for the other zones at larger radii, but for these
radii Fx is small and so the predicted ionisation is small regardless of the assumed
density profile. The black solid line in Fig 3.8 shows the resulting ionisation profile
for the default parameters. For simplicity, we have taken the viscosity parameter to
be a constant, but we stress there is no a priori reason to assume this. There are
other reasons to suspect an alternative density profile. For instance, the stress-free
inner boundary condition may not be appropriate for a truncated disc, or there may
be no zone A present when the accretion rate is a small fraction of the Eddington
limit. We therefore additionally explore the simplest possible case of constant density
(following Svoboda et al. 2012). The resulting ionisation profile is plotted in Fig 3.8
(black dashed line).

We normalise the ionisation profile by specifying as a model parameter the peak
ionisation value, log10 ξmax. For the constant density model, the peak simply occurs
at the disc inner radius. For the zone A density profile, we use rpeak = (11/9)2rin,
which is only exact for ε(r) ∝ r−3, but numerical calculation of the exact rpeak would
be fairly expensive for no real gain.

Another effect to consider is the radial dependence of the incidence angle of il-
luminating photons δi (see Fig 3.2), the cosine of which is plotted for the default
parameters in Fig 3.6 (red line). The incidence angle influences the shape and nor-
malisation of the restframe reflection spectrum (García & Kallman 2010) but, in
order to save computational expense, the public xillver grid is tabulated only for
δi = 45◦. Since the leading order effect is on the intensity of the radiation field at
the disc upper boundary, 2Fx(r)/µi(r), the radial µi profile can be approximately ac-
counted for very cheaply by adjusting the ionisation profile (García & Kallman 2010;
Dauser et al. 2013). The red lines in Fig 3.8 show the logarithm of the ‘effective’
ionisation parameter, ξeff (r) = ξ(r) cos(45◦)/µi, that results from this adjustment.
We use this effective ionisation in our model since it captures more physics for no
extra computational cost.
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Figure 3.8: The black lines are radial ionisation profiles calculated assuming a zone A density
profile (solid) and constant density (dashed). The red lines are effective ionisation profiles, which
have been adjusted to account for the radial dependence of the incidence angle.

Figs 3.9 and 3.10 show the time-averaged spectrum (a), time lag (b) and amplitude
(c). The thick black lines are computed for a single ionisation parameter of log10 ξ = 3,
whereas a self-consistently calculated effective ionisation profile has been used for the
coloured lines. We use the zone A density profile for Fig 3.9 and constant density
for Fig 3.10. From bottom to top, the red, green, blue, cyan and magenta lines are
for log10 ξmax = 3, 3.5, 3.75, 4.0 and 4.25 respectively. We see that this modification
to the model makes an enormous difference to all outputs. For the zone A profile,
setting log10 ξmax = 3.75 (blue lines) gives the closest match to the constant ionisation
model in terms of the relative peak fluxes of the time-averaged iron line and reflection
hump. However, the red wing of the iron line is much more prominent for the self-
consistent case. The constant density case is similar, except for log10 ξmax = 4.25. We
will investigate possible biases that this may cause when fitting constant ionisation
models to observational data in section 3.4.2. The effect is even greater if we also
consider the timing properties. The self-consistent models have smaller iron line lags
than the single ionisation model, which may perhaps be mistaken for the source height
or disc inner radius being smaller. The absolute rms spectrum shows that the iron
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Figure 3.9: reltrans time-averaged spectrum (a), time lags (b) and absolute variability amplitude
for different assumptions regarding the radial ionisation profile. For all lines, we assume the default
parameters, and for the time lag we assume that the reference band was the 2 − 10 keV EPIC-
pn flux. For simplicity, we ignore the µe and Ecut dependencies explored in Fig 3.7. The thick
black lines are for a constant disc ionisation parameter, log10 ξ = 3.0. The other lines assume a
radial ionisation profile self-consistently calculated from the emissivity profile and the density profile
relevant to Shakura and Sunyaev’s zone A. From bottom to top, the red, green, blue and cyan
lines assume a ‘peak’ ionisation of log10 ξ =3, 3.5, 3.75, 4.0. We see that accounting for the radial
ionisation profile makes an enormous difference to the results.
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line is much more variable for the self-consistent case. As we will see in section 3.4.2,
it is possible to choose a value of h that allows the single ionisation model to mimick
the time-averaged spectrum of the self-consistent case, but the different effect that the
ionisation gradient has on the timing properties means that considering also time lags
and variability amplitude breaks the degeneracy. Both figures here are plotted using
100 zones in ionisation parameter. We find however that reasonable convergence can
be achieved for 10 zones, and so we set this as the default value for the ION_ZONES
environment variable (see Table B.1).

reltransCp vs reltrans

Fig 3.11 demonstrates typical differences between reltrans (black lines) and rel-
transCp (red lines). Whereas the former uses an exponentially cut-off power-law for
the illuminating spectrum, the latter uses the model nthcomp (Zdziarski et al. 1996;
Życki et al. 1999), which gives a much better approximation of Compton up-scattering
of seed photons by a thermal population of hot electrons. We see that nthcomp has
a low energy cut-off, which is determined by the seed photon temperature kTbb. In
the xillverCp tables, this is hardwired to 0.05 keV (assuming a multi-temperature
blackbody spectrum of seed photons). The shape of the high energy cut-off is also
very different for nthcomp. The difference between the two models is small for the
lags though. Since reltransCp employs a more physical emission model for little
extra computational expense, we use it for the remainder of the plots in this paper.

3.3.4 Frequency dependence

Fig 3.12 demonstrates the frequency dependence of reltransCp for the default pa-
rameters. Panel a shows the phase normalisation φA(ν) calculated for a 2 − 10 keV
reference band measured by the EPIC-pn instrument onboard the X-ray Multi-mirror
Mission (XMM-Newton; Jansen et al. 2001) in timing mode (calculated from equa-
tion 3.25). As noted in Mastroserio et al. (2018), we can only be confident that this
function is a correct representation of the underlying spectral model if all the channels
used for the reference band are considered to be well calibrated. The range 2 − 10

keV demonstrated in the plot is well calibrated for XMM-Newton. If for any reason
we wish to define our reference band from poorly calibrated channels, for instance if
we wish to maximize signal to noise by collecting more photons, then a systematic
error will be introduced into the calculation of φA(ν) because the instrument response
matrix used for the calculation does not adequately describe the true response of the
telescope for all energy channels. In such a case, it may be best to leave φA(ν) as a
free parameter for each frequency range considered, although this will inevitably lead
to larger statistical errors.

Panels b and c show respectively time lags and absolute variability amplitude as a
function of energy for 10 different frequency ranges. The overall lag reduces and the
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Figure 3.10: Same as Fig 3.9, except the radial ionisation profile is calculated assuming a disc with
constant density. The magenta lines are for log ξ(rin) = 4.25. For this constant density case, the
peak ionisation that most closely matches the spectrum to the constant ionisation case is slightly
higher (i.e. 4.25, magenta line). We again see that the red wing of the iron line in the time-averaged
spectrum (a) is exaggerated compared with the constant ionisation model (thick black lines), even
though the change in shape of the line is slightly less dramatic than for Fig 3.9. The use of a
self-consistent ionisation profile again has a significant affect on the time lags (b) and absolute rms
(c), with the self-consistent ionisation profile again leading to a more variable iron line (see magenta
lines).
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Figure 3.11: Time-averaged spectrum (a), time lags (b) and absolute variability amplitude calcu-
lated from the default parameters. The black lines represent the model reltrans (which assumes
an exponentially cut-off power-law for the direct spectral component) and the red lines represent
reltransCp (which uses nthcomp for the direct spectrum). We see a significant difference in the
time-averaged direct component. The time lags are largely unaffected for energies below ∼ 20 keV,
whereas the more physical model reltransCp predicts a larger variability amplitude. Here we use
default values for the environment variables, and the phase zero point is self-consistently calculated
for a 2− 10 keV XMM-Newton pn timing mode reference band.
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Figure 3.12: a: φA(ν) calculated using the default model parameters of reltransCp (default
environment variables), assuming that the reference band is the 2− 10 keV EPIC-pn flux. b: Time
lag versus energy for the same parameters using the same calculation for φA(ν). The black, red,
green, blue, cyan, magenta, yellow, orange, light green and light blue lines (top to bottom) are
calculated for different frequency ranges, which increase logarithmically from a minimum of 10−8

Hz to a maximum of 10−4 Hz (this range corresponds to 0.046− 460 Hz for a 10M� black hole, or
∼ 2.26×10−6−10−2 c/Rg). c: The same calculation but for variability amplitude, setting α(ν) = 1.
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iron line feature gets broader with increasing frequency because the higher frequencies
select reflection from smaller regions of the disc. Similarly, the line feature in the rms
spectrum becomes weaker for higher frequencies as the fastest variability is washed out
by path length differences introduced by reflection from different parts of the disc.
At the highest frequency range plotted here, we see the effects of phase-wrapping,
evidenced by the iron line and reflection hump becoming dips as opposed to excesses
in the rms spectrum.

Our model calculates the energy dependent cross-spectrum for a given frequency
range, rather than the cross-spectrum as a function of frequency for a given energy
range. This feature is hardwired because we calculate the energy dependent transfer
function in Fourier space (see equation 3.22) for a range of frequencies between νmin
and νmax. This is much more computationally efficient than first calculating a 2D
impulse-response function and Fourier transforming the time axis. All frequencies
can be taken into account by fitting for many frequency ranges, as in Mastroserio
et al. (2018). The public model does not currently include non-linear effects, but
will soon be updated (description in Mastroserio et al submitted). Intrinsic hard
lags can alternatively be produced by summing two model components. This is only
possible when considering real and imaginary parts of the cross-spectrum, and the
phase normalisations of the two component must be free parameters (i.e. not self-
consistently calculated) and independent of one another. Using, for example, two
reltrans components with different source heights and different spectral indices is
the same as assuming the ‘two blobs’ geometry of Chainakun & Young (2017). The
Fourier frequency dependent propagation time between the blobs is simply |φA1(ν)−
φA2(ν)|/(2πν).

3.4 Modelling biases

In this section, we explore two sources of bias in previous treatments of reflection
and reverberation in the literature. The first is ignoring the instrument response
matrix when analysing time lags. In section (3.4.1), we show that the value of the
lag can be heavily biased in an energy range for which the instrument response is
not diagonal and in which line-of-sight absorption is prominent. This is because such
an energy range is dominated by photons from other energy bands that have been
‘mis-classified’. The other source of bias is assuming a single disc ionisation parameter
instead of accounting for a self-consistently calculated radial ionisation profile (section
3.4.2).

3.4.1 Bias caused by ignoring the telescope response

Our model provides two ways to properly account for the instrument response and
line-of-sight absorption. The recommended option for the purposes of fitting to data
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Figure 3.13: Time lags calculated for the default parameters. The black line is for the model only,
and so does not account for a telescope response matrix. The red and blue lines assume the pn
response and absorption column densities of Nh = 0 and 1022cm−2 respectively. We calculate φA
for all three assuming the reference band is the 2− 10 keV band of the pn.

is to consider the real and imaginary parts of the cross-spectrum (ReIm=1 and 2).
In this case, the fits files containing the data can be read into xspec in the normal
way, with response files specified in the header, and the usual xspec operation of
folding around the instrument response is appropriate. The user can then plot the
best fitting cross-spectral model in terms of variability amplitude and time lags af-
ter the fit is complete (ReIm=3 and 4). However, the user may wish to instead fit
for time lags and/or variability amplitude. In this case, the model cross-spectrum is
folded around the instrument response within the code and the variability amplitude
and time lags are calculated from this folded cross-spectrum (ReIm=5 and 6). Obser-
vationally constrained time lags and rms can be loaded into xspec with a diagonal
dummy response matrix (using e.g. flx2xsp). The response files can be set through
environment variables (RMF_SET and ARF_SET). If the environment variables are not
set but the code is in a mode requiring a response, the user will instead be prompted
at the terminal for input.

Fig 3.13 illustrates the importance of correctly accounting for the instrument re-
sponse. The black line represents time lags for the model only, ignoring the instrument
response (i.e. ReIm=4). In this case, the absorption model is not relevant because
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Figure 3.14: Log-linear time lag as a function of energy (black), with the parameters chosen to
roughly match the 1 − 30 Hz lag spectrum of GX 339−4 in observation ‘O1’ from De Marco et al.
(2017) and Mahmoud et al. (2019). The red line is the time lag that would be observed by XMM-
Newton assuming that the intrinsic lag-energy spectrum is given by the black (log-linear) line. To
calculate this, we take the argument of the absorbed and folded model cross-spectrum. We see
that an intrinsically log-linear lag spectrum appears to turn up at E . 1 keV in XMM-Newton
observations.

it cancels out when the imaginary part of the cross-spectrum is divided by the real
part. The red line represents the same model, but now the EPIC pn response has
been used and we set the hydrogen column density to Nh = 0. The blue dashed line is
the same again except that now we set NH = 1022cm−2. We see very little differences
in the 2− 10 keV region, whereas above ∼ 15 keV the lags are completely undefined
due to lack of effective area. The differences between the lines below ∼ 1 keV occur
because the response matrix is not diagonal in this energy range. For Nh = 0, the
resulting ambiguity between soft photons and harder photons ‘mis-classified’ as soft
simply smears out sharp features. When absorption is taken into account, the soft
band instead becomes dominated by the mis-classified photons. This essentially in-
troduces dilution: the lag between 0.5 keV and 1 keV is very small because most of
the photons recored in the ∼ 0.5 keV channel are actually ∼ 1 keV photons.

Whereas Fig 3.13 is relevant for high frequencies at which the reverberation lags
dominate over the intrinsic hard lags, the same effect is also potentially important for
lower frequency ranges in which the intrinsic lags are still significant. In particular,
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signatures of thermal reverberation have been detected for a number of black hole
X-ray binaries including GX 339−4 (Uttley et al. 2011; De Marco et al. 2017). In the
1−30 Hz frequency range, log-linear intrinsic lags are seen for E & 1 keV and a turn up
is seen for E . 1 keV, which is attributed to thermal reverberation (see top right of Fig
7 in De Marco et al. 2017). We investigate how this thermal reverberation signal may
have been affected by the instrument response by first assuming that the intrinsic lag
spectrum in the 1−30 Hz frequency range is simply log-linear for the full energy range
(Fig 3.14, black line). From this, we calculate the energy dependent cross-spectrum.
This additionally requires a model for the time-averaged spectrum and a model for
the energy dependent fractional variability amplitude. We use tbabs*nthComp
(Nh = 6× 10−21cm−2, Γ = 1.9, kTbb = 0.18 keV) for the time-averaged spectrum and
assume that the fractional rms increases linearly with energy (rms ∝ 0.024E+ 0.043,
although our results only depend very weakly on this function). We then fold our
model cross-spectrum around the XMM-Newton pn timing mode response matrix and
calculate the ‘folded’ lag spectrum from the argument of this folded cross-spectrum
(red line). We see a clear turn up in the ‘folded’ lag spectrum below ∼ 1 keV that
results from these energy channels being dominated by ‘mis-classified’ photons.

On first inspection, this looks worryingly like a spurious signature of thermal
reverberation. However, the observation of GX 339−4 that our model is based upon
has a number of characteristics that convincingly point to the presence of thermal
reverberation. In particular, De Marco et al. (2017) present the 5− 30 Hz lag energy
spectrum in their Fig 7. That the ∼ 0.5 keV lag increases as progressively higher
frequency ranges are chosen is very suggestive of thermal reverberation. Moreover,
the E ∼ 0.5 keV lag is larger than the lag in the ∼ 1 − 6 keV energy range, and so
simply cannot be caused by the instrumental effect that we have explored here - which
can only dilute the soft lags by averaging with the higher energy lags. We therefore
conclude that the thermal reverberation interpretation of the data is sound. However,
the value of the lag is very likely biased by the instrument response. In particular,
Mahmoud et al. (2019) fit a transfer function model to the data that only accounts
for the effective area curve of the instrument but not the redistribution matrix. This
implies that the true reverberation lags are shorter than originally thought, and the
measured disc inner radius of ∼ 20 Rg may reduce once the correction is made.

We conclude that it is important to properly account for the telescope response
matrix when modelling the . 1 keV region of XMM-Newton data, either by fitting
for real and imaginary parts, or using the folding option. A similar effect is present
in the NICER response, but not that of the Nuclear Spectroscopic Telescope ARray
(NuSTAR; Harrison 2013).
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Figure 3.15: Unfolded fake data and model (top) and fake data to model ratio (bottom). The
data were generated from a model with a radial ionisation profile calculated assuming a zone A
Shakura-Sunyaev density profile. Left and right hand plots respectively show the results of fitting
the input model and an alternative model with a single ionisation parameter (red) plus an extra
xillver component (grey). Results are further detailed in Table 3.2. Spectra have been re-binned
for plotting purposes (binned to a target signal to noise ratio of 150 but not co-adding more than 10
channels).

3.4.2 Bias caused by using a single ionisation

It is clear from the discussion in Section 3.3.3, and in particular Figs 3.9 and 3.10,
that including a self-consistent radial ionisation profile can give very different model
outputs to simply assuming a constant ionisation parameter. In this section, we
create a fake NuSTAR time-averaged spectrum and fit back with a single ionisation
parameter model in order to investigate biases that may have been introduced into
the many spectral fitting studies that have used a single ionisation model.

Fake data

We simulate a 30 ks NuSTAR observation of a bright X-ray binary by inputing the
model parameters listed in Table 3.2 into reltransCp, with the normalisation set
to roughly match the observed flux of GX 339−4 when Γ ≈ 2 (model 4− 10 keV flux
= 5× 10−9 erg cm−2 s−1). We use fakeit to generate a fake 30 ks FMPA exposure,
taking background into account. We ignore deadtime effects, but do not generate an
FPMB exposure. Statistically, this is the same as taking both focal plane modules
into account and assuming a deadtime correction factor of 1/2. Our fake observation
therefore corresponds to a typical high quality observation used for the purposes of
spectral fitting (e.g. Parker et al. 2015; Xu et al. 2018; Tomsick et al. 2018). We
only simulate the time-averaged spectrum, since there have thus far only been a few
studies fitting reverberation models to timing data.
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Parameter Input Control Fit Single Ion Fit

NH (1022cm−2) 1 1 1

h (Rg) 6 5.48+0.616
−0.546 2.45+0.26

p

a 0.9 0.99p−0.099 0.778+0.0461
−0.0581

i (degrees) 30 30.7+1.06
−1.72 29.1+0.89

−1.12

Γ 2 2.0+0.01
−0.01 2.03+0.015

−0.009

log10 ξ
∗ 3.75 4.13+0.289

−0.587 3.05+0.034
−0.034

AFe 1 0.967+0.1926
−0.1259 0.999+0.1198

−0.0599

(kTe)obs (keV) 50 46.1+15.0
−5.37 50.8+11.81

−3.23

1/B 0.5 0.571+0.1694
−0.0743 0.419+0.0511

−0.0188

norm (10−2) 10 7.97+0.959
−0.621 56.8+4.86

−12.51

xillverCp norm (10−3) 0 0 6.32+0.08
−0.078

χ2/d.o.f. 1540.68/1561 1505.89/1560∗∗

Table 3.2: Input parameters and values measured by fitting back with the correct (control) model
and a single ionisation model. Errors are 90% confidence limits, and p denotes that the parameter is
pegged at a hard limit. ∗The ionisation parameter has different meanings in the two models (single
value vs maximum value). ∗∗ A 0.5% systematic error was applied for the single ionisation model
fit, as is commonly practiced in spectral fitting to account for calibration uncertainty and model
systematics. Without the systematic error, the best fitting single ionisation model has a reduced χ2

of 1626.38/1560, corresponding to a goodness of fit that is common for fits to real NuSTAR spectra
(e.g. Miller et al. 2013).

Our input model assumes the Zone A Shakura-Sunyaev density profile. This is
a reasonable assumption for the brightest hard / hard intermediate states of X-ray
binaries. The bolometric luminosity of GX 339-4 is Lx ∼ 1038.5 erg s−1 when Γ = 2

(see Fig 5 of Plant et al. 2014). For M . 10 M� (which is a reasonable upper limit:
Heida et al. 2017) and a viscosity parameter α & 0.01, the zone A to B transition is
therefore at rab & 200 Rg (equation 2.17 in Shakura & Sunyaev 1973), indicating that
the region of the disc that dominates the emissivity is radiation pressure and electron
scattering dominated. Following the discussion in section 3.3.3 concluding that the
disc coordinate dependence of µe and disc rest frame observed electron temperature
are not important for low source inclinations, we use 100 ionisation zones for our
input model, and only one for the emission angle and electron temperature.

81



3 X-ray reverberation model

Fit results

Fig 3.15 and Table 3.2 summarise the results of fitting the fake data with the input
model (left) and a single ionisation model (right). We fix the hydrogen column density
in both of the fits, assuming this to be constrained in some other way. We see
that the single ionisation model under-predicts the source height with high statistical
significance. This is consistent with Svoboda et al. (2012) and Kammoun et al. (2019),
who found that using a single ionisation zone can produce artificially steep power-law
emissivity profiles (and lower source height corresponds to steeper emissivity: Fig 3.4).
Previous spectral fitting studies using lamppost models assuming a single ionisation
parameter have therefore likely under-predicted the source height. The assumption
of a single ionisation parameter seems to have introduced a small bias in the spin
measurement, although we find that the spin is under-predicted here, whereas many
observational studies, particularly for AGN, yield near-maximal spin values. We also
note that the disc inner radius is fixed to the ISCO in our fake data, but is often
observed to reduce as the spectrum softens in the real data (e.g. Plant et al. 2015;
García et al. 2015). The large red wing of the iron line introduced by the ionisation
gradient appears to have been compensated by a larger value of Γ instead of a smaller
value of rin.

Interestingly, the single ionisation fit includes a highly statistically significant
(5.5 σ from an F-test) low-ionisation xillverCp component. Such a component
is often required in fits to real spectra in order to account for enhanced distant re-
flection (e.g. from a flared outer disc, or from the companion star). Our experiment
here implies that the often uncomfortably high flux required for the distant reflec-
tor may, in part, be due to a modelling systematic introduced by assuming a single
ionisation parameter. The correct iron abundance is recovered for both fits, but we
note that the best fitting single ionisation model with no distant reflection component
includes a super-solar iron abundance (AFe = 2.71+0.313

−0.229; errors are 90% confidence
limits). This is interesting because super-solar iron abundances are now consistently
measured in X-ray binaries, but it is not well understood why this should be the case
(García et al. 2018). It is suspected that the iron abundance parameter is compen-
sating for some missing physics in the models, such as higher electron density in the
disc (ne ∼ 1020−22cm−3; Tomsick et al. 2018). The assumption of a single ionisation
parameter may also contribute to the high measured iron abundance in some cases.

82



3.4 Modelling biases

10
0

10
1

En
er

gy
 (k

eV
)

20
0

15
0

10
05005010
0

15
0

20
0

 Time Lag (sec)

M
as

s 
6.

8×
10

6
M

14
.2

×
10

6
M

26
×

10
6
M

10
7

10
6

10
5

10
4

10
3

10
2

Fr
eq

ue
nc

y 
(H

z)

50
0

25
00

25
0

50
0

75
0

10
00

12
50

 (5.5 - 6.5) vs (0.3 - 10) keV   Time Lag (sec)

M
as

s
 6

.8
×

10
6
M

14
×

10
6
M

26
×

10
6
M

2×
10

4
4×

10
4

6×
10

4
5025025507510
0

F
ig

u
re

3.
16

:
Le

ft
:
T
im

e
la
g
as

a
fu
nc
ti
on

of
en
er
gy

in
th
e
fr
eq
ue
nc
y
ra
ng

e
[2
−

7
.5

]×
1
0
−
4
H
z
fo
r
X
M
M
-N

ew
to
n
da

ta
fr
om

M
rk

33
5
(b
la
ck

po
in
ts
),

al
on

gs
id
e
th
re
e

r
el

tr
a
n
s
m
od

el
fit
s
(r
ef
er
en
ce

ba
nd

:
0
.3
−

1
0
ke
V
).

Fo
r
th
e
bl
ue

so
lid

lin
e,

th
e
bl
ac
k
ho

le
m
as
s
is

a
fr
ee

pa
ra
m
et
er
,
an

d
fo
r
th
e

re
d
do

tt
ed

an
d
ye
llo

w
da

sh
ed

lin
es

w
e
fix

it
to

tw
o
di
ffe

re
nt

op
ti
ca
l
re
ve
rb
er
at
io
n
va
lu
es

fr
om

th
e
lit
er
at
ur
e.

R
ig
ht
:
T
im

e
la
g,

av
er
ag
ed

ov
er

th
e

ir
on

lin
e
re
gi
on

(5
.5
−

6
.5

ke
V
),

pl
ot
te
d
ag
ai
ns
t
fr
eq
ue
nc
y
fo
r
th
e
sa
m
e
th
re
e
m
od

el
s.

W
e
se
e
th
at
,
in

th
e
fr
eq
ue
nc
y
ra
ng

e
us
ed

fo
r
th
e
la
g-
en
er
gy

sp
ec
tr
um

(g
re
y
ba

nd
),

th
e
m
od

el
s
us
in
g
th
e
op

ti
ca
l
re
ve
rb
er
at
io
n
m
as
se
s
(r
ed

do
tt
ed

an
d
ye
llo

w
da

sh
ed

lin
es
)
ar
e
in

th
e
ph

as
e-
w
ra
pp

in
g
re
gi
m
e

w
he
re
as

ou
r
be

st
fit
ti
ng

m
od

el
(b
lu
e
so
lid

lin
e)

is
no

t.

83



3 X-ray reverberation model

3.5 Example fits for Mrk 335

As a proof of principle, we apply the reltrans model to an archival XMM-Newton
observation of the AGN Mrk 335 for which an iron K feature has previously been
identified in the lag-energy spectrum (Kara et al. 2013c). We choose this observation
because it provides a good example of an iron K lag feature without the need for
complications such as stacking multiple observations or dealing with photon pile-up
(both of which are required for the Ark 564 lag-energy spectrum also featured in
Kara et al. 2013c). We find that, even though this frequency range displays clear
signs of reverberation, a statistically acceptable fit to the real and imaginary parts of
the cross-spectrum could only be achieved by including non-linear variability of the
direct spectrum, which is beyond the scope of this paper but is introduced for the
reltrans model in a companion paper (Mastroserio et al. 2019). We therefore instead
fit only the time lags in a single frequency range here, leaving a multi-frequency fit of
real and imaginary parts of the cross-spectrum to a future paper.

3.5.1 Data

We consider the 133 ks XMM-Newton observation taken in 2006 (obs ID 0306870101)
that was analysed by Kara et al. (2013c). Following Kara et al. (2013c), we consider
only pn data, and reduce it using the XMM-Newton Science Analysis System (SAS
v.11.0.0), applying the filters PATTERN ≤ 4 and FLAG == 0. We exclude background
flares at the beginning and end of the observation (considering only times 252709714 to
252829414 seconds) and extract light curves with 10 second binning from 12 different
energy bands, spaced roughly equally in the range 0.3−10 keV, from a circular region
with 35 arcsec radius centred on the maximum of the source emission. We apply the
SAS task epiclccorr for background subtractions and various corrections.

Again following Kara et al. (2013c), we calculate the cross-spectrum between each
of the 12 energy bands and a reference band that is the sum of all energy bands except
for the current subject band (thereby ensuring statistical independence between the
subject and reference bands; see e.g. Uttley et al. 2014). We average these 12 cross-
spectra over the frequency range [2−7.5]× 10−4 Hz, since this is the range for which
‘soft lags’ are observed (De Marco et al. 2013b): i.e. fluctuations in the 0.3− 0.8 keV
band lag behind those in the 1 − 4 keV band (with the former assumed to be more
reflection-dominated than the latter). We calculate energy dependent time lags by
taking the argument of each frequency-averaged cross-spectrum and dividing by 2πν,
where ν = 4.75 × 10−4 Hz is the centre of the frequency range. We calculate error
bars using the analytic formula from Bendat & Piersol (2010, see also Nowak et al.
1999). Since the frequency resolution of the cross-spectra is dν = 8.35 × 10−6 Hz,
the [2−7.5]× 10−4 Hz frequency range contains 65 frequency bins, meaning that the
lag spectrum is Gaussian distributed and we can therefore fit models using the χ2
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Figure 3.17: 2D χ2 contour plot of black hole mass and source height resulting from fitting rel-
trans to the lag versus energy spectrum of Mrk 335 in the frequency range [2 − 7.5] × 10−4 Hz.
The green cross marks the best fit and the blue crosses mark the best fit for for the two optical
reverberation masses.

statistic.

3.5.2 Fits to the lag-energy spectrum

Fig. 3.16 (left) shows the observed lag-energy spectrum of Mrk 335 (black points),
which displays the iron K feature at ∼ 6.4 keV reported by Kara et al. (2013c)5,
alongside three reltrans model fits. A full treatment would employ a simultaneous
fit to the time-averaged spectrum, which we will present in a future paper. For
the purposes of this demonstration of the use of the model we instead fit only the
lag spectrum, and avoid over-fitting by fixing most parameters to values constrained
by a previous spectral analysis of these data (Keek & Ballantyne 2016). For the
spin, disc inner radius, inclination angle, ionisation parameter, iron abundance, slope

5Although note that we use a slightly different frequency range, and so our results are consistent
but not identical.
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3 X-ray reverberation model

of the incident power-law and high energy cut-off, we use a = 0.89, rin =ISCO,
i = 30◦, log10 ξ = 2.68, AFe = 3.9, Γ = 1.95 and (Ecut)obs = 300 keV (we assume
a constant ionisation parameter for simplicity). Following Kalberla et al. (2005),
we fix Nh = 3.6 × 1020 cm−2. We use the model configuration that outputs time
lags accounting for line-of-sight absorption and the instrument response (ReIm=6),
and calculates φA self-consistently (PHI_SET=1). The remaining free parameters are
black hole mass M , source height h and the boost parameter 1/B (for which we set
the hard ranges > 2 Rg and 0− 3 respectively).

The blue solid line represents our best-fitting model, which has parameters M =

6.8+5.5
−5.9 × 106M�, h = 2.2+34

−p and 1/B = 0.63+p
−0.48 (χ2/d.o.f. = 11.3/9; errors are

1σ), where p indicates that a parameter is pegged at a hard limit. This value of
mass is smaller than the optical reverberation measurements in the literature, with
the two most recently published values being M = [14.2 ± 3.7] × 106 M� (Peterson
et al. 2004) and M = [26± 8]× 106 M� (Grier et al. 2012). Chainakun et al. (2016b)
recently also fit an X-ray reverberation model to the same lag spectrum and obtained
a best fitting mass of 13.5× 106 M�, albeit with poorly constrained errors due to the
computational expense of their model. We investigate this apparent discrepancy by
re-fitting our model with the mass fixed to the two optical reverberation values. The
red dotted and yellow dashed lines in Fig. 3.16 (left) show the resulting best fits. The
M = 14.2 × 106 M� fit has parameters h = 26.9 and 1/B = 3 (χ2/d.o.f. = 14.4/9)
and the M = 26× 106 M� fit has parameters h = 10.5Rg and 1/B = 3 (χ2/d.o.f. =
13.7/9). We see that these two high mass fits have very similar lag-energy spectra.
We note that the iron line feature in our model (and in the model of Chainakun et al.
2016b) is far less prominent than the Gaussian line feature in the empirical model
plotted in Fig 8 of Kara et al. (2013c). However our best fitting model, which has one
less free parameter than their linear plus Gaussian model, provides a better statistical
description of the data (the empirical model has χ2/d.o.f. = 13.22/8).

An F-test reveals that our best-fitting mass is preferred to the Peterson et al.
(2004), Grier et al. (2012) and Chainakun et al. (2016b) mass values with only . 1.5 σ

confidence. The reason why very different masses can give such simular χ2 values is
particularly fascinating, and serves to illustrate the importance of fitting to multiple
frequency ranges instead of just one. Fig. 3.16 (right) shows the lag averaged over
the iron line energy range plotted against frequency for the three models (colours and
line styles have the same meaning as in the left hand plot). The grey band denotes
the frequency range used for our fits. We see that, averaged over this frequency range,
the three models give roughly the same time lag as each other (∼ 10 s). However,
the two high mass models diverge enormously from our best fitting model at lower
frequencies. We see that the high mass models are actually in the phase-wrapping
regime in the frequency range used for the fit. This happens when the time lag
between the direct and reflected signals is greater than πν or less than −πν, similar
to the effect that leads to car wheels appearing to rotate backwards when viewed on
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film with a frame rate lower than the rotation frequency of the wheels. Note that
the time lag between the two energy bands used for this figure is not greater than
πν when phase wrapping starts. This is because of dilution: the time lag between
direct and reflected components is > πν, but both energy bands contain some direct
and some reflected X-rays (see the discussion in Uttley et al. 2014). Fig 3.17 is a
2D χ2 contour plot of black hole mass and source height that illustrates this point
further. We see there are two dark stripes corresponding to regions of statistically
acceptable mass (plus several lighter stripes in the top right hand corner). The two
optical reverberation masses fall in the upper stripe (blue crosses), which therefore
corresponds to our phase-wrapped regime. Our best fit falls in the lower stripe (green
cross), and the error estimate quoted above of ± ∼ 6 × 106 M� only considers this
lower stripe. We also see an anti-correlation between mass and source height. This
occurs because the light-crossing time lag depends on h×Rg, and therefore an increase
in h can be offset to some extent by a decrease in M .

At lower frequencies (. 10−5 Hz), the 5.5− 6.5 keV reverberation lag for the high
mass models is far larger than for the low mass model. This is partly due to the larger
mass itself (i.e. 1 Rg is a larger distance), and partly because the source height and
boost parameter are both much larger in the high mass models (i.e. large h means the
path-length difference is a greater number of gravitational radii, and large 1/B means
that the reflection fraction is still high even though h is large, thus reducing dilution).
This means that, in the frequency range used for the fits, the phase-wrapped time lag
in the high mass models is roughly similar to the time lag in the low mass model. The
high mass models therefore predict that there should be a negative iron K lag feature
at ν ∼ 10−4 Hz and a very large positive lag at even lower frequencies, although
these features will be heavily diluted by the intrinsic hard lags. Even though the
lowest frequencies (ν . 10−5 Hz) cannot be probed with currently available data, it
should be possible to test these predictions in future by fitting a modified version of
the model that additionally models hard lags as fluctuations in the photon index for
a number of frequency ranges, yielding a robust mass measurement in the process.
Of the models we explore here, the low mass model is the more plausible, due to the
very high boost parameter (pegged to its hard upper limit) required for the high mass
models, although the parameters will likely change once hard lags are accounted for
in this frequency range, which is necessary to also reproduce the observed variability
amplitude. The results of Chainakun et al. (2016b) instead favour a higher mass, and
their model included an ionisation profile and a simultaneous fit to the time-averaged
spectrum. However, it is not clear whether or not their best fit was in the phase
wrapping regime.
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3.6 Discussion

We have presented a public xspec reverberation mapping model that can be fit to the
energy dependent complex cross-spectrum of black hole X-ray binaries and AGN for a
range of Fourier frequencies. It is now common to fit the time-averaged spectrum with
sophisticated relativistic reflection models. Our model is designed to be comparably
user-friendly to the spectral models, but with the considerable extra functionality
of also modelling the timing properties. This provides the opportunity for better
geometrical constraints and entirely new black hole mass constraints.

3.6.1 Comparison with previous work

We have compared our model extensively to the existing spectral model relxilllp,
and find good agreement with the most recent version of that model. We did however
find a very minor error in the Bardeen et al. (1972) expression for the Lorentz factor
of a rotating disc element, which has propagated into the relxilllp model and
likely somewhat further into the literature (see Appendix B.1). However, we find the
discrepancy is small enough to be inconsequential. Further bench marking against
other spectral models (e.g. Dovciak 2004; Wilkins & Fabian 2012) will be very useful.

Previous reverberation mapping modelling studies have mainly focused on AGN
time lags (Cackett et al. 2014; Emmanoulopoulos et al. 2014; Chainakun & Young
2015; Caballero-García et al. 2018). Ours is the first public model to also consider
variability amplitudes. Our model, similar to most previous studies, uses the lamp-
post geometry. There has been work to model more sophisticated geometries that
self-consistently produce hard intrinsic lags through propagating mass accretion rate
fluctuations (Wilkins & Fabian 2013; Wilkins et al. 2016), but these models are too
computationally expensive for fitting to data. The two blobs model of Chainakun
& Young (2017), consisting of two lamppost sources, allows a slightly more realistic
geometry that also can produce hard intrinsic lags but without prohibitive computa-
tional expense. Such a geometry can be used in our model, as long as the user fits
for real and imaginary parts of the cross-spectrum rather than amplitude and time
lags. In this case, two reltrans model components with different source heights
can simply be added together. Intrinsic lags are then produced if the amplitude and
phase normalisations of the two components - α1(ν), α2(ν), φA1(ν) and φA1(ν) - are
left as free parameters. This essentially models a lag between incident emission from
the two lamppost sources, as in Chainakun & Young (2017).

3.6.2 ionisation profile

We include a self-consistently calculated radial disc ionisation profile in our model and
find that this has a significant effect on the model outputs. There is some uncertainty
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over the radial disc density profile that should be used to calculate the ionisation
profile. Our model considers both a Shakura-Sunyaev zone A (radiation pressure
dominated) density profile, and a constant density. Even assuming the Shakura &
Sunyaev (1973) model to be exact, we still expect the density profile to depend on
mass accretion rate, black hole mass and the viscosity parameter. In particular, the
discs of X-ray binaries in faint hard states likely do not have a radiation pressure
dominated zone, especially given the weight of evidence for disc truncation in this
state (e.g. Tomsick et al. 2009; Ingram et al. 2017). Interestingly though, this implies
that there will be a point in the outburst at which the mass accretion rate has risen
sufficiently for the inner disc to become radiation pressure dominated, leading to a
change in ionisation profile. Perhaps with careful modelling, this may be detectable
with high quality data from current observatories such as NICER and NuSTAR,
or future observatories such as ATHENA, STROBE-X or Colibrì (Ray et al. 2019;
Caiazzo et al. 2019). Constraining this transition would provide useful insights into
disc physics, such as estimating the viscosity parameter in the inner disc. Fitting
the cross-spectrum for a wide range of frequencies in addition to the time-averaged
spectrum will be far more constraining in this respect than only considering the
spectrum.

Although we account for the ionisation profile, we do not account for the depen-
dence of the rest frame reflection spectrum on the density itself (García et al. 2016).
We use the public xillver and xillverCp grids, that are hardwired for ne = 1015

cm−3. This value is more appropriate for the most massive AGN than for X-ray bina-
ries, whose discs are expected to be much denser (ne ∝ 1/M , assuming the disc to be
radiation pressure dominated and in vertical hydrostatic equilibrium). The main dif-
ference is a much higher disc temperature and therefore much more thermal radiation
in soft X-rays. The effect of radially stratified density has not yet been explored.

When we generate fake data from a model with a self-consistent ionisation profile
and fit with a constant ionisation model, we find that a narrow (non-relativistically
smeared) reflection component is required in the fit with high statistical significance
(although we note that a more systematic parameter exploration would be required
to make strong conclusions). This is interesting because fits to real data commonly
require such a narrow reflection component, which can be attributed to a distant
reflector (e.g. García et al. 2015; Ingram et al. 2017). This can either take the form
of a flared outer disc, the companion star for X-ray binaries, or the torus for AGN.
However, the flux of the best-fitting narrow reflection component is often uncomfort-
ably high. Our result suggests that these high fluxes could actually be down to a
modelling systematic that could be at least in part alleviated by using an ionisation
profile. The timing-properties are also very sensitive to the ionisation profile. Indeed
Chainakun et al. (2016b) found that the ∼ 3 keV dip present in the lag spectrum of
a number of AGN could only be explained by stratification of the disc ionisation pa-
rameter. We also note that, whereas a parameter combination can be found to allow
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a single ionisation model to mimick the time-averaged spectrum produced by a model
with self-consistent ionisation, additionally considering the time lags and variability
amplitude should break the degeneracy.

We also found from our fits to fake data that a constant ionisation model under-
predicts the source height (consistent with the results of Svoboda et al. 2012 and
Kammoun et al. 2019). Niedźwiecki et al. (2016) noted two problems associated with
the very low source heights measured by many spectral fitting studies of AGN and
X-ray binaries (e.g. Parker et al. 2014; Kara et al. 2015; Parker et al. 2015; Degenaar
et al. 2015; Beuchert et al. 2017; Wang et al. 2017). First, the resulting surpression of
the directly observed flux through gravitational redshift and lensing means that fits
to bright sources such as Cygnus X-1 (e.g. Parker et al. 2015; Beuchert et al. 2017)
require an intrinsic source flux as high as ∼ 50 times the Eddington limit for a hard
spectral state. Second, the intrinsic high energy cut-off implied by such a large source
redshift is so high that runaway cooling should have long since been triggered by pair
production (e.g. Poutanen & Svensson 1996; Fabian et al. 2012). The higher source
heights yielded by accounting for a realistic ionisation profile alleviate both of these
problems.

3.6.3 Time lags and instrument response

In Section 3.4.1, we show that failing to account for line-of-sight absorption and the
instrument response matrix can significantly bias the predicted time lags. This bias
is particularly prominent in the . 1 keV energy range of XMM-Newton data, but has
little to no effect in the ∼ 2 − 10 keV range. This may at least partly explain why
studies of AGN that model the ∼ 0.3−1 vs ∼ 1−10 keV lags (e.g. Emmanoulopoulos
et al. 2014) have returned lower source heights than those modeling the ∼ 5 − 7 vs
∼ 2 − 4 keV lags (Epitropakis et al. 2016). This is because ignoring the telescope
response over-predicts the soft band lag for a given source height (see Fig 3.13), and
so a very small source height is needed to still produce the fairly small lags present
in the data. For frequency ranges in which the intrinsic hard lags are prominent, the
response matrix bias can give rise to spurious features in the observed E . 1 keV
lag spectrum that look worryingly like the features in X-ray binary data previously
attributed to thermal reverberation (e.g. Uttley et al. 2011; De Marco et al. 2017).
We conclude that the observation of GX 339−4 from De Marco et al. (2017) and
Mahmoud et al. (2019) that we investigate does indeed contain a signature of thermal
reverberation, but that the measured value of the lag may have been heavily biased by
failure to account for the instrument response. Mahmoud et al. (2019) fit a transfer
function model to the GX 339-4 data and measure a disc inner radius of ∼ 20 Rg.
However, their model only accounts for the effective area curve of XMM-Newton and
not the redistribution matrix. Their inner radius value may therefore be an over-
estimate, since the intrinsic lags are likely shorter than what is inferred from their
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analysis.

3.6.4 Black hole mass

Our proof-of-principle fit to the lag-energy spectrum of Mrk 335 in a single frequency
range (Section 3.5) favours a black hole mass of ∼ 7 million M� to the optical re-
verberation values in the literature of ∼ 14 million M� (Peterson et al. 2004) and
∼ 26 million M� (Grier et al. 2012), and the previous X-ray reverberation value of
∼ 13.5 million M� (Chainakun et al. 2016b), although the higher masses are only
disfavoured with . 1.5 σ confidence. The confidence range on the mass is very large
for such a fit to a single frequency range, partly because the size of the reverberation
lag is degenerate with the reflection fraction. However, our findings here demonstrate
very effectively that this degeneracy will be eliminated by a simultaneous fit to multi-
ple frequency ranges, since our best-fittingM = 6.8×106 M� model predicts a wildly
different time lag signature at lower frequencies to the two higher mass models that
we also explore. For this it will be vital to additionally model the intrinsic hard lags.
In fact, we find that intrinsic hard lags are required in order to explain the variability
amplitude in addition to the lags even in the frequency range explored here. This may
therefore bias the black hole mass yielded by our current analysis. We will conduct a
full multi-frequency analysis on the Mrk 335 data in a future paper, also simultane-
ously considering the variability amplitude and time-averaged spectrum (Mastroserio
et al in prep). The resulting constraints on the black hole mass may enable some of
the uncertainties associated with optical reverberation mapping to be addressed, most
notably the uncertain geometry of the broad line region (typically parameterised by
the constant f). We note that the X-ray reverberation analysis of Emmanoulopoulos
et al. (2014) returned a black hole mass estimate of M = 19.8+11.8

−10.5 × 106 M� for
Mrk 335, which is again larger than our value. Their fit procedure was very different
to ours and that of Chainakun et al. (2016b). They fit for time lags between two
broad energy bands as a function of frequency, and employed simplified assumptions
regarding the energy dependence of reflected X-rays.

X-ray reverberation mapping can also be used to measure the mass of stellar-
mass black holes in X-ray binary systems. In a companion paper, we constrain the
mass of the black hole in Cygnus X-1 (Mastroserio et al submitted). We do however
note that care must be taken to avoid frequency ranges dominated by quasi-periodic
oscillations, given strong evidence that these are driven by geometric oscillations that
are not modelled here (Ingram et al. 2015, 2016).

3.6.5 Future modelling improvements

Our model is still very idealised, and there is much room for future improvement. We
will in future extend our model to account for fluctuations in the power-law index
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of the illuminating spectrum (Mastroserio et al submitted). It will also be useful in
future to include a non-zero disc scale height. Taylor & Reynolds (2018a) and Taylor
& Reynolds (2018b) show that using the scale height expected for a radiation pressure
dominated disc leads to steeper emissivity profiles, with spectral and timing properties
consequently adjusted due to the signal being more dominated by the broader line and
shorter time lags associated with the inner regions of the disc. Our calculation also
assumes that the source is stationary, whereas emission would actually be boosted
somewhat away from the disc if the source is actually a standing shock at the base of
the outflowing jet, as is often suggested (Markoff et al. 2005; Dauser et al. 2013). We
do however include a ‘boosting parameter’ that approximates this affect by reducing
the reflection fraction. If the user takes the lamppost geometry seriously and finds
that the boosting parameter is statistically required in the fit to be less than unity,
they can conclude that the source is moving away from the disc. Niedźwiecki &
Zdziarski (2018) recently pointed out that in a lamppost geometry, we should also
sometimes see the other lamppost source on the underside of the disc and we should
also see photons from the top lamppost who’s trajectories have bent around the black
hole and into our line of sight – particularly if the disc is truncated. We do not include
these effects, which will presumably be blocked or significantly altered by material
inside of the disc.

We use the models xillver and xillverCp to compute the rest frame reflection
spectrum (García & Kallman 2010; García et al. 2013a), which are state-of-the-art,
but still include approximations that can be addressed in future. A constant vertical
density profile is assumed, which returns a very different E . 1 keV reflection spec-
trum from a calculation assuming vertical hydrostatic equilibrium (Nayakshin et al.
2000; Done & Nayakshin 2007; Różańska et al. 2011; Vincent et al. 2016). We note,
however, that recent numerical simulations indicate that the vertical density profile of
a magnetic pressure dominated disc is roughly constant near the surface (Jiang et al.
2019). The largest approximation of all is likely the lamppost model itself, and so it
will be important to explore more realistic geometries in future (Zhang et al. 2019).

3.7 Conclusions

The X-ray reverberation models reltrans and reltransCp are now publicly avail-
able for use in xspec. The source code and usage instructions can be downloaded
from https://adingram.bitbucket.io/. The models can be used to simultaneously
fit the real and imaginary parts of the energy-dependent cross-spectrum for a wide
range of Fourier frequencies, plus the time-averaged spectrum. Intrinsic hard lags
can be accounted for by using two model components added together. The model
is designed to be user friendly for the beginner but flexible for the advanced user,
with environment variables specifying model properties and advanced options. We
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find that modelling systematics have likely led to artificially low source heights being
measured in the literature. We also find that bright distant reflection component often
statistically required in spectral fits can at least partially be explained by the radial
profile of the disc ionisation parameter. Our proof-of-principle fits to the lag-energy
spectrum of the Seyfert galaxy Mrk 335 return a smaller mass for the central black
hole than previous optical reverberation mapping analyses (∼ 7 milion compared with
∼ 14− 26 million M�), which we will investigate in more detail in future.
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Abstract

We present the first X-ray reverberation mass measurement of a stellar-mass black
hole. Accreting stellar-mass and supermassive black holes display characteristic spec-
tral features resulting from reprocessing of hard X-rays by the accretion disc, such as
an Fe Kα line and a Compton hump. This emission probes of the innermost region of
the accretion disc through general relativistic distortions to the line profile. However,
these spectral distortions are insensitive to black hole mass, since they depend on disc
geometry in units of gravitational radii. Measuring the reverberation lag resulting
from the difference in path length between direct and reflected emission calibrates
the absolute length of the gravitational radius. We use a relativistic model able to
reproduce the behaviour of the lags as a function of energy for a wide range of vari-
ability timescales, addressing both the reverberation lags on short timescales and the
intrinsic hard lags on longer timescales. We jointly fit the time-averaged spectrum
and the real and imaginary parts of the cross-spectrum as a function of energy for a
range of Fourier frequencies to Rossi X-ray Timing Exporer data from the X-ray bi-
nary Cygnus X-1. We also show that introducing a self-consistently calculated radial
ionisation profile in the disc improves the fit, but requires us to impose an upper limit
on ionisation profile peak to allow a plausible value of the accretion disc density. This
limit leads to a mass value more consistent with the existing dynamical measurement.



4 Cygnus X-1 mass measurement

4.1 Introduction

Black hole X-ray binary systems radiate a large X-ray flux due to accretion of matter
from the companion star onto the black hole. When active, these sources display
transitions between a hard state, when the hard (& 3 keV) X-ray flux in the energy
spectrum is higher than the soft X-ray flux, and a soft state when the situation is
the opposite. The soft emission is dominated by radiation from the accretion disc,
which is modelled with a multi-temperature black body (Shakura & Sunyaev 1973).
The hard component of the spectrum is due to inverse-Compton emission, most likely
coming from a cloud of hot electrons close to the black hole, often referred to as the
‘corona’ (Thorne & Price 1975). Radiation originating from the corona illuminates the
accretion disc, where it is re-processed and then re-emitted. The resulting ‘reflection’
spectrum includes characteristic features such as a prominent iron Kα fluorescence
line at ∼ 6.4 keV and a Compton hump peaking at ∼ 20 − 30 keV (e.g. George &
Fabian 1991; Ross & Fabian 2005; García & Kallman 2010; Fabian & Ross 2010).
Modelling the observed reflection spectrum provides a powerful tool for measuring
the system parameters, because the emission is distorted by the strong gravity and
rapid orbital motion of material close to the compact object. Whereas the restframe
reflection spectrum depends on properties of the accretion disc such as ionisation
state, the gravitational distortions depend strongly on geometrical parameters such
as the disc inner radius and inclination angle. Time-averaged spectral analysis alone,
however, is not at all sensitive to black hole mass, because the gravitational distortions
depend on distances in units of gravitational radii (Rg = GM/c2).

Besides the long term variability characterizing the state changes, accreting stellar
mass black holes show rapid variability in the range of milliseconds to tens of seconds.
Since the rays that reaches us via reflection follow a longer path length than those
we observe directly, fluctuations in the inverse-Compton emission should be followed
after a light-crossing delay by similar fluctuations in the reflected emission. The re-
flection signal is not only lagged with respect to the direct signal, but also smeared
such that the fastest variability is washed out. This is because reflection from dif-
ferent parts of the disc is associated with different path lengths, such that a very
short flash of X-rays from the corona would result in an extended flare of reflected
emission. Whereas the spectral distortions depend on distances in mass scaled units,
the reverberation lag between direct and reflected emission depends on distances in
absolute units. Therefore measurement of a reverberation lag can calibrate the length
of the gravitational radius for a system, providing a way to measure black hole mass
(Stella 1990) that is orthogonal to other methods (e.g. Casares & Jonker 2014, and
references therein).

A combined spectral and timing analysis can be achieved by calculating cross
spectra between light curves in different energy bands (e.g. van der Klis et al. 1987;
Nowak et al. 1999). This can be used to calculate time lag vs energy spectra for
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different timescale ranges (Mastroserio et al. 2018). The lag spectrum of long timescale
variability (i.e. Fourier frequencies ν . 300M�/M Hz) is observed both in X-ray
binaries and active galactic nuclei (AGN) to be featureless, with hard photons lagging
soft photons (Miyamoto et al. 1988; Nowak et al. 1999; Papadakis et al. 2001; McHardy
et al. 2004). These hard lags, which are far larger than the expected reverberation
lags, are likely due to spectral variability of the directly observed coronal emission
and they have been attributed to propagating mass accretion rate fluctuations in the
accretion flow (Lyubarskii 1997; Kotov et al. 2001; Arévalo & Uttley 2006; Ingram &
van der Klis 2013). In models considering an extended corona, fluctuations propagate
from the soft X-ray emitting region further from the black hole to the hard X-ray
emitting region closer to the black hole, giving rise to the hard lags. In alternative
models considering a compact corona, propagating fluctuations in the disc instead
cause variable heating and cooling of the corona, leading to hard lags driven by
spectral pivoting of the inverse-Compton spectrum (Uttley & Malzac in prep). The
propagating fluctuations mechanism has successfully explained the spectral-timing
properties of a number of black hole X-ray binaries (Kotov et al. 2001), although
questions remain (Rapisarda et al. 2016, 2017b; Veledina 2018).

The magnitude of the hard lags is observed to reduce with Fourier frequency,
offering the possibility to detect reverberation signatures at high frequencies (ν &
300M�/M Hz). Such signatures were first detected for AGN, first in the form of soft
reflected X-rays lagging hard directly observed X-rays (Fabian et al. 2009) and later
in the form of an iron Kα feature in the lag-energy spectrum (Zoghbi et al. 2011;
Kara et al. 2016). Although alternative models have been proposed for the soft lags
(e.g. Miller et al. 2010; Mizumoto et al. 2018), the iron K feature seems to provide
clear evidence of reverberation. Detection of reverberation signatures has been more
challenging in the case of Galactic black hole systems, owing to the much shorter asso-
ciated light-crossing timescale. Soft lags attributed to thermally reprocessed photons
lagging directly observed hard photons (thermal reverberation) were the first signa-
ture to be observed (Uttley et al. 2011; De Marco et al. 2015). Recently, Kara et al.
(2019) reported on the first significant detection of iron Kα lags, using NICER data
from MAXI J1820+070.

Still further information is contained in the frequency and energy dependent cor-
related variability amplitude, which can also be measured using the cross-spectrum.
Modelling this in addition to the time-averaged spectrum and the frequency depen-
dent lag energy spectrum can yield a better constraint on black hole mass. However,
in order to probe the frequency dependence of the reverberation lags, we must ad-
ditionally take account of the hard lags. In Mastroserio et al. (2018) we developed
a formalism to model what we termed the complex covariance over a wide range of
Fourier frequencies. We represented the observed hard lags in the coronal emission by
a time dependent perturbation in the illuminating spectrum, and then self-consistently
calculated the reverberation lags using a transfer function formalism (e.g. Reynolds
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4 Cygnus X-1 mass measurement

et al. 1999; Wilkins & Fabian 2013). The formalism provides a solid mathematical
framework to address the non-linear effects in the reverberation introduced by spectral
changes in the coronal emission.

However, the analysis we presented in Mastroserio et al. (2018) did not include
the effect of gravitational light bending, even though our best fitting model featured
emission from very close to the black hole. In Ingram et al. (2019) we address this
by incorporating a fully general-relativistic ray-tracing calculation for the transfer
function, but without considering the non-linear effects. Here, for the first time,
we include both the non-linear effects and general relativistic effects. We apply our
model to RXTE data from Cygnus X-1 in order to place constraints on the mass of
the central black hole. We explore a number of different assumptions for the radial
dependence of the disc ionisation parameter, and find that the mass measurement is
sensitive to which assumption we make.

In Section 4.2 we discuss how the non-linear effects of the complex covariance
model are affected by the light bending calculation. In Section 4.3 we describe the
data and in Section 4.4 we present the fits to the time averaged spectrum using models
with three different ionisation profiles of the accretion disc. In Section 4.5 we perform
joint fits to the complex covariance in 10 different frequency ranges and the time
averaged spectrum. In Section 4.6 we discuss our results.

4.2 The non-linear model

We model the X-ray corona as a stationary point source located on the disc rota-
tion axis at height h above the black hole (the lamppost model) and the disc as flat
and geometrically thin, with its angular momentum axis aligned with the spin axis
of the black hole. We consider two components of the X-ray spectrum. The first is
the directly observed radiation from the point source (‘continuum’) and the second is
radiation that has been re-processed and re-emitted by the disc before reaching the
observer (‘reflection’). Both of these spectral components are distorted by the strong
gravitational field in the vicinity of the black hole. We calculate the time-dependent
energy spectrum observed by a distant observer by starting with the equations pre-
sented in Ingram et al. (2019) and introducing non-linear effects due to fluctuations
in the slope of the continuum spectrum. In the following sub-sections we study the
two components separately before combining them to provide an expression for the
total radiation seen by the distant observer.

4.2.1 Direct Emission

We choose an exponentially cut-off power-law function to reproduce the shape of
the inverse-Compton emission from the corona. Following Ingram et al. (2019) the
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4.2 The non-linear model

directly observed specific flux seen by the distant observer is

Fo (Eo, t) = A(t′) l g
Γ−β(t′)
so E

1−Γ+β(t′)
o e−Eo/(gsoEcut) (4.1)

where A is the normalisation, Γ and Ecut are respectively the power-law index and
the high energy cut-off (the latter is related to the temperature of the corona) and
l is the lensing factor due to light bending (see Ingram et al 2019, equation 10).
gso = Eo/Es is the blueshift experienced by photons travelling from the source to
the observer, Eo and Es are photon energy measured respectively in the observer and
source restframe. Here, we have introduced fluctuations in the slope of the spectrum
through the function β(t), which depends on the time taken for the photons to travel
from the source to the observer, τso, as t′ = t − τso. Eq. 4.1 is non-linear in time,
though we can linearise the expression by Taylor expanding to the first order around
β = 0 (see for details Mastroserio et al. 2018). The observed specific flux becomes

Fo (Eo, t) ≈ l gΓ
soE

1−Γ
o e−Eo/(gsoEcut)

[A (t′) +B (t′) (lnEo − ln gso)]
(4.2)

where we have defined B(t) = A(t)β(t). For brevity let us define
D(E) = l gΓ

soE
1−Γe−E/(gsoEcut).

4.2.2 Re-processed emission

Some of the photons emitted from the corona illuminate the accretion disc. They are
re-processed and radiated an-isotropically. Again following Ingram et al. (2019) we
can derive the expression for the reflected specific flux seen by the distant observer
emitted from a patch of the disc which subtends a solid angle dΩd in the source
restframe and has a surface area dAd in its own rest frame. A disc patch with
coordinates (r, φ) subtends a solid angle on the observer plane of dΩ = dα0 dβ0/D

2

where α0 and β0 are the impact parameters at infinity (Luminet 1979). The reflected
flux from the disc patch is then

dRo (Eo, t|µe, r, φ) = A (t′′) g3
doε(r, t

′′)×

R
(
Eo
gdo
|Γ− β(t′′), gsdEcut

)
dα0 dβ0

(4.3)

where

ε(r, t) =
g

Γ−β(t)
sd

4π

dΩd
dAd

. (4.4)

is the radial emissivity profile and the two factors gsd(r) and gdo(r, φ) represent the
blue-shift of the photons travelling from the source to the disc and from the disc to
the observer respectively. R is the restframe reflection spectrum which depends on
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the incident radiation, µe is the cosine of the angle between the disc normal and the
emergent trajectory of the reflected rays from the plane of the disc and β depends on
the time taken from the photons to travel from the source to the disc, τ , as t′′ = t−τ .
Note that oscillations in the illuminating power-law slope introduce non-linear effects
in the emissivity profile and in the restframe reflection spectrum. We can again
linearise Eq. 4.3 by Taylor expanding around β = 0:

dR(E, t) ≈ dR(E|β = 0) + β(t)
∂(dR)

∂β
(E|β = 0). (4.5)

Considering ∂R/∂β = −∂R/∂Γ, Eq. 4.3 becomes

dRo (Eo, t|r, φ) = g3
doε(r, β = 0)

[
A (t− τ)R

(
Eo
gdo
|β = 0

)
−B (t− τ)R

(
Eo
gdo
|β = 0

)
ln gsd

−B (t− τ)
∂R
∂Γ

(
Eo
gdo
|β = 0

)]
dα0 dβ0.

(4.6)

Here, we have left some dependencies implicit for brevity, such as the r and φ de-
pendence of gdo and τ , and the dependence of R on the cosine of the emission angle,
µe. Integrating Eq. 4.6 over all impact parameters corresponding to geodesic paths
that intersect the accretion disc, we calculate the total reflection spectrum seen by
the distant observer.

4.2.3 Total Emission

The total emission crossing the distant observer is simply the sum of the direct emis-
sion from the source and the re-processed emission from the disc. To use the transfer
function formalism, we express the emission as a sum of convolutions. The total
specific flux is

S(Eo, t) = D(Eo) [A(t′) +B(t′) ln(Eo/gso))] +

A(t′)⊗ w0(Eo, t
′′)−B(t′)⊗ [w1(Eo, t

′′) + w2(Eo, t
′′)]

(4.7)

where w0, w1 and w2 are the three response functions associated with the three terms
on the right hand side of Eq. 4.6 (see Appendix C.1 for the explicit expressions) and
⊗ denotes a convolution.

In the Fourier domain convolutions correspond to multiplications. The Fourier
transform of the total observed specific flux is therefore

S(Eo, ν) = A(ν)

[
D(Eo) +W0(Eo, ν)

]
+

B(ν)

[
D(Eo) ln

(
Eo
gso

)
−W1(Eo, ν)−W2(Eo, ν)

] (4.8)
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where W0, W1 and W2 are the transfer functions (see Appendix C.1), which are the
Fourier transforms of the response functions. Following Mastroserio et al. (2018),
we calculate the complex covariance in order to fit not only to the time-average
energy spectrum but also to the lags and covariance amplitude as a function of energy
for different Fourier frequencies. Since this exploits more information in the signal
than time-averaged spectroscopy alone, it enables better constraints of the system
parameters. The model complex covariance is then G(Eo, ν) = S(Eo, ν) e−iφr(ν),
where φr(ν) is the phase of the reference band in our model. The complex covariance
is therefore the cross-spectrum divided through by the modulus of the reference band.
Following the notation of Mastroserio et al. (2018), this gives

G(Eo,ν) = α(ν)

[
eiφA(ν)D(Eo) + γ(ν)eiφB(ν) ln

(
Eo
gso

)
D(Eo)+

eiφA(ν)Wo(Eo, ν)− eiφB(ν)W1(Eo, ν)− eiφB(ν)W2(Eo, ν)

]
,

(4.9)

where γ(ν) is the relative amplitude |B(ν)|/|A(ν)| and the phase of the reference
band, φr(ν), is swallowed up in the definitions of the phases φA(ν) and φB(ν), which
are left as model parameters for a given frequency range, as are α(ν) and γ(ν). This
expression contains the non-linear effects considered in Mastroserio et al. (2018) and
additionally all GR effects, as in Ingram et al (2019).

4.3 Data

As in Mastroserio et al. (2018), we consider archival RXTE observations of Cygnus
X-1 from the proposal number P10238. We stack together the final five of the seven
observations in this data set1, since their spectra are very similar to one another in
shape. We discard the first two observations because their spectra are clearly different
to the rest. The total exposure is 56.2 ks for the time-average energy spectrum and
46.6 ks for the complex covariance. The difference in exposure time results from data
discarded when selecting segments of contiguous data in order to perform ensemble
averaging. It is worth mentioning this data set has been extensively used in the past
(e.g. Revnivtsev et al. 1999; Kotov et al. 2001), and even recently (e.g. Mahmoud &
Done 2018b), because it has high count rates, excellent timing resolution and adequate
energy resolution.

Using only Proportional Counter Array (PCA) data, we extract a 2.84 - 3.74 keV
reference band light curve and 28 ‘subject band’ light curves in the energy range
4 − 20 keV using the exact procedure described in Mastroserio et al. (2018). As in
our previous work (Mastroserio et al. 2018), we calculate the cross-spectra between

1Observation IDs: 10238-01-06-00, 10238-01-07-00, 10238-01-07-000, 10238-01-08-00, 10238-01-
08-000.
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each subject band light curve and the reference band light curve, employing ensemble
averaging as well as averaging over broad frequency ranges. We calculate the complex
covariance by dividing the averaged cross-spectrum by the square root of the refer-
ence band (Poisson noise subtracted) power spectrum. The complex covariance is a
complex quantity as a function of energy and frequency. Its modulus is related to the
variability amplitude of the signal through the coherence (Vaughan & Nowak 1997)
which we assume to be close to unity (Nowak et al. 1999). We use xspec version
12.10 (Arnaud 1996) to fit our model reltrans (Ingram et al 2019), modified from
the publicly available version to additionally account for non-linear effects, simulta-
neously to the real and imaginary parts of the observed complex covariance for 10

frequency ranges and to the time-averaged spectrum. We add 0.1% systematics only
to the time-average energy spectrum. Considering real and imaginary parts of the
complex covariance instead of amplitude and phase allows us to extract the same
information from the data and has many advantages, such as easily accounting for
the telescope response within xspec (Mastroserio et al. 2018; Ingram et al 2019).

4.4 Fit to the time-averaged Spectrum

We start by fitting our model reltrans to the time-averaged spectrum alone. Line-of-
sight absorption is accounted for within the reltrans model using the xspec intrinsic
model TBabs. We assume the abundances of Wilms et al. (2000) throughout our
analysis. We explore three different assumptions regarding the disc ionisation state
within the reltrans model, which are described in the following sub-section.

4.4.1 Models

reltrans self-consistently calculates the normalisation of the reflected component
of the observed spectrum relative to the direct component assuming a stationary
lamppost source. Since in reality the source may be neither stationary nor point-like,
the relative normalisation used in the model is equal to the self-consistently calculated
value multiplied by the model parameter 1/B. Setting this boost parameter 1/B to
greater than (less than) unity mimics the effect of plasma moving towards (away)
from the disc. The shape of the observed reflection spectrum can additionally be
influenced by the spin of the black hole (Martocchia et al. 2000). We note that the
model is computationally not very sensitive to the actual spin value (see also Dauser
et al. 2013) and the leading order effect of the spin is to modify the innermost stable
orbit (ISCO) of the accretion disc. In order to probe the full extent of the disc we fix
the spin parameter to 0.998 throughout and allow rin to be a free parameter.

The restframe spectrum, calculated using the model xillver (García & Kallman
2010; García et al. 2013a), depends on the disc ionisation parameter ξ = 4πFx/ne,
where Fx is the 13.6 eV to 13.6 keV illuminating flux and ne is the electron density
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Figure 4.1: Unfolded spectrum (upper panel) and residuals (lower panel) of the time averaged
energy spectrum fit. The three colours represent different models explained in the text (the data
points are unfolded around the best fitting model C). 0.1% systematics have been added to the
spectrum. A fit with no systematics added produces the same parameter values and residual shape.

of the disc (which is assumed to be vertically constant for the xillver calculation).
This parameter sets the upper boundary condition of the xillver calculation for the
vertical temperature and ionisation balance in the disc upper atmosphere. In most
spectral studies, ξ is assumed to be constant over the entire disc extent. However,
our model introduces an ionisation profile as a function of radius (following Svoboda
et al. 2012; Chainakun et al. 2016a; Kammoun et al. 2019). Numerically, this involves
discretizing the calculation into a number of ionisation zones. Throughout this paper
we use 10 ionisation zones, which is found to provide adequate resolution (Ingram et
al 2019).

We consider three different ionisation profiles. Model A uses the same ionisation
parameter for the entire disc. This model is identical to the model relxilllp (Dauser
et al. 2013; García et al. 2014; Ingram et al 2019). Model B uses an ionisation
profile determined by self-consistently calculating Fx(r) in the lamppost geometry
and assuming ne = constant (as in Svoboda et al. 2012). Model C again uses the
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Table 4.1: Best fitting parameters obtained from fitting to the time-averaged energy spectrum with
three different models. The models differ in the ionisation profile: Model A has a constant ionisation
in the entire disc, Model B has a monotonic ionisation profile peaking at inner radius of the disc and
Model C has a ionisation profile calculated assuming a density profile in the disc given by equation
(4.10). The spin value is fixed to 0.998. Errors are all 90% confidence. Note that while we quote the
observed high energy cut-off (Ecut,o), the cut-off in the source restframe is Ecut = Ecut,o/gso.

NH

(
1022 cm−2

)
h (Rg) Incl (deg) rin (Rg) Γ

A) 0.7+0.1
−0.1 12.3+3.4

−5.0 30.1+1.8
−2.1 5.07+2.35

−(b) 1.70+0.01
−0.02

B) 0.9+?(c)

−0.2 15.5+2.6
−1.8 31.1+2.9

−3.1 3.1+0.9
−1.2 1.68+0.04

−0.04

C) 0.9+?(c)

−0.3 16.5+2.4
−4.7 32.1+2.6

−2.5 4.8+0.9
−0.5 1.69+0.01

−0.02

log ξ(a) AFe Ecut,o (keV) 1/B red χ2

A) 3.02+0.02
−0.02 1.9+0.3

−0.2 774+156
−237 0.3+0.02

−0.02 46.67/44

B) 4.7+0.5
−0.4 1.6+0.5

−0.2 468+122
−41 0.45+0.02

−0.02 43.52/44

C) 3.9+0.1
−0.6 1.52+0.05

−0.22 431+49
−49 0.45+0.03

−0.02 41.37/44

a In Model B and C the parameter is the peak value of the ionisation profile.

b The lower bound is unconstrained.

c The uper bound is unconstrained.

same self-consistent calculation of Fx(r), but assumes the following density profile

ne ∝ r3/2

[
1−

(rin
r

)1/2
]−2

. (4.10)

This corresponds to zone A of a Shakura & Sunyaev (1973) accretion disc (where
the pressure is dominated by radiation and the opacity is dominated by electron
scattering; see in particular their Eq. 2.11), and assumes zero torque at the inner disc
boundary. The ionisation profile in Model C is therefore not a monotonic function of
radius: it has a maximum located a few Rg outside Rin (see Ingram et al. 2019). In
all cases, we leave the normalisation of the ionisation profile as a free parameter in
the fit.

4.4.2 Results

Figure 4.1 shows the all three models and the data points unfolded around the Model C
best fit. The residuals, which are defined as the observed counts minus the folded
model, shown in the lower panel are slightly larger in the case of Model A, and the
χ2 value for this model is correspondingly higher (see Table 4.1). Table 4.1 lists the
best fitting parameter values for the different configurations of the model. We report
all the parameter values in this paper with errors at 90% confidence.
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For all three models, we measure an inclination similar to that inferred for the
binary system (Orosz et al. 2011). The inner radius is close to the ISCO but it is
found not to be pegged to it, as was the case for our previous work on Cygnus X-1
(Mastroserio et al. 2018). For Model A, we were not able to constrain a 90% confidence
lower bound, while in the other two models rin is well defined. In contrast with
reltrans fits to the time-averaged spectrum of GRS 1915+105 (Shreeram & Ingram
2019), we do not find that including an ionisation profile systematically increases
the best fitting value of rin. The ionisation value reported in Table 4.1 is the peak
ionisation value in the disc for the case of Models B and C, and thus the value
presented in the table is much higher for these two models than for Model A. The
relative iron abundance is mildly super-solar for all three models.

All three models have formally acceptable χ2 values, although it is encouraging
that the configurations featuring the more physical assumption of non-constant radial
ionisation profile (Model B and C) have the lowest χ2 values. All three fits are also
similar in terms of residual systematics (Fig. 4.1), making it difficult to distinguish
between them. We note that some parameters are nearly degenerate, for example, the
absorption column density (Nh) and the high energy cut-off (Ecut), and the height of
the point source (h) and the inner radius (rin) are correlated in the fit.

4.5 Reverberation mapping and mass measurement

We now conduct joint fits, simultaneously considering the real and imaginary parts of
the complex covariance across 10 frequency ranges and the time-averaged spectrum.
We follow the approach of Mastroserio et al. (2018), except now we consider a broader
range of frequencies (0.1 mHz to 32 Hz) and leave the black hole mass as a free model
parameter in the fits. Fig. 4.2 shows the χ2 curves of the mass for five different
configurations of the model (described below). It is worth noting that all the curves
constrain the mass to be between 5 and 50 M�, which is reasonable for Cygnus X-1
(all the curves stop at 3σ likelihood). The shape of the curves demonstrates that
the method can constrain the mass of the compact object even with archival RXTE
data. The grey area in Fig. 4.2 represents the 3σ confidence interval of the existing
dynamical mass measurement (Orosz et al. 2011). We see that all the curves intersect
the grey box. All the configurations are described in the following subsections and
the model parameters are listed in Table 4.2.

4.5.1 Model 1: constant ionisation profile

The first configuration has a constant ionisation profile (the same as Model A in the
previous section). The hydrogen column density has a very low value compared to
what was used in other works (Gilfanov et al. 2000; Tomsick et al. 2014) and its lower
limit is not constrained by the fit, which is also the case for the disc inner radius.
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Figure 4.2: Chi-squared curves of black hole mass calculated for different assumptions on the degree
of ionisation of the disc as a function of radius. The shaded region represents the 3σ confidence
interval of the existing dynamical mass measurement.

Although the mass is formally compatible with the dynamical measurement, it is
larger than the expected value.

4.5.2 Model 2: ionisation profile calculated assuming constant
density

The second configuration calculates ξ(r) assuming constant disc density (the same as
Model B in the previous section), and the peak value of ξ(r) is set as a free model
parameter. In this configuration, ξ(r) always peaks at rin, and the ionisation value
there indicates that the plasma is approximately fully ionised (complete ionisation
occurs at log10 ξ ≈ 4.7). However, further out the ionisation decreases, so there is
still a weak iron Kα line feature in the xillver spectrum for log10 ξ = 4.5, and the
inner radius is still constrained by the overall shape of the iron line. The χ2 is lower
than for Model 1 and the mass is slightly closer to the dynamical value
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Figure 4.3: ∆χ2 2D contour plot between the black hole mass and the peak ionisation parameter.
The ionisation profile is the one used in Model 3. The colour scale indicates the relative increase of
χ2 compared with the best fit of Model 3. The 4 black lines are the sigma contours corresponding
to 2 degrees of freedom (∆χ2 = 2.3, 6.18, 11.83 and 19.33, corresponding to 1, 2, 3 and 4 σ).

4.5.3 Model 3: ionisation profile calculated assuming zone A
density profile

The third configuration calculates ξ(r) assuming that the electron density depends
on radius following equation (4.10), which is appropriate for zone A of a Shakura
& Sunyaev disc. The peak value of ξ(r) is again a free model parameter, and the
best-fitting value is again very high, but this peak is now at r > rin because the disc
density becomes very high approaching rin due to the boundary condition in Eq. 4.10.
This model has the lowest χ2 value, but the 90% lower bound of the best fitting mass
is higher than the 90% upper bound of the dynamical measurement.
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4.5.4 Model 3a and 3b: ionisation profile calculated assum-
ing zone A density profile, peak ionisation parameter
bounded

The very high peak values of the best fitting ionisation parameter for the previous
two models may be implausible. Since we know the distance to Cygnus X-1, we
can use the observed continuum flux and a reasonable estimate for the disc electron
density in order to place the following upper limit on the ionisation parameter (see
Appendix C.2 for a derivation)

ξ(r) = 5.77× 103 erg cm s−1

(
[1/B]

0.28

)(
ε(r)g2−Γ

sd (r)gΓ−2
so

0.0014

)
(

F
1.7× 103 keV cm−2s−1

)(
D

2.5kpc

)2(
4× 1020cm−3

ne

)(
10M�
M

)2

. (4.11)

Here, F is the integral from 13.6 eV to 13.6 keV of the source flux (in the source
rest frame) in our model (see Appendix C.2 for the exact definition). The values
quoted in brackets are chosen as reasonable limits of each term that maximize ξ(r).
The first three terms on the right hand side of Eq. 4.11 can be derived directly from
our fits. The values we use for these terms are derived from the Model 1 fit (which
maximizes the estimate of ξ(r), mostly due to the low source height). We estimate
an upper limit for the distance to Cygnus X-1 from the Gaia second data release
(2.17± 0.12 kpc; Gandhi et al. 2019). This is higher than the radio parallax distance
of 1.86+0.12

−0.11 kpc (Reid et al. 2011). We choose the Gaia distance in order to get an
upper limit. We consider a conservative lower limit for the mass of 10M�. For our
estimated lower limit of the electron density, we use the value of ∼ 4 × 1020cm−3

measured by Tomsick et al. (2018), which is lower than analytic estimates from disc
theory (Svensson & Zdziarski 1994; García et al. 2016). We can therefore derive from
Eq. 4.11 the highest physical upper limit on the peak ionisation parameter log10 ξmax

of ≈ 3.76, implying that the best fitting values of this parameter for Models 2 and 3 are
implausibly high. We therefore define Model 3a, which applies the same assumptions
as Model 3 except now we set a sensible upper limit on log ξmax of 3.5. Although the
minimum χ2 for this new model is higher than for Model 3 (Fig. 4.2), the new model is
more physical. It returns a mass value closer to the existing dynamical measurement.
Finally, we define Model 3b, in which we relax the upper limit on the peak ionisation
parameter to log ξmax ≤ 4. As expected, the χ2 value is lower than for Model 3a and
the best fitting mass increases slightly.
Fig. 4.3 shows the correlation between black hole mass and peak ionisation parameter
in more detail in the form of a 2D χ2 contour plot for Model 3. In line with Fig. 4.2,
we see that the minimum χ2 value corresponds to a very high ionisation and a black
hole mass of ∼ 25M�. For lower (more realistic) values of peak ionisation, a lower
mass (∼ 15M�) is preferred. Very low peak ionisation values are strongly ruled out.
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4 Cygnus X-1 mass measurement

4.5.5 Other Model Parameters

Table 4.2 lists best fit parameter values for the different configurations of the model.
For all models except Model 1, the hydrogen column density agrees with the value
of Nh ≈ 0.6 × 1022 cm−2 previously used for this data set (Gilfanov et al. 2000;
Grinberg et al. 2014; Tomsick et al. 2018). Model 1 again differs from the others
with regard to the iron abundance, which is twice solar or less for all models with
an ionisation profile. Previous time-averaged spectral fitting studies have returned
much higher iron abundances for Cygnus X-1 (up to ∼ 5 times solar Parker et al.
2015; Walton et al. 2016) and other sources (e.g. GX 339-4 García et al. 2015; Parker
et al. 2016), as did our previous spectral-timing analysis that included neither light
bending nor a radial ionisation profile (Mastroserio et al. 2018). Our fits to the
complex covariance all return slightly higher values of disc inclination angle than our
fits to the time-averaged spectrum alone (see Table 4.1), which are in turn all larger
than the inclination angle of the binary system (Orosz et al. 2011). However, our fits
return lower inclinations than some previous time-averaged spectral fitting studies in
both the soft (> 38◦ Walton et al. 2013; Tomsick et al. 2014) and hard (> 42◦ Parker
et al. 2015) spectral states. This discrepancy is not down to differences in the fitted
models, since our single ionisation model for the time-averaged spectrum is identical
to relxilllp, which was used for the other studies, yet our Model A fit to the time-
averaged spectrum returns a low inclination. The previous studies used different data
sets, some from other instruments. Interestingly, we find that fitting for the complex
covariance without also considering the time-averaged spectrum returns still higher
inclination values (between 39◦and 45◦).

When expressed in units of Rg, the disc inner radius rin is very small for the first
three configurations, and becomes larger for the final two models with limits on the
peak ionisation. We find that the same happens when we place an upper limit on the
peak ionisation parameter for Model 2.

There is clearly an anti-correlation between the ionisation parameter and the inner
radius of the disc that can be seen by comparing different fits and confirmed by the
error contour plot (see Appendix C.3). The data can not accommodate a strong
contribution from the innermost part of the disc. Either this innermost part is mostly
ionised, or, if the ionisation is forced to be lower, the data requires a slightly truncated
disc to exclude the contribution from the innermost region of the disc.

The source height for all our models is significantly larger than the very small
value (h . 2 Rg) reported by Parker et al. (2015). Niedźwiecki et al. (2016) pointed
out that such a small source height implies an intrinsic source luminosity many times
the Eddington limit due to the large gravitational redshift experienced by source
photons. Our models do not suffer from such a problem, with the intrinsic source flux
only being a factor ∼ 1.33 times the observed source flux. We note that our previous
analysis in which we ignored light bending and fixed the mass to 14.8M� instead
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4.5 Reverberation mapping and mass measurement

needed h < 2.5Rg (Mastroserio et al. 2018). The larger source height returned by our
current analysis is not down to the mass being a free parameter, since a larger black
hole mass would require a lower source height to reproduce the same reverberation lag.
Instead, the higher source height is well explained by the inclusion of light bending,
since this leads to an increased reverberation lag for a given geometry. We therefore
now need a higher source height to explain the same data. The source heights we
measure here are similar to those found by e.g. Basak et al. (2017) and Tomsick et al.
(2018), although direct comparison is difficult since these studies employed different
model assumptions.

Introducing an ionisation profile seems to increase the high energy cut-off returned
by the fit, particularly for Model 3. The values returned here are higher than for
previous studies (e.g. Wilms et al. 2006; Mastroserio et al. 2018).

In order to further explore correlations between parameters, we run a Markov
Chain Monte Carlo (MCMC) parameter exploration on Model 3. The setup and
results of this analysis are presented in Appendix C.3.

4.5.6 Model comparison

Of the models we tested, Model 3 has the lowest χ2 value. We note that some of the
parameter values for this model differ from the other models. In particular the boost
parameter is close to unity for this model, consistent with a steady point source, but
. 0.5 for the other models, consistent with the coronal plasma moving away from the
black hole. Moreover both the high energy cut-off and the mass are much higher for
Model 3. Interestingly if we fix the boost parameter to 0.5 in Model 3, the best fit
requires an energy cut-off of ∼ 356 keV, a mass of ∼ 15M�, the inner radius increases
to ∼ 3.7Rg and the ionisation peak decreases to ∼ 3.82. It seems that forcing the
boost parameter to 0.5 aligns Model 3 to Model 3a and 3b, with a similar reduced χ2

of 440/564.
Fig. 4.4 shows the real (a) and imaginary (b) parts of the complex covariance in

the frequency range 0.1 mHz to 32 Hz. The lines are Model 3 calculated with the
best fitting parameters and the points are the data unfolded around the best fitting
model. The lower panels in both plots show the residuals of the fit. Our current
analysis considers three additional low frequency ranges compared with Mastroserio
et al. (2018), which improves the overall signal to noise. However, we do not expect
this to have changed the best fitting parameters, since the reverberation time lag does
not change its value significantly below the lowest frequency considered in Mastroserio
et al. (2018) (e.g. see Emmanoulopoulos et al. 2014). We note that around the iron
Kα line energy range the model slightly overestimates the width of the line. Similar
residuals were found in Mastroserio et al. (2018), although implementation of light

2When the boost is fixed to 0.5 the parameters not mentioned in the text are similar to the ones
of the other configurations.
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bending and an ionisation profile has made the new residuals around the iron line
less prominent than in the previous model. For the purposes of clarity, this figure
does not show the time-averaged spectrum, whose residuals are shown instead in
Fig. 4.5. The black stars are the energy spectrum residuals of Model 3 and they
show a different structure compared with Fig. 4.1, which represents the fit only to the
time-average spectrum. It seems that adding the complex covariance to our analysis
requires the iron line to be broader. This is also indicated by the best fitting value for
the disc inner radius, which becomes smaller when we include the complex covariance
in the fit (compare Models A, B and C with Models 1, 2 and 3). Fig. 4.5 also
includes the energy spectrum residuals for Model 3a (blue squares) and Model 3b
(red diamonds). These residuals are again very similar to Model 3. Fig. 4.6 shows the
complex covariance residuals for Model 3a, which are similar to the Model 3 residuals
(see Fig. 4.4). Model 3b has an almost identical complex covariance residual plot,
which is not shown here. Therefore, although setting an upper limit for the peak
ionisation parameter increases the overall χ2, it does not introduce any new features
into the residuals.

Although we fit for real and imaginary parts of the complex covariance in order to
simply account for the telescope response, we can also plot the time lags and variability
amplitude associated with our model, which is more intuitive. Fig.4.7 shows the lags
and amplitude for Model 3, with the data points derived from the unfolded complex
covariance. For clarity, the model curves are shown with a higher resolution than
the data, and the data and the model lags for the frequency ranges 1 − 5 mHz,
5 − 17 mHz and 17 − 50 mHz are not plotted due to their large error bars. Fig. 4.8
shows the continuum parameters as a function of Fourier frequency for Model 3. The
behaviour of all three parameters resembles that reported in Mastroserio et al. (2018),
except for φA dropping to slightly lower values than before at high frequency. These
parameters set the power-law pivoting variations. They are defined in the Fourier
domain as the relative phase difference between the reference band light curve and
each narrow energy band light curve (φA, φB), and as the ratio between the power-law
index amplitude and normalisation amplitude (γ). Although their physical meaning
is not immediately clear, it can still be useful to compare them with more physical
models.

4.6 Discussion

We have, for the first time, estimated the mass of a Galactic black hole through X-ray
reverberation mapping. We use the model reltrans (Ingram et al 2019) which uses a
lamppost geometry in full GR to predict complex covariances, modified to include the
non-linear effects resulting from fluctuations in the slope of the irradiating spectrum.
The source is located on the black hole spin axis irradiating a razor thin accretion
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Figure 4.4: Top panels show the fit of real (a) and imaginary (b) part of the Cygnus X-1 complex
covariance spectrum with Model 3. The fit also includes the time-averaged energy spectrum which
is not shown in this plot. The dots are the data and the lines in the top panels are the model which
has a much higher energy resolution than the data for clarity. The bottom panels show the data
minus the folded model (command plot rediduals in xspec).
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the left y-axis. The φB line (red dotted) refers to the right yaxis. Every group of three parameters
in the same frequency range has been used to fit the complex covariance.

disc in the black hole equatorial plane.
We test a number of models, each employing a different assumption regarding the

radial dependence of the disc ionisation parameter ξ(r). Model 1 assumes constant
ξ and yields a mass of M = 21.6+6.8

−6.6 M� (errors are 90% confidence). Model 2 self-
consistently calculates ξ(r) from the radial dependence of the illuminating flux and
additionally assuming the electron density in the disc to be constant with radius,
yielding a mass ofM = 19.7+5.3

−5.4 M�. Model 3 self-consistently calculates ξ(r) assum-
ing the radial density profile in zone A of the Shakura & Sunyaev (1973) accretion disc
model, and yields a mass ofM = 26.0+9.6

−8.6 M�. Zone A (radiation dominated pressure
and electron scattering dominated opacity), for a source with luminosity of 1.6% the
Eddington limit, α = 0.01 and mass of 14.8M� extends to around 15Rg. Since the
region inside of this dominates the reflection emissivity, the assumption of a zone A
density profile is reasonable. Moreover, for radii larger than this, the ionisation is
low so that its assumed profile is less important. Model 3 has the lowest χ2, but we
find that the best fitting peak value of ξ(r) is implausibly high. By combining the
known distance to Cygnus X-1 with our model parameters and a reasonable estimate
for the electron density in the disc atmosphere, we place the highest possible physical
upper limit on the peak ionisation parameter log10 ξmax of 3.76. We therefore define
Model 3a, which employs the same assumptions as Model 3 but the peak of the ionisa-
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tion parameter is now bound by the reasonable upper limit on log10 ξmax of 3.5. This
is our most physical model and yields a mass ofM = 16.5±5 M�, which is consistent
with the existing dynamical mass measurement (M = 14.8± 1 M� Reid et al. 2011).
The correlation between the mass and peak ionisation is illustrated clearly by the 2D
χ2 contour plot in Fig 4.3.

We note that adding the complex covariance to the fit creates structures in the
residuals of the time-average energy spectrum (Fig. 4.5) that are not present in the fit
to the time-averaged spectrum alone (Fig. 4.1). When we fit Model 2 to the complex
covariance only (i.e. ignoring the time-averaged spectrum), the best fit ionisation
peak and inner disc radius are compatible with the joint fit, but the mass is larger
(31+13
−12M�). For Model 3, the same experiment instead yields the same mass of the

joint fit with larger error bars (M = 25.6+13
−10 M�), but lower ionisation peak (4.0+0.3

−0.1)
and slightly larger disc inner radius (2.6+1.1

−1.0Rg) (all other parameters are similar
to the joint fit). This, in addition to the Model 3a and 3b fit results, implies an
anti-correlation between the inner radius and peak ionisation that is confirmed by an
MCMC simulation (see Appendix C). This anti-correlation occurs because the inner
disc does not contribute to the iron line for the highest peak ionisation values. Such
over-ionisation therefore has a similar effect to disc truncation.

Our analysis is sensitive to black hole mass because reverberation lags give dis-
tances in units of km and spectral distortions give distances in units of gravitational
radii. This means that the width of the iron line feature in the time-averaged spectrum
and in the complex covariance jointly sets geometrical parameters such as the disc
inner radius and the source height. Reverberation lags give rise to an iron line feature
in the lag-energy spectrum, but this feature is not well constrained for the data set
we explore here (see Fig. 4.7 left). Still, geometries that would give rise to very large
or very small reverberation lags are ruled out, since they would result in lag spectra
with respectively a large excess or dip in their lag spectra. The energy and frequency
dependent correlated variability amplitude on the other hand is very constraining.
We can clearly see in Fig. 4.7 (right) that the reflection features become weaker for
higher Fourier frequencies. This is because the fastest continuum variability is washed
out in the reflected emission by the finite size of the reflector (i.e. destructive inter-
ference between rays reflecting from different parts of the disc; Revnivtsev et al. 1999;
Gilfanov et al. 2000). The larger the path length differences, the more steeply the
amplitude of the reflection features will drop off with Fourier frequency. This can be
achieved in the model either by increasing the black hole mass, which would not affect
the width of the line, or by increasing geometrical parameters such as h or rin, which
would reduce the width of the line. The model therefore depends on black hole mass
in a very different way to any of the geometrical parameters.
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4.6 Discussion

4.6.1 Future modelling improvements

Although it is encouraging that our most physical model returns a sensible black
hole mass estimate, there are still many improvements that can be made to our
reverberation model in future. We assume that the disc is infinitely thin whereas
in reality the disc has a finite thickness, particularly in the zone A regime (Shakura
& Sunyaev 1973). Including a realistic disc scale height leads to a more centrally
peaked emissivity profile (Taylor & Reynolds 2018a,b) leading to shorter time lags
and a broader iron line for a given disc inner radius. We may therefore expect the
future inclusion of a realistic disc height to push the best fitting disc inner radius to
larger values, although it is difficult to confidently predict since the new emissivity
profile will also effect the ionisation profile. It has also been suggested that Cygnus
X-1’s accretion disc is warped, since some reflection spectroscopy results (Tomsick
et al. 2014; Walton et al. 2016) suggest that the inner disc has a different inclination
angle to the binary system (Orosz et al. 2011). Such a warp would again change the
reflection emissivity profile if included in the model. However, in other suggestions
Cygnus X-1 is an aligned system since it has no peculiar velocity with respect to its
association of O stars, perhaps indicating that there was no natal supernova kick to
mis-align the black hole spin axis at birth (and maybe even that the black hole was
formed via direct gravitational collapse; e.g. Mirabel & Rodrigues 2003). This would
also explain the absence of strong low frequency quasi-periodic oscillations (QPOs) in
the source in the context of the Lense-Thirring precession model (e.g. Ingram et al.
2009; Rapisarda et al. 2017b). We note that our fits here return inner disc inclination
angles only slightly discrepant with the binary inclination (∼ 35◦ vs ∼ 27◦).

Also, although xillver is state-of-the-art, it will be possible in future to include
more realistic disc physics in the calculation of the rest frame reflection spectrum.
We currently calculate the disc ionisation parameter using a reasonable function for
the electron density, ne(r), but we use the publicly available xillver grid in order to
calculate the restframe spectrum, which assumes ne = 1015 cm−3. We therefore use
the correct value of the ionisation parameter for our calculation, but the radiative pro-
cesses and atomic physics are always calculated in a low density environment, whereas
X-ray binary discs are thought to have much higher densities (ne ∼ 1020cm−3). Fix-
ing this issue is challenging, since the atomic data used for the xillver calculation
is not currently tabulated for the high densities of Galactic black hole discs (Shakura
& Sunyaev 1973; Svensson & Zdziarski 1994; Tomsick et al. 2018). The leading order
effect of increasing ne is on the < 3 keV spectrum, but the importance of using a re-
alistic value has recently been demonstrated (García et al. 2016; Tomsick et al. 2018;
Jiang et al. 2019). Finally, we assume a point-like stationary corona. Alternatively
including an extended corona may change our results, although it is difficult to judge
in which way without performing the necessary calculations. Properly including a
plasma velocity vector may also change our results by adjusting the radial depen-
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4 Cygnus X-1 mass measurement

dence of the illuminating flux as well as just the normalisation (Dauser et al. 2013).
Our formalism will enable us in future to test our assumptions about the accretion
geometry using the known black hole mass and distance for Cygnus X-1, calibrating
our model for future use on other sources.

4.6.2 Implications

Our models return a range of values for the disc inner radius, some compatible with
earlier claims of near maximal black hole spin (Fabian et al. 2012; Parker et al. 2015)
and some (including our most physical model, Model 3a) with rin as large as ∼ 6 Rg.
Whether or not the disc truncates outside of the ISCO in the hard state is still debated.
Generally, time-averaged reflection spectroscopy tends to indicate smaller disc inner
radii than does timing analysis (e.g. Rapisarda et al. 2017b). We note that a number
of the future improvements to our model discussed in the previous subsection could
have the effect of pushing the best fitting rin further out, although the parameter
space will be rather complex. We also note that including a radial ionisation profile
does not systematically push rin to larger values, in contrast with the findings of
Shreeram & Ingram (in prep) for GRS 1915+105.

In our model, we account for the hard ‘continuum’ lags that dominate at low
Fourier frequencies with a pivoting power-law model, and this provides good fits to
the data. If the corona is indeed quite compact, then such lags could well be produced
by varying cooling and heating of the corona. Disc photons cool the corona before
the propagating accretion rate fluctuations arrive into the corona and heat it (Uttley
& Malzac in prep). The same type of lags would also be present for the case of an
extended corona but propagating fluctuations within the corona (both radially and
vertically, in the case of a veritical struncture) would need to be taken into account
in our reverberation model (e.g. Wilkins et al. 2016; Chainakun & Young 2017).

The geometry of our best fitting models is compatible with a compact source
within which the plasma is moving away from the black hole, perhaps the base of
the jet (e.g. Markoff et al. 2005; Kara et al. 2019). In all cases, our best fitting
source height is sufficiently large so as not to require the intrinsic source flux to be
super-Eddington after the application of relativistic corrections. However, our fits do
return high values of the high energy cut-off. If the corona is stationary, this implies
that it must be very extended (� 100 Rg) in order to be in e± pair equilibrium (e.g.
Fabian et al. 2015). However, if it is outflowing, then its radiation as we observe it
will be Doppler blue shifted due to the fairly low inclination angle, meaning that the
rest frame temperature is lower and thus allowing for a more compact corona. More
insight into the true rest frame electron temperature can be gained in future by using
a continuum model more sophisticated than an exponentially cut-off power-law and
by considering data in the > 25 keV energy range, as would be provided by NuSTAR.
We plan to carry out further calibration of the model on well-studied sources such as
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Cygnus X-1, which will introduce the prospect of using X-ray reverberation mapping
to measure the mass of black holes that have no existing dynamical mass measurement.
This will be particularly useful for systems that suffer from heavy extinction, and will
cut down on systematic errors in cases where the binary inclination angle is poorly
constrained. The extra constraints on the Galactic black hole mass function provided
by a new mass measurement technique will enhance studies of the mass gap between
black holes and neutron stars, and comparison with the mass function of coalescing
black hole systems. We note that our method is also applicable to AGN.

4.7 Conclusions

We performed a mass measurement of Cygnus X-1 through X-ray reverberation anal-
ysis. Our most physical model (Model 3a) requires a black hole mass of 16.5± 5M�
consistent with the dynamical measurement. The model uses an accretion disc ioni-
sation profile limited to not exceed the highest ionisation that is physically plausible.
Removing this upper bound (Model 3), leads to a fit that has a lower χ2 but includes
physically implausible peak ionisation values, implying either a very low density disc
atmosphere or a much greater distance to the system than is inferred from parallax.
We performed our analysis with RXTE data. Using telescopes with much higher
energy resolution such as NICER and NuSTAR would improve our results in terms of
constraining the shape of the spectral features and disentangle the degeneracy among
some of the model parameters. We plan to use this model in future on such data sets,
both for Galactic black holes and AGNs.
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Abstract

Time lags due to X-ray reverberation have been detected in several Seyfert galaxies.
The different travel time between reflected and directly observed rays naturally cause
this type of lag, which depend directly on the size of the system, and hence on the
mass of the central black hole. A different type of lag occurs at longer timescales,
which are likely dominated by propagating fluctuations in mass accretion rate. We
use the reltrans model to self-consistently account for both these types of lags in
order to fit simultaneously to the time-averaged energy spectrum and the lag energy
spectra of Mrk 335 over multiple timescales. The resulting mass estimate is a few
million Solar masses which is significantly lower than the mass measured with the
optical reverberation mapping technique (14 − 26 million M�). When we add the
correlated variability amplitudes to the time lags by fitting the full complex cross-
spectra, the model is unable to describe the characteristic reverberation Fe Kα line
and cannot constrain the black hole mass. This may be due to the assumption of unity
coherence in the model which is not consistent with the data on short timescales.



5 Reverberation lag in Mrk 335

5.1 Introduction

Active Galactic Nuclei (AGN) are thought to be powered by the accretion of matter
onto supermassive black holes (106 − 109M�). The gas forms an accretion disc and
emits a multi-temperature blackbody spectrum which peaks in the UV band (Shields
1978; Malkan 1983). Some of these photons act as seed photons for inverse Compton
up-scattering in a hot electron ‘corona’ (Eardley et al. 1975; Thorne & Price 1975).
The resulting direct Comptonised emission is often simply modelled as a power-law
with a high energy cut-off, where the power-law index and the cut-off energy are
related to the optical depth and the electron temperature, respectively.

Part of this radiation illuminates the disc and is re-emitted, producing the reflec-
tion component in the spectrum (e.g., Lightman & White 1988). The shape of the
overall time-averaged energy spectrum depends on the properties of both the corona,
such as optical depth and temperature, and the accretion disc, including both its
physical characteristics (e.g., ionisation and iron abundance) and its geometry (e.g.,
inclination and radius of the inner edge). One of the most prominent features in the
reflection spectrum is an iron Kα line emitted at 6.4 keV and broadened by the effects
of orbital motion in the disc and relativistic redshift (Fabian et al. 1989). The black
hole drags space-time around it further modifying the emission line profile (Fabian
et al. 2000), making it possible to measure the spin of the black hole (see Reynolds
2014 for a review).

Although this approach of time-averaged spectral fitting led to very interesting re-
sults, there are several aspects that have remained unclear, in particular, the exact ge-
ometry of the system. For example, the extent of the corona is under debate. It might
be either a compact cloud of gas that could reasonably (compared to the accretion
disc dimensions) be modelled as a point source (Haardt & Maraschi 1991), or a more
extended structure, with various geometries being considered for it (e.g. Eardley et al.
1975; Haardt & Maraschi 1993). One of the reasons for this ambiguity is that in time
averaged spectral fitting, degeneracies among the model parameters can often not be
avoided. In order to help break such degeneracies, it is possible to additionally study
the time variability of the spectrum. One effective way to study the spectral variability
is to measure the time lags observed in both supermassive and stellar mass black holes
between the variability in different photon energy bands. Two types of lag are observed
in AGN, the ‘hard lag’ that is intrinsic to the direct emission (intrinsic lags) and the
‘soft lag’ that is due to the differences in light crossing time from corona to observer be-
tween the direct and the reflected emission (the reverberation lags). The intrinsic lags
are thought to be generated by mass accretion rate fluctuations propagating through
the accretion disc towards the black hole (e.g. Lyubarskii 1997; Arévalo & Uttley 2006;
Ingram & van der Klis 2013). The timescales of the fluctuations depend on the vis-
cosity of the gas, thus long timescales arise in the outer part of the accretion flow and
short timescales closer to the black hole. The fluctuations reach the corona causing
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variations in the electron temperature. At each radius the variability is due to the
product of local fluctuations and the generally slower fluctuations that propagated
in from larger radii. Conversely, the reverberation lags are due to the different path
lengths of the variability signals to reach the observer. Hence, the variability in the
energy band dominated by the reflected emission lags behind the variability of the
direct, inverse Compton emission.

The hard lags dominate at long timescales, and hence in many sources the lags
as a function of Fourier frequency computed between ' 0.3 − 1.0 keV (soft energy
band) and ' 2.0 − 4.0 (hard energy band) are positive (i.e., hard flux lags soft flux)
at Fourier frequencies ν ≤ 300M�/M Hz. The lag spectrum as a function of photon
energy calculated in this frequency range is featureless and lag depends approximately
linearly on logE. At higher frequencies the hard intrinsic lags are smaller, and soft
(negative) reverberation lags have been detected, which in the lag vs energy spectrum
exhibit a broad iron line feature in the 6 − 7 keV range. Detecting this Fe line
reverberation feature in the lag energy spectrum is easier in AGN than in stellar mass
black holes because they are much bigger systems and so the timescales involved are
consequently longer. However, because of their distance, AGN are usually fainter than
stellar mass black holes, so they are often characterized by a worse signal to noise.
For that reason, we need to use as wide as possible a frequency range to calculate the
lag energy spectrum, and analyse it together with the time-averaged energy spectrum
in order to constrain the system parameters.

Looking only at the time lags means considering only a limited part of the infor-
mation in the data, as the correlated variability amplitude as a function of energy
and frequency is ignored in this approach. Lags and amplitudes have been considered
together in only a few cases (e.g. Uttley et al. 2011; Kara et al. 2013b; Rapisarda
et al. 2016), however, joint modelling of both has not yet been performed for AGN.
So, progress could be made by jointly modelling the time-averaged and variability
(time lag and correlated amplitude) spectra taking into account both the effects of
mass accretion rate propagating fluctuations and reverberation lags. The best way
to consider time lags and correlated amplitudes together is by explicitly modeling
the real and imaginary parts of the complex cross spectra (van der Klis et al. 1987;
Rapisarda et al. 2016; Ingram et al. 2016; Mastroserio et al. 2018), and that is the
approach taken in this paper.

We have developed the fully relativistic reverberation mapping model reltrans
(Ingram et al. 2019) that, using a transfer function formalism (e.g. Campana &
Stella 1995; Reynolds et al. 1999; Cackett et al. 2014), computes the complex cross-
spectrum for a range of Fourier frequencies and the time-averaged energy spectrum
in a prescription based on a ‘lamppost’ coronal geometry (e.g. Matt et al. 1991),
assuming isotropic emission and a flat thin accretion disc. In the configuration of
reltrans that we use, the disc radial ionisation profile is self-consistently calculated
from the radial density profile corresponding to a Shakura & Sunyaev (1973) zone A
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5 Reverberation lag in Mrk 335

accretion disc. The model computes the reverberation lags and accounts for the
different light crossing times of the photons using proper relativistic ray-tracing both
between corona and each point on the disc and from each point on the disc to the
observer. We use here a further improved version of reltrans which accounts for the
hard lags through the pivoting of the continuum spectrum by allowing fluctuations
in the index and normalisation of the power law (Mastroserio et al. 2019). This
serves as a proxy for the cooling and heating of the corona by the fluctuations in the
rate of seed photons coming from the disc and the mass accretion rate fluctuations
propagating into the corona. Each patch of the disc sees a different hardness of the
incident emission coming from the corona due to the effects of orbital motion and
redshift which are properly evaluated taking into account the different paths of the
photons (Mastroserio et al. 2018). This causes non-linear effects in the fluctuations of
the reflected emission (i.e., not just the strength but also the shape of the reflection
spectrum fluctuates) which are taken into account in the model. reltrans has been
successfully tested on Cygnus X-1 (Mastroserio et al. 2019) and previously used for
a proof of principle of the method (fitting only the reverberation lags) in Mrk 335
(Ingram et al. 2019).

In this paper we present a full exploration of the model with XMM-Newton obser-
vations of Mrk 335. The Seyfert 1 galaxy Mrk 335 has been extensively studied both
in terms of time-averaged spectrum (e.g. Wilkins & Gallo 2015; Keek & Ballantyne
2016) and lag spectrum, which shows both hard and soft lags (e.g., Kara et al. 2013a;
De Marco et al. 2013a; Chainakun et al. 2016a). The source has been observed at dif-
ferent flux levels (defining ’flux epochs’) (Wilkins & Fabian 2013) with XMM-Newton
from 2006 to 2009. Reverberation lags are detected only in the highest-flux epoch
(Kara et al. 2013a) although the reflection component in the spectrum is weaker then
than in the low flux epochs (Keek & Ballantyne 2016). We therefore select the high
flux epoch and use reltrans to simultaneously fit the time-averaged energy spectrum
and the complex cross-spectra as a function of energy in multiple Fourier frequency
ranges.

5.2 Data reduction

We analyse a 133 ks observation of Mrk 335 performed with XMM-Newton in 2006
(obs ID 0306870101). During the observation the source was in the high-flux epoch
(Wilkins & Gallo 2015) with a 0.5− 10 keV flux of 4.08× 10−11 erg cm−2 s−1 (Grupe
et al. 2007). We follow the data reduction procedure described in Ingram et al. (2019),
considering only the EPIC-pn data and discarding the EPIC-MOS data (following
Kara et al. 2013a). We use the Science Analysis System (SAS) v11.0.0 to extract the
signal from a circular region with 35 arcsec radius centred on the maximum of the
source emission. We apply the filters PATTERN ≤ 4 and FLAG == 0 and discard
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background flares at the beginning and at the end of the observation (considering
only times 252709714 to 252829414 seconds telescope time). We extract the time-
averaged source and background energy spectrum and also extract light curves with
10 second binning from 12 different energy bands with the same energy resolution as
used by Kara et al. (2013a). The SAS task epiclccorr performs various corrections
including subtracting the background signal, which is extracted from a circular region
of 35 arcsec radius at some distance from the source. We compute the cross-spectrum
between the light curve for each energy band and the reference light curve which is
the sum of all the light curves except the subject one (Uttley et al. 2014). In order
to Fourier transform the light curves we fill the small gaps (less than 100 seconds) by
randomly extracting the missing count rates from a Poisson distribution centered on
the value interpolated between the previous and the next bin of the gap. We divide the
cross-spectrum into four frequency ranges: 0.02−0.2 mHz, 0.2−0.7 mHz, 0.7−2 mHz
and 2− 10 mHz. For the first and the second frequency ranges we are roughly in the
regimes dominated by the hard and soft lags, respectively, as found by De Marco et al.
2013a. Since the Fourier frequency resolution of the cross-spectrum is 8.35 × 10−6

Hz, the first frequency range contains 21 Fourier frequencies, and the other three
frequency ranges contain more. The cross-spectral amplitudes averaged over these
four frequency ranges are therefore sufficiently close to Gaussian-distributed that we
can use the χ2 statistic for the purposes of fitting models (Nowak et al. 1999).

5.3 Spectral timing analysis

5.3.1 Time-averaged energy spectrum

Fitting the 2 − 10 keV time-averaged spectrum with an absorbed power-law model
reveals evident residuals in the iron Kα line energy range (see Fig. 5.1), consistent
with previous analyses (Keek & Ballantyne 2016; Wilkins & Gallo 2015). We also see
the emission line at 7.01 keV in the rest frame of the host galaxy (the cosmological
redshift to Mrk 335 is z = 0.025785; Huchra et al. 1999) that was reported by Keek
& Ballantyne (2016). Throughout this paper, we model this line in the time-averaged
spectrum with a narrow Gaussian function with fixed centroid. Including a xillver
(García et al. 2013a) component in the model to account for distant reflection leads
to a reduced χ2 of χ2/dof = 167.6/127 (Model [A] in Table 5.2). This poor fit implies
that a relativistic reflection component is also required, for which we use the model
reltrans (Ingram et al. 2019). The full expression for our model (Model [B]) is

tbabs× (xillver + reltrans + zgauss), (5.1)

where the direct continuum emission is included in the reltrans model as an ex-
ponentially cut-off power-law. We fix the hydrogen column density to NH = 3.6 ×
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5 Reverberation lag in Mrk 335

1020cm−2 following Kalberla et al. (2005) and assume the relative elemental abun-
dances of Wilms et al. (2000). We fix the ionisation parameter of the distant reflector
to log ξ = 0. In contrast, we model the radial profile of the disc ionisation parame-
ter using a self-consistent calculation of the irradiating flux in a lamppost geometry
and assuming the radial density profile that corresponds to ‘zone A’ in the Shakura
& Sunyaev (1973) disc model. In reltrans, this configuration is chosen by setting
the environment variable A_DENSITY= 1 (see Table 5.1 for a full list of reltrans
environment variables used for all of our fits). The peak ionisation parameter in the
disc (the highest value attained by log ξ) is a model parameter that we leave free
in the fit. We choose to only model the 2.0 − 10 keV energy range of the spectrum
because the 0.3−2.0 keV energy range can only be adequately described by including
a complicated 3 layer warm absorber model (Longinotti et al. 2013), which is beyond
the scope of this paper.

Fig. 5.2 shows the best fitting model together with the unfolded data (upper
panel). The residuals (bottom panel) do not present any particular structure and the
reduced χ2 is χ2/dof = 115/123. Here, and throughout this paper, we have fixed the
high energy cut-off, as this quantity cannot be constrained in the < 10 keV energy
range of XMM-Newton, to Ecut = 300 keV (in the observer frame), and we have also
fixed the inclination angle to i = 30◦ (following for both of these parameters Keek &
Ballantyne 2016). We fix the dimensionless black hole spin parameter to a = 0.998

and allow the disc inner radius to be a free parameter.
The best fitting model parameters are listed in Table 5.2. We obtain a larger disc

inner radius than the fit of Keek & Ballantyne (2016) to the same data, and a smaller
(more plausible) relative iron abundance. Since they used relxill (Dauser et al.
2013; García et al. 2014), the two differences between our model and theirs is that we
assume a lamppost geometry as opposed to parameterizing the reflection emissivity
profile with a broken power-law, and we self-consistently account for a radial disc
ionisation profile instead of assuming a single value of the ionisation parameter. Our
fit requires a large value of the ‘boost’ parameter, 1/B. This sets the normalization
of the relativistic reflection spectrum relative to the direct emission. For 1/B = 1,
the relative normalization of the reflection component is set entirely by the lamppost
geometry and general relativistic light bending, whereas 1/B > 1 returns a stronger
reflection component than expected in the lamppost geometry and 1/B < 1 corre-
sponds to a weaker than expected reflection (see Ingram et al. 2019 for more details).
A deviation from the expected isotropic lamppost emission can be due to the true
source geometry being something other than point-like and/or an intrinsic velocity of
the plasma in the corona that beams the emission. Since the physical assumptions of
reltrans are only valid for a boost parameter reasonably close to unity, we impose
a hard upper limit in our fits of 1/B = 3 to avoid unrealistic values. We see that the
best fitting value in our fit is close to this upper limit.
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Figure 5.1: Upper panel Time-averaged energy spectrum unfolded with an absorbed power-law
model. Lower panel: residuals of this model. Clear residuals around the iron line energy range can
be seen.

Table 5.1: List of the environment variables for each of the models used in the analysis. M [#]
stands for Model number #

Variables M [B] M [0] M [1] M [2] M [3] M [4]
mu_zones 1 1 1 1 1 1

ecut_zones 1 1 1 1 1 1
ion_zones 10 10 10 10 10 1
a_density 1 1 1 1 1 1
phi_set 0 1 1 0 0 0
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Figure 5.2: Upper panel: Time-averaged energy spectrum unfolded with the best fitting model
accounting for direct emission and relativistic component (reltrans) and the distant reflector
(xillver). The narrow emission line at 7.01 keV in the source restframe is modelled with a Gaussian
component. Lower panel: Residuals of the best fit model.
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5 Reverberation lag in Mrk 335

5.3.2 Time-averaged and lag spectrum

We now model the lag-energy jointly with the time-averaged spectrum, again using
reltrans. We again ignore energies < 2 keV in the time-averaged spectrum because
of the complicated structure of the warm absorber. For the lags, we instead consider
the extended energy range 0.3 − 10.0 keV. Although soft lags can be caused by the
response of the warm absorber to changes in the ionising flux (Silva et al. 2016) which
is not accounted for in our model, these lags should only be relevant for variability on
longer timescales than the Fourier frequency ranges considered in our analysis. We
therefore choose to model the reverberation lags down to 0.3 keV in order to maximize
the signal to noise of the data.

Model [0]

The first model we explore, Model [0], considers the time-averaged spectrum and only
lags calculated in the Fourier frequency range 0.2 − 0.7 mHz, following Chainakun
et al. (2016a) and Ingram et al. (2019). This is the frequency range in which an iron
K feature indicative of reverberation was discovered by Kara et al. (2013a). Since the
lags in this frequency range are thought to be dominated by reverberation lags (e.g.,
De Marco et al. 2013c), we do not include intrinsic hard lags in our model. For this
model, we self-consistently calculate the zero level of the lag spectrum by specifying
that the phase lag between the reference band and itself must be zero (PHI_SET= 1;
see Table 5.1 ).

Fig. 5.3 shows the unfolded time-averaged spectrum (panel B) and the lag spec-
trum (panel A) alongside the best fitting Model [0] (for clarity, we plot the model
with a finer energy resolution than the data). We confirm that in the 0.2− 0.7 mHz
frequency range the lag energy spectrum shows the iron line feature (Kara et al.
2013a). The fit is statistically acceptable (reduced χ2 of χ2/dof = 124/134) and no
clear structure can be seen in the residuals (top and bottom panels). The best fitting
Model [0] parameters listed in Table 5.2 are similar to those from the fit to only the
time-averaged spectrum. The most obvious differences are the photon index, Γpl, and
the boost parameter, 1/B, which are both smaller in the Model [0] fit. This indicates
that the direct spectrum is harder and this is balanced out by the reflection component
(which is harder than the direct component) being weaker. In this respect, Model
[0] is more physically self-consistent, since the model assumptions are only valid for
1/B ∼ 1. We note, however, that the model upper limit of 3 on the boost parameter
prevents us from constraining its 90% confidence level. The source height is slightly
larger than before and the disc inner radius slightly smaller, although still larger than
that found by Keek & Ballantyne (2016). The best fitting black hole mass is roughly
1× 106 M�. This is similar to the result of Ingram et al. (2019), who fit only the lag
spectrum in this frequency range without jointly fitting the time-averaged spectrum
and ignored the radial dependence of the ionisation parameter. They fixed all spec-
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Figure 5.3: Bottom panels: Time-averaged unfolded energy spectrum and residuals of the best fit
of Model [0]. The total model (red solid curve) and its components (dashed curves) were fitted to
the spectrum in the 2 − 10 keV energy range, even though the model curves continue down to 0.3

keV. Upper panels: Time lag energy spectrum in the 0.2− 0.7 mHz Fourier frequency range and the
residuals of the best fit model. The model has been drawn with higher energy resolution than the
data for clarity.

tral parameters except for h and 1/B to the values measured by Keek & Ballantyne
(2016). Our fit here features a larger source height and larger boost parameter (the
increased boost parameter acts to offset the reduction in reflection fraction caused by
the increased source height) than the Ingram et al. (2019) fit.

Model [1]

We now extend our analysis by additionally modelling the lag spectrum in the two
higher frequency ranges (0.7− 2 mHz and 2− 10 mHz), which we also assume to be
dominated by reverberation lags. The best fitting parameters of this model, hereafter
Model [1], are listed in Table 5.2, and the best fitting lag spectra and time-averaged
energy spectrum are shown as the dashed curves in panels B, C, D and E in Fig. 5.4
alongside the data. The reduced χ2 of χ2/dof = 196/157 is still formally acceptable
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5 Reverberation lag in Mrk 335

within 3σ confidence, but the goodness of fit is worse than for Model [0]. We see
that, as before, this model includes an iron line feature in the 0.2−0.7 mHz frequency
range (panel B). The observed lag spectrum in the highest frequency range (panel
D) shows hints of a dip at the iron line energy, that may potentially be interpreted
as a phase-wrapped reverberation feature (see Section 5.4.1). However, the signal to
noise is too low to confirm this speculation, and the model lags are very small in both
of the higher frequency ranges (dashed curves in panels C and D). The best fitting
parameters are similar to those of Model [0] except the disc inner radius is smaller
and the ionisation parameter is larger. The best fitting black hole mass is similar to
the previous model (a few million Solar masses).

Model [2]

We now also include the lowest frequency range (0.02− 0.2 mHz) in our fit. At these
timescales, the reverberation mechanism is not sufficient to describe the lags. There-
fore for this model, hereafter Model [2], we account for the hard intrinsic lags with
fluctuations in the hardness of the direct emission. We use the analytic prescrip-
tion for a pivoting power law photon energy spectrum described in Mastroserio et al.
(2018) and Mastroserio et al. (2019). The lags produced by this prescription in the
continuum emission have a featureless monotonic energy dependence (see Mastroserio
et al. 2018 for details). The non-linear effects in the reflection spectrum caused by the
assumed spectral pivoting are accounted for self-consistently. In this case the model
cannot currently calculate the zero level of the lag spectrum, so the parameter φA is
a free parameter of the fit (PHI_SET= 0).

The best fitting Model [2] parameters are listed in Table 5.2, and the best fitting
lag spectra and time-averaged energy spectrum are shown as the solid curves in panels
A, B, C, D and E in Fig. 5.4. The residuals are shown in the right hand column. The
reduced χ2 of χ2/dof = 166/157 is again formally acceptable (the null-hypothesis
probability is higher than for Model [1]). However, we see in Fig. 5.4 (panel B) that
Model [2] does not describe the iron line feature in the observed 0.2 − 0.7 mHz lag
spectrum as well as Model [1] does. This is largely because the Model [2] has weaker
observer’s reflection fraction (as defined in Ingram et al. 2019) than Model [1] (1.99

for Model [2] and 2.68 for Model [1]) which dilutes the reverberation lags. Some
parameters have changed from the Model [1] fit: the source height is lower, the disc
inner radius is larger, and the boost parameter is also larger (pegged to the maximum
allowed value). However, we note that the black hole mass is similar to Model [1].

5.3.3 Time-averaged and complex cross-spectrum

We finally account for the variability amplitude of the reflection component in addition
to the time lags by simultaneously fitting the complex cross-spectrum as a function
of energy jointly with the time-averaged spectrum. We now only fit in the 2 − 10
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Figure 5.4: Joint fit of the time-averaged energy spectrum and the lag energy spectra in different
Fourier frequency ranges (specified in the panels). Left panels: data and best fitting Models 1 and
2, right panels: residuals of Model 2 (residuals of Model 1 are not shown). Panels A–D: time lag
spectra; panel E: unfolded time-averaged spectrum. Time-averaged Models 1 and 2 are very similar,
so panel E shows only Model 2; the dashed curves in panel E are the model components. The time-
averaged spectrum is fitted in the 2− 10 keV energy range, the time lag spectra in 0.3− 10 keV. The
solid curves in panels A–D represent Model 2 and the dashed curves in panels B–D Model 1 (which
does not consider the first frequency range). Model curves are plotted with higher resolution than
the data for clarity.
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5 Reverberation lag in Mrk 335

keV energy range, since the warm absorber will affect the energy dependence of the
cross-spectrum even if it does not contribute to the time lags.

Model [3]

We fit simultaneously to the time-averaged spectrum and the complex cross-spectrum
in the three highest frequency ranges, ignoring intrinsic hard lags. This model, here-
after Model [3], is therefore the same as Model [1], except the variability amplitude
is considered in addition to the time lags and the time-averaged spectrum. The best
fitting model is shown as dashed curves in panels B, C, D and E of Fig. 5.5, where
the upper panels show the unfolded real and imaginary parts of the cross-spectrum
and the bottom panel the unfolded time-averaged spectrum. However, we note that
some model parameters are very poorly constrained, particularly the height of the
source and the inner radius of the disc. The 90% confidence range of the former
ranges from 1.5Rg (very close to the event horizon of the black hole) to more than
50Rg. The latter is consistent with the ISCO within 90% confidence, but also with
28.5 Rg. The boost parameter is very similar to Model [1], even though its upper limit
is not constrained. The black hole mass is the most poorly constrained, with only an
upper limit of 0.6× 106M�. This is likely because this model does not reproduce the
reverberation feature in the lag spectrum, which provides the best mass constraint.

Model [4]

We now additionally model the cross-spectrum of the lowest frequency range, requiring
us to again account for hard intrinsic lags with a pivoting power-law prescription.
As we noticed in the previous fit, the model in panels B and D does not follow the
shape of the data around the iron line range. Interestingly, the lowest frequency range
(panel A) shows clear evidence of the reflection component in the real part of the cross-
spectrum. This may indicate that the model can constrain the reflection component
in the variability amplitude at low frequency even though the lags are dominated
by the intrinsic continuum variability, although the same does not happen in any
of the higher frequency ranges. Nevertheless the reduced χ2 of χ2/dof = 144.4/145

indicates an acceptable fit. The black hole mass is 53+19
−8 × 106M� which is different

from the other models. However, in order to achieve this fit, it was necessary to
relax our hard upper limit of 3 on the boost parameter. With this limit in place,
almost all of the parameters are poorly constrained and the mass has an upper limit
of 1.5× 106M� and a best fitting value of ∼ 1 M�. When allowed to vary freely, the
boost parameter becomes very large (1/B = 8.5+1

−1). The inner radius is close to the
black hole, suggesting a contribution from the inner part of the disc, although the
peak of the ionisation increases drastically. This is due to the broad iron line showing
up in the real part of the low frequency range cross-spectrum that is not evident in
the lag spectrum at the same frequency.
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Figure 5.5: Left panels: unfolded spectra of the real and imaginary part of the cross-spectrum and
the time-averaged energy spectrum with the best fitting Model 3 (dashed lines) and Model 4 (solid
lines). Right panels: residuals of the best fitting Model 4. Panel E shows the time-averaged spectrum
of Model 4 (not Model 3) and the different components (dotted lines). The time-averaged spectrum
of Model 3 is very similar to Model 4. Panels from A to D show the complex cross-spectrum in 4
ranges of frequencies (specified in the panels). Model 4 fits all the ranges, whereas Model 3 does not
consider the first one.
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5 Reverberation lag in Mrk 335

5.4 Discussion

In this work we have jointly modelled the time-averaged X-ray spectrum and the short
timescale X-ray variability of the Seyfert galaxy Mrk 335 using our relativistic reflec-
tion model reltrans. We considered the high-flux XMM-Newton observation from
2006, in which Kara et al. (2013a) found evidence of reverberation lags the ∼ 0.2−0.7

mHz Fourier frequency range. We first modelled the time-averaged energy spectrum
alone (Model [B]), before additionally modelling the lag-energy spectrum in the fre-
quency ranges (> 0.2 mHz) thought to be dominated by reverberation lags (Models
[0] and [1]). We then included a prescription to account for the intrinsic hard lags
seen at low frequencies (Mastroserio et al. 2018, 2019) in order to additionally model
the 0.02− 0.2 mHz frequency range (Model [2]). Finally, we extended our analysis to
model the complex cross-spectrum for the reverberation dominated frequency ranges
(Model [3]) and the full range of frequencies (Model [4]).

5.4.1 Model comparison

All of our fits have acceptable reduced χ2. However, some of the model fits do not
reproduce the observed iron K feature in the 0.2− 0.7 mHz lag-energy spectrum (see
Fig. 5.6). In these cases (Models [3] and [4]), it is likely that the model does not
adequately describe the data, but the χ2 statistic is dominated by the time-averaged
spectrum and so ends up overall being statistically acceptable. The best-fitting1

timing model is Model [0]. This simultaneously describes the time-averaged spectrum
and the 0.2− 0.7 mHz lag-energy spectrum. The model predicts an iron K feature of
moderate strength in the lag spectrum (Fig. 5.6), and provides an excellent statistical
description of the data.

Model [1] additionally models the time lags for two higher frequency ranges (0.7−
2 and 2 − 10 mHz) only accounting for the reverberation lags. Whilst this fit is
statistically acceptable, its null-hypothesis probability is worse than that for Model
[0]. Indeed, the 2 − 10 mHz lag spectrum includes a dip around the iron line that
the model does not reproduce. This could be a phase-wrapped reverberation feature.
Phase-wrapping occurs when the time lag is greater than half a cycle of the considered
Fourier frequency, and is a direct result of the periodicity in the phase range −π to π
of the cosines forming the Fourier basis functions. Therefore, if the time lag at Fourier
frequency ν is tlag > (2ν)−1, phase-wrapping will occur every (2ν)−1+n(ν)−1 where n
is an integer number. Similar to car wheels appearing to be stationary when viewed on
low frame-rate film, the first phase wrap induces a jump by 2π in phase (between π and
−π, so reversing the sign), the next phase-wrap (i.e. 3/2ν or −1/2ν) does the same,
and so on. The time lags that we estimate from the observations (by multiplying phase

1i.e. the model with the highest null-hypothesis probability, defined as the probability that the
χ2 would be at least this large if the model were exactly correct.
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Figure 5.6: Lag energy spectra in the frequency range 0.2 − 0.7 mHz for Model [0]-[4]. The inset
plot shows that in Model [3] the reverberation lag is present but it contributes less than a millisecond.

lag by 1/(2πν)) in the 2−10 mHz frequency range (tlag ∼ 50 s; Fig. 5.4D) correspond
to phase lags of ∼ 0.3 cycles, and so some of the jumps from one energy channel to the
next may result from phase-wrapping. If the model describes the observation perfectly,
then phase-wrapping features can be very constraining. However, we clearly see that
Model [1] does not reproduce any features in the highest frequency lag spectrum.
This may be due to some of the simplistic model assumptions we employ (e.g. the
lamppost geometry) preventing the model from being accurate enough to intricately
reproduce any phase-wrapping features in the data. We do, however, note that the
error bars on the lag spectrum are slightly under-estimated in this plot. This is for
two reasons. First, whenever an error bar extends above a phase lag of 0.5 cycles
(i.e. π radians), the top part of the error bar should also appear at the bottom of the
plot. Similarly, the bottom part of error bars that extend below −0.5 cycles should
also appear at the top of the plot. Second, the standard error formula we use for the
time lags (Bendat & Piersol 2000) is derived from the theoretical error on the real
and imaginary parts of the cross-spectrum assuming that the phase lag error is � π.
This assumption begins to break down for the highest frequency range explored here.
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Figure 5.7: Intrinsic squared coherence (see equation 8 in Vaughan & Nowak 1997) between the
iron line energy band (5− 7 keV) and the continuum dominated 1− 4 keV energy band.

Therefore, the poorer fit quality associated with Model [1] may potentially simply be
explained by under-estimated error bars. In Model [2] we also consider the lowest
frequency range (0.02− 0.2 mHz) introducing hard intrinsic lags into the model, and
we obtain a higher quality fit. This is mostly due to the additional freedom afforded
by the additional parameters of the intrinsic lag mechanism that enable the model
to naturally reproduce the shape of the lowest frequency lag spectrum and also make
the model sufficiently flexible to also affect the higher frequencies. Nevertheless, it is
encouraging that Models [0-2] have fairly similar parameters, particularly the black
hole mass.

The issue of underestimating the time lag error bars due to the periodicity of
the phase does not occur for the cross-spectrum. However, although the reduced χ2

is statistically acceptable for the two fits to the cross-spectrum, Models [3] and [4]
miss the reverberation feature , and in particular the black hole mass of Model [3]
is implausible. Fig. 5.6 shows the 0.2-0.7 mHz lag spectrum for each model. We see
that the lags are very small for Model [3], with the iron K feature peaking at less
than a millisecond (see inset). Since we can fit the lag and not the cross-spectrum, we
conclude that our model is failing to reproduce the modulus of the cross-spectrum. A
direct consequence is that the fit prioritizes the modulus, because of its smaller error
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bars, and so this leads to the implausible Model [3] mass value and no reverberation
features. The reason why the model fails to fit the correlated variability amplitude
could be the below unity coherence of Mrk 335, which our model does not account
for. Fig. 5.7 shows that the intrinsic coherence between the iron line energy band
and the continuum dominated energy band becomes consistent with zero around 0.5

mHz. The reltrans model assumes unity coherence at all frequencies (Mastroserio
et al. 2018; Ingram et al. 2019).

5.4.2 Disc inner radius and black hole spin

For most of the models explored here, the best fitting disc inner radius is larger than
that found by Keek & Ballantyne (2016), who fixed rin to the ISCO and inferred
a black hole spin of a = 0.89 ± 0.05 from the time-averaged spectrum of the same
observation that we consider here. Since they used relxill for their fit, as noted in
Section 5.3.1, the configuration of reltrans we use here is different in two ways: it
uses an emissivity profile calculated in the lamppost geometry instead of parameter-
izing it with a broken power-law function, and it considers a radial ionisation profile
instead of a constant ionisation parameter. These changes appear to increase the in-
ferred disc inner radius, and therefore decrease the inferred black hole spin parameter
if rin is assumed to be at the ISCO. In fact, for our fit to the time-averaged spectrum
alone (Model [B]), the 90% lower limit on rin is larger than the largest possible value
of the ISCO (9 Rg for a maximally retrograde spin), indicating that the disc may be
truncated by some physical process other than general relativity, as is often claimed
for black hole X-ray binary discs in the hard state (e.g. Esin et al. 1997; Done et al.
2007). The disc inner radius is slightly smaller for our best fitting model (Model [0]),
which considers both the time-averaged spectrum and the 0.2−0.7 mHz lag spectrum.
The best fitting rin value for this model is larger than the ISCO of a Schwarzschild
black hole (6 Rg), implying either a truncated disc or a retrograde spin. However,
rin is also consistent with the ISCO of a maximally spinning black hole within 90%

confidence. Chainakun et al. (2016a) also carried out a joint fit to the time-averaged
spectrum and 0.2− 0.7 mHz lag spectrum for the data set we consider here, but they
fixed rin to the ISCO and the spin to a = 0.998 in their fit, and so we cannot compare
our results in this respect.

It is also notable that the iron abundance yielded by our models, AFe ∼ 0.5− 0.7,
differs significantly from the large value of AFe = 3.9 ± 0.7 returned by the fits of
Keek & Ballantyne (2016). It is common for X-ray reflection modelling to measure
significantly super-solar iron abundances both for AGN and black hole X-ray binaries
(e.g. Dauser et al. 2012; Parker et al. 2015; García et al. 2015; see García et al. 2018
for a brief review). It is possible that including a radial ionisation profile, as we have
done here, goes some way to reducing the inferred iron abundance, as speculated by
Ingram et al. (2019). Chainakun et al. (2016a) included an ionisation profile in their
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5 Reverberation lag in Mrk 335

model, albeit of a different form, and they found AFe = 2+3
−1.

5.4.3 Black hole mass

Our fits that consider timing properties are sensitive to black hole mass. Fig. 5.8
(top) shows the ∆χ2 versus mass curves for each of these models. Fig. 5.8 (bottom)
shows another representation of this. Instead of ∆χ2, which gives no indication of the
relative goodness of fit of each model, we plot a probability derived from the χ2 and
the number of degrees of freedom, n, for each model. The peak of each distribution
is equal to the null-hypothesis probability; i.e. the probability that χ2 would be at
least as big as the minimum χ2 of the model, χ2

min, under the assumption that this
model is exactly correct. The shape of each distribution is set by ∆χ2 = χ2 − χ2

min,
such that the probability plotted on the y-axis is p = P (n/2, χ2

min/2)P (1/2,∆χ2/2),
where P (a, x) is the incomplete gamma function. This way, we can see for example
that Model [0] has the best goodness of fit, whereas the Model [1] fit is comparatively
poor.

We see that the models considering the time-averaged spectrum jointly with the
time lags (Models [0]-[2]) all return similar best fitting values of black hole mass,
M ∼ [1− 3]× 106 M�, whereas the models that consider the time-averaged spectrum
and the entire cross-spectrum give different values. The best-fitting mass value of
M ∼ 1M� for Model [3] is completely implausible, whereas the Model [4] best fit of
M ∼ 50 × 106 M� is reasonable. However, as discussed in Section 5.4.1, the fits to
the cross-spectrum do not seem to adequately reproduce the properties of the data,
which we suggest to be due to our model effectively assuming unity coherence in
tension with the data. Furthermore, the fit requires an unrealistically large boost
parameter (1/B ∼ 8), suggesting a different geometry than the lamppost, which is
inconsistent with the reverberation calculation in the model. Similarly to the Ingram
et al. (2019) value of M = 6.8+5.5

−5.9 × 106M�, our mass is a good bit smaller than the
optical reverberation mass measurements (M = 14.2 ± 3.7 × 106M�; Peterson et al.
2004 and 26 ± 8 × 106M�; Grier et al. 2012). The Ingram et al. (2019) model was
also consistent with these higher masses, as long as 0.2 − 0.7 mHz is actually in the
phase-wrapping regime (see their Figure 16). However, this is no longer the case now
that we jointly fit to the time-averaged spectrum. Chainakun et al. (2016a) use a
similar procedure to us and get a higher mass. It is not clear why our results are so
different, although we have a different assumption for the radial dependence of the
ionisation profile and we let rin be free instead of fixing it to the smallest possible
value. Moreover, they fit the time-averaged energy spectrum in a larger energy range
0.3 − 10 keV than ours and model the time lag with a reverberation model and
a phenomenological power-law to account for the intrinsic lags. Emmanoulopoulos
et al. (2014) also get a higher black hole mass. Although they use the transfer function
approach to model the reverberation lag, they use a different procedure than ours,
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Figure 5.8: Top panel: ∆χ2 as function of mass for 5 models considered in the paper. For every
value of the mass we perform a new fit (with the mass value fixed) and calculate the difference of
the new χ2 with the best fit χ2. This is done for every model. This procedure does not account
for the different degrees of freedom of each model. The black line is the 1 σ level. Bottom panel:
null-hypothesis probability as a function of mass value for 5 Models. This representation makes it
possible to compare the goodness of fit for different models and their mass values. See the text for
a detailed explanation of the probability calculation.
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5 Reverberation lag in Mrk 335

fitting the only the lag as a function of frequency (lag between 0.31 keV and 1.54 keV
X-ray energy bands) and modelling the positive hard lags with a power-law.

5.4.4 Assumptions

In order to calculate a radial ionisation profile, our model assumes the density profile
corresponding to zone A of the Shakura & Sunyaev (1973) disc model, in which the
dominant sources of pressure and opacity are, respectively, radiation and electron
scattering. The maximum value of the ionisation parameter in the disc is left as a
model parameter. In the case of zone A, the maximum ionisation does not occur at
the inner radius, because the stress-free inner boundary condition leads to the density
becoming very high at rin, and consequently to the ionisation parameter dropping.
According to Shakura & Sunyaev (1973) the outer limit of zone A in an AGN with
luminosity 5×1043 erg/s (as is measured in the 0.5−10 keV range for this observation;
Grupe et al. 2007) and assuming viscosity parameter α = 0.01 and black hole mass
106 or 50× 106 M� is Rab ∼ 1000 Rg or ∼ 72Rg (increasing α increases Rab). Thus
we can comfortably consider most of the emission to come from a zone A density
profile accretion disc.

We assume the lamppost geometry and account for hard intrinsic lags with an
analytic pivoting power-law prescription, enabling the model to be fast enough to
fit to data. However, Wilkins & Gallo (2015) inferred that the corona is radially
extended (to around 26Rg) over the disc during the high-flux epoch that we consider,
and then contracts when the flux decreases. In such an extended corona, intrinsic
hard lags may arise due to inward propagation of accretion rate fluctuations (Wilkins
et al. 2016). It seems likely that our simple model does not provide an adequate
approximation of such a geometry, which may explain why we were unable to find
a physically plausible fit to the cross-spectrum. Indeed, below-unity coherence, as
is observed here, is naturally expected from propagation across an extended corona
(e.g. Rapisarda et al. 2017b), but much harder to explain for a very compact corona.
Including a more realistic coronal and disc (e.g. Taylor & Reynolds 2018b) geometry
in future may therefore enable us to find a more satisfactory fit, and may also go some
way to relieving the tension that our black hole mass measurements have with the
existing optical reverberation measurements. It is interesting to note that our model
seems to work much better for the black hole X-ray binary Cygnus X-1 (Mastroserio
et al. 2019). We cannot currently rule out this being due to the two systems having
different coronal geometries. However, we note that observations of AGN probe much
faster timescales (in terms of Rg/c) in the system, and so it could simply be that
the model is accurate for long timescales in the system but less so for the shortest
timescales.
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5.5 Conclusions

We have modelled the X-ray spectral and timing properties of an observation of Mrk
335. Our model provides a good description of the time-averaged spectrum and lag
spectrum. The best fitting disc inner radius for most of the models we fit is larger
than that found by previous analyses (e.g. Keek & Ballantyne 2016), implying a
lower black hole spin than previously thought (even retrograde) or a truncated disc.
Indeed, for our best fitting model (Model [0]), the best fitting value of disc inner
radius is 10.5 Rg, although the 90% lower bound is still consistent with the ISCO of
a maximally spinning black hole. We also find a smaller (more plausible) value for
the iron abundance than the previous spectral analysis by Keek & Ballantyne (2016).
Our joint fits to the time-averaged spectrum and lag spectrum all return a black hole
mass of ∼ 106 M� (1.0+3.0

−0.7 × 106M� for our best fitting model), which is lower than
that measured by optical reverberation mapping (M = 14.2± 3.7× 106M�; Peterson
et al. 2004 and 26± 8× 106M�; Grier et al. 2012).

However, our joint fits to the time-averaged spectrum and the cross-spectrum,
although statistically acceptable, are not physically plausible. The fit that ignores the
Fourier frequency range dominated by intrinsic hard lags yields an implausibly low
black hole mass, and the fit that accounts for intrinsic hard lags, although returning
a reasonable black hole mass (M ∼ 50× 106 M�), requires a reflection fraction that
is inconsistent with the assumed geometry. This indicates that, whilst our model
can explain the time lags, it fails to adequately describe the variability amplitude
of the reflected emission as a function of energy. This could be because the intrinsic
coherence for this observation drops significantly below unity for frequencies above∼ 1

mHz, whereas the model assumes unity coherence. Incorporating a more sophisticated
geometry into the model in future may help with this.
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A
Appendices to Chapter 2

A.1 Complex covariance analysis

Analysing real and imaginary parts means that any linearity of the signal in the time
domain is preserved in the frequency domain. This is not the case for amplitude and
phase. Here we consider two simple explicit examples to illustrate the superiority
of considering real and imaginary parts instead of amplitude and phase. The first
concerns the response matrix of the instrument and the second concerns scenarios
when multiple variable spectral components are present. We assume unity coherence
and infinite ensemble averaging, allowing us to drop angle the brackets notation.

A.1.1 Instrument Response

It is often assumed that the instrument response can be applied to the cross-spectral
amplitude (or covariance/rms), giving

|Go (I, ν) | =
∫ +∞

0

Rt (E, I) |G (E, ν) |dE (A.1)

where Go (I, ν) is the observed complex covariance in the specific energy channel I
and Rt (I, E) is the instrument response. Here, G (E, ν) is in units of photons per
second per cm2 per keV, and Go is in units of counts per second. However, this
expression is not correct in general. The correct expression is

G (I, ν) =

∫ +∞

0

Rt (E, I) G (E, ν) dE. (A.2)
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The amplitude of the complex covariance for channel I is then

|Go (I, ν) | =

√√√√√√√√
[∫ +∞

0

Rt (E, I) Re [G (E, ν)] dE

]2

+[∫ +∞

0

Rt (E, I) Im [G (E, ν)] dE

]2
. (A.3)

where Re and Im respectively denote the real and the imaginary part. ForRe [G (E, ν)] 6=
0 and Im [G (E, ν)] 6= 0, Eq. A.1 is therefore incorrect. In the special case where
Re [G (E, ν)] = 0 or Im [G (E, ν)] = 0, Eq. A.3 does reduce to Eq. A.1.

Since the observed phase lags are often fairly small, Eq. A.1 is, in practice, often
fairly close to true. However, using our formalism of treating real and imaginary parts
separately introduces no mathematical errors, and is no more difficult to implement
than considering the amplitude and the phase. It is clear the instrument response
cannot be applied to the phase in a manner analogous to Eq. A.1.

A.1.2 Multiple Components Fitting

Consider a signal s1 (E, t) = p (E) a (t) and another signal s2 = q (E) b (t), with
Fourier transforms p (E)A (ν) and q (E)B (ν). Using Eq. 2.1 it follows from the
linearity of the Fourier transform that the cross-spectrum of s1 (E, t) + s2 (E, t) is

C (E, ν) = A (ν) p (E)F ∗ (ν) +B (ν) q (E)F ∗ (ν) ; (A.4)

i.e. simply the sum of the two individual cross-spectra. However, this linearity is lost
for the amplitude and the phase lag. Setting, for simplicity, the amplitude and phase
of the reference band to |F (Erν) | = 1 and φF (ν) = 0 respectively, the amplitude
and phase lag of the cross-spectrum are

|C (E, ν) | =
√
p2|A|2 + q2|B|2 + 2pqRe [AB∗]

tanφC (E, ν) =

[
p Im [A] + q Im [B]

pRe [A] + qRe [B]

]
, (A.5)

In both expressions we have dropped the energy and frequency dependence of the
components so as not to weigh the notation. We see that the expression of the
amplitude has a cross term that would not appear if we simply added the amplitude
of the two components. The exception is if the two components are in phase with
each other, since in this case the amplitude of two vectors added in the complex plane
is equal to the sum of the two amplitudes. Kotov et al. (2001) considered the case
where the contribution of one component (e.g. q(E)B(ν)) is small compared to the

146



A.2 Response function

total spectrum (q << p), in that case a binomial expansion gives

|C (E, ν) | 'p |A|

√
1 + 2

q Re [AB∗]

p |A|2

'p |A|+ q
Re [AB]

|A|
= p|A|+ q|B| cosφAB , (A.6)

where φAB is the phase difference between A and B. Therefore, the contribution from
the cross-terms in this case is small, but the normalisation of the second component
is modified by a factor cosφAB . From Eq. A.5, it is clear that summing lags of two
additive spectral components is not appropriate.

A.2 Response function

Eq. 2.7 in the text refers to emission from a specific patch of the accretion disc area.
If the we consider flat space the area is expressed by r dr dφ and the total observed
reflection spectrum varying in time is calculated by integrating the specific flux over
the entire disc

R (E, t) =

∫ rout

rin

∫ 2π

0

K(r)g3A (t− τ) R (E/g) r dr dφ, (A.7)

where we have not specified the r and φ dependence of g and τ for brevity. As
defined in the main text, E is the observed energy and R is the restframe reflection
spectrum. The factor K (r) accounts for geometrical dilution of radiation from the
the point source incident on the disc patch, and is given by

K (r) = ε (r)
cos i

D2
=

h cos i

(h2 + r2)
3/2

D2
. (A.8)

The blue shift g (r, φ) is given by

g (r, φ) =

√
−gtt − 2gtφω − gφφω2

1 + ωr sinφ sin i
, (A.9)

where ω = 1/
(
r3/2 + a

)
is the angular velocity in the dimensionless units, and we

have again ignored light-bending (see Ingram et al. 2015, 2017). Finally light-crossing
lag, τ (r, φ), (i.e. the difference between the path of the light traveling directly from
the point source to the observer and the light reflecting from the disc divided over
the speed of light τ = l/c) is given by

τc =
√
r2 + h2 − r sin i cosφ+ h cos i, (A.10)

when light-bending is ignored.
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A.3 Linearization

Taylor expanding Eq 2.7 around β = 0 gives

dR (r, φ|E, t) 'A [t− τ(r, φ)]

[
R (E/g(r, φ)|Γ)− β (t− τ(r, φ))

∂R

∂Γ
(E/g (r, φ) ,Γ)

]
K(r) g3 (r, φ) r dr dφ. (A.11)

Setting B (t) ≡ A (t)β (t), the reflected flux integrated over the entire disc is

R (E, t) '
∫ t′=∞

t′=0

∫ φ=2π

φ=0

∫ rout

r=rin

A (t′) δ (t− τ − t′)

R (E/g (r, φ) |Γ)K (r) g3 (r, φ) r dr dφdt′−∫ t′=∞

t′=0

∫ φ=2π

φ=0

∫ rout

r=rin

A (t′) δ (t− τ − t′)

∂R

∂Γ
(E/g (r, φ) |Γ)K (r) g3 (r, φ) r dr dφdt′. (A.12)

From the definition of a convolution

A(t)⊗ z (E, t) ≡
∫ ∞

0

z (E, t− t′)A(t′) dt′, (A.13)

where z (E, t) is an arbitrary function of energy and time. We can simplify to

R (E, t) = A(t)⊗ w (E, t)−B(t)⊗ w1 (E, t) , (A.14)

where w (E, t) and w1 (E, t) are defined in the main text. For the continuum, it is
clear from Eq. 2.10 that

D (E, t) ' [A (t) +B (t) lnE]E−Γe−E/Ecut . (A.15)

Summing direct and reflected components, and using the convolution theorem gives
Eq. 2.13 in the main text. The transfer functions can be written analytically as

W (E, ν) =

∫ rout

rin

∫ 2π

0

ei2πντK(r)g3R (E/g|Γ) r dr dφ

W1 (E, ν) =

∫ rout

rin

∫ 2π

0

ei2πντK(r)g3 ∂R

∂Γ
(E/g|Γ) r dr dφ, (A.16)

where we neglected the r and φ dependency of g and τ for brevity. In our code,
we first calculate transfer functions for R = δ (E − 1keV) and ∂R

∂Γ = δ (E − 1keV)

and then perform convolution operations in the energy variable with R (E|Γ) and
∂R
∂Γ (E|Γ) for obtaining W and W1 respectively.
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Figure A.1: Predicted time lags as a function of energy for 2.5Hz. For all the panels the solid
curves are the exact prediction (made in the time domain without Taylor expansion) and the dashed
curves are calculated using the Eq. 2.10 and 2.11 (first-order Taylor expansion). For all the panels,
φA = 0 rad and φB = 0.2 rad. In all panels we use the parameters: Γ = 2, i = 30◦, rin = 10,
rout = 100, h = 10Rg, a = 0.998, M = 10M�, log10 ξ = 3.1, AFe = 1

We checked under which conditions the linearisation of both the continuum and
reflection expression is valid. Fig. A.1 shows the lag-energy spectrum at 2.5 Hz
calculated in the time domain without Taylor expanding either the continuum or
the reflection expressions (solid lines) and analytically using first order linearisation
(dashed lines). We used a single frequency sine wave as input of the exact calculation
of the lags, i.e. A (t) ∝ 1 + sin (2πνt− φA) and B (t) ∝ sin (2πνt− φB). The top
panel (a) shows that for a reasonable choice of ∆Γ and a value of γ similar to what
we found from the fitting procedure the two curves match. However, if we decided to
increase one of the two parameters (central and bottom panel) the Taylor expansion
is less accurate.
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A.4 Convolution of the theoretical model with the
instrument response

Our model for the Fourier transform of the spectrum, S(E, ν), is given by Eq. 2.13
in the main text. Setting Z(E, ν) = E−Γe−E/Ecut + W (E, ν) and Z1(E, ν) = E−Γ

e−E/Ecut lnE −W1(E, ν) gives the simplified form

S(E, ν) = A(ν)Z(E, ν) +B(ν)Z1(E, ν). (A.17)

Note that Z and Z1 are complex in general, due to the phase lags introduced by
the transfer functions W and W1. Convolving this around the instrument response
(using the same procedure explained in Eq. A.2 in Appendix A.1) gives the Fourier
transform of the observed spectrum

S(I, ν) = A(ν)Z(I, ν) +B(ν)Z1(I, ν), (A.18)

where I indicates the Ith energy channel. The Fourier transform of reference band
flux is F (ν), and therefore our model for the complex covariance of the Ith energy
channel is

G(I, ν) =
A(ν)F ∗(ν)Z(I, ν) +B(ν)F ∗(ν)Z1(I, ν)

|F (ν)|
. (A.19)

To simplify further, we can simply set

α(ν)eiφA(ν) =
A(ν)F ∗(ν)

|F (ν)|
(A.20)

α(ν)γ(ν)eiφB(ν) =
B(ν)F ∗(ν)

|F (ν)|
(A.21)

to get

G(I, ν) = α(ν)
[
eiφA(ν)Z(I, ν) + γ(ν)eiφB(ν)Z1(I, ν)

]
. (A.22)

This expression is identical to Eq. 2.15 that we derived in the main text convolving
the final complex covariance model (Eq. 2.14) with the instrument response.

A.5 Reference band

Following Revnivtsev et al. (1999) and Gilfanov et al. (2000), who analysed the ob-
servations considered here, we choose channels 5−7 (2.84−3.74 keV) as our reference
band. This choice is motivated by these channels having high count rates and being
disjunct from the ‘science’ channels (and thus ensuring statistical independence be-
tween the reference band and all of the science channels). Moreover the 2.84 − 3.74
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keV range does not contain any of the reflection features that we are interested in
observing. When the complex covariance is calculated (for the data) in the reference
band energy range, the imaginary part is identically zero because the complex co-
variance of the reference band with itself has zero phase by definition. This could, in
principle, impose an additional constraint that involves all the continuum parameters
of the model:

I2∑
I=I1

Im [G(I, ν)] = 0, (A.23)

where I indicates the Ith energy channel, I1 to I2 set the reference band channel range
and G(I, ν) is defined in Eq. A.2. In our case it is not possible to apply this extra
condition because the available instrument response R′t(E, I) is poorly calibrated in
the energy range of the reference band, while the relation between G(E, ν) and G(I, ν)

is of course always defined by the true instrument response Rt(E, I). A mathematical
way of looking at it is that we construct a model for the Fourier frequency dependent
spectrum S(E, ν), which we cross with the Fourier transform of a model reference
band, F (ν), to get the predicted complex covariance

G(E, ν) =
S(E, ν)F ∗(ν)

|F (ν)|
. (A.24)

If we had a response matrix that were well calibrated for the reference band energy
channels, we could self-consistently calculate the reference band Fourier transform
from our spectral model

F (ν) =

∫ ∞
0

I2∑
I1

Rt(E, I)S(E, ν)dE. (A.25)

However, we do not know the true response Rt(E, I), and so we simply leave the phase
angle of the unity magnitude complex number F (ν)/|F (ν)| as a model parameter that
gets swallowed up into the definition of the parameters φA(ν) and φB(ν). In order to
calculate G(I, ν) to fit to the data, we convolve G(E, ν) with the available response
R′t(E, I). This response is actually well calibrated in the range where we fit it to
the data, so assuming the model is correct we obtain the correct values for the fit
parameters and hence correctly recover G(E, ν). If we could convolve this G(E, ν)

with the true response Rt(E, I), theG(I, ν) obtained from this operation would satisfy
condition A.23. However, if we convolve G(E, ν) with the available response R′t(E, I)

which is poorly calibrated and hence differs from Rt(E, I) between I1 and I2, we
obtain∫∞

0

∑I2
I1
R′t(E, I)S(E, ν)dE F ∗(ν)

|F (ν)|
=
F ′(ν)F ∗(ν)

|F (ν)|
, (A.26)

151



A Appendices to Chapter 2

whose imaginary part is not identically zero. For this reason, using the available re-
sponse, condition A.23 is not expected to apply to our chosen reference band. Indeed,
when we perform this experiment this turns out to be the case, although the discrep-
ancy is not very large, indicating the calibration, while poor, is still passable even in
the energy range of the reference band. It is worth noting that the poor calibration
of the reference band does not affect our measurements of G(E, ν). Since we divide
through by the modulus of F (ν), all that is affected is the phase of our reference
band model F (ν). At any given frequency this only introduces a phase offset that
is the same at each energy, not affecting the physically meaningful phase differences
between energy bands. In the absence of a physical time series model, however, the
phase differences between Fourier frequencies in a given energy band can not be used
to constrain the physical parameters.
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B.1 Area of a disk ring

The proper area of a disk annulus of width dr as measured by a stationary observer
is given by d2x = 2π

√
grrgφφdr (see e.g. Wilkins & Fabian 2012). The disk area

element we are after for our calculation is measured in the disk frame, bringing in a
factor of γφ, which is the Lorentz factor of the orbiting disk element. Substituting in
the components of the Kerr metric gives

dAring

dr
= 2πγφ

√
r4 + a2r2 + 2a2r

r2 − 2r + a2
. (B.1)

This equation agrees with the formula derived by Wilkins & Fabian (2012) and Dauser
et al. (2013), except for a small typographical error in Dauser et al. (2013). We see
that, in the limit r >> 2, this reduces to 2πr, as we would expect.

Formulae for the Lorentz factor are presented in Bardeen et al. (1972) (hereafter
BPT72) and Dauser et al. (2013). However, a very small error in BPT72 has propa-
gated into the later literature. We therefore present a derivation here. In order to do
this, we must first define a local non-rotating frame (LNRF) in which r =constant,
θ =constant and φ = ωt+constant. Here, ω = −gtφ/gφφ is the term that allows the
reference frame to rotate with inertial frames (i.e. the frame dragging effect). For any
stationary, axisymmetric, asymptotically flat spacetime, we can write the line element
ds2 = gµνdx

µdxν as

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2µ1dr2 + e2µ2dθ2, (B.2)
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where the exponentials are defined in equations 2.3 and 2.5 of BPT72 for the case
of the Kerr metric. Setting M = 1 in the BPT72 equations gives the dimensionless
units we employ here.

We can represent the 4-velocity in the LNRF as u(a) = uµe
(a)
µ , where the compo-

nents of the tetrad of basis vectors are given by e(i) = e
(i)
µ dxµ. The (covariant) tetrad

of basis vectors for the LNRF is (BPT72 equation 3.2)

e(t) = eνdt, e(r) = eµ1dr, e(θ) = eµ2dθ, e(φ) = −ωeψdt+ eψdφ, (B.3)

where it is a long-standing travesty that the letter e is used both for the basis vectors
and as the exponential number (we try to clear this up by using an italicised font for
the basis vectors). This gives

e(t)
µ = (eν , 0, 0, 0), e(r)

µ = (0, eµ1 , 0, 0),

e(θ)
µ = (0, 0, eµ2 , 0), e(φ)

µ = (−ωψ, 0, 0, eψ).
(B.4)

The covariant tetrad can be derived from the definition e(a)
µ e

(b)
ν gµν = η(a)(b), and the

contravariant tetrad from eµ(a)e
ν
(b)gµν = η(a)(b), where η is the Minkowski metric.

The 3-velocity is v(i) = u(i)/ut. For circular, equatorial orbits, the only non-zero
component of the 3-velocity is the φ component, which is given by

v(φ) = (Ωφ − ω)eψ−ν (B.5)

where Ωφ = uφ/ut is the angular velocity of the disk element. In the Kerr metric, this
is Ωφ = ±1/(r3/2 ± a), where the top and bottom signs are respectively for prograde
and retrograde spin. Equation (B.5) is the same as equation 3.10 in BPT72 except
for a small typographical error in the index of the exponential in the BPT72 version.
Subbing in the Kerr metric gives

v(φ) =
r2 + a2 − 2ar1/2 + 2r−1(a2 ± a2)

∆1/2(r3/2 ± a)
, (B.6)

where ∆ = r2 − 2r + a2. The Lorentz factor is then simply given by γφ = [1 −
(v(φ))2]−1/2. Equation (B.6) agrees with equation 3.11a in BPT72 for prograde spin
but not for retrograde. Equation 10 in Dauser et al. (2013) can be reproduced by
taking equation 3.11a from BPT72 and dropping the ± and ∓ signs. Therefore, our
equation (B.6) is valid for prograde and retrograde spins, whereas the equivalent equa-
tions from BPT72 and Dauser et al. (2013) (and potentially many other references)
are only strictly accurate for prograde spin. In practice, the inaccuracy introduced
by these mistakes is very small and need not be worried about.

B.2 Blueshift factors and angles

Here we present the formulae used to calculate the various blueshift factors and angles.
The covariant form of the tangent 4-vector of photons following geodesics in the Kerr
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metric is (see e.g. Bardeen et al. 1972; Dauser et al. 2013)

(k)µ = (−1,±
√
Vr/∆,±|q|, 0), (B.7)

where q is Carter’s constant (Carter 1968) and

∆ = r2 − 2r + a2; Vr = (r2 + a2)2 −∆(q2 + a2). (B.8)

Carter’s constant for ‘incident’ photons propagating from source to disk is (e.g. Dov-
ciak 2004)

q2
i =

sin δ(h2 + a2)2

h2 − 2h+ a2
− a2, (B.9)

and Carter’s constant for ‘emergent’ photons propagating from a disk element to the
observer is (e.g. Dovciak 2004; Ingram et al. 2015)

q2
e = β2 + cos2 i (α2 − a2). (B.10)

4-velocity can be expressed as

uµ =
Ωµ√

−gαβΩαΩβ
, where Ωµ ≡ dxµ

dt
. (B.11)

The 4-velocity of the disk element is therefore

(ud)µ = utd(1, 0, 0,Ωφ); Ωφ =
±1

r3/2 ± a
;

utd =

{
1− 2

r
+

4aΩφ
r
−
[
r2 + a2

(
1 +

2

r

)]
Ω2
φ

}−1/2

,

(B.12)

and the 4-velocity of the stationary source is

(us)
µ =

1√
−gtt

(1, 0, 0, 0) =

√
h2 + a2

h2 − 2h+ a2
(1, 0, 0, 0). (B.13)

The blueshift seen by an observer on the disk patch is therefore

gsd(r) =
(ki)µ(ud)

µ

(ki)ν(us)ν
=

(ud)
t

(us)t
=

=

√
h2 − 2h+ a2

h2 + a2

{
1− 2

r
+

4aΩφ
r
−
[
r2 + a2

(
1 +

2

r

)]
Ω2
φ

}−1/2

.

(B.14)

It follows that the blueshift experienced by photons propagating from the stationary
lamppost source to a distant stationary observer is

gso =
1

uts
=

√
h2 − 2h+ a2

h2 + a2
. (B.15)
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The cosine of the incidence angle is given by

µi = −
(ki)µe

µ
(θ)

(ki)ν(ud)ν
=

(ki)θe
θ
(θ)

(ud)t
=

(qi/r)

(ud)t
, (B.16)

because the θ component of the contravariant tetrad of basis vectors is eθ(θ) = 1/r.
For the blueshift experienced by emergent photons propagating from disk element to
observer, gdo(r, φ), we use equation (4) from Ingram et al. (2017). This is accurate
for a razor thin disk in the black hole equatorial plane. The cosine of the emission
angle is

µe =
(ke)µe

µ
(θ)

(ke)ν(ud)ν
= gdo(r, φ)(ke)θe

θ
(θ) = gdo(r, φ)

qe
r
. (B.17)

B.3 Environment variables

The environment variables used by the model as listed in Table B.1. All have sensible
default values that the user can override, for example to change the model resolution
or explore different radial ionization profiles.
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C.1 Transfer functions

In the text we derived the expression of the total observed specific flux as a function
of time (equation 4.8). Here we write down explicitly the expressions of the three
response functions and their Fourier transform.

w0(Eo, t) =

∫
α0

∫
β0

g3
doε(r) δ(t− τ)

R (Eo|µe,Γ, gsdEcut) dα0 dβ0,

(C.1)

w1(Eo, t) =

∫
α0

∫
β0

g3
doε(r) δ(t− τ)

ln gsdR (Eo|µe,Γ, gsdEcut) dα0, dβ0

(C.2)

w2(Eo, t) =

∫
α0

∫
β0

g3
doε(r) δ(t− τ)

∂R (Eo|µe,Γ, gsdEcut)
∂Γ

dα0 dβ0.

(C.3)

In the Fourier transform of these expressions the delta function (δ(t − τ)) becomes
e2πτν .
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C.2 Ionization calculation

In order to estimate the upper limit of the ionisation parameter, we do not consider
the time dependence of the direct emission and we use the definitions of Ingram et
al (2019). Let us start from the definition of the ionisation parameter in the disc at
radial coordinate r (see e.g. Eq. 10 in García et al. 2013a)

ξ(r) = 4π
Fd,in(r)

ne(r)
, (C.4)

where

Fd,in(r) ≡ C

2
ε(r)

∫ 13.6keV

13.6eV

E1−Γ
d e−Ed/(gsdEcut)dEd, (C.5)

is the incident flux from the source to the disc in the disc restframe. However, the
model for the direct emission that we use to fit to the data is in the observer restframe

Fo(Eo) = A l gΓ
soE

1−Γ
o e−Eo/(gsoEcut), (C.6)

where the normalization A of reltrans model (the xspec model parameter ‘norm’)
absorbes the distance (D) to the source and the normalisation of the direct emission
with A = C/(4πD2). Here, Ecut is defined in the source restframe. We can define F

F ≡ A
∫ 13.6keV

13.6eV

E1−Γ
o e−Eo/(gsoEcut)dEo, (C.7)

because it comes directly from the model that we fit to the data. In order to express
the ionisation parameter in terms of observed flux we can start from Eq. C.5 and
apply coordinate transforms from Ed to Es and then from Es to Eo using the blueshift
definitions gso = Eo/Es and gsd = Ed/Es. We obtain

Fd,in(r) = 2πD2 ε(r) g2−Γ
sd gΓ−2

so F . (C.8)

The emissivity as defined in Ingram et al (2019) is in units of R−2
g . Keeping this

definition, we can express the ionisation parameter in units of [erg cms−1] as

ξ(r) =
8πD2

cm

ne,cm−3

ε(r) g2−Γ
sd gΓ−2

so

R2
g,cm

Ferg cm−2 s−1 . (C.9)

Finally, Eq C.9 assumes isotropic radiation from the source. We should multiply by
the boost parameter (1/B). Eq 4.11 in the text follows from subbing in sensible values
for the parameters.
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C.3 MCMC analysis

In order to further probe the parameter space we run multiple MCMC simulations
for Model 3 using the Goodman-Weare algorithm. We run 4 chains using the xspec
routine chain. The total length is 105 for the first 3 and 2× 105 for the final chain.
We use 200, 400, 800 and 200 walkers for the 4 chains. All the walkers start from
the best fit of Model 3 and we set the burn-in period to 4000 steps in the first three
chains and 2000 steps for the last one. We test the length of the burn-in period with
the Geweke convergence measure, finding this to be in the range −0.2 to 0.2 for each
parameter in each chain1, indicating that convergence has been achieved.

We jointly fit 21 spectra (real and imaginary parts of the complex covariance
for 10 frequency ranges plus the time-average energy spectrum) so we have 51 free
parameters. The continuum phase (φA and φB) and amplitude (α and γ) parameters
are tied between real and imaginary parts for a given frequency, but all depend on
frequency. They therefore contribute 40 free parameters. The normalization of the
time-average spectrum (which is effectively α(ν = 0)), and the hydrogen column
density of the absorption model contribute a further two free parameters. This leaves
9 remaining parameters: Γ, Ecut and the 7 key parameters that we explore in detail:
M , 1/B (Boost in the model), AFe, log ξ, rin, Incl and h.

Fig. C.1 is the integrated probability distribution exploring the correlations be-
tween these 7 key parameters using the MCMC. The inner radius is negative in order
for it to be expressed in units of ISCOs in the reltrans model (following the relxill
convention). The inner radius and peak ionization parameter appear to have bi-modal
distributions, and anti-correlate with one another. The correlation between mass and
peak ionization parameter revealed by the contour plot in Fig. 4.3 does not show up
here, since the MCMC does not explore the high χ2 regions of parameter space as
comprehensively as a brute-force grid search. For each parameter that we consider in
the plot, the Rubin-Gelman convergence measure (Gelman & Rubin 1992) for the first
three chains2 is < 1.05 (with values close to unity indicating convergence). We find
that integrated probability distribution plots computed for each of the 4 individual
chains all look very similar to Fig. C.1, indicating that the 4 chains sample similar
distributions. In particular, this shows that the bi-modal behaviour of the rin and
log ξ parameters does not result from different chains returning different distributions.

1The Geweke convergence measure compares two intervals of the chain, one shortly after the burn-
in period and one towards the end of the chain. For each parameter, Geweke’s statistic measures
the difference between the mean parameter value in these two intervals, and therefore if convergence
is achieved it will have an expectation value of zero and follow the standard normal distribution
(Geweke 1992).

2The Rubin-Gelman convergence measure only compares chains of the same length
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Figure C.1: Output distributions from the MCMC simulation of Model 3. The purple, orange and
yellow regions are 1σ, 2σ and 3σ contours respectively. The inner radius is presented as negative
following the reltrans convention and hatched regions indicate forbidden values. The y-axes for
the histograms are in arbitrary units.
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Samenvatting

Zwarte gaten met accretie vertonen karakteristieke componenten in hun gemid-
delde energiespectrum en ook hun tijdsvariaties hebben opvallende kenmerken. Met
de juiste modellen kunnen deze diagnostieken een inzicht geven in de geometrie van
deze systemen en de eigenschappen van het zwarte gat. Door de energie- en tijds-
afhankelijkheid van de röntgenemissie van deze zwarte gaten in hun samenhang te
analyseren kunnen we gebruik maken van de volledige informatie in de waarnemin-
gen. In dit proefschrift kijken we naar de variabiliteit en de energie-afhankelijkheid
van de reflectie-component. Dit is de emissie die ontstaat wanneer fotonen, die oor-
spronkelijk door de corona (een heet, optisch dun plasma vlakbij het zwarte gat)
naar de accretieschijf worden uitgestraald, in de atmosfeer van de schijf worden om-
gezet, en opnieuw uitgestraald. Er zijn aanwijzingen dat dit proces in zowel zwart-gat
röntgendubbelsteren als in actieve kernen van melkwegstelsels optreedt. Belangwek-
kend genoeg is de energie- en tijdsafhankelijke respons voor elk stukje van de accretie-
schijf verschillend. Dit is een gevolg van verschillen in de sterkte van de relativistische
effecten die de energie van de fotonen verschuiven tijdens het traject van bron naar
waarnemer, en van de verschillen in reistijd van de invallende en de gereflecteerde stra-
ling. De reflectiecomponent is daarom geschikt om de kansen te benutten die worden
geboden door het combineren van de energie- en tijdsafhankelijkheid van de emissie.
Een van de beste manieren om dit te doen is de tijdsvertraging te bestuderen van
de variaties in de reflectiecomponent ten opzichte van de variaties in de continuum-
component, die rechtstreeks naar de waarnemer wordt uitgezonden en daardoor eer-
der arriveert. Deze ‘lichtecho’-vertragingen worden waargenomen op relatief korte
tijdschalen (Fourierfrequenties > 300M�/M Hz). Op langere tijdschalen wordt het
tijdsvertragings-energiespectrum gedomineerd door een ander proces, vermoedelijk
gerelateerd aan het voortbewegen van fluctuaties in de massa-accretiesnelheid door
de accretiestroom. Deze bewegende accretiesnelheidsfluctuaties produceren stochas-
tische variaties in de electrontemperatuur van de corona door hun effect op zowel het
vrijmaken van gravitationele energie als de snelheid van de Compton koeling in de
corona, hetgeen resulteert in kleine fluctuaties in de helling van het coronale emissie-
spectrum (‘kantelen’) die tijdsvertragingen kunnen opleveren.

In dit proefschrift presenteer ik een nieuw model dat deze twee vormen van tijds-
vertraging gezamenlijk beschrijft. Hoofdstuk 2 behandelt het wiskundig formalisme
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dat het kantelen van het coronale spectrum en de resulterende vertragingen beschrijft.
Gezien vanuit elk punt op de schijf is het invallende spectrum anders. Dit beinvloedt
het reflectiespectrum dat elk stukje schijf uitzendt en daarom niet alleen de inten-
siteit, maar ook de vorm, van het lichtecho-energiespectrum. De gevolgen van deze
niet-lineaire effecten voor de tijdsvertraging-energiespectra worden berekend onder
aanname van een compacte corona op de draaiingsas van het zwarte gat, zodat de
helling van het invallende spectrum afhangt van de straal in de schijf maar niet het azi-
muth. Hoewel het formalisme van Hoofdstuk 2 geen volledige algemeen-relativistische
berekening van de fotonpaden van corona naar schijf en van schijf naar waarnemer
omvat, laten we zien dat de methode in principe werkt met een analyse van Rossi X-
ray Timing Explorer data van Cygnus X-1 die een statistisch acceptabele fit oplevert,
weliswaar met residuele structuur rond de ijzer Kα-emissielijn.

Hoofdstuk 3 behandelt het nieuwe model reltrans, dat het model van Hoofdstuk 2
verbetert door de exacte geodetische paden in de Kerr metriek van de fotonen te
berekenen met behulp van een ‘ray tracing’ techniek. Het model neemt zowel de
energie- als de tijdsrespons van de accretieschijf in aanmerking, en berekent daarom
zowel het tijdgemiddelde energiespectrum, dat met bestaande relativistische reflec-
tiemodellen kan worden vergeleken, als de tijdsvertraging als functie van de energie.
De relativistische correcties in het lichtecho-mechanisme worden berekend met een
overdrachtsfunctie-formalisme.

In Hoofdstuk 4 wordt reltrans uitgebreid met de niet-lineaire effecten veroorzaakt
door de fluctuaties in spectrale hardheid die we aanvankelijk onderzochten in Hoofd-
stuk 2. De Cygnus X-1 fit van Hoofdstuk 2 suggereerde dat de binnenrand van de
schijf en de corona zich beide zeer dicht bij het zwarte gat bevonden. Echter, onder
deze omstandigheden zijn relativistische effecten belangrijk, zodat onze nieuwe volle-
dig relativistische versie van het model vereist is om de data goed te beschrijven. De
nieuwe analyse van de Cygnus X-1 gegevens levert inderdaad een betere fit op, en door
een gezamenlijke fit van het gemiddelde energiespectrum en energieafhankelijke com-
plexe kruisspectra voor meerdere Fourierfrequenties zijn we in staat om voor het eerst
een rÃűntgenecho-massabepaling te doen van een zwart gat van stellaire massa. We
vinden bovendien dat modellen met een radiÃńel ionisatieprofiel in de accretieschijf
statistisch geprefereerd worden boven modellen die de fysisch minder waarschijnlijke
aanname maken van een constante ionisatie. De verschillende massa’s die we meten
met verschillende ionisatieprofielen komen allemaal binnen 3σ overeen met de dyna-
mische massabepalingen van Cygnus X-1, waarbij een meer realistisch ionisatieprofiel
een lichtecho-massa oplevert die dichter bij de dynamische waarde ligt.

Tenslotte bekeken we de toepasbaarheid van het model op een superzwaar zwart
gat, Markarian 335, door eerst alleen de lichtecho-vertragingen te fitten (Hoofdstuk 3)
en later de gecorreleerde variabiliteits-amplitudes en -vertragingen op verschillende
tijdschalen (Hoofdstuk 5). De resultaten van Hoofdstuk 3 laten al zien dat het model
een bruikbare meting van de massa oplevert. Ze laten echter ook duidelijk zien dat
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het fitten van slechts één frequentiegebied enige ontaarding tussen parameters laat
bestaan, zoals tussen bronhoogte en massa. Om die reden bevat Hoofdstuk 5 experi-
menten met een meer verfijnde analyse van de tijdsvertragingen en variabiliteitsam-
plitudes van Markarian 335, waarbij zowel de lichtecho-vertragingen als de intrinsieke
tijdsvertragingen ten gevolge van het spectrale kantelen worden bestudeerd. De fit
aan de tijdsvertragingen lijkt lagere waardes van de massa van het zwarte gat te pre-
fereren (een paar miljoen zonsmassa’s) dan de optische lichtecho-metingen (∼ 10 -
20 miljoen zonsmassa’s). Als we echter ons model ook fitten aan de gecorreleerde
variabiliteits-amplitudes, is het niet in staat om sommige karakteristieke lichtecho-
effecten te beschrijven die in de data waarneembaar zijn, en levert het geen bruikbare
metingen van de massa op, hetgeen suggereert dat er fysische processen in het spel
zijn die niet in het model voorkomen. Een aanwijzing hiervoor is dat de gemeten co-
herentie tussen de energiebanden niet gelijk is aan één, zoals wel in het model wordt
verondersteld.

De conclusie van dit werk is dat Fourier-tijdsvariatieanalyse als functie van foton-
energie in zwarte gaten met accretie een krachtig hulpmiddel vormt om informatie te
verkrijgen uit spectrale variabiliteitsgegevens die niet op andere wijze toegankelijk is.
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Accreting black holes show characteristic components in the time-averaged energy
spectrum and distinctive features in their time variability. When properly modelled,
these diagnostics can constrain the geometry of the systems and the parameters of
the black hole. Jointly accounting for both the energy and the time dependence of
the X-ray radiation from accreting black holes exploits the complete information pro-
vided by the observations. This thesis focuses on studying the variability and energy
dependence of the reflection component. This is the emission due to photons orig-
inally radiated from the corona (hot optically thin plasma close to the black hole)
that illuminate the accretion disc, are re-processed in the disc atmosphere and are
re-emitted before reaching the observer. There is evidence that this process occurs
both in black hole X-ray binaries and active galactic nuclei (AGN). Interestingly, the
energy and timing response of the accretion disc is different for every patch of the
disc, because of the different strength of the relativistic effects that shift the energy
of photons as they travel from source to observer, and the different light crossing
times of the illuminating and reflected radiation. Therefore the reflection is a useful
spectral component with which to exploit the possibilities afforded by combining the
energy and timing aspects of the emission. One of the best ways to do this is to
study the time lags of variations in the reflection component compared to those in
the continuum component, which is emitted directly towards the observer and whose
variations therefore arrive earlier. These reverberation lags are observed at relatively
short timescales (Fourier frequencies > 300M�/M Hz). At longer timescales, the lag
energy spectrum is instead dominated by another process, thought to be associated
with mass accretion rate fluctuations propagating through the accretion flow. These
propagating mass accretion rate fluctuations lead to stochastic variations in the elec-
tron temperature of the corona by varying both the release of gravitational energy
and the Compton cooling rate in the corona, which results in small fluctuations in
the slope of the coronal emission (’pivoting’) that can show up as time lags.

In this thesis, I present a new model that jointly addresses these two types of
lag. Chapter 2 presents the mathematical formalism that describes this pivoting
of the coronal spectrum and the lags that it produces. The illuminating spectrum
seen at each point on the disc is different. This affects the reflection spectrum re-
emitted by each disc patch and therefore the shape, and not just the strength, of the
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reverberation energy spectrum. The consequences of these non-linear effects for the
lag energy spectra are calculated assuming a compact corona located on the black hole
spin axis, so that the slope of the illuminating spectrum depends on disc radius but
not azimuth. Although the formalism of Chapter 2 does not include a full General
Relativistic calculation of the photon trajectories from the corona to the disc and
from the disc to the observer, we present a proof-of-principle analysis of Rossi X-ray
Timing Explorer data of Cygnus X-1 and achieve an acceptable fit, albeit with some
residual structure around the iron Kα emission line.

Chapter 3 presents the new model reltrans, which improves upon the model
explored in Chapter 2 by calculating the exact geodesic trajectories of the photons
in the Kerr metric with a ‘ray tracing’ technique. The model accounts for both
the energy and the timing response of the accretion disc, and so computes both the
time-averaged spectrum, which can be compared with existing relativistic reflection
models,and the time lag as a function of energy. The relativistic corrections to the
reverberation mechanism are calculated using a transfer function formalism.

In Chapter 4 reltrans is extended by now also including the non-linear effects
due to the hardness fluctuations first explored in Chapter 2. The proof-of-principle
Cygnus X-1 fit presented in Chapter 2 suggested an inner radius of the disc and a
position of the illuminating source both very close to the black hole. However, in
these conditions the relativistic effects are important, and thus our new fully rela-
tivistic version of the model is required to accurately describe the data. Indeed, the
new Cygnus X-1 analysis improves the fit to the data, and by jointly fitting the time-
averaged energy spectrum and the complex cross-spectrum as a function of energy for
multiple Fourier frequencies we are able to accomplish the first X-ray reverberation
mass measurement of a stellar mass black hole. Moreover, we find that model configu-
rations that account for a radial ionization profile in the disc are statistically preferred
over configurations that make the less physical assumption of constant ionization. The
different masses measured using different ionisation profiles are all compatible with
the dynamical mass measurement of Cygnus X-1 within 3σ, with a more realistic
ionisation profile producing a reverberation mass value closer to the dynamical value.

Finally we also considered the applicability of the model to a supermassive black
hole, Markarian 335, first fitting only the reverberation lags (Chapter 3) and later the
correlated variability amplitudes and the time lags at different timescales (Chapter 5).
The results in Chapter 3 already show that the model produces a useful constraint
on mass. However, they also make clear that fitting only a single frequency range
leaves some degeneracy among parameters, such as source height and black hole mass.
Therefore, Chapter 5 provides experiments towards a more sophisticated analysis
of the time lags and the variability amplitude of Markarian 335 studying both the
reverberation lags and the intrinsic lags due to the pivoting. The fit to the time lags
seems to favour lower values of the black hole mass (a few million Solar masses) than
the optical reverberation mapping measurements (∼ 10 - 20 million Solar masses).
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However, when we fit our model also to the correlated variability amplitudes, the
model is unable to describe some characteristic reverberation features present in the
data, and can not provide useful constraints to the black hole mass, suggesting the
presence of physical processes not addressed by the model. In fact the coherence
between energy bands is not unity at all the timescales as assumed in the model.

The conclusion of the work is that energy-resolved Fourier timing analysis of ac-
creting black holes is a powerful tool for inferring information from spectral variability
data not otherwise accessible. In this thesis we modelled the spectral timing behaviour
by creating and exploring a mathematical formalism that enables the reverberation
lags to be self-consistently modelled for a large range of variability timescales in an
analytic model suitable to fit to real-world data.
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