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Preface & Thesis Guide

This thesis is an exposition of some of my research that I carried out during my

doctoral studies. The main focus of the thesis is understanding emergent laws of

gravitation from an information theoretic point of view.

The thesis consists of seven chapters. First chapter 1 is an introduction on the

it from qubit paradigm and how this research is connected to other works. The

second chapter 2 provides reviews for the material that is strongly used in the rest

of the thesis.

The chapter 3 focuses on the connection between black hole physics and quantum

information. In particular, black hole information paradox and firewall paradox.

The fourth and fifth chapters focus on the same theme. Mainly how to reconcile

bulk physics with information theory in the context of AdS/CFT. In chapter 4, the

connection between Bekenstein bound in the bulk and corresponding information

theoretic relation in the underlying theory is presented. In chapter 5, we study

the impact of first law of entanglement entropy on general bulk surfaces using

differential entropy in three dimensions. This chapter can be seen as a proof of

concept of the last two chapter where we explore emergent first law with its full

generality.

The last two chapters (6, 7) can be seen as the core of this thesis. In 6 we generalize

the first law of black hole mechanics to codimension two spacelike surfaces for a

general theory of gravity. Based on the analogies between gravity and elasticity,

we identify the first law of deformations in spacetime. In chapter 7, we build on the

entropic gravity proposal and elaborate/generalize it as adiabatic reaction force.

We propose that microcanonical action in a general theory of gravity measures the

Gibbs volume entropy of the underlying microscopic theory.
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1
Introduction

The Universe is made of stories,

not of atoms.

— Muriel Rukeyser,

The Speed of Darkness.

Gilles Deleuze defines philosophy as an activity of creating concepts that are

new [5]. In this sense theoretical physics strongly involves philosophical activ-

ity. History of physics contains abundance of examples of concepts created along

the development of new theories. Energy, entropy, particles, fields, aether, quanta,

strings are few of these concepts. Concepts establish metaphysical foundations of

theories. They are the ground level building blocks of the language/story provided

by each theory. Although as transcendental and universal as it sounds, theoretical

physics is a human activity (at least in this planet) and in many cases it is strongly

entangled with the concepts of the era theories are built in and this thesis is an

example of such an influence.

Our language transforms together with the developments taking place in our daily

life. Technology have always played a significant role in our understanding of

world. There are strong correlations between technological advances and the con-

cepts of physical theories developed in the same century. Technology has strong

influence on how we perceive and express the world. Perhaps it is this influ-

ence that fundamental physics, in particular the quantum theory of gravity, today

strives to employ the concept of information as the underlying building block of

the Universe more than ever.

Maybe the messenger was Wheeler, in his memorable report [6] Information,

physics, quantum: the search for links, he visioned the underlying entity of the

existence as the information, semantic information in other words meaning. In a

very different way this is the beginning of a new paradigm of unification. It is

information that unifies all concepts of physics. According to this view, informa-

tion is primary and underlies all other concepts of physics. Matter, energy, forces,

fields, strings, space, time were all constructs of information. Although as specu-

lative as it sounds, today this paradigm echoes in the community of high energy

1



1. Introduction

physics. The slight modification of the slogan coined by Wheeler is hailed between

physicists. It from qubit. Information is represented by qubit, quantum version

of a classical bit. Physics is far from what Wheeler envisioned, yet considering

information as the primary underlying entity already opened new possibilities to

understand the missing piece of the puzzle in radically different way.

We organized this introduction in three sections. In the first section 1.1, we provide

a brief review of how information find its place in physics. The central theme will

be the concept of entropy and how it evolves from thermodynamics to statistical

physics followed by quantum mechanics. In addition we will introduce concept of

adiabatic principle and its connection to information theory. We will introduce

the first law of adiabatic principle as a reminiscent of first law of thermodynamics.

In the second section 1.2, of the introduction, we discuss information theory in the

context of black hole physics. This part of the introduction is connected to the first

part of the thesis where firewall paradox is studied 3. In this section we start by

introducing thermodynamics of black holes that leads to information paradox. We

give a historical account on how information paradox evolved into modern form

as firewall paradox. We lay out connection of recent ideas on firewall paradox to

the idea advocated in the thesis. In the third section of the introduction 1.3, we

present another dimension of information, namely its connection with spacetime

geometry. Without going to back in the history, we present chain of events that

leads us to the main research theme of this thesis.

1.1 Brief history of information in physics1

Information firstly appeared in physics implicitly through the concept of entropy in

thermodynamics introduced by Rudolf Clausius to describe all transformations of a

body through heat exchange with its environment. The concept firstly introduced

as the mechanical equivalent of heat [7] for the formulations of first and second

laws of thermodynamics. In its modern formulation, these laws are

δE = TδS δS ≥ 0. (1.1.1)

where S is the entropy and E is the energy of the system. Interestingly initial

name proposed for entropy was equivalence value which indicates the identical

character of energy and entropy at the infinitesimal level as established by the

first law (1.1.1). As the definition, mechanical equivalent suggests, entropy at the

1The author is not an expert on the history of physics hence he will be presenting occa-

sions/developments that has impact on his understanding of the universe from the perspective

of information.

2



1.1. Brief history of information in physics

macroscopic level usually explained as the order/disorder of a physical body which

in essence is an information theoretic notion.

The microscopic explanation behind the concept of entropy first introduced by the

Ludwig Boltzmann. According to this definition, entropy provides a measure for

the number of possible microscopic configurations a macrostate can be at.

S = kB log Ω (1.1.2)

where Ω is the number of microstates corresponding to a macrostate and kB is

Boltzmann constant. This definition in essence is an information theoretic one, as

it quantifies the lack of knowledge on the microscopic configuration of the system.

In other words, observer’s lack of knowledge on the arrangement of molecules

of a matter in a macrostate is the entropy. In an equivalent way, entropy is the

uncertainty on the microscopic configuration of the body. These are all information

theoretic statements and equivalent to each other. Unfortunately when Boltzmann

formulated entropy in this way, the existence of atoms and molecules were quite

controversial hence Boltzmann’s discovery didn’t get much attention on those days.

Boltzmann’s entropy formula assumes that each microscopic configuration associ-

ated to a macrostate is equally likely hence it is not the most general form of a

statistical entropy. At a given macrostate some configurations can be much more

likely than others, such as low energy ones are more likely than high energy states

at a given temperature. The generalization of (1.1.2) is known as Gibbs entropy.

S = −kB
∑
i

pi log pi (1.1.3)

where pi is the probability of a microstate i to be realized in an ensemble. When

all microstates are equally likely pi = 1/Ω, Gibbs entropy becomes (1.1.2). Once

again Gibbs entropy measures observer’s lack of knowledge about the underlying

details of the system. This lack of knowledge manifest itself as an ensemble average,

it is the primary factor on our experience regarding the world. The story is very

interesting as it indicates how powerful the role of information on our description

of the world. Not only the information itself, but even lack of information as it is

also a form of information.

Let us introduce one more type of entropy known as Gibbs volume entropy which

will be of interest in chapter: 7. Gibbs volume entropy [8] measures the entropy

associated to the volume of the phase space. It provides an entropic measures even

there is no degeneracy associated to the macroscopic state or at zero temperature.

The volume entropy of Gibbs is defined as,

S = kb log Ω(E) Ω(E) =
∑
Ei≤E

nEi (1.1.4)

3



1. Introduction

where nEi is the degeneracy of an energy level. While Gibbs volume entropy counts

all the states below a certain energy level, Boltzmann’s entropy counts the number

of microstates only at a certain energy. One can not distinguish between these two

different definitions of entropy for a state having large degeneracy. Yet volume of

the phase space can account for an entropic invariant even at zero temperature

systems.

1.1.1 Adiabatic principle and reaction force

Adiabatic principle is one of the fundamental principles of nature that reflect itself

in many different branches of physics. In essence it is about the fact that when two

systems which are separated by a gap in the timescale hierarchy then these two

systems can not efficiently communicate. In other words, a system adjust itself to

an affect that is slow compared to the timescale of the system. The phase space

is preserved in an adiabatic affection and usually referred as adiabatic invariant.

Similar to thermodynamics, there is a first law that follows from adiabatic affection

of the system system [9,10].

The simplest system one can observe adiabatic principle is a harmonic oscillator.

Consider a single harmonic oscillator whose frequency depends on a slow variable x,

which is interpreted as the position of a probe that can be affected infinitely slowly.

Under such deformation one can determine the reaction force on the probe through

an information theoretic relation similar to the first law of thermodynamics.

The principle has also an application in quantum mechanics. Using the standard

semi-classical correspondence one learns that the Bohr-Sommerfeld integral

J =
1

2π

∮
pdq (1.1.5)

remains constant during an adiabatic affection of the system. The integral is

taken over a closed orbit in the phase space which becomes J = E/ω(x) for an

harmonic oscillator. For a classical harmonic oscillator, such as pendulum, the

action J corresponds to average kinetic energy for a period, which is the volume

of the phase space, and is invariant under adiabatic deformation of the system.

Semi-classically the action satisfies the Bohr-Sommerfeld quantization condition.

The behaviour of energy levels with respect to the slow deformation is presented

in figure: 1.1 where J = (n+ 1
2 )~ and serves as an invariant.

These statements hold not just for the harmonic oscillator, but for any dynamical

system with one degree of freedom with a slowly varying Hamiltonian H(p.q;x).

The invariance of the action integral J can also be derived by pure classical means

and follows from the fact that under slow changes of a dynamical system the

4



1.1. Brief history of information in physics

phase space volume contained inside the classical orbit remains invariant. Indeed,

J is precisely equal to that volume. Let us now explain how this can be used to

determine the reaction force F . Invariance of the phase space leads to

F = −
(
∂E

∂x

)
J

(1.1.6)

where the quantity in the subscript is fixed. Force can be expressed in alternative

ways, by using the state equation of action variable. For this, the following stan-

dard relation between the quantities E and J and the angular frequency ω of the

closed classical orbit is used,

dE = ωdJ − Fdx. (1.1.7)

This identity, which follows from the action principle and Hamilton-Jacobi theory

played an important role in Bohr’s derivation of the quantization rule from the

correspondence principle. In fact, it looks very much like the first law of thermo-

dynamics, but the quantities ω and J have clearly a very different meaning than

their thermodynamic analogues T and S. We would like to emphasize that, it is

not merely an epistemological difference, especially in the framework of gravity.

We don’t speak of thermodynamical entropy while studying the microscopics of

spacetime that is locally vacuum, it only enters when one studies states that are

highly excited compared to vacuum and radiate thermally, such as black holes.

Let us go back to adiabatic first law (1.1.7), and interpret alternative expressions

one can extract

F = ω

(
∂J

∂x

)
E

,
1

ω
=

(
∂J

∂E

)
x

. (1.1.8)

The beauty of the adiabatic principle is that one can extract information about

the system without having the detailed knowledge of the dynamics. In the case of a

single harmonic degree of freedom, the adiabatic first law contains the information

about the spacing of energy levels. According to the correspondence principle the

level spacing between the energy levels equals ~ω, and that is reflected in the

second equation above where the change in the energy with respect to phase space

volume is equal to energy spacing between each level. The first equation of (1.1.8)

on the other hand is analog of what has been proposed as the entropic force [11].

One should be careful on the interpretation of this equation. For example in the

case of a harmonic oscillator there is no thermal character of the system. The

systems is integrable and allowed motions follow fixed orbits in the phase space.

Moreover even though one employs the force expression through (1.1.8) that does

not mean that the action variable will increase in the direction of the reaction

force. Rather it will serve as an invariant such that energy will adjust itself and

cause a reaction force on the slow variable. Note that the force points in the

5



1. Introduction

E

t

Figure 1.1: Adiabatic principle in a quantum harmonic oscillator. When the frequency of the

oscillator is deformed slowly over time, the energy of each eigenstate changes ac-

cordingly yet number of states below a certain energy level stays the same. Bohr-

Sommerfeld quantization condition corresponds to adiabatic invariant of a quantum

harmonic oscillator J = 1
2π

∮
pdq = (n+ 1

2
)~

.

direction in which the action would increase if the energy were to stay constant.

But the energy has to adjust itself so that the action stays constant, which means

that the energy has to decrease in that same direction.

Although we refer to the adiabatic regime in general, the same interpretation also

holds in the more specific entropic regime. Namely an entropic force does not yield

change in the entropy. The distinction, in terms of dynamics, is important when

it comes to the information theoretic interpretation of the adiabatic invariant in

gravity.

1.1.2 A new form of information

The early 20th century gave birth to two cornerstones of modern physics: quan-

tum mechanics, describing physics of microscopic structures, and Einsteins general

theory of relativity, marrying space, time, matter and energy in the dance of stars.

Although unification, having a single description, a single principle, a fundamental

truth is the dream of physicists, how to unify these two descriptions of nature is

still an open problem.

Quantum mechanics is strange in many aspects but perhaps main departures of

it from classical mechanics are the phenomena of entanglement and process of

measurement. Measurement problem will not be discussed here. An entangled

quantum state cannot be factored as a product of states of its local constituents,

in other words, components of the system are not individual things but are an

6



1.1. Brief history of information in physics

inseparable whole. There are different measures quantifying entanglement: the

entanglement of formation, the entanglement cost, the distillable entanglement,

the relative entropic measures, the squashed entanglement, log-negativity, the ro-

bustness monotones, entanglement negativity. Apart from log-negativity, the ro-

bustness monotones, entanglement negativity all reduce to von Neumann entropy

for a pure state [12]. von Neumann entropy is a generalization of Gibbs entropy

(1.1.3) to field of quantum mechanics.

S = −tr(ρ log ρ) (1.1.9)

When the definition is applied to a density matrix obtained by tracing out a factor

in a pure state, it measures the entanglement of state ρ with its complement. The

connection with Gibb’s definition can be observed clearly when density matrix

is diagonalized in a suitable eigenbasis, ρ =
∑
i pi|i〉〈i|, where pi denotes the

probabilities of a measurement to outcome an eigenvalue Ei corresponding to

eigenstate |i〉 according to Copenhagen interpretation.

S = −
∑
i

pi log pi (1.1.10)

It is clear in this expression why von Neumann entropy is quantum mechanical

extension of the Gibbs entropy in statistical physics. The difference between clas-

sical correlations and quantum entanglement manifest itself in the measurement

process. Measurement of one of the parties in an entangled state determines the

outcome of the other party. This fact dazzles the physicists in the early days of

quantum revolution. Rather than understanding the origin of the phenomena, if

there is, physicists accept it as the intrinsic characteristic of the nature. It is a

prime example of concept creation in physics, the language of the classical physics

has to be enriched. Also entropy of a classical system is always greater than

entropy of the subsystems it composed of.

Sc(AB) ≥ max(Sc(A), Sc(B)) (1.1.11)

which is definitely not the case for von Neumann entropy, as it vanishes for a pure

state that might possesses entanglement between its subsystems. Entanglement

entropy of a subsystem can also be considered as lack of knowledge, yet in a

very different way than its classical counterpart. It is a lack of knowledge born

out of the missing information on how subsytems of a system are connected to

each other, which can dissolve when one access to entire state. Also, it is the

information on how the measurements on one of the parties are dependent on or

affect the measurements on the other party. Entanglement is also the primary

ingredient in the phenomena of decoherence [13] that illuminates why we don’t

observe quantum superposition in classical world. Observers lack of knowledge

7



1. Introduction

how things are coupled to environment and on the environment itself result in the

classical world2.

The relation between energy and information in the form of entropy as the first

law does not only exist in thermodynamics. It is an emergent law, that shows

up in all the branches of physics. It represents the unified character of energy

and entropy as information. There is also a first law associated to entanglement

entropy. It can be derived from positivity of relative entropy (4.2).

δS = δ〈Ĥ〉 (1.1.12)

where ĤA = log ρ is an hermitian operator, known as modular Hamiltonian (2.4).

This relation is extensively studied in this thesis, hence we will not be introducing

it further here.

1.2 Black holes and information

The other revolution of 20th century physics was the advent of general theory

of relativity. Theory of relativity initiates series of unifications. First it unifies

matter and energy then inertial mass with gravitational mass. Finally it connects

spacetime with energy.

The connection between information and black holes goes back to the work of

Bekenstein [14–16] built upon the works of Penrose [17], Christodoulou and Rufini

[18,19] later elaborated by Hawking [20,21]. The complete thermodynamical anal-

ogy is laid out in a seminal work by Bardeen, Cooper and Hawking [22].

SBH =
A

4GN
(1.2.1)

where GN is gravitational constant which is in fact an information theoretic unit

that measures number of microscopic degrees of freedom associated to a black

hole. How does gravity knows about short distance physics as it is long distance

phenomenon? If Wilsonian arguments were true, would gravity knew about short

distance structure? This is a subtle question, subject to much debate.

Black holes like other macroscopic system acquiring some entropy, follows the laws

of thermodynamics. The zeroth law states that black hole temperature is constant

over the horizon. First and second law is more interesting and follows the same

2Decoherence itself is not enough to explain how only one of the possible outcomes realizes in a

measurement process. Decoherence illuminates why we do not observed quantum superpositions.
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1.2. Black holes and information

form with ordinary matter that is thermalized.

δM =
κ

2π

δA

4GN
δA ≥ 0. (1.2.2)

Black hole entropy is universal in the sense that it applies a whole zoo of black

holes whether it is rotating or charged etc. Here we prefer to present the simplest

version of the laws of black hole mechanics as it is sufficient to convey our message.

In the derivation of second law, weak energy condition is assumed. Extension of

the first law to general spacelike surfaces will be the main subject of this thesis.

The entropy associated to black hole horizon is based on thermodynamical argu-

ments. Yet it is hard to believe the concept of continuum in a quantum world.

Thermodynamical entropy is an emergent concept hence natural question to ask is

what underlies black hole entropy. What are the degrees of freedom of a black hole?

For a class of five-dimensional extremal black holes in string theory, the number

of possible configuration one can wrap D-branes in extra dimensions corresponds

to black hole entropy [23]. AdS/CFT, a realization of holographic principle, was

the underlying mechanism of the success behind this counting. The number of

microstates is counted through the dual CFT, using Cardy formula [24]. It pro-

vides the entropy of a state in a two-dimensional conformal field theory in a high

temperature regime. In a nutshell,

S = 2π

√
c

6

(
L0 −

c

24

)
(1.2.3)

where c is the central charge that corresponds to number of degrees of freedom

in the theory and L0 is the number of excitation. While counting microscopic

states based on the dual CFT is great success of string theory, it doesn’t reveal

information about how degrees of freedom organized spatiotemporally. Are they

localized on the horizon as bits encoded on the unit area of GN, or are they

non locally spread around the thermal atmosphere of black holes [25–27]? Maybe

degrees of freedom are thread like structures that represent the flow of information

or connectivity of spacetime [28]. These thread like structures ends up at the

horizon from an outside perspective and the information that is obtained from the

cross section of the tread corresponds to the area of black hole. We have shown

in section 6, first law of black hole mechanics can also be understood based on

a information flow picture. The problem of where the black hole information is

subject to much debate, particularly centered around firewall paradox [29].

1.2.1 Black hole information paradox

The fact that black holes radiate like ordinary matter provides an answer to the

old question: what happens to objects that fall into black hole? If black hole

9



1. Introduction

radiates then everything that falls into the black hole in the past will be emitted

back as thermal radiation just like a piece of paper thrown into fire. Yet there

was a problem in this hopeful logic. Unlike any other form of matter, black hole

radiation seem to be perfectly thermal. In other words, it wouldn’t matter if

you threw a piano or Schrdinger’s cat into the black hole, it is not possible to

distinguish them in the radiation as it is same thermal distribution3. Initially it is

proposed that black holes by their nature causes loss of information and there is

no S-matrix for process of black hole formation and evaporation. Their dynamics

are governed by operators that maps density matrices to density matrices [30].

It is hard for a physicist to give up fundamental principles of physics, hence this

proposal is not widely accepted. The expected resolution of the paradox is to find

out subtle corrections to the thermal radiation that purifies it.

One possibility that center of mass energy of the collision between ingoing and out-

going shells is Planckian for any radiation emitted after a time scale of M logM

and shouldn’t be neglected along the Hawking’s computation [31, 32]. In addi-

tion it is shown that a naive calculation using CPT invariance and treating black

holes as elementary particles is sufficient to derive the density of states of a black

hole [32]. This calculation provides further evidence for existence of an S-matrix

for black hole. Later ’t Hooft could calculate an S-matrix based on the shift of

the horizon due to massless shock waves representing infalling and outgoing par-

ticles [33]. These attempts were not enough to reach a consensus on the unitary

formation and evaporation of a black hole. Susskind and Thorlacius point out

that, unitary evolution, clones the information of an infalling shell on a special

Cauchy surface as the information of outgoing Hawking radiation and information

of the infalling object inside the black hole [34]. To prevent such violations, black

hole complementarity principle is proposed [35,36]. Black hole complementarity is

a truly information theoretic principle. According to the principle, laws of physics

has to be formulated in an observer-participant form. According to black hole

complementarity, observers who individually access a copy of the infalling infor-

mation, can never verify quantum cloning due to causality restrictions. Principle

puts strong emphasis on observer-participant reality of physics. If no observer ver-

ifies a violation of any principle/law then how can one argue such law/principle is

violated. Stronger version of the principle states that information theoretic content

of the descriptions of an outside and infalling observer is equivalent [37]. However

there is no clear mathematical formulation of the black hole complementarity.

3In fact it has correction in the form of greybody factor coefficients but these factors does

not depend on the information of what has formed the black hole, hence these corrections do not

affect the argument regarding the loss of information.
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1.2. Black holes and information

1.2.2 Firewall formulation of the paradox

Existence of a unitary S-matrix for black hole formation/evaporation was the way

going forward for many physicists. However one could still formulate a different

version of the information paradox under the assumption that evaporation is uni-

tary. The new formulation is centralized around monogamy of entanglement [29].

In a nutshell, monogamy of entanglement states that, entanglement can not be

shared. If two states are maximally entangled, individually, they can not be en-

tangled with a third party. In the case of black hole evaporation, the monogamy

of entanglement creates conflict between unitarity of the evaporation and local

entanglement structure of the vacuum. Let us start by explaining the formation

of entanglement and dissolution of entanglement in a unitary process.

Consider a partition of the Hilbert space as factors of black hole and Hawking ra-

diation, H = HBH⊗HR. Given that initial state is pure, its entanglement entropy

is zero. Moreover entanglement entropy of states in each factor equal to each other

due to purity of initial state. During the black hole evaporation the entanglement

between radiation and the black hole increases, since Hawking radiation can be

considered to originate from entangled states near the horizon. However entangle-

ment between radiation and the black hole can not increase indefinitely since at

the end of the evaporation, the radiation states should be a unitary transform of

the initial state hence entanglement entropy should vanish for the final state. This

is known as the Page curve [38, 39] and it constitutes the essence of the firewall

paradox. The point where the course grained black hole entropy becomes approxi-

mately equal to entanglement entropy of the black hole with its radiation is known

as Page time. According to Firewall paradox, it is argued that at the Page time,

there is no room for the entanglement of the vacuum near the horizon and this

entanglement should be broken by formation of a firewall [29]. The firewall para-

dox manifests itself as violation of strong subadditivity of the entropy. Let A be

early radiation, B be outgoing Hawking mode at Page time, and C be its interior

partner mode figure: 1.2. In this partition, SAB becomes black hole entropy and

after the Page time, its entropy is less than radiation entropy, SAB < SA. Lo-

cal vacuum structure of spacetime necessitates maximal entanglement and hence

SBC = 0 which further implies SABC = SA. Using stong subadditivity one ends

up in inconsistency SA ≥ SB + SA.

Many different counter arguments proposed against firewall. One possibility is

the modification of the effective field theory (EFT) by non-local terms in a non

violent way due to thermal atmosphere around the black hole [25, 40]. In other

words, non-local modifications to the EFT should be comparable to the curvature

scale such that local observers are not affected dramatically. Interestingly such

theories might be within the observational window in near future [41]. Others
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C r
=
∞B

A

Figure 1.2: Illustration of the firewall paradox. A represents early radiation, B is outgoing

Hawking mode at Page time, and C is its interior partner mode. Entanglement

between B and C is a necessary condition for vacuum. Unitary evolution creates

entanglement between A and the black hole. At the page time this entanglement

saturates and becomes maximal hence there is no more space to sustain entangle-

ment between B and C. Breaking entanglement between B and C tears apart the

spacetime continuum by creating a firewall.

also claim that information is not localized on the ourgoing Hawking quanta but

rather it is encoded on Hawking pairs in a non local way [27,42]. A protocol similar

to quantum teleportation swaps entanglement on the Hawking pair to black hole

and its radiation. During the entanglement entanglement swap information is also

released. However there is no Hamiltonian provided which swaps the entanglement

and construct Page curve.

In a similar philosophy, it is argued that subtle violations of locality could lead

information to flow out of the black hole [43,44]. According to proposal locality in

quantum gravity is an approximate notion and deviations from it can be observed

by large number of operations insertion by a super-observer. They pointed out

arguments regarding the strong subadditivity requires a clear factorization of the

Hilbert space such that information regarding the early and late hawking mode

can be associated to each factor. Yet they argue such factorizations and distri-

bution of information is not possible for quantum gravity [45, 46]. Moreover they

also provide a mapping where one can construct operators for black hole inte-
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rior, interestingly such operators are microstate dependent. Another interesting

observation regarding whether one can manipulate black hole interior having ac-

cess to early Hawking radiation comes from Susskind and Maldacena [47]. They

suggested a thought experiment where one forms another black hole using early

hawking radiation. These two black holes are expected to appear as an double

sided eternal black hole geometrically connected by a wormhole representing a

thermofield double state. Therefore one can throw some material to black hole

formed by Hawking radiation and affects the interior of the other. This thought

experiment provide some evidence that operators inside the black hole can be con-

structed by an outside observer. In fact this is what black hole complementarity

is about.

Another possibility that prevents monogamy of entanglement is a modification of

quantum mechanics by post selection in the form of a final state [48]. Yet it is

hard to say such attempts were fruitful.

Many other approaches centralized around whether violations of monogamy is

measurable by arbitrary number of observers that are restricted by principles of

physics such as causality. These approaches focus on how the firewall paradox is

formulated, rather than attempting to solve how information is recovered during

the black hole evaporation. All approaches that are presented in this category is

a good example of observer-participant nature of physics that is introduced in [6].

In this thesis we also follow such an approach. Let us first briefly introduced other

attempts along the same direction.

Central argument in the firewall paradox can be reduced to a thought experi-

ment where observers measure the entanglement of qubits that are supposed to be

monogamous and compare their observations. However there are restrictions on

whether such experiment can be conducted. Harlow and Hayden claimed that an

observer needs to distill the qubit from ntire radiation to be able detect whether

it is entangled. However distilling an information from early radiation is highly

demanding in quantum computational sense and in average it requires a time that

is more than the total evaporation time of the black hole [49]. Moreover it is ar-

gued that, Hilbert spaces should take into account observables that are restricted

by computational complexity.

In this thesis, in chapter 3, our perspective regarding the firewall paradox is pre-

sented. Our approach is also in the class of ideas that suggest a more careful look

whether the thought experiment verifying the violation of monogamy of entangle-

ment is consistent with principles of nature within the domain of validity of EFT.

One strong principle that needs to be respected by all EFTs is causality. Each

observer has an effective description within their causal patch. We propose that a

more restricted version of the complementarity constrained by the causal patches
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of observers should applied to black hole information paradox. Remember that,

black hole complementarity is the equivalency of the information content of differ-

ent observers in the process of black hole evaporation/formation. The problem of

quantum cloning in the context of unitary black hole formation/evaporation was

resolved via same kind of philosophy, namely observers can not verify such cloning

because of causality restrictions. Firewall paradox make it harder to dispute the

argument using causality simply moving the qubit that needs to be compared

to near horizon regime. However we provide a careful analysis by restricting to

physics within causal patches, and show that the experiment can not be conducted

for a generic black hole within the domain of validity of EFT [1]. Our approaches

provide a solution without introducing any new ingredient into to laws of physics,

but rather applying them from an observer-participant point of view.

1.3 Spacetime geometry and information

Black holes are not the only objects of general relativity where information the-

oretic nature reveals itself. Ted Jacobson, in his remarkable work, showed that

Einstein field equations can be expressed locally as the first law of thermodynam-

ics [50]. In this work, Jacobson showed that Einstein equations are equivalent

to entropic reaction of local Rindler horizons to thermal flux flowing through it.

Since Jacobson used local arguments to derive Einstein equations, the derivation

applies all spacetimes that satisfies Einstein equations locally.

TδS = δQ ⇐⇒ Gµν + Λgµν = 8πGNTµν (1.3.1)

This was probably the first incident where gravity is suggested to be an emergent

phenomena. Emergent gravity paradigm also explains why gravity as a field theory

is not renormalizable. On the other hand, the structure and nature of underly-

ing degrees of freedom that gives rise to thermodynamics was a big mystery. It

has understood two decades later, Jacobson’s work could only be accounting for

linearized gravity. This was the tip of an iceberg.

With the advent of AdS/CFT duality [51–53], a new window opened for physi-

cists where they can gather more information regarding the underlying degrees

of freedom of gravity. In a nutshell AdS/CFT states that gravitational theory

on d + 1-dimensional AdS background is dual to d dimensional conformal field

theory that resides on the boundary of AdS. The gravitational side of the duality

is usually referred as bulk. Gauge/gravity duality further encouraged emergent

gravity paradigm. Many physicists interpret gravitational side of the duality as

emergent from boundary CFT [54]. Some argued that duality should be seen

different from emergence [55]. According to counter arguments, the direction of
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CFTd

AdSd+1

A γA

Figure 1.3: Ryu-Takayanagi formula yields the entanglement entropy of a state in the CFTd
through the area of the minimal surface γA in AdSd+1.

a standard emergence phenomenon is that of decreasing fundamentality4 that is

the emergence of less fundamental, high-level entities, out of more fundamental,

low-level entities. However in a duality, a more fundamental entity can emerge

out of a less fundamental one. In any case, AdS/CFT provides an exceptional

framework to draw quantitative, rigorous conclusions. Author believes that final

theory of emergent gravity will have a bulk based framework, however physics is

probably not at that level of abstraction yet and has to draw lots of conclusions

from AdS/CFT to bring about the quantum jump needed for such a description.

In this thesis, we have tried to draw information theoretic conclusions in the bulk

using lessons from AdS/CFT.

Within the AdS/CFT revolution, a mini revolution took place by the work of

Ryu and Takayanagi. Their work revealed the deep connection between geometry

and quantum information in the framework of holography [57, 58]. According to

Ryu-Takayanagi proposal, von Neumann entropy of states on the CFT correspond

to areas of minimal surfaces that are homologous to the boundary regions where

4Fundamentality in the sense of reductionism yet, perhaps more is different? [56]
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states are defined on.

Sent. =
A

4GN
(1.3.2)

The conjecture is first proposed for static solutions and later extended to time-

dependent geometries [59]. Quantum information meets the geometry of spacetime

in a very rigorous way through RT proposal. Soon after, it is shown that connected,

continuous spacetime is the result of entanglement in the underlying theory [60]. If

entanglement on the underlying theory is tuned to zero, spacetime starts to pinch

off and separate into disconnected pieces [60], see figure: 1.4. In other words,

spacetime is entanglement.

It is well known that Rindler horizons exhibits first law type relations similar to

the first law of black hole thermodynamics. The first law of Rindler horizons in

AdS translates to CFT as first of entanglement entropy, (1.1.12) [61]. The first law

of entanglement entropy simply follows from positivity of relative entropy and sat-

isfy in all quantum mechanical systems. It is shown that first law of entanglement

in the CFT implies linearized Einstein equation in the bulk for a general theory of

gravity [62]. Contrary to Jacobson’s derivation, AdS/CFT version of the deriva-

tion was only applicable around the global vacuum. To generalize the derivation

to higher order derivative theories of gravity, covariant phase space formulation is

used [63–65]. Soon after, source term for linearized equation is introduced as a

result of the quantum correction to entanglement entropy in the boundary. The

quantum corrections to entanglement in the boundary corresponds to entangle-

ment of quantum fields in the bulk [66]. One lesson learned from derivation of

Einstein equation is that the first law of thermodynamics for Rindler horizons is

the first law of entanglement entropy in the underlying theory. In the same spirit

of what had been proposed by Popescu, Winter and Short on the foundations of

thermodynamical entropy [67]. They proposed a decade ago that notion of thermal

entropy is derived from entanglement entropy. This conclusion is very essential

because Rindler horizons are not special surfaces, any surface on spacetime can

be represented as Rindler horizons by accelerated observers. The generalization

of the first law of entanglement to arbitrary spacelike surfaces in spherically sym-

metric asymptotically AdS solution in three dimensions in chapter: 5. In this

generalization the notion of differential entropy is used. Differential entropy [68]

can be seen as an extension of RT proposal to general surfaces in the bulk. One

drawback of differential entropy is that it is only valid in three dimensions and for

spherically symmetric situations. Although higher dimensional generalization is

proposed [69], it is only applicable to planar symmetric geometries and hence it is

trivial extension of 3-dimensional case. Our study on chapter: 5 clearly shows that

the information theoretic nature of surface deformations in the bulk is not limited

to minimal surfaces or Rindler horizons. It is much more general and applicable
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A ĀγA A Ā
γA

Figure 1.4: Illustration of entanglement is spacetime idea. The geodesic distance between

points on the complementary regions of the boundary of AdSd+1 increases when

entanglement entropy between boundary regions A and Ā is reduced. The spacetime

pinches off into disjoint pieces when entanglement vanishes.

to any surface, however it is the CFT side of the story that gets complicated when

one picks a general surface. In other words one can always map surface deforma-

tions to information theoretic relations in the underlying theory. We prove this

statement at the linearized level in three dimensions. Along the thesis we tried

to pull information theory from CFT to bulk. One attempt along this line is to

derive the Bekenstein bound in the bulk [2]. The Bekenstein bound, [70, 71] is a

limit on the entropy that can be contained in a physical system or object with a

given size and total energy.

S ≤ 2πRE (1.3.3)

where R is the size of the box and E is the energy of the excitation. It is intro-

duced in more detail in reviews: 2. Bekenstein bound has been derived for a QFT

based on the positivity of relative entropy [72]. In the original work of Beken-

stein, the derivation involves gravitational physics and also applicable to system

that backreacts under the condition that system is weakly self gravitating. The

information theoretic formulation of the bound in the bulk including backreaction

is never touched upon in the literature. In 4 the Bekenstein bound in the bulk is

derived. We clarify the definition of the size of the box in the presence of a back

reaction. In this chapter we also studied distinguishing aspects of a mixed state

and pure state excitations. Our motivation for such an analysis comes from the

proposal that our universe follows a volume law entanglement due to its thermal

nature [73].

1.3.1 The first law of spacetime deformations

The derivation of linearized Einstein equation around the empty AdS in a general

theory of gravity displays the value of covariant phase formalism to establish first

17



1. Introduction

law like relations. The formalism initially used by Wald to interpret the black hole

entropy as the Noether charge [63]. The formalism unifies different theories of

gravity on their applications to black hole physics. In a general theory of gravity,

the first law can be established based on two quantity, symplectic current and

Noether charge independent of the details of the Lagrangian. Although formalism

is much more general than its application to black hole horizons, its generality

is not fully exploited in the literature. Perhaps it is because, the black holes are

considered to be the only objects of general relativity where one can observe the

thermodynamical nature. However, work of Jacobson [50, 74], Ryu-Takayanagi

formula, entropic gravity proposal [11] and derivation of Einstein equations via

AdS/CFT suggested that even empty space enjoys the first law. Natural ques-

tion follows immediately is: first law of what? Thermodynamics, entanglement..?

Along the thesis we have provide attempts to answer these questions by applying

covariant phase space formalism to general codimension-2 spacelike surfaces.

The intuitive and mathematical connection between geometric theory of gravity

and theory of elasticity has been studied widely in the literature [75–82]. Recently

it has been proposed [73] that the underlying theory from which gravity emerges

has two phases according to how entanglement entropy of the underlying theory is

reflected geometrically. According to this proposal, volume law phase of the the-

ory can be modeled as an elastic phenomena. In other words it is proposed that

dark energy has elastic behaviour. To sum up there are deep analogies when grav-

ity and elasticity are considered purely from an information theory perspective.

Application of covariant phase space formalism yields the information theoretic

analogy between them through the first law of thermodynamics. The connection

between gravity and elasticity based on emergent information theoretic first laws

broaden our understanding on the emergent gravity paradigm. It can help us to

allocate microscopic degrees of freedom of the underlying theory onto spacetime

to rebuild it.

By studying covariant phase space formalism, from an information theoretic per-

spective, on general spacelike surfaces, we have discovered its connection to Brown-

York quasilocal charge densities [83, 84]. Although Wald himself also established

this connection [65], it has never studied in the context of emergent first laws.

On a general surface, change of quasilocal charge densities amounts to change on

the entropy that can be measured on the surface. Integral version of the first law

is one of the main results of our thesis. This relation is interpreted as the first

law of deformations in spacetime based on its resemblance to first law of elastic

deformations.

In [73] the entropy of cosmological horizon is distributed over the universe as en-

tropy density per unit volume. Building on that postulate, galactic rotation curves
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are derived without the hypothesis of dark matter. Although phenomenology of

the theory is limited to spherically symmetric systems, the connection presented in

chapter 6 is established on more general grounds. Our results provides necessary

tools on the gravitational side to go beyond spherical symmetry.

Finally application of covariant phase space formalism in a vector field representa-

tion clarifies the identity of information contents of general homologous spacelike

surfaces. In chapter 6, we present a connection between bit threads picture of

holographic entanglement entropy [28] and covariant phase space formalism in its

vector field representation. We conclude that gravitational fields are carriers of

information and they act as prefect conductors of information.

1.3.2 Origin of inertia and adiabatic principle

The conceptual underpinnings of emergent gravity paradigm is structured in the

work of Verlinde [11]. It was proposed that, gravity should not be treated as fun-

damental force rather should be derived from the emergent information theoretic

notions. Not only Einstein field equations, but also the postulate of geodesic mo-

tion and even other forces of the nature follows from the same principle according

to the proposal. It is important to distinguish gravitational field equations from

postulate of geodesic motion. Geodesic motion enters to theory of relativity as a

postulate.

Verlinde provide a sketch of a derivation of Newton’s law of inertia based on simple

assumptions about emergent aspects of the underlying theory, such as area law

behaviour of entanglement entropy and form of equipartition theorem. The idea is

criticized based on the relation of entropy and the force, that would require increase

of entropy indefinitely even in orbital motions. We clarified these misconceptions

originated after the work of Verlinde, in chapter: 7.

The idea that geodesic motion emerges as a result of adiabatic invariants in the

underlying theory is used to explain the missing mass problem without the hypoth-

esis of dark matter in [73]. While adiabatic invariant scales with areas of surfaces

in the ordinary gravity, it has a volume like component that starts to be dominant

in large scales. Based on such motivations we elaborated the connections between

entropic gravity proposal and general relativity in chapter: 7.
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2
Reviews

2.1 Symplectic mechanics

Symplectic mechanics is central formalism for the covariant phase formulation

of gravity. In the Hamiltonian approach to field theories, one specifies a time

coordinate and a Cauchy surface, which enforces a decomposition between space

and time, therefore breaks the covariant form of general relativity. On the other

hand, covariant phase space formalism that is based on the symplectic structure

of Hamiltonian mechanics, preserves the covariant structure of the theory. In

this short section, we will give a short introduction on the main concepts of the

symplectic mechanics.

A sypmlectic manifold is a smooth manifold of even dimensionality, (M,Ω) equipped

with a symplectic structure, Ω. Symplectic structure is closed, non-degenerate, 2-

form on M. The condition that Ω being non-degenerate means, the only vector

field, X onM, satisfying X ·Ω = 0 is the one vanishing uniformly. The sypmlectic

structure takes the form, Ω = dpi ∧ dqi, in a special coordinate system (qi, p
i),

known as Darboux frame. It is always possible to bring symplectic structure into

this form locally. The connection between symplectic structur e and Hamiltonian

dynamics is made through the Poisson brackets. The inverse of the symplectic

structure exists due to its non-degeneracy which is used used to define the Poisson

bracket on M.

{f, g} = Ωab∂af∂bg (2.1.1)

where Ωab is defined through the relation, ΩacΩcb = δab . The relation between

Poisson bracket and symplectic structure becomes manifest in the Darboux chart.

The definition through sypmlectic structure satisfies the properties of the Poisson

bracket. Specifically Jacobi identity is ensured by the closedness of Ω.

Given that, Hamiltonian, H is a smooth function, then unique vector field ξH sat-

isfying, ξ ·Ω = dH is called Hamiltonian vector field. In other words Hamiltonian
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determines a vector field, ξa = Ωab∂bH, that generates a congruence, γ(t) over the

phase space, where t is the parameter a along the congruence.

{f,H} = Ωab∂af∂bH = Lξf =
df

ft
(2.1.2)

where ξa = dxa

dt .

The symplectic form can be used to define symplectic symmetries over the phase

space. A vector field ξ defines the symplectic symmetries through the following

equation.

LξΩ = 0 (2.1.3)

which implies through the Cartan’s formula,

d(ξ · Ω) = 0, ξ · Ω = dHξ (2.1.4)

hence there exists a function, Hξ which is the generator of the evolution along the

symmetry vector field, ξ through the Poisson bracket. The evaluation of Hξ over

the equations of motion yields the conserved charge.

2.1.1 Symplectic structure of gauge theories

Here we will explain how the sypmlectic structure explained in the previous part

has been adapted to the field theories with local gauge symmetries. The discussion

is useful to understand the details of the formalism which we will use to study the

first law of black hole mechanics on general surfaces. The connection between the

perturbation on the Hamiltonian and the presymplectic form is essential for the

generalization of first law type relations.

Any field configuration Φ(x) in the spacetime corresponds to a point in the phase

space. Field configurations doe not need to satisfy equations of motion. On-shell

field configurations forms a subspace in the phase space. An infinitesimal field

perturbation, denoted by δΦ over a configuration Φ corresponds to tangent vector

in the phase space at the point Φ(x). Let us denote the tangent vectors in the

phase by (δΦ)A, A runs over the coordinate system covering the phase space.

When the entire phase space is considered for gauge theories, it has degeneracy

directions as a result of the local gauge symmetry. Reduction over the entire phase

space by a symplectic quotient yields physical phase space (Γ,Ω). Let us make

the connection with a field theory that is given through a Lagrangian description.

We will denote all the field content of the theory by Φ(x). The presymplectic
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potential, which is a (d − 1)-form in spacetime and 1-form in the phase space is

defined via the field variation of the Lagrangian, L by,

δL = EδΦ + dΘ(δΦ,Φ) (2.1.5)

δ can be view as exterior derivative in the space of field configuration, since δ1δ2Φ−
δ2δ1Φ = 0. The definition of the presymplectic structure is ambiguous up to an

exact form, which does not change the field variations of the Lagrangian. The

presymplectic current, ω(δ1Φ, δ2Φ), is a (d− 1, 2) form defined[REF] by,

ω(δ1Φ, δ2Φ,Φ) = δ1Θ(δ2Φ,Φ)− δ2Θ(δ1Φ,Φ) (2.1.6)

The covariance of the framework is hidden in the closedness of the presymplectic

current when Φ corresponds to a field variation satisfying equation of motion and

δ1,2Φ satisfies linearized e.o.m.

dω(δ1Φ, δ2Φ,Φ) = δ1dΘ(δ2Φ,Φ)− (1↔ 2)

= δ1(δ2L(Φ)−E(Φ)δ2Φ)− (1↔ 2)

= δ1E(Φ)δ2Φ− δ2E(Φ)δ1Φ ≈ 0 (2.1.7)

Symplectic form in the physical phase space is defined by,

Ω = ΩAB(δ1Φ)A(δ2Φ)B =

∫
C

ω(δ1Φ, δ2Φ,Φ) (2.1.8)

The integral is defined over a spacelike surface. When the field configuration on

the boundary of the manifold is fixed, the sypmlectic form does not depend on the

choice of the hypersurface for on-shell field configurations, which can be shown by

Stokes theorem together with closedness of presypmlectic current. Therefore we

have concluded that presymplectic form is same for every hypersurface which is a

necessary consequence of the covariant phase space approach. Now we are ready

to prove the following lemma.

Lemma 2.1.1. Variation of the generator of local gauge transformation generated

by the vector field ξ takes the following form

δHξ =

∫
C

ω(δΦ, δξΦ,Φ) (2.1.9)

Proof.Let us show that, the definition (2.1.9) leads to generators along the ξ, in

the Poisson algebra. Using the notation introduce at (2.1.8),

{F (Φ), Hξ} = ΩAB
δF

δΦA
δH

δΦA

= ΩABΩBC(δξΦ)C
δF

δΦA

= δξF (2.1.10)

hence Hξ is the generator of the gauge transformation.
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2.2 Covariant phase space formulation of gravity

In this section we sketch Wald’s derivation of black hole entropy as being the

diffeomorphism Noether charge for the horizon generating Killing field, evaluated

at the bifurcation surface. Along the thesis, formalism will be used in different

settings. In chapter 6 we will not constrain ourselves to black hole horizons or

bifurcation surfaces and use the formalism in a more general setting in which the

surface can be chosen arbitrarily. In 6, we will show that the first law of black hole

thermodynamics is a special case of more general relation between the surface

charges and total energy of spacetime. We will use the covariant phase space

approach to understand the variational relation between surface charges and the

energy of the system.

Wald’s derivation applies to any diffeomorphism invariant theory defined by a

Lagrangian D-form L, where D is the spacetime dimension. The variation of L

induced by a field variation is given by,

δL = Eδφ+ dΘ(φ, δφ) (2.2.1)

where dynamical fields denoted collectively by φ and E stands for the field equa-

tion.

Eδφ = Eab
g δgab +Eψδψ = 0

where a sum over the matter fields ψ is understood. Eg and Eψ are locally con-

structed out of the dynamical fields φ and their derivatives. Equations of the

motion of the theory are,

Eab
g = 0 and Eψ = 0

The D − 1 form, Θ, defined by eq.(2.2.1) is called “symplectic potential”. It is

locally constructed out of φ, δφ and their derivatives and is linear in δφ. The anti-

symmetrized field variation of Θ defines another D − 1 form called “symplectic

current”.

ω(φ, δ1φ, δ2φ) = δ1Θ(φ, δ2φ)− δ2Θ(φ, δ1φ) (2.2.2)

The symplectic form Ω on the phase space of solutions is defined relative to a

Cauchy surface, C.

Ω =

∫
C

ω(φ, δ1φ, δ2φ)
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2.2. Covariant phase space formulation of gravity

Keeping these in mind, we now proceed to the demonstration of conserved quan-

tities associated to diffeomorphisms. Consider the variation induced by a diffeo-

morphism generated by a vector field, ξ,

δξφ = Lξφ

Since we will be concerned only with diffeomorphism invariant theories, the La-

grangian will be diffeomorphism covariant in the sense that action induced by

diffeomorphism generating vector field on the Lagrangian, is equivalent to action

of the generator on the field content of the theory, f∗L(φ) = L(f∗(φ)), where f∗

is the action induced by diffeomorphism, f∗ : M →M . Therefore

δξL = LξL = d(iξL)

in the second equality Cartan’s formula, Lξα = ξ ·dα+d(ξ ·α) is used together with

the fact that L is a D form and hence its exterior derivative vanishes. Note that

variation on the Lagrangian is a total derivative. The vector fields, ξ, generate

symmetries of the dynamics and each ξ is associated with an (D − 1) form called

the Noether current defined using eq.(2.2.1)

Jξ = Θ(φ,Lξφ)− ξ ·L (2.2.3)

Note that Noether current is conserved on-shell.

dJξ = −ELξφ (2.2.4)

This implies that Noether current is closed when the equations of motion are

satisfied. Since J is closed for all diffeomorphism generating vector fields, ξ, it

follows that there exists an (D − 2) form, Q- locally constructed out of the fields

appearing in L and ξµ such that when evaluated on solutions to the equations of

motion, we have

Jξ ≈ dQξ (2.2.5)

where, “≈” symbol denotes the on-shell equality. Qξ is (D − 2)-form constructed

locally from the fields and their derivatives. The integral of Qξ over a closed

(D − 2) surface S is called the “Noether charge” of S relative to ξ. The full off-

shell expression is given in the appendix.

The formalism is particularly useful on the construction of the “first laws”. There

exist a D − 2-form, χ, which is closed when the e.o.m. and linearized one is

satisfied. Then constructing the the “first law” is actually equivalent to imple-

mentation of the Stokes theorem. The fundamental theorem of covariant phase
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space formulation of field theories which we have demonstrated at (2.1.7) shows

that symplectic current is an exact form on-shell including the linearized solutions

of the perturbed field configurations.

dχξ ≈ ω(φ, δφ,Lξφ) (2.2.6)

The on-shell equality holds for any vector field ξ. On the other hand, the form χ

becomes closed when ξ is a Killing vector field. To obtain the explicit expression

for a closed D− 2-form χ, let’s start with the expression for the symplectic form.

Ω =

∫
C

ω(φ, δφ,Lξφ) (2.2.7)

=

∫
C

δΘ(φ,Lξφ)− LξΘ(φ, δφ) (2.2.8)

=

∫
C

δJξ + δ(iξL)− iξdΘ− d(iξΘ) (2.2.9)

=

∫
∂C

δQξ − ξ ·Θ (2.2.10)

In the second line we used the definition of symplectic current, (2.2.2) in the third

line (2.2.3). Second and forth terms in the third line cancel each other on-shell.

In the forth line, we used δJ = δdQ, which is true when the linearized equation of

motion is satisfied in addition to e.o.m. The vector field is rigid under the variation

and is used to compare two manifolds: initial and perturbed one.

If ξ generates symmetry of the field configuration, Lξφ = 0, symplectic current

vanishes and yields an identity relating the surface term variations away from that

solution. Note that initial surface does not need to be a complete Cauchy surface.

The identity,
∫
∂C

χ = 0, can be obtained for the boundaries of a partial Cauchy

surface, as a result of the Stokes’ theorem. Namely one can construct a first law,

not only for the black hole solutions but for any surfaces in the bulk. The question

of what are the physical quantities in the surface term variations for an arbitrary

surface are studied in 6.

Moreover in section 6.A, we will describe Wald formalism in the frame field (a

la Cartan) formulation of general relativity. It will simplify the expressions for

surface term variations.

2.3 Differential entropy

The notion of differential entropy is an attempt to generalize the Ryu-Takayanagi

proposal (5.1.2) to more general surfaces in the bulk. Although it is clear that min-

imal surfaces measure entanglement in the CFT, there is no proof if the area of the
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2.3. Differential entropy

minimal surface also measures the entanglement between the degrees of freedoms

that one can establish in the bulk. It seems logical to assume that area as a clas-

sical notion emerges from the amount of entanglement of degrees of freedom that

builds the spacetime. Starting from this postulate, the minimal surface entangle-

ment (5.1.2) immediately generalizes to any surface in spacetime. Moreover, such

an assumption leads one to realize that, entanglement of the underlying state is

encoded much more naturally in the bulk, and only a special class of bulk surfaces

manifest themselves as a spatial entanglement in the dual CFT. This is almost an

artifact of the current formulation of quantum gravity, namely AdS/CFT. While

extremal surfaces are not special from the bulk point of view they are very special

from the CFT point when entanglement entropy is considered.

There are different proposals and constructions in the direction of establishing

d.o.f. of the microscopic theory within the bulk [69, 85–87]. The RT proposal

provides a benchmark for these constructions. Adopting a similar point one can

still ask how a generic codimension two spacelike bulk surface is encoded in the

boundary CFT. The question has an answer in 3d. This boundary quantity is

called differential entropy. The discrete version is defined as,

SDE =

n∑
k=1

[S(Ik)− S(Ik ∩ Ik+1)] (2.3.1)

where the intervals Ik resides on a time slice in the boundary. It was first observed

in [88] that SDE , in the continuum limit yields the area of the bulk curve which is

defined through the tangency of each extremal surface homologous to a boundary

region Ik. In other words the hole is defined by the region that can not be ac-

cessed by any of the boundary observers having access to {Ik}. Although higher

dimensional extensions are constructed, [89] they are related to examples AdS3

through the planar symmetry. Before proving that differential entropy converges

to the area of the hole, let us look at the expression in the continuum limit

SDE =
1

2

∫ 2π

0

dθ (dαS(α))α=α(θ) (2.3.2)

where dα := d
dα . The α(θ) represent the half angular width of each geodesic

centered at θ on the boundary. Note that constant time slice of the boundary is

S1. Depending on the shape of the hole α varies at each angle θ0. For a spherical

(circular) hole, α(θ) = α0. We will present expressions in most general case yet

explicit calculations will be provided for spherical holes. The differential entropy

can also be expressed in terms of the conditional information between Ik/Ik+1 and

Ik ∩ Ik+1 [90]. Now, let us demonstrate differential entropy on a simple exercise,

the hole-ographic construction of [68, 88] namely the spherical hole in AdS. We

will use a coordinate system in which the entire solution fits into a finite radius.
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Figure 2.1: On the left, we see holographic entanglement entropy of two regions of size 2α and

2α + dα. Figure on the right stands for geometric relation between conditional

information, S(dα|α) and radial direction, or radial arc of size dα. The relation

holds also for excited states. The black point represents the conical defect.

A consconvenient choice is hyperbolic slicing of AdS3.

ds2 = L2

[
4(dr2 + r2dθ2)

(1− r2)2
−
(

1 + r2

1− r2

)2

dt2

]
(2.3.3)

one can easily see that for t = 0, sinh(ρ) = 2r/(1 − r2) and θ = θ̃, the metric

becomes, ds2 = dρ2 + sinh2 ρdθ̃2 which is the metric of the hyperbolic space. The

nice property of (2.3.3) is that, in this system spacelike geodesics on a constant

time slice are circles intersecting the boundary S1. Consider the geodesic with

endpoints denoted by γL(λ) = u and γR(λ) = v. Let’s initially consider geodesics

with fixed opening angle on the boundary, namely u − v = 2α0, α0 denotes the

half opening angle of the boundary geodesic on the boundary. Then associated

entanglement entropy of the state os the subsystem determined by, α and the

complement, on the boundary CFT is given by

S(u, v) =
c

3
log

(
2L

µ
sinα0

)
(2.3.4)

The quantity, c is the central charge and is related to gravitational constants

by c = 3L
2GN

[91]. µ is the UV cutoff set by the radial coordinate of the AdS3.

Removing the cuttoff would cause the entanglement entropy to diverge because

of the large number of UV modes that contribute near the surface. Using (2.3.2),

and considering geodesics with fixed opening angle α0 on the boundary,

SDE =
1

4GN

∫ 2π

0

dθ cotα0. (2.3.5)
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2.4. Modular hamiltonian

Using the fact that geodesics are circles intersecting the boundary, one can easily

obtain the location of the tip of the geodesic. This will yield the radius of the

hole since for fixed geodesic size. The tip of each geodesic is identical to to point

of tangency of the geodesic to the hole. rtip = 1/ cosα0 − tanα0 and using the

relation between global coordinates and hyperbolic slicing R = 2r
1−r2 one can easily

see that Rhole = cosα0

sinα0
. Therefore we have shown that,

SDE =
1

4GN
2πRhole (2.3.6)

which is the area of the hole, hence SDE = SBH(Rhole). Explicit computation is

carried for a hole of fixed radius but we will prove that differential entropy always

reproduces the gravitational entropy in more general settings. We will demonstrate

this connection using the integral geometry in section 5.2.

2.4 Modular hamiltonian

Consider a smooth entangling surface Σ which divides a quantum state spatially

into two parts, a region A and its complement Ā. Upon integrating out the degrees

of freedom in Ā, one is left with the reduced density matrix ρ describing the

remaining degrees of freedom in A. The reduced density matrix is both hermitian

and positive semidefinite, hence it can be expressed as,

ρ = e−H (2.4.1)

where H is some hermitian operator, known as modular Hamiltonian.

The modular or entanglement Hamiltonian plays a central role in computing rel-

ative entropies and the first law of entanglement entropy. In most of the cases,

entanglement Hamiltonian does not admit a local expression. There are few spe-

cial cases when the modular Hamiltonian may be expressed as an integral over the

local energy-momentum tensor of the field theory. A well known example modu-

lar Hamiltonian for the vacuum of a QFT defined on a d-dimensional Minkowski

space R1,d−1. When state ρ corresponds to the vacuum density matrix of half-

space x1 > 0, modular Hamiltonian becomes,

HA = 2π

∫
A

x1 T00(x) dd−1x. (2.4.2)

Modular Hamiltonian is just the boost generator in the x1 direction. For a CFT

this result can be mapped to the modular Hamiltonian of (d − 2) dimensional

sphere of radius R in the vacuum. This is possible due to special conformal
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transformation together with translation which leaves the vacuum invariant yet

maps the half space to ball shaped region. In this case the expression is given by,

HA = 2π

∫
A

R2 − r2

2R
T00(x) dd−1x (2.4.3)

where A becomes the ball bounded by Sd−2 centered around the origin in Poincare

coordinates. We will use this expression to provide consistency checks of approxi-

mate modular Hamiltonian for the states describing conical defect solutions (5.4.6).

In 2d CFT, it is even possible to obtain exact expression of modular Hamiltonians

for a finite interval in an infinite system at finite temperature. These states are

dual to BTZ black holes with a planar symmetry in the context of AdS/CFT.

Differential entropy of such states are studied in the appendix 5.A. Let us also

provide the derivation of these modular hamiltonian here.

Consider a finite interval of size 2R on an infinite system. This setup is conformally

equivalent to annulus when a regularization scheme applied on the endpoints of A.

The modular Hamiltonian becomes the conserved charge associated to a conformal

boost vector ζ on the Euclidean thermal cylinder:

HA =

∫
A

dΣµ Tµνζ
ν . (2.4.4)

To find ζ explicitly, choose a complex coordinate z on the thermal cylinder with

periodic identifications z ∼ z + iβ. Region A is the segment Re(z) ∈ [−R,R] at

Im(z) = 0. The conformal mapping α =
(
e2πz/β−e−2πR/β

e2πR/β−e2πz/β

)
sends this region to

half line on complex α plane. The conformal map which sends half plane to the

annulus then becomes, ω = log(α). Therefore overall map which sends the finite

interval in thermal state to the annulus is given by,

ω = f(z) = log

(
e2πz/β − e−2πR/β

e2πR/β − e2πz/β

)
(2.4.5)

The entanglement Hamiltonian on the annulus simply the generator of translations

around the annulus in the direction v = Im(ω).

HA =

∫
v=constant

Tvvdu =

∫
f(C)

T (ω)dω +

∫
f(C̄)

T̄ (ω̄)dω̄ (2.4.6)

which becomes

HA =

∫
C

T (z)

f ′(z)
dz +

∫
C̄

T̄ (z̄)

f ′(z̄)
dz̄ (2.4.7)

The factor of f ′(z)−1, is the product of the f ′(z)−2 occurring in the transformation

rule for T , and the Jacobian factor f ′(z). Let us use this expression to check the
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2.5. Bekenstein bound

half interval modular Hamiltonian expression. ω = log(z) is the map to annulus for

semi-infinite region, which yields the well known expression HA = 2π
∫
xTtt(x)dx,

since f ′(z) = 1
z .

If we use (2.4.7) for the coordinate transformation (2.4.5) that maps the finite

interval A : [x0 − R, x0 + R] in an infinite thermal system to an annulus, one

obtains the following modular Hamiltonian

HA = 2β

∫
A

sinh
(
π(R+ x0 − x)/β

)
sinh

(
π(R+ x− x0)/β

)
sinh

(
2πR/β

) T00(x)dx. (2.4.8)

2.5 Bekenstein bound

The Bekenstein bound, [70, 71] is a limit on the entropy that can be contained in

a physical system or object with a given size and total energy. The heuristic yet

deep derivation of the bound employes the black hole thermodynamics together

with generalized second law(GSL). Generalized second law is the extension of the

the second law of thermodynamics to the systems involving black holes. The law

states that the environment and black hole system together evolves in such a way

that total entropy of the combined system does not decrease. Bekenstein derived

the bound mainly employing this principle.

Let us have a look at the following gedanken experiment. A composite system of

radius R with total energy E and entropy Sbox, falls into a Schwarzschild black hole

black hole of mass, M where M � E/c2, such that temperature of the black hole

stays same in the process. Suppose the system is dropped from a large distance,

such that before it becomes part of the black hole, equal amount of entropy is

radiated by the black hole. Hence at the end of the process black hole mass stays

the same and therefore black hole entropy does not change. Given the process is

reversible, the radiation entropy becomes E/TBH .
3 Thus the overall change in the

entropy of the universe becomes,

∆S = E/TBH − Sbox (2.5.1)

One can choose the Schwarzschild radius larger than then the size of the box

R, such that system will fall into black hole without being torn apart, i.e. the

relation between size of the box and Schwarzschild radius is controlled by an O(1)

parameter λ, RBH ∼ λR. Since GSL implies ∆Suniverse ≥ 0, one puts a bound on

the total entropy that can be contained in the box.

Sbox ≤ λRE/c~ (2.5.2)

3Taking curvature into account may alter the amount of entropy emitted by thermal radia-

tion, however these are O(1) effects that can be absorbed into the coefficients in the bound.
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What happens to the bound when the number of species in the system increase was

a long standing puzzle. One alternative and more elaborate derivation of the bound

has been given in [72] which yields some understanding on how bound preserves

its validity when the number of species is increased. The quantum information

theoretic derivation of the bound is based on the positivity of relative entropy and

has been derived for ball shaped regions in the CFT for the excitations around the

vacuum density matrix and for QFT s around the density matrix corresponding

the to thermal state in the Rindler space. The derivation is given for few cases

where local expression for modular Hamiltonian is known.

Let us briefly review the derivation of the bound in QFT through positivity of

relative entropy. The derivation of the bound using the modular Hamiltonian of the

ball shaped region in the CFT is more illuminating as it yields a natural definition

for the system of size R. Let us consider this system as the ball shaped region

itself. The positivity of relative entropy implies, S(ρ|ρvac.) ≥ 0 =⇒ ∆Sbox ≤
∆〈H〉 where ∆ represents the vacuum subtracted quantities. Inserting the local

expression for modular Hamiltonian in general dimensions,

∆Sbox ≤ 2π

∫ R

0

dr rd−1

∫
dΩd−1

R2 − r2

2R
∆〈T̂00〉 (2.5.3)

For spherically symmetric distributions one can take the integral and turn the

local integral over the energy density into a total energy relation. For example for

a localized source at the center one obtains ∆Sbox ≤ πR∆E and for a uniform

energy distribution ∆Sbox ≤ πR∆E/(d + 2), both of which satisfies the bound

up to an order one factor. In the original derivation of the bound, gravity plays

a central role, yet the expression is independent of GN. On the other hand, the

derivation of the bound based on the positivity of relative entropy is completely

quantum mechanical hence explains why the bound is independent of GN. Al-

though Bekenstein bound is independent of GN it exists for gravitational system

even when the self gravitation is strong. Saturation of the bound for black holes is

a nice example of this situation. In this case size of the box becomes Schwarzschild

radius, which is the radial coordinate rather than the geodesic distance. Since the

information theoretic derivation of the bound exploits vacuum subtracted quan-

tities, size of the box becomes ambiguous when system has back-reaction on the

geometry. One needs to find a reference manifold with respect to which, the size

of the box is defined. We will touch upon the ambiguity regarding the back re-

action in chapter 4. We will show that size of the system is fixed with respect

to the AdSd+1 when bound is formulated in the bulk using information theoretic

relations in the underlying theory.
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2.6 Holographic entanglement entropy in AdS3/Zn

There are different ways of representing the conical defect spacetime in a dual

field theory. One approach is to consider the conical defect solution as an excited

state of AdS3. In this picture, one starts with a CFT having central charge of

c = 3L/2GN, where L is the curvature of AdS and GN is the Newton constant in 3d.

The vacuum of the theory corresponds to empty AdS and conical defect solutions

are particular excited states of the theory. The theory should not be considered as

a pure gravitational one, since conical defects are nothing but solutions of Einstein

equations with Dirac delta sources. This is the standard way of considering conical

defect geometries. However we will follow a more elaborate description in which

quantum mechanical identification of these geometries is more precise. This type of

description for conical defect solutions is also used to study long geodesics having

winding numbers from the CFT point of view [92].

The conical defect geometries with integer deficit angle can be described as AdS3/Zn
which can be regarded as angular identification of a covering AdS3 spacetime. The

covering space “ungauges” the Zn discrete gauge symmetry. Physical quantities

computed in the ungauge theory must be invariant under Zn. This Zn invariance

is reflected naturally in the method of images along the uplifting procedure. In

this perspective, the space where the field theory dual to conical defect lives is

n-times longer circle. Spatial locations x in the CFTc lift to x̃ in the fundamental

domain of the covering space and corresponding Zn translates. In other words

for each point in x in CFTc, there are n identified points in the covering theory.

Hence an interval A with an opening angle 2α in the CFTc lifts to n evenly spaced

intervals Ãi each of angular size 2α̃ = 2α/n when the circle of the covering CFT is

normalized to 2π. Not all operators of the parent theory descent to conical defect

theory. The projection to the defect theory only leaves the operators that are

Zn symmetric. Zn invariance of correlation functions best reflected via method

of images, where correlation function between O1(x) and O2(y) is computed from

the geodesics between lifts (x̃, ỹ) of (x, y) to the parent theory and all the Zn
translations of these locations. The leading contribution comes from the minimal

geodesics that connects neighboring intervals. In addition, the uplifted operators

should have an explicit Zn invariance which is guaranteed through a linear com-

bination in the form
∑n−1
i=0 g

iÕ, where gi is an element of Zn. The correlation

functions of quantum fields in the conical defect and BTZ spacetimes, particularly

the ones having a geometric description in the bulk, are in many cases computed

by the method of images explained above [93,94].

AdS3 with conical defect is not identical to the covering theory in its ground state

as emphasized in [92]. We will see that central charges are differ by a factor of
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Figure 2.2: The conical defect solutions as integer quotient AdS/Zn. The interval A on the

defect theory CFTc and corresponding holographic entanglement entropy (minimal

surface) lifts to n = 4 evenly spaced interval Ãi on the covering theory CFTc̃. Size

of the each boundary interval in the covering theory reduces by a factor of n.

n. In addition the Fourier expansion of the stress energy tensors have different

content in terms of the Virasoro generators (5.4.4). Simply because, not all the

generators of the covering theory descends to defect theory.

We will find a local expression for the local modular Hamiltonian of the state

dual to conical defect by uplifting it to covering theory and using the method of

images that imposes Zn invariance naturally. Before going through our derivation

on the approximate Hamiltonian, we would like to continue to follow [92] on the

derivation of holographic entanglement entropy from covering theory, which will

be the guide to our derivation.

The essential ingredient in the entanglement entropy of a 2d-CFT is the central

charge the theory. What is the central charge c̃ of the covering theory CFTc̃ in

terms of the central charge of CFTc? Geometric description of the covering space

is ungauged AdS3. Therefore asymptotic symmetry algebra is the Virasora algebra

by Brown-Henneaux construction. Central charge c̃ is the central extension of the

algebra generated by large diffeomorphisms at asymptotics of the spacetime of the

covering theory

[L̃k, L̃s] = (s− k)L̃k+s +
c̃

12
k(k2 − 1)δk+s. (2.6.1)

The diffeos that descend to the defect theory is the subset of diffeomorphisms of

the covering space. Only the ones that preserve Zn symmetry descends to defect

theory. It is argued in [95] that the subalgebra is restricted to the one generated

by L̃nk, which also form a Virasoro algebra with the following redefinition of the
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generators,

Lk =
1

n
L̃nk, k 6= 0 L0 =

1

n

(
L̃0 −

c̃

24

)
+
nc̃

24
. (2.6.2)

This is the sub-algebra that descends to the defect theory, which has a central

extension c = nc̃. Using this identification one can calculate the entanglement

entropy of a region in the defect theory via its uplift to the covering theory. First

let us focus on the case where the interval A in CFTc is less than the half space

i.e. 2α < π which corresponds to the phase of vanishing mutual information at

the leading order in the parent theory. Employing Ryu-Takayanagi formula in the

defect theory,

S(A) =
1

4GN
l(α) =

c

3
log sin

α

n
+ const. (2.6.3)

Constant piece stands for the contribution of the cut-off dependence. If the region

A is larger than half the field theory circle 2α > π then the entanglement entropy

becomes,

S(A) =
1

4GN
l(π − α) =

c

3
log sin

(
π − α
n

)
+ const. (2.6.4)

This is the phase where region A has mutual information with its uplifted copies

in the covering space. Let us now, derive the same expression via the covering

theory.

The interval A in CFTc lifts to n evenly spaced intervals Ãi each of which has an-

gular size 2α̃ = 2α/n given that the covering space has periodicity 2π. Application

of the Ryu-Takayanagi formula in CFTc̃ tells us that entanglement entropy of the

union of intervals
(
∪ni Ãi

)
is computed from the length of minimal curve in empty

AdS3 that is homologous to the union of intervals on the boundary. The minimal

curve that is homologous to the union of intervals on the boundary consists of n

disjoint geodesics each having angle 2α/n or 2(π − α)/n depending on whether

2α ≶ π

S
(
∪ni Ãi

)
= n

c̃

3
log sin α̃+ const. =

c

3
log sin

α

n
+ const. (2.6.5)

which is equal to the entanglement entropy in the defect theory S(A). The expres-

sion is the leading order term in 1/N expansion. There are also 1/N corrections

that amount to the mutual information between the regions in the parent the-

ory [96]. The derivation of the other cases 2α > π, follows the same logic except

the minimal surfaces become the curves that connects neighboring regions on the

boundary.
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3
Causal Patch Complementarity

3.1 Introduction and Summary

The black hole information paradox [97] has always been an inspiring topic. It is

widely recognized that two well motivated believes, purity of Hawking radiation

and in-falling vacuum of the horizon, are at odd with each other [98]. Giving

up the former leads to information/unitarity loss [97], while giving up the later

leads to an energy curtain [99] or a firewall [29]. Other attempts to reconciliate

certain aspects of their coexistence always lead to other problems that requires

modifications to either quantum mechanics or gravity at low-energy [25, 47, 100–

103]. The reason why we have not been actively modifying low-energy effective

theories is the concept of complementarity:

Weak Complementarity:

The low-energy effective quantum theory, semi-classically coupled to weak gravity,

only needs to be self-consistent within individual causal patches.

Strong Complementarity:

The boundaries of causal patches are governed by UV theories (of quantum gravity)

which can fix the apparent pathologies in global descriptions.

Stated above is the general form of a global-local complementarity, which might

be also useful in cosmology [104–107]. However they are most well studied as the

black hole complementarity. As shown in Fig.3.1-left, the state of the horizon is

only described in the casual patch of in-falling observer, while Hawking radiation

is in the patch of a distant observer. Since these two potentially contradicting in-

gredients belong to two different causal patches, weak complementarity guarantees

that our everyday application of low-energy effective theory is justified. It remains

an interesting topic to find an appropriate statement in strong complementarity,

in terms of descriptions of the horizon (and/or the black hole interior) for a dis-

tant observer [35, 36, 108–113]. That however belongs to UV physics instead of
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3. Causal Patch Complementarity

A
B

R A B

R

Figure 3.1: The left figure shows the old story for complementarity: an in-falling causal patch

needs to confirm that the interior mode A and the exterior mode B are maximally

entangled to ensure a normal horizon; an outside causal patch needs to confirm that

B is entangled with the rest of Hawking radiation R to preserve unitarity. The right

figure shows that in a late, in-falling causal patch, both entanglements need to be

confirmed, and that is a paradox for requiring duplicated information in A and R.

modifications to low-energy physics.

More than one year earlier, Almheiri, Marolf, Polchinski and Sully (AMPS) for-

mulated a challenge against the status quo [29]. They argued that for a sufficiently

old black hole, the information paradox can be revived even abiding the standard

of weak complementarity. This new challenge has been paraphrased in many dif-

ferent versions [100–102, 114–117], and many of them involve tricks like using a

distillation process and/or a boundary CFT dual. It is very important to clarify

the situation being which one of the following:

• Those tricks help to make the paradox clear.

In this case there should be a more passive and pristine version of the paradox

that demonstrates the core of the problem.

• Those tricks are essential to establish the paradox.

In this case those tricks need more scrutinizations, since the paradox might

be an artifact of our näıve idealization of those tricks.

In this paper, we will ask a well-defined question to clarify the above situa-

tion. Without any distillation process, does low-energy theory in individual causal

patches run into any pathology? The näıve answer seems to be yes. It comes from

an observation that the two causal patches shown in Fig.3.1-left are extreme cases:

either one jumps into the black hole right away, or one stays outside forever. As

shown in Fig.3.1-right, we can find a generic causal patch between those two. It
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3.1. Introduction and Summary

belongs to an observer who stays outside long enough but eventually falls in. Note

that the purity of Hawking radiation has to be verified when the black hole is more

than half evaporated, and by that time the black hole (interior) can still be large.

Therefore such a late, in-falling causal patch seems to include both ingredients for

the paradox.

We will go beyond this näıve answer and examine this late, in-falling causal patch

in more details. In particular, we emphasize that merely “fitting into a causal

patch” is not good enough. Otherwise, we do not even need the AMPS argument

to have a paradox. The very ancient information paradox uses the in-falling matter

and Hawking radiation as its two conflicting ingredients, and they do coexist in

the outside causal patch as shown in Fig.3.2-left. The reason why such situation

cannot qualify as a paradox for weak complementarity is because in the outside

causal patch, those two ingredients are never space-like separated and both low-

energy.

In Sec.3.2, we will explicitly state our standard for two physical quantities to “fit

into a causal patch as space-like separated, low-energy quantities”. Note that

energy is frame dependent, but whether there exists at least one frame satisfying

this standard is a frame independent property of the causal patch. We will show

that if such standard is not upheld, then no single observer can properly observe

them both. Therefore, a potential paradox built from these two quantities is

invalidated by the spirit of complementarity. Note that in [118], the integrated

boost between two physical quantities was proposed to determine whether they

can legitimately form a paradox. That standard can still be defined globally for

quantities cannot fit into one causal patch. Our standard is totally within a causal

patch and directly related to their simultaneous-observability1.

In Sec.3.3 we apply the above standard to a Schwarzschild black hole. We explicitly

show that within a late, in-falling causal patch, it is impossible for the interior

mode and the early quanta to be space-like separated and both low-energy. Either

the early Hawking radiation has Planckian wavelength, or the interior region has a

size exponentially smaller than the Schwarzschild radius ∼M . We then generalize

this result in Sec.3.4 to include possible operations on the early Hawking quanta,

including confining them into a box and further thermalization. We find that our

conclusion remains unchanged. Within a late, in-falling causal patch, either the

black hole interior is exponentially small, or the information within early Hawking

radiation goes beyond low-energy physics.

A more dynamical picture of our result is that within low-energy physics, the

1Despite this major difference, if we first limit ourselves to one causal patch and apply

the integrated boost standard, then it qualitatively agrees with our standard in the case of a

Schwarzchild black hole.
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Figure 3.2: The left panel shows the physical interpretation of the outside causal patch, and the

right panel shows that for a late, in-falling causal patch (causal patches are bounded

by the dotted lines). The size of the letters (F , A and R) represents the “wave-

length” of the corresponding physical quantities (in-falling matters, interior modes

and Hawking radiation) according to the description within the causal patch. Large

letters represent low-energy quantities and small letters represent UV quantities.

The pink arrows represent the information flows, which only need to follow low-

energy quantities in the usual way. When the carrier of such information becomes

UV quantities, unknown UV processes can direct the information to the appropri-

ate places to avoid paradoxes. For the outside patch, such UV flow of information

resolves the information-loss paradox. For the late, inside patch, another such UV

flow resolves the AMPS paradox.

early Hawking radiation only exists in the early times, and the interior mode only

exists in the late times. Since they are strictly time-like separated, the double-

entanglement (quantum-cloning) problem does not apply. On every time-slice, this

also provides a clear distinction between the “recent” Hawking quanta B that live

in the low energy theory, and the “earlier” Hawking quanta that form R and hide

in the UV. If one wishes to think about an A = R map, it can be unambiguously

only applied to the UV quantities R but not to the low energy B, which avoids

the frozen vacuum problem [102,117].

In Fig.3.2, we put the conceptual information flow of this “inside story” side-

by-side with the well-known “outside story” of black hole complementarity and

observe their similarity.

Outside Story: In the causal patch of an outside observer, the information

initially follows the collapsing matter (or anything thrown in later). When the

information flows to the boundary, it is transferred to the UV physics. Instead of

leaving this causal patch, the UV physics keeps the information in the Planckian

neighborhood of the boundary, and later returns it through Hawking radiation.

Note that here the boundary of the causal patch is exponentially close to the black
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3.2. Weak Complementarity

hole horizon. Sometimes it is mistaken that the special UV property only occurs for

black hole horizon because it is a special place. By the spirit of complementarity,

it is the boundary of the causal patch that is a special place for the theory within.

Inside Story: In the causal patch a late, in-falling observer, the first half of the

story is the same. Note that the causal patch boundary here is also exponentially

close to the black hole horizon, although from the inside. Later, Hawking radiation

will approach the outside boundary of this causal patch, which means that it again

belongs to UV physics. From there on, we are free to claim that the unknown UV

physics guides the information in unexpected ways. That is a good news, because

strictly after the early Hawking radiation flows to this UV zone, the interior mode

A emerges and demands that information. We can simply claim that through

unknown UV physics, the information flows there.

In both stories above, we can see there is no need to modify low-energy physics.

• The information flow is time-like, so there is no need of non-localities [25].

• The information flow is future-directed, so there is no need of final-state

quantum mechanics [103].

• There is no duplicate information, so there is no need of firewalls [29].

• Everything happens within the standard black hole geometry, so there is no

need of Einstein-Rosen bridges [47].

Thus, we have verified that a pristine, distillation-free version of the AMPS para-

dox does not exist. The pathology explicitly resides in the unknown and idealized

distillation process. In Sec.3.5 we point out a possibility to address the remaining

distillation problem with our approach. We also discuss possible implications on

cosmological horizons.

3.2 Weak Complementarity

In Sec.3.2.1 we present a generic way to describe physics within a causal patch

and provide the standard for a double-entanglement (quantum-cloning) paradox

within the low energy theory: “Within this causal patch, if there are no space-like

surfaces on which both copies of information are carried by low energy quantities,

then it is illegal to form a paradox with them.

In Sec.3.2.2 we show that our standard is directly connected to whether a single

observer can observe any contradiction. We provide pictorial examples to show

that our standard has no unphysical side-effects. It does not invalidate paradoxes
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Figure 3.3: Examples of foliations within causal patches. The left panel shows two slices of the

standard, semi-infinite hyperbolic foliation given by Eq. (3.2.1). The right panel

shows the cut-off version where the evolution starts on the initial condition given in

the first slice F(λ0).

in usual situations. It only intervenes when the causal structure of the problem

obstructs the practical observability of the paradox.

3.2.1 Theory within a causal patch

Definitions

• A causal patch C: the entire space-time region within the past light-cone of

a point.

• A foliation F(λ): one parameter family of 3-dimensional space-like surfaces

such that every F ⊂ C and
⋃
t F = C. In addition, for all λi > λj , every

future directed path from every point in F(λj) passes through F(λi), and

every past directed path from every point F(λi) passes through F(λj).

The foliation allows us to describe the dynamical evolution as a closed system.

For example, the causal patch of the point (t = 0, ~x = 0) in Minkowski space is

naturally foliated by a family of hyperboloids with constant time-like separations

from the tip.

F(λ) = {(t, ~x) | t < 0, λ < 0, t2 − |~x|2 = λ2} . (3.2.1)

Of course, this is not a unique choice. A monotonic map λ→ λ′ leads to a different

foliation F ′ that is still legal as long as each slice remains space-like. Instead of

extending to past infinity, we can also consider a cutoff. Starting from a space-

like surface which sets the initial conditions, the foliation only needs to evolve it

forward. These example are depicted in Fig.3.3.

Standard

A low-energy effective theory within this causal patch has to be consistent in all

possible foliations. In particular, since we have conveniently chosen to view it as

42



3.2. Weak Complementarity

high energy 

quantities

high energy processes

low energy
quantities

Figure 3.4: Given low-energy input on the initial slice, a consistent low-energy theory can al-

low high energy events during the evolution or even in parts of the outcome (blue

patches). However if the low-energy parts of the outcome (the red dots) show in-

consistency, then there is a paradox and the theory needs to be fixed.

a closed system, the evolution should be unitary. It looks like a simple job to

establish the AMPS paradox. We just need one special example: one causal patch

and one foliation in which energy and curvature stay small, but the evolution

violates unitarity or has other pathologies.

In fact, we will hold an even lower standard for a paradox. We will allow the

condition on being “low-energy” to be only partially satisfied. First of all there

can be gaps in the foliation. As long as one finds two slices F(λi) and F(λj) that

energy is low on both of them, then their states need to be related by a unitary

transformation, and the propagation of information should be causal. In between

them there might be all sorts of high energy activities like a nuclear bomb or a black

hole formation-evaporation, during which even the foliation cannot be consistently

defined. We will not use those to disqualify the paradox. Furthermore, we will also

allow some regions of the slices to contain high energy quantities. As long as the

low-energy regions contain sufficient evidence for pathologies, such as violating the

monogamy of entanglement, we accept the existence of a paradox and the necessity

to modify low-energy physics. This standard is pictorially summarized in Fig.3.4.

3.2.2 Fitting into the causal patch while being low-energy

Note that “energy”, or the length scale, is a frame-dependent quantity. Naturally

we define it as the inner product between the momentum vector of a particle and

the 4-vector normal to the spacelike surface, so it depends on the choice of foliation.

As shown in Fig.3.5, a low-energy quantity in one foliation can become high energy

on a different one. It is very reasonable to question the physical meaning of such
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Figure 3.5: In the left panel shows, the big red arrow going up shows represent a low-energy

physical quantity and the time-like vector of its natural frame. The arrow is aligned

with the time-like vector specified by the foliation (the small black arrow going up),

so such physical quantity is low-energy in the foliation. The right panel shows the

same quantity in a different foliation, in which there is a large relative boost between

the two arrows. Due to such boost, the same quantity appears to be high energy on

this foliation.

frame-dependent standard. Indeed the properties of one foliation has no reason to

have a deep physical meaning. However, it is a frame-independent physical fact if

in all possible choices of foliations, something never happens.

In other words, we should try our very best to find foliations that makes things

as low energy as possible, and see that sometimes it is just impossible. In this

section, we will go over pictorial examples to demonstrate when the requirement

of fitting a foliation into a causal patch is very restrictive. The remaining freedom

can be insufficient to make relevant physical quantities (for the paradox) appear

as low-energy. We will then point out that in those situations, these physical

quantities in-principle cannot be observed together. This shows that our standard

in Sec.3.2.1 is closely related to observability.

Consider the situation in Fig.3.6 in which the initial slice of a foliation is evolved

to a later slice where we identify two subsystems A and R. If A and R contains

the same quantum information, then we may try to establish a paradox on the

basis of quantum cloning.

First of all, there are some natural frames in which both A and R are low-energy

separately. These are most likely their rest frames or the rest frames of the sources

if they are radiations. Since A is in the center of the patch and its velocity aligns

with the normal 4-vector of the foliation, it remains to be low-energy in this

foliation. On the other hand, R is on the edge of the patch and has a large relative

boost to the foliation, so it might be high energy. For an observer whose experience

is confined within this patch, this situation implies a true limitation. This observer
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A
R

A
R

short wavelength
signal

Figure 3.6: A and R are two subsystems on a slice of the foliation within this causal patch

(past light-cone in dashed green lines). It may be a paradox if they contain the

same quantum information. However if R appears to be high energy due to a large

relative boost, then any observer whose experience is limited to this causal patch

cannot verify the paradox. As shown in the right panel, for an observer who sees A,

any information from R has to be at ultra-short wavelengths. That is beyond the

applicability of low-energy physics.

has to be at the top of the patch to see A, from where he can only catch a fleeting

glimpse into R before it exits the patch. If this glimpse does not last long enough,

this observer cannot decipher information from R, at least not when he is still

inside this patch.

If this causal patch is from an interior point, then we cannot reject the paradox

this way. Since the limitation only applies to a confined observer, one can choose

a later observer who is less confined. Equivalently, as shown in Fig.3.7, one can

take a later (larger) causal patch, and in this new patch A and R are easily both

low-energy in some foliation. This is a consistency check that our standard does

not reject paradoxes while it should not.

On the other hand, if the tip of the patch is at a singularity, then the limitation is

truly meaningful. Now there is no bigger causal patch. One can consider another

patch to the right of this one. It can put R at the center but then A will appear

to be high energy. In this case no single observer can collect information from

both A and R, therefore the presumed paradox is not observable and should be

rejected. This is also shown in Fig.3.7.

In Fig.3.8 we see another consideration that we can evolve both A and R backward

in time, and they may appear less boosted with respect to an earlier slice of the

foliation. Indeed if A and R together appear on an earlier slice and are both low-

energy, that slice suffices to establish the paradox. Later we will see that in the

AMPS case, R is low-energy at an early time while A is not, and A is low-energy

at a later time while R is not. They are never both low-energy in at the same

time. This is a clear sign that we should probably reject the paradox, because the
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A R

singularity

A

R

Figure 3.7: The left panel shows that if the causal patch in Fig.3.6 is from an interior point,

then one can take a bigger causal patch which totally covers the previous one, and

it can easily accommodate both A and R in low-energy. The right panel shows that

if the causal patch is from a boundary point, for example at future singularity, then

there is no bigger causal patch. Shifting it to the left or right will not be enough to

make A and R both low-energy, or even have trouble to include them both.

A R R

A

Figure 3.8: The left panel shows the case that A and R appear to be low-energy on an earlier

slice. The right panel shows the case that A does not have a low-energy past, while

R only becomes low-energy on an earlier slice when it is in the causal past of A. This

allows the interpretation that R gets burned out at the “horizon” and propagates

to A (following the blue arrow) through an unknown high energy process.

cloning problem only sustains when the full Hilbert space contains the product of

their individual Hilbert spaces, HA ×HR ⊂ H. This picture is natural only when

A and R are space-like separated. If R is in the past of A, then it could be the past

of A, and it is not a paradox for them to have the same quantum information.

A natural interpretation for time-like separated A and R demanding the same

information is simple: R gets burned out at the “horizon” (the outside boundary

of the patch, not the black hole horizon) and its information content travels to A.

Note that this is a process in UV physics, so our lack of expectation of such an

information flow, or any low-energy setup to block it, cannot be a sufficient reason

to insist on the paradox2.

2We thank Daniel Harlow for pointing this out.
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3.3. Causal patch for an old Schwarzschild black hole

3.3 Causal patch for an old Schwarzschild black

hole

Here we will apply the standard in Sec.3.2 to examine causal patches in the ge-

ometry of an old Schwarzschild black hole. We will focus on the two ingredients

which are used to form the information paradox in [29]. The first ingredient is the

near horizon region of size ∼M . This region generates Hawking radiation by sep-

arating the pair of interior A and exterior B modes which formed the local vacuum

state. When the exterior mode B has a wavelength ∼ M , then it is officially a

out-going Hawking quantum. Due to how it was generated, its state is maximally

entangled with its interior partner A also with a wavelength ∼M [119].

The second ingredient is the early Hawking radiation R. Because the evaporation

process is unitary, an out-going Hawking quantum B should be maximally en-

tangled with R. This double entanglement requires A and R to carry duplicated

quantum information. So if they both appear within this causal patch and are

low-energy quantities on certain slice of some foliation, then it is indeed a paradox

for weak complementarity.

Here we present an explicitly calculation to show that for all possible foliations

in all such causal patches, there is no single slice on which A and R coexist as

low-energy quantities.

Our calculation has two parallel sessions addressing the inside and the outside.

Our inside calculation is in the Kruskal coordinates and includes the black hole

interior and some outside region near the horizon. Our outside calculation deals

with regions far away from the black hole where the early Hawking radiation has

propagated to, and we can simply use the Schwarzschild coordinates. This inside-

outside separation is illustrated in Fig.3.9. There are two important anchors in our

calculations. The first anchor X is the tip of the causal patch at the singularity,

and the second anchor Y is where the slice intersects the horizon. It is useful to

draw the past light-cone from both anchor points as we did. Since the slice we are

looking for must be bounded between these two light-cones.

These two light-cones extend through both parts of our calculation. The most

convenient way to connect the calculations is through ∆t, the Schwarzschild time

difference when these two light-cones intersects the boundary between the two

parts of our calculation. In other words, it represents the distance between the

two anchors3. This turns out to be the only relevant parameter. We will present

3Note that there is a hidden spherical symmetry in the diagram, but the anchor points X

and Y are only one particular point even in the angular coordinate. In the inside calculation,

we are calculating exactly the distance along this particular angular direction. In the outside it
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Figure 3.9: The right side shows the outside calculation where the typical length scale involved

is M3. The near horizon ∼ M region of the black hole is effectively a point. We

zoom in to that region (the dashed box) in the Kruskal coordinate. The two anchor

points: X is the tip of a causal patch (enclosed by the red past light-cone) on the

singularity (the green curve); Y is where the space-like slice (yellow curve) intersects

with the black hole horizon. The past light-cone (blue line) from Y is convenient for

defining the distance ∆t between these two anchor points, and the space-like slice

must be bounded between these two light-cones.

the detail calculation in the next two sub-sections. Here we briefly summarize the

result.

The interior mode A only exist on the segment of the slice to the left of point Y .

We define λA to be the proper length of this segment and find it bounded from

above by

λA .Me−∆t/4M . (3.3.1)

Namely, inside this causal patch, we need ∆t < M , otherwise the interior mode is

exponentially small.

On the other hand, the wavelength of the early Hawking quanta on this slice (the

inverse of its 4-momentun projected onto the normal timelike vector) is bounded

by

λR <

√
∆t

M
. (3.3.2)

looks like we are also only calculating the Hawking quanta flowing along this direction. However,

the extension of these light-cones to other angular directions will keep the same separation ∆t,

so our outside calculation is actually valid in all directions.
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This means that we need ∆t > M , otherwise these quanta have Planckian wave-

lengths. Since ∆t cannot be both bigger and smaller than M , either we cannot

address the information content in R, or we do not describe the near horizon

process that generates late Hawking quanta. The two ingredients for the AMPS

paradox have failed to coexist in the low-energy theory within a causal patch.

In the situation where we choose ∆t ∼ M , the near horizon region of this slice

agrees with an in-falling observer free-falling from ∼ M , so the interior mode A

looks normal. However the early Hawking quanta suffer a large boost γ ∼ M

which contracted their wavelengths from ∼ M to order one. This shows that our

standard qualitatively agrees with the standard of integrated boosted [118].

3.3.1 Inside: the interior mode A

Consider a half-evaporated black hole with current mass M . The metric is usually

given in the Schwarzschild form.

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 . (3.3.3)

However to analyze the geometry across the horizon, it is more convenient to

remove the coordinate singularity by going to the Kruskal-Szekeres coordinates.

ds2 =
(32M3

r

)
e−r/2M (−dV 2 + dU2) + r2dΩ2 (3.3.4)

This is related to the Schwarzschild coordinates by

V =
(

1− r

2M

)1/2

er/4M cosh

(
t

4M

)
, (3.3.5)

U =
(

1− r

2M

)1/2

er/4M sinh

(
t

4M

)
,

in the interior (V 2 > U2, r < 2M), with a singularity V 2−U2 = 1. In the exterior

(V 2 < U2, r > 2M), they are related by

V =
( r

2M
− 1
)1/2

er/4M sinh

(
t

4M

)
, (3.3.6)

U =
( r

2M
− 1
)1/2

er/4M cosh

(
t

4M

)
.

The coordinates of the two anchor points are given by

X = (UX , VX) = (b− 1

4b
, b+

1

4b
) , (3.3.7)

Y = (UY , VY ) = (a, a) . (3.3.8)
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Figure 3.10: The calculation of the length of the interior mode A in the Kruskal coordinates.

Points X and Y are the same as those in Fig.3.9. The (U, V ) coordinates of other

important points in the calculation are also shown here.

The variable b is chosen such that the past light-cone from X intersects the horizon

at W = (b, b). These points and a few that we will define later are shown in

Fig.3.10. The choice of variables a and b simplifies the relation to the important

parameter ∆t, which is the difference in the Schwarzschild time if we follow the

past light-cones from these two points to some r > 2M outside.

e∆t/4M =
b

a
. (3.3.9)

We would like to calculate the length of the interior mode A on a space-like surface

which passes through point Y and bounded by the past light-cone from X. This

length will be bounded by the space-like geodesic distance between point Y and

point Z = (− 1
4b ,

1
4b )

4.

λA <

∫ Y

Z

√
32M3

r
e−r/4M

√
dU2 − dV 2 (3.3.10)

≤

√
32M3

rQ
e−rQ/4M

∫ Y

Z

√
dU2 − dV 2 ≤ a

b

√
32M3

rQ
e−rQ/4M .

4Point Z is on the other horizon of an eternal black hole, which technically speaking does

not exist in the geometry of a black hole formed by collapse. However that means before this

slice extends to point Z, it would have run into the collapsing matter and stopped. Thus the

distance between Y and Z is a good upper-bound.
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The point Q = (a − 1
4b , a + 1

4b ) is where the metric factor reaches the maximal

value for any space-like path between Y and Z.(
1− rQ

2M

)
erQ/2M =

a

b
= e−∆t/4M . (3.3.11)

After taking out the metric factor, the remaining integral is simply maximized by

a straight line.

According to Eq. (3.3.11), rQ decreases as ∆t increases. That means the upper

bound in Eq. (3.3.11) decreases as ∆t increases. For example, if

∆t

4M
= ln

b

a
> ln 2 , (3.3.12)

then we have

λA < 4
√

2Me−1/4−∆t/4M < 2
√

2Me−1/4 . (3.3.13)

So we would like ∆t > M for this causal patch to contain any interior mode A

with λA &M .

3.3.2 Outside: the early Hawking quanta R

In the outside we only need to consider the early Hawking quanta, which are ∼M3

away from the black hole. That means we can even ignore the Schwarzschild metric

and treat it as flat space. The relative error we are making is ∼ M−2, which is

negligible in the limit of a large black hole.

Our goal is as shown in Fig.3.11. The early Hawking radiation will pass through

some region of this slice, and the slice is bounded between the two past light-cones.

We would like to minimize the energy of the early Hawking quanta in the frame

determined by this slice. That means minimizing the relative boost between the

Schwarzschild time and the time-like direction orthogonal to this slice. Since we do

not care about other regions on this slice which do not contain any early Hawking

quanta, the maximum is reached by the slice shown in Fig.3.11. This boost is

given by

v =
M3

M3 + ∆t
,

γ =
1√

1− v2
≈
√
M3

∆t
. (3.3.14)

That means the early Hawking quanta on this slice will have wavelength

λR <
M

γ
=

√
∆t

M
. (3.3.15)
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early

Hawking

radiation

r

t

~M
3

∆ t

Figure 3.11: The outside calculation. Early Hawking radiation comes from the black hole dur-

ing a time duration ∼ M3 and flows as the big green arrow. The slice (purple)

intersects with this flow and is bounded by the blue and red light-cones with sep-

aration ∆t. In order to minimize the relative boost between the slice and the

Schwarzschild frame (which is equivalent to maximizing the proper length of this

segment), it must go through the corners.

This means that we need ∆t > M to make λR > 1, so the early Hawking quanta

are not Planckian. That is in direct conflict with Eq. (3.3.13) which needs ∆t < M

to make λA &M .

3.4 Generalizations

In Sec.3.3 we showed that the problem R might run into in a late, in-falling causal

patch is that the wavelength of individual Hawking quantum becomes the Planck

scale. That is a combination of their original wavelength M and the large distance

M3 from the black hole. These two things can be modified. For example, Hawking

radiation can interact with a cloud of dust and further thermalize into more quanta

with longer wavelengths. One can also try to confine the quanta into a box so they

are not so far away from the black hole5. In this section we will argue that our

conclusion still holds under those changes.

5Since it is hard to construct perfect reflecting surface (especially for gravitons), the ideal

setup is embedding the black hole in an AdS space [120].
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The first issue is that those changes, thermalization and confinement, also change

the number (density) of quanta. “Wavelength should be smaller than the Planck

scale” is the standard for one quantum, and we need to find a generalization of

such standard for more quanta. A natural guess is

N � λL . (3.4.1)

If there are N quanta of wavelength λ in a region of size L, then it is actually a

black hole. In this sense one quantum is the special case that L = λ.

Eq. (3.4.1) is exactly the standard we will follow. In particular, note that λ and

L are frame-dependent quantities. We will argue that whether information is

accessible is also frame-dependent. This is similar to the examples in Sec.3.2. If

Eq. (3.4.1) cannot be satisfied on all possible foliations with a causal patch, then

it means no observer within this causal patch can read such information.

First consider the situation in Fig.3.12-left: on a usual space-like surface, within a

shell of radius L, we haveN quanta of wavelength λ. We claim that the information

content in this group of quanta is illegal if Eq. (3.4.1) is not satisfied. The obvious

reason is that this region actually forms a black hole.

r=0 r=L r=0 r=L
Figure 3.12: Both figures have a suppressed spherical symmetry around r = 0. Whether the

information (blue flow) on a space-like surface (the dashed line/curve) qualifies as

low-energy is related to whether observers in the rest frame of such surface (arrows)

can read such information when they flow out.

Now take a more observer oriented point of view. Let a group of observers sitting

at the shell and read a flow of information from those N quanta. If they find

that Eq. (3.4.1) is violated, they should conclude that such information is a lie.

Because if there was such information inside the shell, the observers should have

collapsed into a black hole with it.

Next we consider the same situation with another space-like surface as in Fig.3.12-

right. As we already saw in Sec.3.3, the choice of this kind of surface is enforced
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by the need to fit into some causal patch and to include another ingredient of the

paradox. For simplicity we say that the relevant region (where the information

flow through) has a boost γ relative to the surface in Fig.3.12-left.

Our claim is that we should use λ and L in the frame of this slice in Eq. (3.4.1)

to determine whether the information within these quanta is legal or not. In this

case those two length scales are blue-shifted.

N � λ

γ

L

γ
. (3.4.2)

One might have objections to this standard. Since if Eq. (3.4.1) is satisfied, the

information itself is not forming a black hole. However there is always some γ

large enough to invalidate Eq. (3.4.2). So what is the physical meaning of this

frame-dependent standard?

The answer is similar to the logic we demonstrated in Sec.3.2.2: such frame depen-

dent standard is related to the practical observability. We should ask that whether

a group of observers in the frame of this slice (confined to the same causal patch

that forces us to choose this slice) can read the relevant information. In Fig.3.12-

right, that means a group of observers following a shrinking shell with a boost γ.

The quanta they read in their frame will have wavelengths (λ/γ), that means they

need to carry N units of such size to keep those information. Now coming back

to the rest frame, it means that this group of observers will be carrying N quanta

of wavelength (λ/γ2). They will form a black hole unless

N
γ2

λ
� L , (3.4.3)

which is exactly the same standard as Eq. (3.4.2). Therefore, Eq. (3.4.1), applying

to quantities in the frame of a slice, is the appropriate standard to determine

whether information on such slice is legal within low-energy theories.

Now we have established the standard, it is straightforward to show that neither

thermalization nor confinement changes our conclusion in Sec.3.3. Thermalization

changes N and λ together proportionally, so Eq. (3.4.1) is not affected at all.

Confining Hawking radiation into a region of size L around the black hole can

reduce the boost factor in Eq. (3.3.14), but such change is exactly canceled by the

explicit presence of L in Eq. (3.4.2).

N = M2 � λ

γ

L

γ
=

M√
L/∆t

L√
L/∆t

= M∆t . (3.4.4)

This is exactly the same as Eq. (3.3.15), so our conclusion remains unchanged.
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3.5 Discussion

3.5.1 Information paradox and the quantum second law

We have verified that a distillation-free version of the AMPS paradox does not

exist. It also seems to be clear that if a distillation process is possible, then

the paradox does exist. Since such a process allows us to extract the relevant

information into a few qubits RB instead of keeping track of the entire R, this

much smaller number of quanta is obviously quite mobile and can likely be further

operated to satisfy the standard of weak complementarity.

On the other hand, the standard picture of distillation processes has it own

problems. For example, it might take a very long time [49] or result in back-

reactions [121], and both concerns can neutralize the paradox. In fact, our dis-

covery here works coherently with the back-reaction argument. We showed that

without a distillation process, R is strictly in the past of A. Since a distillation

process acts on R, by causality it can of course affect A.

Still, we understand that the arguments involving a distillation process cannot be

easily resolved unanimously. The true problem is that such a process is intrinsically

unknown. It depends on how the information is encoded in R, which depends on

the unknown black hole S-matrix. Our work can also provide a possibility to

improve such situation. We can connect the information paradox to another type

of distillation process which is not related to the unknown S-matrix.

In order to make such connection, first note that our generalizations in Sec.3.4

involves thermalization: take N Hawking quanta of wavelength λ and split them

into αN quanta with wavelength αλ. We assume that the information has to

become hidden in all αN quanta, which is essential to maintain our argument.

The paradox can be restored if we discard such assumption.

In other words, one can look for a distillation process that increases the informa-

tion/energy ratio, namely some form of information density. If there is a general

process in quantum thermodynamics that takes energy away without taking in-

formation away, then we can increase such information density. This will allow

the information carrier to have arbitrarily low energy and avoid the problem we

pointed out. Alternatively, one can interpret our work as claiming that if there

is no information paradox, then there must be an in-principle obstruction against

reducing quantum information density. At least, we should not be able to reduce

the energy of a qubit of information from M to an arbitrarily low value within

time M3.
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3.5.2 Causal patch complementarity

The two information flows in Fig.3.2 base on the same principle. However, only

the situation for an outside observer was widely appreciated before, and it might

be misleading in some way. It is easy to believe that the black hole horizon has

the mysterious UV property to guide the information. The AMPS paradox and

our work together serves as a reminder that from the very beginning, the black

hole horizon is not special. It only looks special for outside observers, because it

coincides with the boundary of their causal patches. If we keep in mind that all

boundaries of causal patches can be similarly special, then the paradoxes can be

avoided.

This realization may have a profound consequence. For outside observers, going

through the black hole horizon is dropping to the “inside” of something, and it is

natural to believe that information eventually comes back. However, in most cases

the causal patch boundary leads to “outside”, and there are rarely good reasons

for the information to come back from there. The late, in-falling patch is a good

example showing that if we look hard enough, then we might discover a reason

that information must come back instead of flowing “outside”.

This makes us wonder whether we should also look harder in other situations, like

for cosmological horizons. We just eliminated the näıve distinction between infor-

mation going “inside” and “outside”, so it becomes less crazy to think that some

information leaving a cosmological horizon is actually not lost. Up to this moment,

all these unexpected information flows have been demanded by the necessity to

avoid paradoxes. It will be fascinating if one can come up with a more direct

condition to determine whether a causal patch boundary retains information or

not.
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4
Bekenstein bound in the bulk

and AdS/CFT

4.1 Introduction

Bekenstein bound [70] is the universal upper bound on the entropy S or information

that can be contained in a physical system or object with given size and total

energy. If R is the radius of a sphere that encloses a given system, while E is its

total energy including any rest masses, then its entropy is bounded by,

S ≤ λRE (4.1.1)

where λ is a numerical constant of order one. Although the derivation of the

bound uses generalized second law around black holes [16], the bound seems to

be independent of the gravitational physics. This fact manifests itself in GN inde-

pendence of the bound. Moreover the size of the box R is the geodesic distance

in flat space. These observations indicate that the Bekenstein bound is valid in

flat space hence can be derived via information theoretic inequalities in QFTs.

In [72] the bound is derived by employing positivity of relative entropy for certain

class of excited states with respect to vacuum. The derivation exploits the local

expressions of modular Hamiltonians of certain spatial sections of vacuum density

matrices. On the other hand, the Bekenstein bound manifests itself also on the

systems having strong self gravitation. It is a well known fact that the bound is

saturated for the Schwarzschild black hole. In other words the Bekenstein bound

is saturated when Schwarzschild energy is put into a box of Schwarzschild ra-

dius. This is a strong indication that the bound preserves its validity beyond the

weak self gravitating systems and hence should have a formulation for systems

having back-reactions. One difficulty that is encountered when the system has

back-reaction on the spacetime, we don’t have at hand a natural definition of the

size of the box. For example, in the case of a Schwarzschild black hole the radius

of the box is not geodesic distance but the radial coordinate corresponding the
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black hole horizon. Because of the above observations, natural questions arise.

How to define the radius of the box R in the presence of back reaction? What is

the energy of the system E for a strong self gravitating system or in a setup that

allows backreaction? Let us emphasize that for a black hole, size of the box R is

the coordinate radius and energy of the system is the ADM mass of the solution

which includes the binding energy of the entire solution. In a way, size of the

box is determined with respect to the vacuum solution. Vacuum solution provides

a reference grid where excited system can be compared to. Our main goal is to

identify the boundary information theoretic observables corresponding the Beken-

stein bound in the bulk including systems having non perturbative backreactions

on the spacetime metric, such as black holes. We will study the problem using

AdS/CFT [51–53] and find the corresponding information theoretic inequality on

the CFT that describes the bound in the bulk. We will give the formulation of

Bekenstein bound in the bulk for certain class of excitations on asymptotically

AdSd+1 through the information inequalities in the dual CFT.

Before giving the formulation of the Bekenstein bound in the bulk via the underly-

ing theory, we will clarify issues regarding the first law of entanglement entropy on

a simple exercise involving conical defects. This will be a simple demonstration on

how quantities involved in the first law type relations in CFT are identified with

the quantities in spacetime. In this identification local expressions for modular

hamiltonians [122] and Ryu-Takayanagi formula [57,58,123] play the central role.

The so called first law of entanglement due to presence of conical defects provides

us a puzzle which we address in the third section. The solution of this puzzle

will also clarify the differences between pure state and thermal (in general mixed

state) perturbations when first law of entanglement is considered. The complete

knowledge of the pure state puts strong constraints on the expectation value of

local stress energy on the dual CFT. Such constraints do not exists for mixed state

perturbations as we will demonstrate.

In the forth section we have exercised the initial conical defect setup using the fun-

damental expression of covariant phase space formulation [64] of the first law of

black hole thermodynamics. The formulation is valid for perturbative excitations1

and conical defect solutions can be studied in this regime. In this formulation, ori-

gin of the differences between the relative entropies of the complementary regions

will be clear. Due to the pure state nature of the conical defect perturbation, one

can reduce the differences between relative entropies of the complementary spher-

ical regions ({A, Ā}) on the boundary into differences of modular hamiltonians.

1Along the chapter, perturbation is considered for two cases. It is either indicating a per-

turbation on the underlying state, i.e. deformation of the state into a nearby one in the Hilbert

space or the metric field is perturbed by a δg. As it will be shown these two cases do not have

to match at every order of perturbation.
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Moreover the differences in modular energies, ∆HĀ−∆HA can be identified with

the bulk modular hamiltonian in the perturbative regime. Using the boundary

expression of differences between modular energies of the complementary spatial

sections we extend the notion of bulk modular energy of a spherical region around

the ‘origin’ to non perturbative excitations. The result of the calculation of the

vacuum subtracted full modular hamiltonian for excited states are very elegant

and does not depend on the dimension of the spacetime. Here we introduce the

notion of sphere of ignorance which is the bulk region that is not accessible from

any boundary interval having size below a certain length scale. In other words an

observer having access to the region A in the underlying theory can not decode

anything in the bulk beyond the bulk sphere < Rscale. The essential relation we

derive is that the modular energy contribution of the bulk excitation depends lin-

early to the scale of the system that contains it. This is closely related with UV-IR

correspondence in AdS/CFT, and will be explained in more detail throughout the

chapter. The full modular hamiltonian—which we also named as bulk modular

energy inside the sphere of ignorance—for spherical excitation is given by

∆HĀ−A = 2πRscale ∆MADM. (4.1.2)

The definition of full modular hamiltonian is ĤĀ−A ≡ ĤĀ − ĤA and Rscale is the

radial position of the tip of the minimal surface that is homologous to region A

on the boundary.

∆MADM is the vacuum subtracted ADM mass. The expression is very elegant as it

is valid in any dimension. The above expression is not only valid perturbatively but

holds also for excited states that can not be expressed as infinitesimal deformations

of the vacuum. In the non perturbative case, R denotes the radial position of the

point of ignorance —tip of the geodesic —with respect to the global vacuum.

A similar expression is used in [73] as a change of area in the weak field limit for cer-

tain identification of the manifolds and interpreted as the amount of entanglement

entropy reduced by bulk excitation from its surrounding. In our interpretation, it

quantifies the modular energy contribution of the bulk excitation to the entangle-

ment wedge that contains it. The presence of bulk excitation in the entanglement

wedge is the source of the differences between modular energies of complementary

regions in the underlying theory.

For the perturbations around AdSd+1, one can relate the boundary modular energy

with the bulk modular integral as explained above. However, this is only possible

for pure state deformations around the vacuum as it is explicitly using the relation

∆SA = ∆SĀ for pure states. Detailed explanation about this can be found in

Section 4. On the other hand one can come up with a mathematically similar,

yet physically quite different expression when the underlying state is thermal, or
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Figure 4.1: Blue sphere denotes the region that observers who have access to the boundary

region of size(A) are blind to. Radius of the sphere, Rscale, is the deepest point

that can be decoded by accessing A. In a spherically symmetric state, sub-states

having support on the region of same size, have the same change in information

content, hence the only region that can not be decoded by the observer A is the

blue sphere which is referred as the sphere of ignorance along the chapter.

in general, a mixed state. In a mixed state, one can not constrain the change of

entanglement entropy of the complementary regions via their equality. This allows

a net change in the total energy of the system [124] when the perturbation is of

thermal nature, which we have detailed in section 3 starting from a conical defect

exercise. Using the first law of entanglement entropy and freedom to increase total

energy of the system in a mixed state perturbation we end up with the following

expression for mixed states when the local bulk excitation is confined into the

sphere of ignorance

δSĀ−A = δSbulk
Sd−1
R

= 2πRscale δMADM (4.1.3)

where δSbulk
SdR

is the bulk entropy that corresponds to 1/N corrections to the en-

tanglement entropy in the CFT [66]. We distinguish vacuum subtracted quantities

when the state is perturbation around the vacuum |ψ〉 = |0〉 + ε|φ〉, by lowercase

(δ). This entropy resides inside the d− 1-sphere of radius R. We find it interest-

ing to compare the differences between pure states and thermal states excitations,

since these differences are closely related with the volume law [73] and ER-EPR
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conjectures [47]. It is crucial to realize the two main differences between these two

equations. Firstly, while the eq. (4.1.2) can not take place at the linear level of

the perturbation on the underlying state, the later, (4.1.3) can be derived only

through using the first law of entanglement hence at the linear level. In other

words in the first case the constraining equation is equality of change of entangle-

ments for complementary states, in the second case the first law of entanglement

entropy, i.e. equality of change of modular energy and entanglement entropy for

each state. Therefore these two results have different physical principles behind

them. Secondly the quantities involved in the relation, that is change of modular

energy, ∆HĀ−A vs change in the entropy δSĀ−A. In the first case the bulk excita-

tion does not possess any entropy in the form of entanglement with the purifying

auxiliary system. The mixed state deformations of the vacuum at the linear level

is particularly important since this is the only case where we can directly show

that the entropy inside the sphere of ignorance is equal to the difference of change

in the entanglement entropies of the underlying theory, δSbulk = δSĀ−A. Equality

holds when all the excitation is localized inside this sphere.

Finally and most importantly, we will extend the result for thermal states to non

perturbative level where differences are defined with respect to vacuum. In this

case one can not use the first law of entanglement entropy, which was used in (4.1.3)

to obtain the equality. In the generalization, we have expressed (4.1.3) in terms of

the differences of relative entropies of the complementary states. For a rotational

invariant state imposing the positivity together with the monotonicity of relative

one can come up with inequality version of equation (4.1.3). The differences of

modular hamiltonians can be expressed in terms of the bulk quantities. This is the

direct analog of the first equation (4.1.2). We have observed that difference of the

change in the entanglement entropies of the complementary regions is bounded by

the associated bulk modular energy, which was defined also through (4.1.2). The

expression is interesting as it is strikingly reminiscent of the Bekenstein bound [70]

in the bulk.

∆SĀ−A ≤ 2πRscale ∆MADM (4.1.4)

The radius R is interpreted on AdSd+1. It is the radius of the ignorance sphere

defined with respect to the boundary region A. We argue that for spherically

symmetric state the entropy that resides inside the sphere of ignorance is bounded

by the entropic differences of the complementary boundary balls Sbulk
Sd−1
R

≤ ∆SĀ−A.

We will read this expression backwards—in a sense—by asking what the infor-

mation theoretic extensions of the observables of underlying theory to the bulk

physics. It will be explained why the differences in entanglement entropies of the

complements in the underlying state manifest itself as the Bekenstein bound in

the bulk. Boundary perspective that is presented throughout the chapter have
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some overlapping content presented in [125] [126] yet the bulk interpretation is

completely novel according to our knowledge.

4.2 A simple first law

We would like to start with a simple explicit example for the gravitational coun-

terpart of the first law of entanglement. We will shed light onto interesting set of

constraints for the first law entanglement entropy. Let us consider simple case of

AdS3 which will be sufficient for our purposes.

First law of entanglement entropy holds for any state since the relative entropy

vanishes at the linear level perturbatively. To see this, consider a reference state

ρ0 and an arbitrary state ρ1. One can construct a family of interpolating density

matrices

ρ(λ) = (1− λ)ρ0 + λρ1 (4.2.1)

where λ can be positive or negative, yet the relative entropy S(ρ(λ)|ρ0) is positive

for either sign of λ by the positivity of relative entropy. Hence first derivative of the

relative entropy with respect to λ vanishes. This is the first law of entanglement

since relative entropy can always be expressed as,

S(ρ(λ)|ρ0) = ∆〈ĤA〉 −∆SA (4.2.2)

where ∆〈ĤA〉 = tr(ρ(λ)ĤA)−tr(ρ0ĤA) and ∆SA = −tr(ρ(λ) log ρ(λ))−tr(ρ0 log ρ0).

In the leading order of λ relative entropy exactly vanishes, which is known as the

first law of entanglement entropy,

δSA = δ〈ĤA〉 (4.2.3)

where we denoted the linear perturbation by lowercase delta (δ). However, there

are only few cases where the local expression for ĤA is known explicitly [127]. One

such case is the ball shaped region in the vacuum state of a CFT in any dimension.

In this case modular hamiltonian has a local expression in terms of the local stress

energy tensor of the CFT.

ĤA = 2π

∫
A

ζµ T̂µν dΣν (4.2.4)

where ζµ is the conformal Killing vector that leaves the causal diamond of the

ball shaped region invariant. This is an exact operator expression obtained by

the conformal transformation from the half of the Minkowski space via employing

the invariance of vacuum under global conformal transformations. We will give a
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straightforward yet illuminating application of this local expression of the modular

hamiltonian.

Consider a 2d CFT on R × S1 with a classical gravitational dual. Suppose the

vacuum is perturbed to a nearby pure state, |ψ〉 = |0〉 + ε|φ〉, such that the

perturbed state has uniform expectation value for energy density i.e. δ〈T00〉 = µ.

Let us consider a ball shaped region on the spatial slice i.e. a constant time slice

of the CFT. For an interval on the boundary, explicit expression for the change of

modular energy is given by,

δ〈ĤA〉 = 2π

∫
A

(
r

cos(θ0 − θ)− cos(α)

sinα

)
〈T̂00〉 rdθ

= 2r(1− α cotα)δECFT (4.2.5)

where θ0 is the center of the region in the boundary, α is the half of the total

angular size of the boundary ball and r is the radius of the S1. δECFT is the

change in the energy of the state, which is equal to the change in the total energy

of spacetime, given by 2πrµ. The combination, rδECFT is the dimensionless factor

that we should expect to identify in the gravitational dual.

The modular hamiltonian side of the calculation does not refer to the gravita-

tional dual. We simply use the local expression for the modular hamiltonian on

the CFT which is exact thanks to conformal symmetry. One can check the first

law explicitly via holography, by identifying the geometric description of the state

in the gravitational description. We have considered the perturbation to be a pure

state with a uniform asymptotic energy density. The latter ensures the bulk solu-

tion to be a spherically symmetric one. One possible geometric description of the

state is the conical defect. Conical defect geometries are 3d solutions of Einstein

equation with a Dirac delta type source distribution. Although the expression for

the change of modular energy is valid between any state and vacuum, the first

law only holds for small perturbations around vacuum. Therefore we would like

to look at change of entanglement entropy in the presence of a conical defect with

small deficit angle which serves as the perturbation parameter.

The metric of the conical defect is given by,

ds2 = −
(
γ2 +

R2

L2

)
dT 2 +

(
γ2 +

R2

L2

)−1

dR2 +R2dθ2 (4.2.6)

where 0< γ <1 and related to the deficit angle as δθ = 2π(1 − γ). The minimal

surface that is homologous to a boundary region A measures the entanglement

entropy of the subsystem that resides on A on the dual CFT.

S(α) =
2L

4GN
log

(
2L

γε
sin(γα)

)
(4.2.7)
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ε corresponds to the UV cutoff in the underlying theory, and serves as a IR cutoff in

the bulk that regularizes the infinite area of the boundary sphere in AdS. Although

this expression is infinite in the limit that sends the cutoff to zero, the change of

entanglement with respect to vacuum is finite once the cutoff is fixed. Looking

at the change of entanglement entropy or any other quantity defined on different

manifolds requires a comparison scheme. One such physical scheme is to keep

number of degrees of freedom fixed since it is the characteristic of the theory

describing these two states. From the spatial point of view, fixing degrees of

freedom is to keep the ratio of the size of the system to the cutoff fixed.

∆S(α) =
2L

4GN
log

(
sin(γα)

γ sin(α)

)
(4.2.8)

which in the small deficit limit, δθ/2π � 1, perturbatively becomes,

δS(α) = 2L(1− α cotα)δMADM (4.2.9)

since the change of ADM energy is δMADM = δθ/8πGN. Thus identification of

LδMADM ≡ rδECFT completes the demonstration of the first law. However, in

the next section, we will have a closer look at this so-called first law. As we will

see, what seems like a first law is, in fact, not a first law from the information

theoretic point of view. It does not concern the linear level of the parameter that

connects density matrices of the underlying theory.

4.3 Puzzles about the first law

In the previous section we have explicitly demonstrated, the first law of entangle-

ment entropy through a gravitational calculation where excited state is considered

to be a conical defect. We have matched the change of modular energy on the

CFT to change of area of the minimal surface in the bulk due to appearance of a

defect. Although it looks like we have computed different quantities in different

theories, the RT conjecture maps them. A more careful look into what we have

done will reveal a greater understanding.

Initially, we consider AdS3 solution with a boundary S1 ×R. Usually when one is

restricted to a subspace on the boundary, there is no need to specify the change

on the state having support on the complementary region to study the first law.

Yet considering the subspace with its complement puts strong constraints on the

δ〈Tµν〉. Remember that we considered a uniform perturbation on the vacuum,

δT00(θ) = µ which is identified with conical defect solutions that has Dirac delta

type sources in Einstein equation [128]. These solutions can be arbitrarily close to

AdS3 as it is possible to choose δθ/2π � 1. Hence one can consider the bulk dual
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4.3. Puzzles about the first law

of the perturbation on the vacuum as a conical defect solution. Of course, this

is just one particular solution with the given boundary energy density, one may

come up with different semiclassical gravitational descriptions having same energy

density. For example the perturbation could also be due to thermal fluctuations

around vacuum in which case dual would be thermal AdS3. We will study the

thermal perturbations later on in this chapter. First we will focus to the conical

defect. It is crucial that, as explained under eq. (5.3.17), to be able match the

change in modular energy to δS(α) = S(α)con. − S(α)AdS3
one needs to rescale

the IR cut-off for the conical defect solution. This corresponds to keeping number

of degrees of freedom fixed by fixing the proportions of UV cut-offs to the size of

the systems where the underlying theory lives. To be explicit, if one considers the

conical defect geometry as a angular cut, then one should rescale the UV cut-off

on the boundary such that 2πr/εUV is fixed. This is one such beauty of AdS/CFT

that it provides an unambiguous way to compare observables on nearby solutions.

The question we would like to raise is if there exists a first law on each boundary

interval as a result of conical defect type excitations. Before answering this ques-

tion, let us consider a perturbation on the vacuum, which changes the state into

another pure state that is infinitesimally close

|ψ〉 = |0〉+ ε|φ〉. (4.3.1)

We didn’t specify how the energy density of the perturbation is organized spatially.

Suppose that, such a change in the state causes a localized linear perturbation

δ〈Tµν〉. If the perturbation is completely localized inside of a spherical region A in

the CFT then change in the modular Hamiltonian of the complement Ā vanishes.

The first law ensures that the change of entanglement entropy also vanishes, δSĀ =

0. As you will realize, we end up with a contradiction. Because the perturbed state

was also assumed to be a pure state. In that case we would expect δSA = δSĀ, yet

by the first law of entanglement, δSA 6= 0. This would also violate the positivity of

relative entropy, because δ〈HA〉 = δSA = δSĀ > 0, yet δ〈HĀ〉 = 0, which implies,

δ〈HĀ〉 − δSĀ < 0. What is the resolution of this apparent paradox [61]? Indeed

we have made a false assumption, by considering pure state perturbation localized

only in a region at the linear level of the perturbation theory of the underlying

state. One needs to put equal amount of energy to the complement in a pure state.

This fact can be demonstrated simply through a field theory argument. Let us

start by constructing the following operator,

Ĥ = ĤA − ĤĀ. (4.3.2)

This operator, known as full modular hamiltonian, generates conformal transfor-

mations that keeps the spherical region fixed, hence annihilates the global vacuum

state. The simplest way to understand why this operator annihilates the global
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4. Bekenstein bound in the bulk and AdS/CFT

vacuum is to consider the half space in QFT, where modular hamiltonian is the

generator of rotation in the euclidean plane. Then the combination H = HA−HĀ

generates a boost on the whole state, which leaves the vacuum invariant

Ĥ|0〉 = (ĤA − ĤĀ)|0〉 = 0. (4.3.3)

Now if the state changes according to (4.3.1), then

δ〈HA〉 = ε (〈φ|HA|0〉+ 〈0|HA|φ〉)
= ε (〈φ|HĀ|0〉+ 〈0|HĀ|φ〉) = δ〈HĀ〉 (4.3.4)

The above equality indicates that whenever one creates some some localized wave

packets inside a region, to stay in a pure state, some energy density needs to be

introduced outside. It is the purity of the state that enforces such constraint.

Let us further study what kind of constraints we have on the perturbation of the

expectation value of stress energy tensor. Assume that constant time slice has the

topology of Sd−1 with radius r. The modular Hamiltonian for (d− 2) dimensional

spherical entangling surfaces surrounding a cap of the Sd−1 specified by the angle

α is given by,

HSd−2
A

= 2π

∫ α

0

rd−1 dΩd−2 sind−2 θ dθ

(
r

cos θ − cosα

sinα

)
T00(~r) (4.3.5)

This expression is the generalization of what we have used for CFT2. Now we can

obtain HĀ by sending the origin of the spherical cap, Sd−1 to π and α to π − α.

Then the full modular Hamiltonian HĀ−A ≡ HSd−2
A
−HSd−2

Ā

becomes,

HĀ−A = 2π

∫ π

0

rd−1 dΩd−2 sind−2 θ

(
r

cos θ − cosα

sinα

)
T00(~r) (4.3.6)

For a pure state, by the first law of entanglement entropy, δ〈HA〉 − δ〈HĀ〉 = 0

at the linear level. Using this equality one can put constraints to the possible

δ〈T00〉 for pure state perturbations. To see this explicitly, multiply δ〈HĀ−A〉 by

tanα and take the derivative w.r.t to α. The second term is eliminated and we

have an example of such constraint which is
∫
dΩd−1 cos θ δ〈T00〉 = 0. Then using

this one, we show easily,
∫
dΩd−1 δ〈T00〉 = 0. These are not the only constraints

because the first one is obtained by placing the origin of the cap on the z axis. The

full modular hamiltonian vanishes at the linear level independent of the choice of

origin for boundary balls. It is true for all possible balls. Therefore one obtains

the following set of constraints [124]∫
dΩd−1 δ〈T00(Ω)〉 = 0,

∫
dΩd−1 ω̂ δ〈T00(Ω)〉 = 0. (4.3.7)
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dΩd−1 is the volume form on Sd−1 and ω̂ is the unit vector parametrizing the points

on Sd−1. Note that second constraint is generalization of
∫
dΩd−1 cos θ δ〈T00〉 = 0

in which case one focuses on the z-component of ω̂. The first constraint resolves

our initial confusion. One can not introduce local excitations on some regions

without balancing them with negative energy contributions. Another interesting

distribution that is violating the second constraint is Dirac delta sources unless

equal amount of positive and negative charges introduced at the same point, which

is very constraining. It would be interesting to see examples of distributions sat-

isfying these constraints, yet we leave it for future studies. We are now ready to

further puzzle ourselves with the first law in the presence of a conical defect.

If we now go back to our initial construction, where we consider the conical defect

solution with a small deficit as the bulk dual of a homogeneous perturbation of

the boundary theory around the vacuum. The change of area of the minimal

surfaces due to conical defect was equal to δ〈H(α)〉 for each boundary region.

When δ〈T00〉 is uniform then conical defect is at the center. Their fusion yields

us the generalization of the first(?) law to arbitrary surfaces which we present in

chapter 5. At this point we need to reexamine this first law in the light of the

puzzles we had uncovered.

First of all, as we have derived above, the first law of entanglement for any pure

state perturbation puts some constraints on the total energy of the perturbed

state such that it vanishes (4.3.7). On the other hand, we expect the conical

defect geometry to represent a pure state in the underlying theory, yet clearly its

energy does not vanish. Therefore it violates the constraints above. Furthermore,

assuming that for each boundary region, A, there is a first law, then we would

expect that the state on Ā, also satisfies the first law. However through the Wald

formalism, it is clear that when perturbation is sourced by stress tensor then the

first law is modified by contribution from stress energy of the perturbation, this

will be further explained in the following sections. Hence one does not have a

first law for the complement Ā whose entanglement wedge includes the defect. In

this case, one has δHĀ − δSĀ ∼ δ, where δ quantifies the deficit angle. Therefore

either the perturbed state is not pure or this is not the first law of entanglement

entropy. We know that the perturbed state is pure, since it is obtained from the

vacuum by adding a localized non thermal mass. Let us be more careful about

the order of perturbation. The first law takes place at the linear order in ε, where

fields perturbed according to φ → φ + ε φ(1) + O(ε2). However the perturbation

of the vacuum, by a classical mass distribution takes place in second order as Tµν
is quadratic in fields. Indeed, what we have called as first law was taking place

between the second order and first order. Let us look at it in more detail.

From this point on, we will replace our notation for the variation with ∆ to denote
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4. Bekenstein bound in the bulk and AdS/CFT

that difference is beyond the linear order. The perturbation of the solution by

addition of classical matter, as explained above, takes place at the second order in

perturbation theory. If the perturbed state is a pure state, |ψ〉 = |0〉+ε|φ〉+O(ε2),

then the full modular Hamiltonian at this level does not vanish. Remember that

the vanishing of that at the linear level yields us the constraints on the change of

δ〈T00〉, which does not exist beyond linear level.

〈ψ|H|ψ〉 = ε2〈φ|H|φ〉+O(ε3) (4.3.8)

Therefore we are not restricted to the constraints in (4.3.7) at this level. Remember

that the first law of entanglement entropy is derived from the relative entropy at

the linear level (4.2.1). Next to leading order, due to positivity of the relative

entropy, one has,

∆HA −∆SA ≥ 0 (4.3.9)

The interesting point is that, when the perturbation is due to some localized mass

distribution outside of the entanglement wedge A one has ∆HA = ∆SA at the

leading order of perturbation by δgµν . That was what we observed when the

perturbation was due to conical defect. On the other hand, for the complement of

the region A, whose size is more than half space, α > π/2, ∆HA ≥ ∆SA and the

difference is proportional to T bulk
00 of the localized source.

4.3.1 Thermal perturbation

In this part, we would like to point out the differences when the perturbation is

a mixed state. Although Einstein equations are agnostic whether the source is

thermal or pure, in the microscopic description these two cases are substantially

different. For example, in the presence of a BH, when the subsystem size reaches

a critical value, the difference, SĀ − SA saturates the Araki-Lieb bound namely,

SĀ − SA = SA∪Ā due to homology constraint. In general for a mixed state, one

expects separation of the minimal surfaces of a subsystem and its complement

which are same in a pure state. Hence the more thermal the system is greater

the ignorance becomes. In the thermal case, the amount of information (better

to say amount of uncertainty) of the complementary regions of a quantum state

does not match due to thermal entropy. Therefore it is not possible to extend the

constraints of the previous section to the thermal cases. Let us look at the simple

illustration of this fact for a thermal state perturbation on the vacuum,

ρ =
|0〉〈0|+

∑
i e
−βEi |i〉〈i|+ ...

1 +
∑
i e
−βEi + ...

. (4.3.10)
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Here we consider the low tempreture expansion of a thermal state. The CFT side

of the story had been studied in [126,129].

The knowledge that the state is thermal itself is not enough to determine the

ontological character of the entropy, as it can be seen as either being entanglement

or thermal entropy [67]. Surely it is thermal entropy but at the same time one can

consider it as the entanglement entropy with its purification2. Therefore we will

not distinguish these two cases, but when we refer the concept as entanglement

entropy, it is the entanglement with respect to the purification, not between the

complementary regions of the underlying theory. In other words, we do not refer

to the entanglement between subsystem of the mixed state which is very difficult

to quantify for an arbitrary mixed state.

It is a well known fact that entanglement entropy of a system and of its com-

plement do not match for a thermal state. This is also true for the change of

entanglement in the leading order. Hence there is no such constraints eq. (4.3.7)

when the perturbation is a mixed state, which can be shown through non vanishing

of full modular hamiltonian. In this case, expectation value of the full modular

hamiltonian around the vacuum up to first order does not vanish anymore.

δ〈HA〉 =
∑
i

tr[(trĀ|i〉〈i| − trĀ|0〉〈0|)H]e−βEi (4.3.11)

the differences of modular hamiltonians for complementary regions become,

δ〈HA−Ā〉 =
∑
i

〈i|HA−Ā|i〉e−βEi (4.3.12)

where HA−Ā ≡ HA −HĀ, each of which acts trivially outside its domain. Since

HĀ−A does not annihilate excited states, there is no equality between δ〈HA〉 and

δ〈HĀ〉. Although this relation is simply reflecting the fact that entanglement

entropies of complementary regions in a mixed state are different, the first law

always satisfied at the linear order, without having any further constraint.

4.4 Relative Entropy through Energy and Scale

At this point, it is clear that the first law-like relations for pure states due to a

localized excitation, are actually occurring at the nonlinear level in field variations.

In this part we will have a closer look to the origin of the mismatch between ∆〈HA〉
and ∆〈HĀ〉 using covariant phase space approach. Although the former equals the

2Purification of a mixed state is not unique, yet the mixed state having different purifications

have same von Neumann etropy.
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4. Bekenstein bound in the bulk and AdS/CFT

change of entanglement entropy in the case of a conical defect perturbation, the

latter is always greater than that. So we can begin by asking what the difference

∆〈HĀ〉 − ∆SĀ corresponds to in the bulk. Firstly, we will study the difference

between ∆〈HA〉 and ∆SA for a state near the vacuum via perturbation theory and

later we will generalize the result to any spherically symmetric excitation.

4.4.1 Perturbation theory at the non linear level

To see the origin of the difference between modular hamiltonian and entanglement

entropy, let us study the first law via covariant phase space formulation. We will

not give the review of the formulation here rather we will use the fundamental

theorem of the formalism which ties the linearized equation of motion in the bulk

to change of surface charges. The change of surface charges around the vacuum

associated to Rindler horizon generating vector fields match with the information

theoretic quantities in the microscopic theory. This identification has been used

to derive linearized equation in the bulk through the first law of entanglement

entropy in CFT [62]. The fundamental theorem of covariant phase space approach

states that (5.3.10),

dχξ = ω(Φ, δΦ,LξΦ)− 2ξaδE(Φ)abε
b (4.4.1)

Φ stands for the whole field content of the theory including gravitational fields. ω

is presymplectic potential and εa is d dimensional volume form. Eab is the equation

motion derived from full lagrangian including gravitational part.

The equation above is valid when the equations of motion satisfied for the un-

perturbed state. χξ is a (d − 1) form, whose integral on the boundary region

homologous to a minimal surface, yields the change of modular energy and the

integral on the minimal surface itself gives the change of the area when the per-

turbation is considered around the vacuum.∫
Σ

dχξ =

∮
∂Σ

χξ = ∆〈HA〉 −∆SA (4.4.2)

where Σ denotes the d dimensional timelike hypersurface bounded by minimal

surface and infinity. Although the theorem is valid for any solution and the per-

turbations around it. The correspondence between integral of χξ and the in-

formation theoretic quantities in the underlying theory is constructed around the

vacuum. When ξ is a Killing field, the presymplectic potential vanishes identically,

as Lξg = 0.

The derivation of linearized Einstein equations via the first law of entanglement

entropy can be demonstrated simply by the fundamental theorem of the covariant
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4.4. Relative Entropy through Energy and Scale

phase space approach, where vanishing of ∆HA − ∆SA implies the vanishing of∫
ξaδEabε

b. When the relation is satisfied for every boundary ball, it can be turned

into a local equality that is equivalent to linearized Einstein equations. However in

our case, we have shown explicitly that the first law of entanglement entropy does

not hold. Therefore the difference between modular hamiltonian and entanglement

entropy is equal to the linearized equation of motion sourced by the bulk matter

stress tensor. If one only considers the gravitational part of the field content, any

addition of matter stress can be included at the level of linearized equation as the

right hand side of the equality. Hence, the linearized equations are not source free

for the perturbed state, which is the bulk point of view on the mismatch between

modular energy and entanglement entropy. We should emphasize that we are not

deriving linearized Einstein equation with classical source around the vacuum. The

derivation of linearized Einstein equation with source had been proposed in [130].

However the source term 〈Tµν〉 in that derivation was semiclassical by nature hence

it can appear as the leading term in the perturbation theory around the vacuum,

which corresponds to quantum (1/N) corrections on the CFT. Here we assume that

the geometry is perturbed by a classical stress energy tensor which appears at the

quadratic order in the perturbation theory. Yet one can study the backreaction of

the gravitational field on the matter fields through linearized Einstein equations as

we will do. It does not seem possible to us that one can derive linearized Einstein

equation with a classical source around the vacuum via a perturbation theory

on the microscopic state since the source term and gravitational part appear at

different orders. To summarize, the difference between the modular Hamiltonian

and the entanglement entropy (relative entropy) is equal to modular integral of

the bulk stress energy. The exact expression can be obtained simply by inserting

the source term for linearized Einstein equation.

S(ρA||ρvac.
A ) = ∆HA −∆SA =

∫
Σ

ξaTab ε
b (4.4.3)

which has a simple expression for spherically symmetric configurations, in which

case one can evaluate it without detailed knowledge of the energy distribution in

the bulk. This will be the way we extend the notion of bulk modular energy to

excited states beyond perturbation theory.

The equation (4.4.3) is obtained by Stokes theorem. In general, variation on the

holographic entanglement entropy can originate from two different sources. It can

either come as the variation of the minimal surface or variation of the metric field

on the surface. To stay in the domain of validity of the Stokes theorem the variation

of the entanglement entropy with the minimal surface should vanish. This is the

case for linear perturbations since entropy functional (area) is extremized on the

same surface. Hence the perturbation theory should be truncated beyond this

order. In the first order, entanglement entropy on the CFT gets contributions
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only from the expectation value of the boundary stress tensor. At the second

order, all the one point functions start to contribute. Let us have a look at how

the metric behaves near the boundary in the Fefferman-Graham expansion where

the geometry near the boundary can be expanded in the following way,

gµν =
L2

z2
(dz2 + gµνdx

µdxν) (4.4.4)

when the asymptotic boundary is flat gµν = ηµν + δgµν . In this expansion one can

determine the behavior of the scalar fields near the boundary in terms of the one

point functions on the CFT, φ ∼ γz∆〈O〉+ ... when fed back to Einstein equation

with a scalar field, the boundary expansion of the metric is altered in the following

way,

δgµν ∼ azd〈Tµν〉+ bz2∆〈O〉ηµν + ... (4.4.5)

where ∆ is the dimension of the operator O. Let us consider a case where both

operators contribute at the same energy scale µ on the boundary theory, then

contribution of each term to the entanglement entropy becomes 〈O〉 ∼ µ∆ and

〈T 〉 ∼ µd. The dimensionless perturbation parameter becomes µr � 1 where r

is the radius of the sphere CFT lives. Entanglement entropy takes a contribution

(µr)d from stress tensor at the linear order and (µr)2∆ from the one point functions

at the quadratic order. Let us emphasize that the leading order contribution to the

entanglement entropy from scalar operators comes at the quadratic level. In this

case when the dimension of the operator satisfies d
2 − 1 < ∆ < d

2 its contribution

becomes the dominant one. In our case, we demand the stress energy contribution

to be dominant and truncate the perturbation theory at the quadratic order of

the stress energy contribution. In this case, the dimension of the scalar operator

can take values between d
2 < O < d. Since the perturbation parameter is chosen

to be the combination (µr) we have control on the entire bulk without restricting

ourselves to near boundary regions. This is the weak field limit in the AdS. In

the example of the conical defect this corresponds to small angle deficit limit

δθ � 1. In the weak field limit one can decode the matter stress distribution in

the entire bulk via the relative entropy on the underlying theory. Mathematically

this corresponds to inverse Radon transform. This is the weak field version of the

near boundary tomography presented in [131].

4.4.2 Appearance of Radial Scale

In this part we will demonstrate an interesting observation on the contribution

of conical defect to the relative entropy. As it is explained in the previous sub-

section the presence of a localized source increases the relative entropy only in
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the entanglement wedge that contains it. This is in agreement with the idea of

entanglement wedge reconstruction, where one can reconstruct the bulk regions

corresponding to the entanglement wedges of those regions. The entanglement

wedge reconstruction idea has been studied mostly in cases that exclude backre-

action on the geometry [132], although some speculations are made for the case

involving backreaction, [133]. In general, entanglement wedge reconstruction con-

siders the construction of the bulk fields around a classical background using the

boundary CFT. Here, we provide further evidence that the conjecture should be

valid even when backreaction is considered. The conical defect solution is again a

suitable framework where we can explicitly find what the increase is, in the relative

entropy due to presence of the defect. Interestingly the contribution of the conical

defect can be expressed in terms of the ADM energy of the defect and radius of the

region that includes defect or by the radius of the region that can not be probed

by the boundary interval that excludes the defect. We have calculated in (4.2.9)

the change of modular energy for the boundary interval A whose size α < π/2 in

the presence of a small defect. One can easily deduce the corresponding expression

for the complementary boundary interval where α > π/2.

∆H(ᾱ) = ∆H(π − α) = 2L (1− (π − α) cot(π − α)) ∆MADM (4.4.6)

The conical defect perturbation deforms the vacuum into a nearby pure state

hence change of the entanglement entropies for the complementary regions should

be equal. This allows us to calculate relative entropy for the boundary region Ā

directly through the differences of the changes of modular energies of the comple-

mentary regions. For a perturbative pure state excitation that is excluded by one

of the complementary regions, the first equality below always hold and the second

equality is what we have obtained in the case of a conical defect.

S(ρĀ||ρvac.
Ā ) = ∆〈H(ᾱ)〉 −∆〈H(α)〉 = 2πRMcon (4.4.7)

where Mcon is the vacuum subtracted energy of the conical defect. R is the radius

of the sphere that, observers having access to region A on the boundary, is blind

to. In other words R is the scale in the bulk beyond which, one can not extract any

information by having access to the boundary region A, (Figure:4.1). Since the

perturbed state is homogeneous or translational invariant, all the regions with same

size on the boundary have the same information content which can be denoted by

a scale on the boundary. Interestingly there is a one to one map between the

scale on the boundary and the radius of the bulk sphere. Boundary observers

having access to subsystems of size 2α has no information regarding the sphere

of radius R = L cotα, where L is the curvature radius of AdS. This expression is

remarkable in the sense that it yields the information theoretic content of the bulk

excitations in a non-local way in terms of the bulk quantities. A similar expression
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is used in, [73] to motivate the information theoretic effect of introducing matter

onto spacetime. This effect appears as a reduction of entanglement entropy once

it is postulated that surface area is the measure for entanglement entropy of the

quantum state describing spacetime. In the next section we will give the derivation

of the radial scale R in higher dimensional generalization of conical defects where

excited state can be considered as a perturbation over the vacuum.

4.4.3 Higher Dimensional Generalizations for Perturbative

Excitations

In this section we will extend the connection between relative entropy and the

bulk modular energy to higher dimensions for spherically symmetric perturbative

excitations. We will show how the bulk radial scale enter into the calculation

which will later be used for the derivation of the Bekenstein bound in the bulk.

d+ 1 AdS can be represented by the hyperboloid,

X2
0 +X2

d+1 −
d∑
i=1

X2
i = L2 (4.4.8)

embedded in d + 2 dimensional flat space. Equation (4.4.8) can be solved by

setting,

X0 = L coshχ cos τ,

Xd+1 = L coshχ sin τ,

Xi = L sinhχΩi,

where
∑d−1
i=1 Ωi = 1 and spans the trigonometric functions of θ, φi where i runs in

{1...d− 2}. The solution (χ ≥ 0, 0 ≤ τ ≤ 2π) covers the entire hyperboloid hence

yields the global description of AdSd+1, whose metric becomes,

ds2 = L2(− cosh2 χdτ2 + dχ2 + sinh2 χdΩ2
d−1) (4.4.9)

We would like to compactify the solution such that boundary resides at a finite

value of the radial direction. The casual structure of AdSd+1 can be studied by

the following coordinate transformation,

sinhχ = tan ρ, 0 ≤ ρ ≤ π/2, (4.4.10)

the metric becomes,

ds2 =
L2

cos ρ2

(
− dτ2 + dρ2 + sin2 ρ (dθ2 + sind−2 θ dΩ2

d−2)︸ ︷︷ ︸
dΩ2

d−1

)
(4.4.11)
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θ

Sd−2

Sd−1

φi

Figure 4.2: Coordinate system used for constant time slice of AdSd+1. Opening angle 2α of the

boundary ball Sd−2 is measured by the coordinate variable θ.

In this coordinate system 4.2 boundary is located at ρ = π/2. Size of the Sd−2

boundary ball, A is determined by the coordinate variable θ. The Killing field

that generates the Rindler horizon in the global coordinates is given by,

ξa =
cos τ sin ρ cos θ − cosα

sinα
∂τ +

sin τ cos ρ cos θ

sinα
∂ρ −

sin τ sin θ

sin ρ sinα
∂θ (4.4.12)

ξa vanishes on the minimal surface that is homologous to the boundary ball

A and it has unit surface gravity. α is the size of the boundary ball. Let us

turn back to the problem of generalizing out observation on the conical defect

to higher dimensions. Consider a spherically symmetric perturbative excitation

in the AdSd+1. Stress energy distribution characterizing this excitation depends

only on the radial coordinate T bulk
ab ≡ T bulk

ab (ρ) which corresponds to a uniform

(spherically symmetric) energy density on the boundary. Let us pick the constant

time slice to study the relative entropy around the vacuum whose geometric dual

is given by the solution (4.4.11). Suppose there is no excitation in the casual

wedge of the boundary region A i.e. all of the bulk excitation confined inside the

complement Ā. In this case the difference of the change of modular energies equal

to the relative entropy of the complement and can be expressed as the modular

integral of the bulk stress energy.

S(ρĀ||ρvac.
Ā ) = ∆〈H(ᾱ)−H(α)〉 = 2πL

∫
ρ≤ρ0

sin ρ cos θ − cosα

sinα
T bulk(ρ) ddV

= 2πL cotα∆MADM (4.4.13)
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4. Bekenstein bound in the bulk and AdS/CFT

Note that the expression is given in terms of curvature radius of the AdSd+1 as a

necessity of dimensionless nature of relative entropy. The appearance of curvature

scale plays an important role in the identification with the radial coordinates in the

bulk. In the expression above ρ0 represents the deepest point that can be probed

via the boundary region A. Observers that have access to the smaller boundary

can not decode the bulk beyond this point, hence it denotes a sphere of ignorance.

Let us look at the physical interpretation of the factor cotα from the bulk point of

view. The equation of the minimal surface that are homologous to (d− 2) spheres

on the boundary is given by,

sin ρ cos(θ − θ0) = cosα (4.4.14)

θ0 denotes the center of the boundary ball in θ. The deepest point that the surface

reach has the angular coordinate θ = θ0. The radial coordinate of the point of

ignorance becomes, sin ρ = cosα. Let us represent the the radius of the the sphere

of ignorance using the spherical coordinates. The radial coordinate sits in front of

the angular directions in spherical coordinates as R2dΩ2. In the global AdS this

corresponds to tan ρ. Using the expression for the location of the tip in terms of

α, we infer that radius of the sphere that observers having access to region A can

not access becomes,

Rscale = L cotα (4.4.15)

Therefore we have derived that in the perturbative regime the modular energy

of spherically symmetric excitation can be seen as a non local contribution that

depends on the size of the system. A similar result is used in [73] to motivate the

idea that matter reduces the entanglement entropy of the spacetime in a way that is

proportional to the radial scale of the hypothetical box that contains the excitation.

Our result also indicate that it should be possible to construct modular modular

hamiltonian for a spherical region in the bulk. To sum up we have obtained the

following expression for the modular energy contribution of the bulk excitation to

the entanglement wedge that includes the excitation,

∆Ebulk ≡ 2πRscale∆MADM (4.4.16)

where bulk modular energy contribution to the entanglement wedge is defined as

∆Ebulk ≡ ∆〈HĀ−HA〉. In the next section we will derive this relation completely

through underlying theory and we will put some emphasis on the differences be-

tween pure and thermal state excitations.
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4.5. Bekenstein bound and AdS/CFT

4.5 Bekenstein bound and AdS/CFT

In the derivation of the expression (4.4.16), we used explicitly that the excited

state is a pure state, in which the change of entanglement entropies of the com-

plementary regions are equal. The purity of the excited state is used to relate

the ∆〈HĀ −HA〉 to the bulk modular integral of the stress energy tensor. To be

explicit we employed the equality of ∆SĀ and ∆〈HA〉 through their relation to

∆SA. In the case of a thermal state, the change of entanglement entropies would

not be equal anymore. Therefore, we could not derive the same expression when

the excitation is a mixed state (4.3.10). In that case, bulk excitation would carry

information that can not be deduced from the underlying state without access to

auxiliary purification.

On the other hand, in the macroscopic description of the so-called first law, we have

only specified change in the expectation value of the boundary stress tensor ∆〈Tµν〉
together with the knowledge of the purity of the perturbed state. The change in

the expectation value of the boundary stress energy alone, does not specify the

microscopic nature of the perturbation. Pure and mixed state perturbations are

quite different although they may yield equal amount of change in the energy of

the system. One important difference in their nature, as we have explained in

section 4.3: a pure state perturbation with a non vanishing net energy increase

can not take place at the linear level while that for a mixed state can. This is a

very restrictive statement which implies that linearized Einstein equations with a

classical source can not take place at the linear level from the point of microscopic

theory, which as we have explained, took place at non linear level and source

should be considered as the back-reaction of geometry on the stress energy tensor.

This is expected, since bulk stress energy tensor vanishes for the perturbations at

the linear level around the vacuum. However when the perturbation is a mixed

state then there is no such constraint on the change of total energy of the system.

To sum up when one only specifies the change of boundary stress tensor, one

does not know the information theoretic content of the perturbation. A mixed

state perturbation and a pure state one only differs in terms of their entanglement

entropic content.

In the next section we will restrict ourselves to perturbative bulk excitations. In

this regime one can use the covariant phase space formalism 2.2 and perform an

analytical calculation in the bulk. In the perturbative regime the relation between

boundary entanglement difference |δSĀ − δSA| and the entropy δSbulk
SR associated

to the bulk region bounded by the area of the sphere of radius Rscale will be

established. We will show that δSbulk
SR ≤ |δSĀ − δSA|. The equality satisfies when

all the excitation is confined to the sphere SR. In section 4.5.2, we extend our
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4. Bekenstein bound in the bulk and AdS/CFT

result to non perturbative regime. In this case a direct bulk computation is not

possible however we observe the Bekenstein bound in the bulk purely from CFT.

4.5.1 Mixed state excitations at the linear level

Before observing the manifestation of the Bekenstein bound in the microscopic

theory as the monotonicity of relative entropy on the CFT, let us study thermal

states that are perturbations around the vacuum ρ = ρ0 + δρ to see how different

the observable δSĀ−A ≡ δSĀ − δSA behaves, which was vanishing for any pure

state excitation.

In the case of a pure state, the change of entanglement for some region and its

complement is equal, ∆SA = ∆SĀ. Conical defect perturbation was an example

of this case, where the defect was included only in one of the entanglement wedges,

yet the information content of the complement is the same. We interpret this as by

arguing that defect does not carry entropy in itself with respect to the underlying

state containing it. If the perturbation is in the form of a mixed state, then one

would expect totally different behavior. Note that we were also not allowed by the

constraints, (4.3.7), to study the first law of entanglement for pure states which

has δE 6= 0, which is not the case for thermal states.

Let us consider a mixed state perturbation at the linear order. It satisfies the first

law of entanglement entropy, both for the boundary region A and its complement

Ā. Using the first law of entanglement, we can find the difference δSĀ−δSA which

is considered as a measure of information associated to the entanglement wedge

of Ā, that can not be retrieved from A.

δSĀ − δSA = δ〈HĀ〉 − 〈δHA〉 (4.5.1)

The change of entanglement entropy of the underlying state can be decomposed

into two contributions. The area contribution and entanglement entropy of quan-

tum fields in the bulk which emerges as quantum corrections to the underlying

state. As we have explained in great detail in section 3, linearized perturbations

on the underlying state can only change the total energy of the state if they are

of thermal nature.

δSĀ =
δA

4GN
+ δSbulk

ΣĀ
(4.5.2)

where ΣA denotes the entanglement wedge of A. The contribution from bulk fields

can be expressed as a local integral expression in the linear level [134].

δSbulk
ΣA =

∫
ΣA

ζµ〈Tµν〉 dΣν (4.5.3)
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when all the contribution is confined into the sphere of ignorance one can equate

the bulk entanglement contribution of this region to the difference of change of

modular energies. Because in this case even the perturbation is of mixed state na-

ture, the change of areas would be equal due to extremal character of the surfaces.

Hence,

δSbulk
SR = 2πRδMADM (4.5.4)

the bulk entanglement entropy resides in the sphere of ignorance is defined as

δSbulk
SR =

∫
Θ(R− r)ζµδ〈Tµν〉 dΣν (4.5.5)

we obtain the entropic version of the (4.4.15). where R = L cotα and α is the

angular radius of the boundary region A. This is the maximum entropy that

can be contained in the spherical region around the origin with radius, R for a

system with energy MADM. It shows us that, the difference between entanglement

entropies of complementary regions in a thermal perturbative excitation at the

linear level is equal to saturation of Bekenstein bound for a system with energy

MADM and size R. Indeed this is the region that the observer who has control

on system A is blind to. Any deviation from thermal nature (mixture of thermal

state and pure state as an ensemble), decreases the δSĀ−A as it is zero in pure

state.

Note that the expression diverges in the limit α→ 0. In this case region Ā covers

the whole boundary. How could we make sense of this expression, in this limit?

There are two scales in the problem: that of α and β, the inverse temperature

of the system. Although (4.5.4) does not contain β explicitly, it is absorbed into

δECFT (4.5.8), which should be read in terms of the energy of lowest excited state

weighted with the Boltzman constant and the degeneracy of the state δECFT =∑
i giEie

−βEi . This expression is sensitive to the order of limits and to make sense

of it, one should consider the limit β → ∞ before α → π [129]. Although, order

of limits can let us make sense of the expression in α → 0 limit, it is still an

open question, at least to the author, how can we make sense of expression as an

operator expression, since same expression can also be used to evaluate ∆〈HĀ〉 for

non perturbative excited states.

4.5.2 Bekenstein Bound in the Bulk

Until now we have carried out a perturbative analysis using covariant phase space

formulation. We computed the ∆〈HĀ−A〉 and δSĀ−A as an integral of the bulk

stress energy tensor using the fundamental theorem of the covariant phase space
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4. Bekenstein bound in the bulk and AdS/CFT

formalism. To emphasize again this is only valid when the geometric dual of the

excited state can be seen as perturbation of the metric field around the AdS. In

this section, we will show that one can go beyond perturbation theory solely using

CFT modular Hamiltonian. Although the difference ∆〈HĀ−HA〉 can be obtained

only referring to the boundary quantities for non perturbative excitation, it has

the similar bulk interpretations. Again the quantities involved in the expressions

have different nature for pure and mixed states.

The modular Hamiltonian for a ball shaped region for the vacuum of the CFT is

an operator expression (4.3.5). Hence it has no restriction on the state that the

operator is evaluated. Until now we have used this expression for the states that

are close to the vacuum, in that case there exists a dual bulk expression for the

relative entropy when one of the entanglement wedges excludes any excitation in

the bulk.

Let us consider an excited state |Ψ〉 which is orthogonal to the vacuum 〈Ψ|0〉 = 0.

One can study change in the modular energies by taking the expectation value

of the stress energy around |Ψ〉. Considering the differences of the changes for

complementary regions we obtain,

∆〈HĀ−A〉 = 2π

∫ π

0

rd−1 dΩd−2 sind−2 θ

(
r

cos θ − cosα

sinα

)
∆〈T̂00〉(~r) (4.5.6)

where ∆〈T̂00〉 ≡ 〈T̂00〉Ψ − 〈T̂00〉0. For a pure state ∆〈HĀ−A〉 = S(ρĀ|ρ0
Ā

) −
S(ρA|ρ0

A). In this case one can not associate any entropy to the bulk excitation

in the form of entanglement. Let us evaluate (4.5.6) for homogenous excitation

where energy density of the state is given as ε = ∆E
rd−1Ωd−1

, in this case bulk dual

of the state becomes spherically symmetric.

∆〈HĀ−A〉 = 2πr∆E
Vol(Sd−2)

Vol(Sd−1)

∫ π

0

sind−2 θ

(
cos θ − cosα

sinα

)
= 2πr cotα∆ECFT. (4.5.7)

The expression is the higher dimensional non-pertubative generalization of the one

that is obtained in (4.4.7) for conical defects. The expression is remarkable as it is

valid in any dimension yet it is more interesting when one understand it in terms

of the bulk quantities. Let us elaborate the identification with the bulk in more

detail. We choose the cylindrical description R × Sd−1 of AdSd+1. The metric

of the AdSd+1 is given in (4.4.11). Although one can fit the geometry on a finite

piece of paper, the actual radius of the boundary sphere becomes infinite. However

this is an overall conformal factor that can be removed such that volume of the

boundary sphere becomes finite. Hence flow of time in the bulk and boundary
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4.5. Bekenstein bound and AdS/CFT

descriptions are different as it is measured by the lapse function N (=
√
gtt) in

the ADM description. In the global coordinates N → R/L asymptotically.4 The

energy of the state in the CFT is proportional to the mass of the dual gravitational

solution,

∆MADM =
r

L
∆ECFT (4.5.8)

where r is the curvature radius of Sd−1 while L is the curvature of the AdS. Equal-

ity above also ensures a dimensionless identification in the information theoretic

observables. If one identifies these two scales then energies of the theories are

naturally identified. This identification is necessary to recognize the radial scale

of the deepest point that can be probed by the state of A (Vol(Ā) ≥ Vol(A)) in

CFT. Remember that the deepest point in the bulk that can be reached via the

boundary region A was given in (4.4.15). Inserting these we see that the change

in the full modular hamiltonian in the complementary regions becomes,

∆〈HĀ−A〉 = 2πRscale∆MADM (4.5.9)

This is entirely a bulk expression due to the natural identification between mod-

ular energies of the CFT and the gravitational dual. Once again, just like the

perturbative case (4.4.13), we have observed that for spherically symmetric exci-

tation, the difference in the entanglement energies of the complementary states of

the underlying theory have an expression in terms of bulk quantities.

It has been emphasized along the chapter that when excitation is pure state, the

change of entanglement for complementary regions are equal ∆SĀ−A = 0. In this

case one can not associate extra new correlation in the form of entanglement to

the bulk excitation for scales less then the radial probing point of the boundary

observes having access to A. In the language of bit threads [28] no additional

thread (additional in the sense that comes by the excitation on top of the vacuum

tread configuration) ends up in the bulk. Purity of the state constrains the amount

of information that is missing beyond the scale R. On the other hand for a thermal

state ∆SĀ−A 6= 0. Let us focus to spherically symmetric thermal excitations again.

For non-perturbative excitations we do not have the localized expression of the bulk

stress tensor anywhere in the bulk which was possible for states that are dual to

geometries that can be expressed as perturbations of the metric around the AdS.

Positivity of relative entropy dictates that,

S(ρA||ρ0A) ≥ 0, =⇒ ∆〈HA〉 −∆SA ≥ 0 (4.5.10)

4The identification outlined above appears in a more rigorous way in the duality between

AdS5 ×S5 and SU(N) Yang-Mills. The relation L3/GN = 2N2/π makes it possible to relate the

mass to the dimension of the gauge group N . Then rEcasimir = LMcasimir = 3(N2 − 1)/16.
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Figure 4.3: The difference between change of entanglement entropies of the complementary

regions in CFTd for a thermal state with respect to vacuum is bounded by the

maximum entropy that can be contained in the region excluded by the smaller

interval. Spherical symmetry allows one to translate the region A, which is pictured

on the right. Monotonicity of relative entropy puts a bound on the difference of

entanglement entropies, ∆SĀ−A ≤ 2πRscale∆MADM, which is the consequence of

Bekenstein bound in the geometric description.

Since, excitation is not perturbation around the vacuum, one can not equate the

right hand side of the first equation to the modular integral of bulk stress energy.

Possibly it is not even in the form of local expression. However assuming spheri-

cally symmetry for excited state one can understand the implications for the bulk

physics in the non perturbative level. As a consequence of spherical symmetry

one can translate the region A such that Ā ⊇ A without altering ∆SA or ∆〈ĤA〉.
Following rotations, Further impose the monotonicity of the relative entropy,

S(ρĀ||ρ0Ā) ≥ S(ρA||ρ0A) =⇒ ∆SĀ−A ≤ ∆〈HĀ〉 −∆〈HA〉.
(4.5.11)

We have already calculated right hand side using the boundary expressions of the

modular hamiltonian.

|∆SĀ−A| ≤ 2πRscale∆MADM . (4.5.12)

The inequality is universal in the sense that it is independent of the details of the

excitation, and how it is organized spatially in the gravitational theory apart from

its spherical symmetry. Remember that we have encountered necessity of spherical

symmetry in the derivation of the Bekenstein bound using positivity of relative

entropy (2.5.3) also in the QFT [72]. One can deviate from spherical symmetry by

considering O(1) deformations of the bound. Using the symmetry we argue that

the entropy contained in the sphere of ignorance is bounded by the difference of
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vacuum subtracted entropies of the complementary regions on the boundary.

∆Sbulk
SR ≤ ∆SĀ−A (4.5.13)

Remember that ∆SĀ−A ≡ ∆SĀ −∆SA. The bound becomes and equality in the

perturbative limit as shown in eq. (4.5.4). The symmetry of the system actually

reduces the effective dimensions to one and allows us to represent entanglement

entropy using the two scales of the system, namely energy and size of the box.

In this one effective spatial dimensional information space, the difference between

entanglement entopies of the complementary regions in the microscopic system, is

bounded by the Bekenstein bound for a system with radius R and energy M in the

bulk, which is indeed the region that is excluded by any observation on scale(A).

If all the energy was contained in the radius rbulk < Rscale and organized to in a

way to saturate the Bekenstein bound, then |∆SĀ−A| = 2πRscale∆MADM. The

inequality also holds perturbatively, at the linear order as we have shown. In

the transition from a pure state to a thermal state, |δSĀ − δSA| is interpolates

between 0 and 2πRscale∆MADM. Whenever some of the thermal energy is replaced

by an equal amount of energy corresponding to a pure state, the difference between

entanglement entropies decreases.

On the other hand, we should be careful using ĤA on thermal states when the

bulk dual is a black hole solution. In this case one observes a phase transitions
5 in the entanglement entropy along the continuous increment of the system size.

These phase transitions are formulated as homology constraints for the minimal

surfaces in the bulk [135]. Therefore the local expression of ĤA is not valid for

regions bigger than the critical size θcritical beyond which phase transitions take

place as formulated in homology constraints. The point where phase transition

took place manifest itself as a sudden jump on the minimal surface. This is also the

point where Araki-Lieb bound is saturated. In the next section we will study the

relation between Araki-Lieb bound and the one we have derived via monotonicity

of relative entropy.

4.5.3 Comparison with Araki-Lieb bound

The bound we have derived in (4.5.12) using the monotonicity and positivity of

relative entropy for certain class of excitations has the same quantity with Araki-

Lieb bound on the left hand side of the inequality. It is an interesting exercise to

5Phase transitions on the modular hamiltonian takes place also for the disjoint intervals

depending on the distance of separation. Another example is the entanglement entropy in the

conical defect geometry when it is seen as the entanglement entropy of the disjoint intervals in

the parent theory. In both of these cases, the phase transition on entanglement entropy is due

to a jump in the saddle point and mutual information between disjoint intervals is a probe of

different phases.
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study these two inequalities together and see whether the bound derived here is

trivial when it is compared to Araki-Lieb bound.

The notion of entanglement entropy we had been referring along the chapter is von

Neumann entropy, which quantifies the extent to which the state represented by ρ

fails to be a pure state. The reason that von Neumann entropy serves as entangle-

ment entropy is that when the state ρ is obtained from a pure state by tracing over

part of the Hilbert space representing a subsystem, such as the one that can not be

accessed by the observer, then von Neumann entropy measures the entanglement

entropy between subsystem that is traced out and the rest. Suppose the Hilbert

space of the full system Hfull factorizes into Hilbert space of two subsystems,

Hfull = HA ⊗HĀ. Then for each subsystem we have corresponding density ma-

trices defined by tracing over the complementary subsystem ρA,Ā = TrĀ,A(ρfull).

The entanglement entropies that are associated to each density matrix can be

shown to satisfy following inequalities [136],

|S(ρA)− S(ρĀ)| ≤ S(ρfull) ≤ S(ρA) + S(ρĀ). (4.5.14)

The first part of the triangle inequality is usually referred as Araki-Lieb bound,

while the second is known as subadditivity. The Araki-Lieb bound is derived from

subadditivity. We have also derived an inequality that is similar to the first part

of the triangle inequality. We have observed that the difference of entanglement

entropies of the complementary subsystems follows the Bekenstein bound given in

terms of the bulk quantities. Our bound becomes non trivial compared to Araki-

Lieb bound when 2πMR ≤ S(ρfull). This happens when system sizes on the CFT

approach each other. In this limit, Bekenstein bound takes over the Araki-Lieb.

Let us compare these two bounds by considering d dimensional CFT at finite

temperature and having geometric dual as AdS-Schwarzschild black hole.

The metric for (d + 1)-dimensional static solution for asymptotically AdS space-

times is given by,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1, f(r) = 1 +
r2

L2
− µ

rd−2
(4.5.15)

where µ = 16πGNM
Ωd−1(d−1) . On this state Araki-Lieb bound can be expressed in terms

of the black hole entropy.

|∆SA−Ā|(α) ≤ A(r+)

4GN
=
rd−1
+ Ωd−1

4GN
(4.5.16)

where ∆SA−Ā = |∆S(ρA)−∆S(ρĀ)| and r+ is the largest solution to the equation,

1 +
r2

L2
− µ

rd−2
= 0. (4.5.17)
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We considered vacuum subtracted quantities on the right hand side. Since the

vacuum entanglement entropies of the complementary states are equal, this sub-

traction does not change the difference. Since the solution is spherically symmetric

we can use it to set Bekenstein bound. Let us calculate the mass of the solution

in terms of the r+. The calculation had been carried first by Hawking-Page [120]

in d = 3 and later generalized to arbitrary dimensions by Witten [137]. The key

point is the connection between action and the partition function I = − logZ.

Energy of the excitation can be calculated by change of the action with respect

to inverse temperature E = ∂βI. The action is calculated on shell, since on-shell

configuration is the dominant contribution in path integral. On shell integral of

the action for the regions outside of the horizon amounts to the volume of the

spacetime.

Ion-shell =
d

8πGN

∫
√
g dd+1x (4.5.18)

To calculate vacuum subtracted energy, one should calculate this integral for the

AdS-Schwarzschild for region r+ ≤ r ≤ r∞ and subtract the vacuum contribution

by considering the same integral on AdSd+1 for 0 ≤ r ≤ r∞.

I = lim
r∞→∞

d

8πGN
(VolBH(r∞)−VolAdS(r∞)) (4.5.19)

Explicit calculation yields,

M =
∂I

∂β
=

(d− 1)Ωd−1

16πGN

(
rd+
L2

+ rd−2
+

)
(4.5.20)

which correctly reproduces the vacuum subtracted energy of the BTZ black hole

d = 2 (MAdS3
= −1/8GN). Let us now use this expression to compare the two

bounds and find the limit where Araki-Lieb takes over the modular energy bound.

d− 1

2

(
r+

L
+

L

r+

)
cotα ≤ 1 (4.5.21)

Therefore when the condition above holds, Bekenstein bound sets a lower bound

then the Araki-Lieb. For large black holes i.e. r+/L� 1, the bound puts a more

restrictive condition then Araki-Lieb when cotα ≤ 2
d−1

L
r+

. In this case sphere of

ignorance stays inside the black hole. Hence the entropy can not only be associated

to the sphere Sd−1
Rscale

as it is not confined in this region. On the other hand, when

r+/L < 1 thermal AdS solution dominates the canonical ensemble.

The metric of Euclidean thermal AdS solution is identical to empty Euclidean AdS

apart from periodicity of time direction tE ∼ tE+β. The difference with Euclidean

Schwarzschild is that time circle in this solution does not cap off around the origin,
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in other words while space (r, tE) is topologically a disc for BH solution, it is

topologically equivalent to a cylinder in thermal AdS. Hence β is not fixed by any

regularity condition and becomes a free parameter in this solution. The solution

is represented as empty AdS therefore holographic entanglement entropy at the

leading order is identical to vacuum entanglement entropy. One can calculate

the entropy of the solution via the on-shell action calculated on Rd+1 × S1
β , S =

(1 − β∂β)I = 0. Thermal entropy on top of the vacuum contribution comes at

the order O(G0
N). At the critical temperature where phase transition takes place

it suddenly jumps to O(1/GN). Below this phase transition, the thermal entropy

can be fully confined inside the Sd−1
Rscale

as it has been studied for thermal states

at the linear level. Boundary computation provides all orders to the perturbative

excitation. Hence a valid interpretation of the Bekenstein bound on the entropy

attributed to sphere of ignorance takes place below the Hawking-Page transition.

This is in agreement with general understanding on the fact that Bekenstein bound

is applicable to system having weak self gravitation.

To sum up when condition (4.5.21) is satisfied the Bekenstein bound proposed in

this paper sets a lower bound then the Araki-Lieb bound. One can satisfy this

condition in both sides of the critical temperature. When the temperature is above

the critical temperature, black hole solutions are dominant in the phase space. In

this case, the space of parameters that satisfy (4.5.21), have Rscale that falls into

the black hole, Rscale < L < r+. On the other regime, below the Hawking-Phase

transition, the parameter space satisfy the condition when r+ ≤ Rscale. In this

case one can confine all the excitation inside the bulk sphere SR. We think thermal

AdS regime is more natural for Bekenstein bound interpretation in the bulk since

one can push all thermal gas inside the sphere SR. Our understanding also agrees

with the general idea that bound is valid for weakly self gravitating systems.

4.6 Conclusion and Discussion

In this chapter we have identified the full modular Hamiltonian from the bulk

point of view. We have studied analogous quantity in the entanglement entropy

and shown that it has distinct character for pure and mixed state excitation. In

section 2 we show that purity of the state puts strict constraints on the allowed

expectation value of the boundary stress energy tensor on the excited state. The

bulk interpretation of the full modular Hamiltonian for certain class of excitation

have a remarkably simple expression independent of the dimension of the space-

time. The connection between the bulk expression of the full modular hamiltonian

(2πMR) and the change of area in a certain identification of the manifolds had

been used to modify gravity at long distance scales [73]. In that proposal, this
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expression was the key component in the gravitational side where underlying state

follows the area law. Here we have identified the expression as the full modular

hamiltonian in the underlying theory. The main conclusions of this chapter can

be listed in the following way.

• Bekenstein bound in the bulk: Using positivity together with the mono-

tonicity of relative entropy, we have shown that the change of entanglement

entropy for complementary states in spherically symmetric excitations are

bounded by 2πMRscale. The expression is valid perturbatively as well as

non perturbatively. In the perturbative regime, full modular hamiltonian

can be expressed in the bulk as the integral of the local bulk stress energy

tensor using covariant phase space approach. In this case it is clear that

bound is saturated if all the excitation is hidden behind the sphere of ig-

norance defined with respect to the boundary region A. We have proposed

that difference of the change of the entanglement entropies of complementary

regions (SĀ−SA) in the boundary theory sets a bound for the entanglement

entropy resides in the sphere of ignorance. This entanglement should be seen

as the entanglement with respect to the purifying state, which would be zero

for pure state excitation, which trivially satisfy the Bekenstein bound pro-

posed here. In conclusion, the Bekenstein bound in the bulk manifest itself

as the positivity together with the monotonicity of the relative entropy in

the boundary CFT.

• An example of UV-IR correspondence: Bulk interpretation of the full

modular Hamiltonian reflects the well known UV-IR correspondence [138].

This should be understood as follows; consider the change of full modular

Hamiltonian, ∆〈H full(α)〉 in the boundary CFT as a function of the size of

the boundary interval A, where α ∈ [0, π/2]. In the boundary theory α→ 0

limit identifies the short distance behaviour. On the other hand, as we have

seen in the bulk the quantity amounts to 2πMRscale, where Rscale denotes

the deepest point the bulk that can be probed from the boundary state A.

The limit α → 0 corresponds to Rscale → ∞ from the bulk point of view

which yields one realization of the UV-IR correspondence in the AdS/CFT.

• Black hole vs thermal gas limits: Comparing with the Araki-Lieb bound

we have seen that, Bekenstein bound sets a lower bound when the comple-

mentary regions are close to each other. In the case of large black holes,

when the Bekenstein limit sets the lower bound with respect to Araki-Lieb,

the sphere of ignorance to which we have associated the entropy (SĀ − SA)

corresponds to the regions inside the black hole. In that case holographic

bound is already satisfied due to the formation of the black hole. Hence

holographic bound sets even a lower bound than the Bekenstein one in these

87



4. Bekenstein bound in the bulk and AdS/CFT

cases. On the other hand, in the thermal gas limit, ( r+/L < 1), below the

Hawking-Page transition, one can come up with a window, where Bekenstein

bound becomes non-trivial with respect to Araki-Lieb and yet holographic

bound is not saturated. This corresponds to limit where self gravitation of

the excitation is weak, hence in agreement with the expectations that bound

can be derived within the context of QFTs. On the other hand our deriva-

tion includes the backreaction on the geometry. We have also shown that

in the weak field limit the full modular hamiltonian have well defined bulk

expression which further justifies the proposals made in this chapter.

• Boundary to bulk map and proof of the proposal: We find it useful to

emphasize that we have not provided the full proof of the derivation of the

Bekenstein bound in the bulk via AdS/CFT. The relation between entropy

associated to the bulk spheres ∆Sbulk
SR and boundary entropy difference ≤

∆SĀ−A is conjectured for a spherically symmetric state (4.5.13). We have

proved this conjecture in the perturbative limit. Under such an assumption

we show that Bekenstein bound in the bulk manifest itself as the information

inequalities (positivity + monotonicity) in the underlying theory. It would

be remarkable to find the exact map between entropy of the bulk regions

and boundary regions to drop the assumption of spherical symmetry. That

would also let us test the volume law conjecture in spacetime.
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5
Pushing the first law of

entanglement into the bulk in

AdS3/CFT2

5.1 Introduction

The first observation on the connection between statistical physics of quantum

nature and geometry of spacetime goes back to the Bekenstein-Hawking formula

[14–16,20,139],

SBH =
c3AH
4GN~

. (5.1.1)

This observation opened a door to microscopic nature of gravity. Shortly after, it

is understood that, black holes does not only possess entropy, they follow all the

laws of thermodynamics [22]. If black holes are of thermodynamical nature, then

natural questions would arise: what are the molecules of black holes, how could one

count these, and where are they? String theory provided a partial answer to these

question for some particular black holes [140–142]. However it is still not known

for a generic black hole (such as Schwarzschild), where the information associated

with black hole entropy resides. How does it encoded into the geometry? Is it

located on the horizon or in the interior of the black hole and maybe it is spread

non-locally and shared between the interior and exterior of the black hole [25,27].

The problem of where the information resides and how it is returned back manifests

itself by the firewall paradox [29].

While the microscopics of black hole entropy is still puzzling in many ways, to-

gether with the establishment of holographic principle [143, 144] via the duality

of AdS/CFT [51], more doors opened regarding the information theoretic nature

of gravity. AdS/CFT teaches that the relation between entropy and the area of
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spacetime is much more broad than event horizons [57]. Ryu-Takayanagi proposal

states that the entanglement entropy of a region A in the conformal field theory

corresponds to the area of the bulk surface SA that is homologous to the boundary

region A.

S(A) = ext
SA∼A

(
ASA
4GN

)
(5.1.2)

where SA ∼ A indicates the homology relation between the surface SA and A.

This is the first indication that Bekenstein-Hawking type formulas apply to more

general surfaces than black hole horizons. The formula is giving us strong hints on

the emergent nature of gravity and its connection to information theory. Similar

to the first law of black hole mechanics, holographic entanglement entropy follows

a first law as a consequence of the positivity of relative entropy in the underlying

theory. The first law of entanglement entropy in CFT reflects itself as the equality

of the infinitesimal changes on the area of minimal surfaces and associated modular

energy in the bulk. This is a strong manifestation of the information theoretic

nature of the gravity.

The RT proposal is limited to the minimal (extremal) surfaces that extends to

the boundary. Therefore it is still not entirely clear if there are information theo-

retic observables in the microscopic theory that corresponds to areas of arbitrary

surfaces (non minimal) in the bulk and if there exists, how these quantities are em-

bedded into the field theory. This is part of the localization problem in AdS/CFT.

The spacetime entanglement conjecture build on top of the Ryu-Takayanagi re-

lation [60, 145] states that, in a theory of quantum gravity, any state describing

a smooth spacetime geometry reflects the following property: for any sufficiently

large region, there is a (finite) gravitational entropy which is characteristic of the

entanglement between the degrees of freedom describing the given region and those

describing its complement. Furthermore, the leading contribution to this entropy

is given by the Bekenstein-Hawking formula (5.1.1) evaluated on the boundary of

the region. That means, entanglement between degrees of freedom of the underly-

ing theory reflects itself more naturally in the gravitational theory and only special

cases of this entanglement, namely entanglement measured by minimal surfaces,

is encoded spatially in the CFT description of the underlying theory. In this case

one would also expect to observe a first law of entanglement on general surfaces.

How can we extend the first law of entanglement entropy that holds for regions on

the boundary theory, to a general spacelike surface in the bulk? In three dimen-

sional spherically symmetric asymptotically AdS geometries, the correspondence

between areas of bulk surfaces and entanglement entropy of the subsystems in the

CFT is made through differential entropy [68, 88] 1. Using the notion of differen-

1Other examples where area of a bulk surface measures the amount entanglement are tensor
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tial entropy, one can extent the first law of entanglement entropy for individual

boundary regions, to a collection of intervals which in total yields the change in

the differential entropy. In other words, the first law of Rindler horizons are ex-

tended to arbitrary bulk surfaces through the notion of differential entropy. The

first law of entanglement in the bulk is also studied on a local neighborhood of the

spacetime manifold [74]. We will not constrain ourselves to infinitesimal balls in

the bulk.

We observe that, the first law of differential entropy is equivalent to the gravito-

statics effects of the excitations on the surfaces according to Einstein equations

in the bulk. The boundary first law also provides an entropic origin on the emer-

gence of entanglement shadows. We have studied the first law around three class

of solutions: AdS, conical defect solutions and planar BTZ.

Comparing area of an arbitrary region when spacetime is deformed always requires

a scheme which involves fixing a parameter of the region defining the system.

In [73] the geodesic distance in the weak field limit is fixed, while in [74] volume of

the infinitesimal ball is kept fixed and in both cases an area deficit is observed due

to the energy introduced into the system. We identify the regions of unperturbed

vs perturbed manifolds, by keeping the number of degrees of freedom on the CFT

is fixed, A(S1)/ε, where A(S1) is the size of the circle CFT lives and ε is the cutoff

of the theory. In this case we always observe an area excess rather than deficit.

However we should say that our result does not conflict with [73, 74]. Since we

recognize the deficit terms in our expressions. It is rather a matter of choice what

to keep fix, yet CFT provides a natural reference on what parameter should be

fixed. Interestingly in the presence of conical defect we observe an amplification

in the size of the area defect and when the state is thermal the term that causes

area deficit even becomes an excess.

δSDE = δ〈HDE〉 = −∆
Ahole

4GN
+ ... AdS3 (5.1.3)

δSDE = δ〈HDE〉 = −(n∆)
Ahole

4GN
+ ... AdS3/Zn (5.1.4)

δSDE = δ〈HDE〉 =
δβ

β

Ahole

4GN
+ ... Planar BTZ (5.1.5)

there is an additional term we omit to emphasize the structure of area deficit

in different states. ∆ is deficit introduced inside the hole or 2π∆ measures the

angle deficit. In the thermal case deficit is identified with variation of the inverse

temperature. The result is independent of where the deficit is introduced inside

the hole. In the presence of already existing defect the area deficit amplifies, and

network constructions [85, 86]. In holographic tensor network models, area of an arbitrary bulk

surface is a measure for how much entanglement exists between both sides of the surface.
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finally in a thermal system deficit becomes excess. The result above is presented

for a spherical hole.

This paper organized as follows: in section 2.3 we review the concept of differential

entropy and provide a novel derivation in the form of integral equations. Solution

of the integral equation yields the measure in the kinematic space as a function

of the entanglement entropy. We explain the method in general dimension and

provide the solution in 3 dimensions. Spherical symmetry is sufficient for the

derivation and hence it applies to excited states. In section 5.3 we construct the

first law of differential entropy and show that differential energy measures the

change of area in terms of the energy injected into the hole. We observed that for

spherical holes, change of area is topological in the sense that it is independent

of where the excitation is introduced inside the hole. In section 5.4, we derived

a modular Hamiltonian for conical defect solutions at leading order in 1/N . We

provide consistency checks for the result and use the modular hamiltonian to study

first law of differential entropy. Finally in 5.A we study thermal solutions in the

same manner.
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5.2. Differential entropy via integral geometry

5.2 Differential entropy via integral geometry

In the previous section we have given the definition of differential entropy and show

that it reproduces the area of the spherical surfaces. Here we will further prove

that differential entropy always yields the area of the bulk surface whose tangent

geodesics are the entanglement entropy of the intervals that goes into the definition

of the discretized differential entropy. The connection between differential entropy

and integral geometry is first observed in [146]. The derivation we will provide in

the next section is novel and applies to any spherically symmetric excited state.

Integral geometry is basically the theory of measures on a geometrical space that

is invariant under the symmetries of that space. The field initially emerged as an

attempt to elucidate certain statements about geometric probability theory [147].

Recently integral geometry find its use in AdS/CFT as a formalism which connects

geometry with information theory [146]. It has been observed that the notion of

differential entropy actually corresponds to a classic result in integral geometry

called Crofton formula [148] which relates the length of a curve to the number of

times a random line intersect it.

Crofton formulas exist in higher dimensions both for flat and constant curvature

spaces. In general, volume of a compact m−dimensional submanifold S embed-

ded in d−dimensional constant curvature space (including flat geometry), can be

expressed by an integral over the space of r−dimensional planes [149]

vol(S) =
Or...O0Om

On...On−rOm+r−n

∫
dLr volm+r−d(S ∩ Lr) (5.2.1)

where dLr is the volume form in the space of r−planes. Lr denotes the r−dimensional

planes and Oi is the volume of i−dimensional unit sphere Si. Note that the inte-

gral is taken over the domain that intersect S in (m + r − d)− dimensions, since

other configurations has zero measure.

The connection with holography is a special case of (5.2.1). The formula is ex-

ploited for r = 1 and m = 1 in hyperbolic space H2. We will provide a method

to obtain differential entropy which can be applied to derive differential entropy

in higher dimensions, independent of the geometry of surface S. We will use the

Crofton formula to express the areas of minimal surfaces. Hence left hand side of

the equation (5.2.1) will be the entanglement entropy. For empty AdS the integral

equation is given by,

Sent(α0) = N
∫
K(α, α0) f(α) dα (5.2.2)

where α is the separation of the endpoints of the boundary anchored geodesic, α0

is the angular radius of the boundary ball homologous to the minimal surface. N
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O

~r1
~r2

AdSd+1

CFTd

Figure 5.1: Illustration of the parametrization for the geodesics that intersect a boundary ball

of size R.

is the normalization constant given in (5.2.1) and f(α) is the density of geodesics.

The density f(α) will not depend on how geodesic is configured rotationally due

to symmetry of the problem. As we will show, in higher dimensions Kernel is

an integral of rotational degrees of freedom, Ω. Since overall space is 2(d − 1)

dimensional, Ω is 2d − 3 dimensional rotations. The integral over Ω is absorbed

into the Kernel as measure jas an expression of the form dL1 = f(α)dα ∧ dΩ

due to spherical symmetry. The solution of f(α) in terms of Sent(α0) will be the

generalization of differential entropy to higher dimensions. Since the derivation

only depends on the spherical symmetry, it applies to any excitation of AdS with

such symmetry. We will leave the solution of the integral in general dimensions to

a future study and will provide the solution for d = 2. But first let’s derive the

form of the Kernel in higher dimensions.

Let us apply the method suggested above and derive a kernel for the integral

equation whose inverse yields an expressions of the density of geodesics in terms

of the entanglement entropy of a totally geodesic surface.

Consider AdSd+1 whose constant time slice is d dimensional hyperbolic space Hd.
Space of geodesics of Hd is 2(d − 1) dimensional, since each two points on the

boundary determines a geodesic. On the space of geodesics one can define a vol-

ume form which is denoted as dL1, indicating that it is a measure for the space

of 1-dimensional surfaces. We can only restrict ourselves to the coordinates of the

boundary, and give the expression for the measure using spherical coordinates on

the euclidean space. Let us express the measure dL1 in terms of the endpoints of

the geodesic (~r1, ~r2) with respect to an arbitrary origin in euclidean space figure:

5.1. Density of geodesics does not depend on how the line is rotationally config-

ured due to spherical symmetry. Therefore non-trivial dependence becomes only
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through the distance of endpoints.

dL1 = f(|~r1 − ~r2|) d~r1 d~r2 (5.2.3)

where d~r = rd−2drdΩd−2 and f(|~r1 − ~r2|) denotes the density of geodesics. Com-

bining Crofton and Ryu-Takayanagi formula, we can express the entropy of a

boundary ball in the following way.

S(R) =

∫
d~r1

∫
d~r2 f(|~r1 − ~r2|) (Θ(R− |r1|) Θ(|r2| −R)) (5.2.4)

The equation indicates that geodesics intersecting the boundary ball has one end-

point inside the ball and the one outside. The center of the boundary ball is

picked as the origin coordinate system. Going to the center of mass coordinates

by defining,

~rm = ~r1 + ~r2 ~rs = ~r1 − ~r2 (5.2.5)

In these coordinates integral equation becomes,

S(R) =

∫ ∞
0

f(rs)K(rs, R) drs (5.2.6)

and Kernel is given by

K(rs, R) = Ωd−2Ωd−3 r
d−2
s

∫ ∞
0

drm r
d−2
m

∫ π

0

dθ (sinθ)d−3(
Θ(R− (r2

m + r2
s + 2rmrs cosθ)1/2) Θ((r2

m + r2
s − 2rmrs cosθ)1/2 −R)

)
(5.2.7)

Solution of the integral equation (5.2.6) is given by the operator that inverts the

kernel (5.2.7). Hence one finds an expression of the density of geodesics in terms

of entanglement entropy of a minimal surface anchored to a boundary ball of size

R. The power of the method sketched here is that it applies also to spherically

symmetric excited states.

In the next section we will apply the method described here to AdS2+1 and derive

well known expression for differential entropy.

5.2.1 Differential entropy for excited states

In this section we will give the derivation of differential entropy without referring

to AdS3. The derivation applies to all excited states with spherical symmetry.

The correspondence between gravitational entropy and differential entropy will be
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naturally reflected via Crofton formula. The only assumption that goes into our

derivation is existence of a well defined measure of the space of geodesics of the

spacetime dual to an excited state.

Consider a 2d manifold (M, g) with boundary ∂M. The manifold corresponds to

constant time slice of spherically symmetric 3d spacetime with negative cosmolog-

ical constant. For example in the case of AdS3, M becomes H2. Let us extend

every geodesic inM to infinity and denote each geodesic with two parameters de-

pending on where they end up in ∂M. One convenient choice is center θ and the

angular separation between the endpoints on the boundary α. Let us denote the

measure of the space of geodesics inM as dL1. Because of the spherical symmetry

the density of geodesics depends only on the angular width α.

dL1 = f(α) dα ∧ dθ (5.2.8)

where f(α) is the density of geodesics. The Crofton formula can be used to com-

pute the area of any surface. Let us use it to express the area of a minimal surface

(geodesic)

S(α0) =

∫
K
n(θ0, α0) f(α) dα ∧ dθ. (5.2.9)

n(θ0, α0) determines the domain of integration where each point corresponds to

the geodesics that intersects the minimal surface. For spherically symmetric spaces

determining the domain is simple. The geodesics that intersects the surface has

one end point in the region [θ0−α0, θ0 +α0] and other one is outside. Let’s express

the integral by dividing the domain into two regions α > α0 and α ≤ α0,

S(α0) =

∫ α0

0

∫
I1(θ)

f(α) dα ∧ dθ +

∫ π/2

α0

∫
I2(θ)

f(α) dα ∧ dθ (5.2.10)

these regions include all the geodesics that intersect the surface from right. There-

fore total set includes a factor of 2.

I1(θ) = {θ ∈ [θ0 + α0 − α, θ0 + α0 + α]}
I2(θ) = {θ ∈ [θ0 − α0 + α, θ0 + α0 + α]}

One can take the θ integral as a consequence of the spherical symmetry and express

the integration in the following way,

S(α0) =

∫ π/2

0

K(α, α0)f(α)dα (5.2.11)

where the kernel is K(α, α0) = αΘ(α0 − α) + α0Θ(α − α0). Θ(.) is Heaviside

step function. Once the inverse of kernel is known one can express the density
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Figure 5.2: Two classes of minimal curves according to their boundary width. On the right, the

domain of these sets in the kinematic space are shown. The domain determines the

kernel of the integration, whose evaluation yields the length of a curve via integral

geometry. Inverse of the kernel gives the integral geometric proof of differential

entropy.

of geodesics in terms of the entanglement entropy. The operator that inverts the

kernel is − d2

dα2
0
K(α, α0) = 4δ(α− α0). Hence,

dL1 = −1

4

d2S(α)

dα
dα ∧ dθ (5.2.12)

We extend the differential entropy without referring to AdS3 so the correspon-

dence between areas of surfaces and differential entropy applies to any spherically

symmetric state that has a classical gravitational dual in the large c limit. Once

we have expressed the volume form on the space of geodesics as a function of

entanglement entropy, differential entropy is obtained by simply integrating out

α.

SDE = −1

2

∫ 2π

0

dθ

∫ π/2

α(θ)

d2S(α)

dα
dα ∧ dθ =

1

2

∫ 2π

0

dθ

(
dS(α)

dα

)∣∣∣∣
α(θ)

(5.2.13)

We should note that when the state is excited, minimal surfaces may not reach

everywhere and there exists regions that can not be probed by entanglement en-

tropy. These regions are known as entanglement shadows [92, 150]. The Crofton

formula can also be used to derive the differential entropy for entanglement shad-

ows but the measure can not be given in terms of entanglement entropy. We will

not consider long geodesics having winding number.
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5.3 The first law of differential entropy

In this section we will extend the first law of entanglement entropy for boundary

intervals on a constant time slice to the notion of differential entropy. We will

introduce the differential modular energy that measures the change of area in

terms of the energy of the excitation introduced inside the hole.

5.3.1 Differential modular energy

The state of a subsystem A is described by reduced density matrix ρA = trĀρtotal,

where ρtotal is the density matrix describing the global state of the full system

and Ā is the complement of the subsystem A. The entanglement of a subsystem

with the rest can be quantified by the von Neumann entropy SA = −trρAlogρA
2.

Reduced density matrix ρA is both hermitian and positive (semi)definite, hence it

can be expressed as ρA = e−HA

tr(e−HA )
, where the Hermitian operator HA is known

as the modular Hamiltonian. The denominator is included to ensure that the

reduced density matrix has unit trace. Consider any infinitesimal variation to the

state of the system. The first order variation of the entanglement entropy becomes

δSA = −tr(δρAlogρA)− tr(δρA) where the reduced density matrix has unit trace

tr(δρA) = 0.

δSA = δ〈HA〉 (5.3.1)

Note that ĤA is the modular Hamiltonian associated with the original unperturbed

state. The first law satisfies for any state in any quantum mechanical theory.

We will apply the notion of first law of entanglement in the construction of dif-

ferential entropy. In other words, the first law entanglement entropy is translated

into the bulk as a first law relating the local excitation inside the hole to the change

of area.

δSDE =

n∑
k=1

[δS(Ik)− δS(Ik ∩ Ik+1)] (5.3.2)

Since the first law of entanglement entropy holds for individual intervals, one can

elevate the first law type relation to the joint relation. Hence,

δSDE = δ〈ĤDE〉 (5.3.3)

2von Neumann entropy does not always give the entanglement entropy between the partitions

of a mixed state. However it can always be considered as the entanglement between a subsytem

and its complement, where complement includes the purification.
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When the perturbation around the ground state is considered, each RT surface

becomes a Rindler horizon that is generated by particular linear combination of

isometries of AdS. In this case, for each boundary interval the modular hamiltonian

is an integral of a local expression. These integrals for each boundary ball together

construct another local expression of energy momentum tensor integrated on the

entire boundary which quantifies the change of area in terms of the energy of the

perturbation. While the first law of differential entropy is a boundary notion, it

manifest itself naturally in the bulk. The relation that emerges in the bulk is the

one dictated by Einstein equations inside the hole. In the continuous limit the

right hand side of the equation (5.3.3) becomes,

δ〈HDE〉 =
1

2

∫
dθ (dαδ〈HA(α)〉)α=α(θ) (5.3.4)

Around the vacuum, change in differential entropy can be seen as the change of

area when a conical defect is inserted into the hole. We will show that excitation

has to be inserted inside the hole.

Let us give a general form of this expression for cases where there exist a local

integral expression for the modular Hamiltonian. Consider the following expression

for the modular Hamiltonian,

HA(θ0, α) =

∫ θ0+α(θ0)

θ0−α(θ0)

dθ ζt(θ0, α, θ) T̂tt(θ) (5.3.5)

where ζ conformal Killing vector when expression is considered in AdS. We eval-

uate the expression on a constant time slice. Killing field ξ that generates the

Rindler horizons in AdS matches ζ near the boundary. If we plug this into the

expression (5.3.4),

ĤDE =
1

2

∫ 2π

0

dθ0
d

dα

(∫ θ0+α(θ0)

θ0−α(θ0)

dθ ζt(θ0, α, θ) T̂tt(θ)

)
α=α(θ)

(5.3.6)

The differentiation over α can be pulled inside the integral when the Kernels (ζt)

vanishes on the boundary of the integration domain. ζt(θ0, α, θ) satisfies this

condition in AdS as well as other known solutions. We propose the vanishing of

the ζt(θ0, α, θ) at the boundary of each interval as a necessary condition to have

a well defined local expression for the modular Hamiltonian

ζ(θ0, α, θ)|∂A = 0. (5.3.7)

Then one can define the differential modular energy as,

ĤDE =
1

2

∫ 2π

0

dθ0

∫ θ0+α(θ0)

θ0−α(θ0)

dθ

(
d

dα
ζt(θ0, α, θ)

)
α=α(θ)

T̂tt(θ) (5.3.8)
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The differential entropy side gives the change of area of the hole in the bulk. We

will see what differential energy provides. The expression (5.3.8) can be simplified

further by taking one of the integrals. There are two cases where one can simplify

this expression without explicit knowledge of α(θ). The first one is when the

expectation value of the stress energy is spherically symmetric in the perturbed

state namely when δ〈Ttt〉(θ) = T . In that case one can perform the inner integral.

The other case is when the hole in the bulk is a spherically symmetric one α(θ) = α.

We will give an expression for spherical hole in the bulk, in this case one can

replace the orders of integration using the symmetry of the operator. While it has

periodicity 2π in AdS, it is 2π/n in the conical defect examples as we will see.

Using the symmetry of the operator

ĤDE = C(α)

∫ 2π

0

dθ T̂tt(θ) (5.3.9)

We will see what C(α) measures in the bulk. As you noticed the expression can

be integrated and yields δ〈ĤDE〉 = C(α)δE for all perturbations. Interestingly as

soon as the excitation is inserted inside the hole the change does not depend on

where exactly it is injected. This is the consequence of Euler invariants in 2d.

5.3.2 Seeing inside the hole

Let us study what differential energy measures in the bulk. From the differential

entropy side, it is clear that it measures the change of area. However we claim that

the change is due to some local excitations that resides in the hole not outside of it.

The reason becomes clear in the formalism a la Wald [64], where the first law can

be seen as a consequence of the existence of a closed d−2-form, χ = δQ[ξ]− ξ ·Θ,

on-shell. ∫
Σ

dχξ =

∫
Σ

(
ω(g, δg,Lξg)− 2ξaδEgabε

b
)

(5.3.10)

where the equations of motion on the initial solution is assumed to satisfy. Σ

denotes the spacelike hypersurface, Egab stands for equation of motion derived by

varying only the metric and εb for the volume form on Σ. The term on the left

hand side yields the change of modular energy at the infinity and the change of

area on the horizon. ω is the symplectic current and vanishes when ξ is generators

of the isometry of unperturbed solution

δHA =

∫
∂Σ

(δQ[ξ]− ξ ·Θ)−
∫

Σ

εdab ξ
eδT de . (5.3.11)

∂Σ is the inner boundary which is the Rindler horizon in AdS. When the pertur-

bation is sourced by the stress tensor located on Σ, there is an extra contribution
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5.3. The first law of differential entropy

which is the source term in the linearized equation of motion. Hence, when the

origin of the perturbation is due to insertion of a localized source located between

minimal surface and the boundary, one would expect a contribution from the stress

energy of the perturbation. Therefore when the change of area is equal to change

of modular energy, there can not be any localized sources between the boundary

and minimal surface. Let us calculate the change explicitly.

We consider the hyperbolic slicing of AdS3 (4.4.9). In these coordinates AdS3 is

represented as a product of the Poincare disk with an infinite time axis. This

allows us to picture AdS spacetime as a cylinder over hyperbolic space. The

two dimensional conformal field theory lives on the conformal boundary of this

cylinder. In these coordinates, the Killing field ξ at t = 0 slice becomes.

ξ(θ0, α) =

(
cos(θ − θ0)

sinα

2r

1 + r2
− cosα

sinα

)
∂t (5.3.12)

the normalization is determined by ∇aξb = κεab, where εab is the bi-normal of the

minimal surface. The surface gravity is normalized to 2π. The Killing field on the

boundary at t = constant becomes,

ζ(θ0, α) =
(cos(θ − θ0)− cosα)

sinα
∂t. (5.3.13)

Using the first law of differential entropy δSDE = δ〈HDE〉 we can compute the

change of area of the hole, namely differential entropy purely from the boundary

data. In other words, we will use the local expression for the modular Hamiltonian

on each boundary ball

δ〈HDE〉 =
1

2

∫ 2π

0

dθ0

∫ θ0+α

θ0−α
dθ

(
d

dα
ζ(θ, θ0, α)

)∣∣∣∣
α=α(θ)

δ〈Ttt(θ)〉. (5.3.14)

It is possible to simplify this expression for some special cases, including spherical

hole around the origin for non-homogeneous perturbations of stress energy, a ho-

mogeneous perturbation for non-spherical hole as well as localized perturbations.

We will simplify by calculating the change for a spherical region around the origin

i.e. α(θ0) = α. By changing the order of integrals using the periodicity of the

operator, we take the θ0 integral

δ〈HDE〉 =

∫ 2π

0

dθ

(
− cosα

sinα
+

α

sin2 α

)
δ〈Ttt(θ)〉. (5.3.15)

The overall factor can be taken out of the integral and we only have the integral of

the change in the vacuum expectation value of the stress energy tensor, which is

equal to the conformal weight for the state describing conical defect. The physical

interpretation of the change in the differential entropy from the bulk point of view

becomes clear when we study the conical defect solution.
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5.3.3 Bulk interpretation of first law for differential en-

tropy

It is a well known fact that in 3d there are no propagating degrees of freedom.

This reflects itself in the representation of 3d gravity as a topological field theory

[151] which is studied extensively as Chern-Simons gauge theory. If there are no

propogating degrees of freedom then a natural question to ask is what linearized

Einstein equations are in 3d. Non existence of propogating degrees of freedom

does not exclude the gravitostatic effects, which are described through Poisson

equation. Therefore in 3d, linearized gravity is purely gravitostatics. The conical

defect solutions are also part of this phenomena. We will show that first law of

differential entropy in the boundary theory realizes as the gravitostatics effects

on the surface areas due to the appearance of conical defects in the bulk. This

can be considered as the extension of the first law of Rindler horizons to general

surfaces. The first law on general spacelike surfaces correspond to the first law of

differential entropy on the boundary theory. Let us demonstrate on a simple case

what differential energy measures in the bulk.

In order to understand the physical origin of the change from the bulk point of

view, we consider the conical defect solution as the result of the perturbation.

ds2 = −
(
γ2 +

R2

L2

)
dT 2 +

(
γ2 +

R2

L2

)−1

dR2 +R2dθ2 (5.3.16)

where 0< γ <1 and related to the deficit angle as δθ = 2π(1−γ). It turns out that

the change of entanglement has two contributions. For perturbative excitations,

the contributions are disentangles as the change of radius of the hole and the change

due to deficit angle introduced by the source. Let us first give the expression for

holographic entanglement entropy of a conical defect,

S(α) =
L

2GN
log

(
2L

γε
sin(γα)

)
(5.3.17)

which implies δS = L
4πGN

(1 − α cotα)δθ for a small deficit angle. Identification

of the cut-offs is essential to be able to compare two states. Conventional wisdom

would claim that the dependence on the cut-off in a logarithmic term is irrelevant,

however when one compare the two states and look at the difference in entangle-

ment entropies, identification of cut-offs is essential. It is equivalent to matching

the number of degrees of freedom. In other words we are identifying the dimen-

sionless quantity A(S1)
ε where the numerator stands for the circumference of the

boundary S1.

Let’s us first find the radius of the hole for fixed boundary intervals α. The distance

of a tip of boundary-anchored geodesic from the center equals to the radius of a
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Figure 5.3: First law of differential entropy corresponds to changes of areas due to excita-

tion introduced into the hole. Although non of the observer can access inside the

hole, their collective information can decode what happens inside the hole partially.

Because gravity is a perfect conductor.

hole. As we have noted, in hyperbolic slicing of AdS, (4.4.9) geodesics are circles

intersecting the boundary. Hence in this coordinate system it is an easy task to

find the location of the tip of the geodesic, rhole = 1
cosα − tanα. Using the relation

between R and r

Rhole = L
cosα

sinα
, R′hole = Lγ

cosαγ

sinαγ
(5.3.18)

R′ stands for the radius of the hole in a conical defect solution. Hence for a small

deficit, change in the differential entropy is given by,

δSDE = 2π
L

4G

(
α

sin2 α
− cosα

sinα

)
δ +O(δ2). (5.3.19)

There are two contributions to the change of area. The best way to observe the

geometric origin of these contributions is to make a coordinate redefinition (5.3.16)

T ′ = Tγ, R′ = R/γ, θ′ = θγ, which leads to global AdS, except for the different

periodicity of θ, which has a deficit angle of 2πδ. Hence the origin of the second

contribution becomes clear; it is the change of area due to the deficit (2πδ)Rhole.

The origin of the first term is purely bulk oriented in the sense that, in the presence

of matter geodesics penetrate less into the bulk hence radius of the hole increases.

To sum up, the derivation of the first law for a region in spacetime always require

a scheme of identification of the initial to the perturbed region. The change of

areas or other quantities depend on how the two geometry is identified. There

is no unique way for the identification and depends on the physics of a system.
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For example the first law of black hole mechanics requires an identification on

the horizon and infinity. In the derivation of the linearized Einstein equation [74]

the volume of the infinitesimal ball and geodesic distance for radius of the ball is

chosen as the parameter to identify two solution, while in [73] the geodesic distance

is chosen as the parameter to be fixed. In these cases one observes a reduction in

the area of a region. On the other hand, in our construction we have identified the

number of degrees of freedom in the underlying theory by fixing the ratio of the

boundary circle with the cutoff of the theory. Our identification is a very natural

one and hard to refute. In this case we observe an area excess rather than a deficit.

5.3.4 The first law of differential entropy and emergence of

gravitostatics

For every one parameter family of mixed states defined on a boundary according to

the subsystem size {ρ(α(θ))}, there is an associated first law, which we defined as

first law of differential entropy. In the bulk the relation corresponds to introducing

stress energy inside the hole. There are infinitely many such relations foliate all

the entire constant time slice in the bulk. Hence existence of the first law for any

bulk curve is necessary condition for the linearized Einstein equations at every

point in the bulk. The idea is similar to one presented in [62], where the linearized

local field equations at each point in the bulk are equivalent to the first law of

entanglement entropy for each boundary ball or first law for each Rindler wedge.

Here we have replaced the boundary balls with one parameter family of boundary

intervals and Rindler horizons with any closed surface in the bulk. Wald formalism

is quite useful to lay out the relation between linearized equations and the first

law.

δHDE({ρ(α(θ0)})− δSDE({ρ(α(θ0)}) =
1

2

∫
dθ0

(
d

dα

∫
C(α,θ0)

dχξ

)∣∣∣∣
α(θ0)

(5.3.20)

where C(α, θ0) denotes the entanglement wedge for a single boundary interval of

size α with center located at θ0.

δHDE − δSDE =
1

2

∫
dθ0

(∫
∂C(α,θ0)

dαχξ + vα · dχξ

)∣∣∣∣
α(θ0)

(5.3.21)

d
dα is denoted by dα and vα is the vector field generating the geodesic having

boundary width, α + dα. We can express this relation in a more suggestive way

as an operator acting on dχξ.
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5.4. Modular Hamiltonian for conical defects

δHDE − δSDE =
1

2

∫
dθ0

(∫
C(α,θ0)

(dα + Lvα)(dχξ)

)∣∣∣∣
α(θ0)

(5.3.22)

where we have used Stokes theorem for each term and the commutativity of

[d, dα] = 0 for the first one and for the second term we have used the Cartan’s

magic formula together with [d,Lvα ] = 0. We know that the first law of differential

entropy holds independent of the family of mixed states defined on a boundary,

which ensures that left hand side of the equation vanishes. Therefore right hand

side of the equation always vanishes independent of the choice of set of entangle-

ment wedges. Using the fundemantal theorem, (5.3.10),

δHDE − δSDE = −
∫
dθ0

(∫
C(α,θ0)

(dα + Lvα)(ξaδEgabε
b)

)∣∣∣∣
α(θ0)

(5.3.23)

Since the left hand side vanishes independent of the surface C(α, θ0), we tempted

to conclude that δEgab = 0 at every point between the surface and infinity. Hence

first law of entanglement entropy on bulk surfaces, implies the linearized Equations

at every point between the boundary and the surface.

5.4 Modular Hamiltonian for conical defects

In section 5.2.1 we have shown that, notion of differential entropy not only applies

to AdS3 but to all spherically symmetric 3d asymptotically AdS geometries. Until

now we have extended the first law of entanglement entropy from Rindler horizons

to general closed surfaces in AdS3. In the derivation we have introduced the

differential modular energy that measures the change of area as a function of local

excitation introduced inside the hole and observe an area excess.

Since differential entropy applies to spherically symmetric or translational invari-

ant states, one can construct the first law for excited states as well. On the other

hand, there are not many cases where there is a local expression for the modular

Hamiltonian. One such case is the thermal state of the CFT on a flat background

geometry where dual dual state is the planar BTZ. We study this case in the ap-

pendix (5.A) since it is very similar to the AdS3 example. On the other hand,

conical defect solutions also possess spherical symmetry hence differential entropy

can be constructed in the same manner. Yet their modular Hamiltonian is not

known explicitly. However it is possible to find an integral expression for the

modular Hamiltonian in the leading order of N of a state dual to conical defect

geometries in the bulk. We would like to study this case since it involves novel

derivation of the approximate modular Hamiltonian.
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5.4.1 Approximate modular hamiltonian of a state dual to

conical defects

In this section, we will derive the modular Hamiltonian for a finite interval of a

state dual to conical defects in 2d CFT living on a cylinder. The derivation is

based on the description of conical defects as integer quotients of AdS.

We will find a local expression for the local modular Hamiltonian of the state

dual to conical defect by uplifting it to covering theory and using the method of

images that imposes Zn invariance naturally. Before starting our derivation, we

suggest reader to have a look at the review of conical defect solutions AdS3/Zn and

derivation of the holographic entanglement entropy in the parent theory, 2.6. This

introduction is also the core of the derivation for approximate modular hamiltonian

for the states dual conical defect geometries.

Consider a region A on the CFTc. We would like to find an expression for the

entanglement Hamiltonian of this region in the parent theory. We argue that

modular Hamiltonian of a defect theory becomes a Zn invariant vacuum modular

Hamiltonian in a parent theory.

HA =

n−1∑
i=1

giH̃Ã (5.4.1)

Method of images indeed let us ungauge the discreate symmetry and manifest it

through the images of the uplifted region. Equivalent expression of the modular

hamiltonian becomes the modular hamiltonian of the union of n evenly spaced

region ∪ni Ai of the state of the CFT dual to AdS3. When intervals in the defect

theory is sufficiently small (2α < π) the modular Hamiltonian of the union can

be expressed as the sum of the individual Hamiltonians for each interval in the

leading order of O(1/c),

H̃∪ni=1Ãi
≈

n⊕
i

H̃Ãi
. (5.4.2)

Each term on the right hand side can be expressed by the modular Hamiltonian

of the vacuum of CFTc̃.

H̃∪ni=1Ãi
≈ 2πn

∫
Ã

cos(θ̃0 − θ̃)− cos α̃

sin α̃
T̂parent dθ̃ (5.4.3)

The relation between stress tensor of each theory is not trivial. Because, not all

the generators in the Fourier decomposition descent to the defect theory. On a

cylinder, stress energy tensor can be decomposed in a Fourier expansion through
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the generators of the Virasoro algebra,

T̃cylinder(ω̃) = −
∞∑

k=−∞

L̃ke
ikω +

c̃

24
. (5.4.4)

Consider the Fourier expansion of the stress tensor in the parent theory. When

it is projected into the defect theory, not all the generators descent. Only the

generators that are part of the subalgebra (2.6.2) will be in the defect theory.

Hence the stress tensor of the defect theory will have Fourier decomposition in

terms of these generators. Since L̃nk = nLk, the Zn invariant part of the parent

theory stress tensor will be,

ˆ̃
T parent/Zn = nT̂defect (5.4.5)

where subscript Zn stands for the invariant sector of the operators. Rest of the

generators are factored out. Now we can substitute this expression into (5.4.3) to

obtain the correct expression on the defect theory where conical defect represent

an excited state,

ĤA = 2πn

∫
A

cos((θ0 − θ)/n)− cos(α/n)

sin(α/n)
T̂defect dθ +O(1/c) (5.4.6)

where the domain of the integral is given by A ∈ [θ0−α, θ0+α] and θ ∈ [0, 2π). We

also consider Zn invariant part of the expression which is hidden in the definition

of T̂defect (5.4.5). Note that expression is correct for sufficiently small intervals

in the defect theory which corresponds to α < π. A similar expression can be

obtained for cases where mutual information between the adjacent regions on the

covering theory takes over the saddle point. In that case, one can send α→ π−α
and θ0 → π + θ0 to obtain the modular Hamiltonian after the phase transition.

The bulk interpretation of the subleading term in this expression is the entangle-

ment entropy of the quantum fields between the entanglement wedge ΣA of the

region A and its complement. The field theory in the bulk is not in its vacuum, as

there is a classical source in the bulk. We left the details of the subleading term to

a future study. Although derivation of the modular Hamiltonian strongly depends

on the fact that n is integer, we are tempted to claim that n can be analytically

continued to take real values.

Let us test this expression. First of all, a trivial check is, it yields modular Hamil-

tonian of the vacuum when n → 1, since this is the limit where conical defect

geometry becomes AdS3.

The other limit, which provides a non trivial check is n→∞. This is the massless

BTZ limit of conical defect geometry. In this limit the expression of the mod-

ular hamiltonian should match with the zero temperature limit of the modular

107



5. Pushing the first law of entanglement into the bulk in AdS3/CFT2

hamiltonian for the thermal case up to the topological differences. The thermal

state lives on an infinite line with periodic time direction in the euclidean space,

however massless BTZ limit of conical defect is periodic on spatial slice. However,

effective size of the boundary interval suppressed by n hence boundary becomes

effectively an infinite line. Therefore we expect the zero temperature limit of the

thermal modular Hamiltonian and n→∞ limit of conical defect to be similar up

to topology. Firstly, in the zero temperature limit of the thermal state, we would

expect to obtain the kernel of the modular Hamiltonian for the vacuum in Poincare

patch. In β → ∞ limit the expression, (2.4.8) becomes (2.4.3) as expected. We

expect similar behaviour in n → ∞ limit, which is a non trivial check for the

conical defect modular hamiltonian.

lim
n→∞

Hcon
A = 2π

∫
A

(
α2 − (θ − θ0)2

2α

)
T00 dθ (5.4.7)

The expression yields the modular hamiltonian of Poincare space, when α is iden-

tified with R and θ with x. Therefore the limit n → ∞ matches the T → 0 limit

of the thermal case.

5.4.2 The first law of differential entropy for conical defect

We will apply the first law of differential entropy around the perturbations of a con-

ical defect. Let us start by demonstrating the first law of entanglement entropy

for a conical defect geometry using its modular Hamiltonian expression (5.4.6).

The first law in this case is different than what we have demonstrated in the pre-

vious chapter, here we will look at the perturbations around an excited state with

defect. The first law in the presence of a defect applies to one parameter family

of solutions with changing angle deficit. Although we have derived the expression

for integer n, for convenience we will analytically continue this parameter. Indeed

such expression should exist as there is no quantization condition on the mass of

conical defect.

Entanglement entropy for a boundary interval 2α in conical defect geometry in

terms of the continuous parameter γ is given in (5.3.17). Let us express change in

the entanglement through addition of extra defect,

δScon(α) =
Lδθ

4πGN
(n− α cot(α/n)) (5.4.8)

where δθ = −2πδγ represent the amount of angle removed from the system due

to increase in the angle deficit. Let us remind the relation γ = 1
n . Before carrying

out the modular energy side of the calculation lets present the dependence of

ADM energy on the deficit angle The energy momentum tensor of the CFT is
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δ〈Ttt〉 = −δ(γ2)
16πGN

. Hence change of ADM energy in terms of the new definition of

the deficit angle becomes,

δMADM =
δθ

8πGNn
. (5.4.9)

Let us carry the same calculation using the modular Hamiltonian expression de-

rived in the previous section to provide even a further check on the expression

(5.4.6),

δ〈Hcon
A 〉 = 2πn

∫ θ0+α

θ0−α
dθ

cos ((θ0 − θ)/n)− cos(α/n)

sin(α/n)
δ〈Ttt(θ)〉 (5.4.10)

=
Lδθ

4πGN
(n− α cot(α/n)) . (5.4.11)

The radius of the circle where CFT lives is taken to be L. We perturbed the system

by preserving the initial symmetries of the solution. In the first law of differential

entropy we will not assume any spherical symmetry for the perturbation. Once the

hole is chosen to be a sphere3, the result is independent of the spatial configuration

of the perturbation on CFT

δ〈Hcon
DE〉 = nπ

∫
dθ0

∫ θ0+α

θ0−α
dθ

(
1− cos((θ0 − θ)/n) cos(α/n)

sin(α/n)2

)
α(θ)=α

δ〈Ttt〉

(5.4.12)

= 2πL

(
α

sin(α/n)2
− n cot(α/n)

)∫
S

dθ δ〈T̂ (θ)〉. (5.4.13)

We have used the implicit Zn symmetry of the operator to swap the orders of

integration. Comparing the result with the derivative of (5.4.8) with respect to α,

we can easily notice the first law of differential entropy holds. In the AdS example

we have realize that there are two contributions (5.3.19) to the entanglement en-

tropy. The negative contribution was the one that corresponds to amount of area

reduction due to point like mass introduced into the system. What happens if

there is already a defect? The radius of the hole in the conical defect geometry is

given by (5.3.18). Using this we can express the change in the differential modular

energy in the following way,

δ〈Hcon
DE〉 =

δAhole

4GN
=

δθ̃

4GN

(
α

(n sin(α/n))2
−Rhole

)
(5.4.14)

where δθ̃ = nδθ. Interestingly the reduction of area due to insertion of a defect

amplified by n times in the presence of another existing conical defect of angle

1/n.

3The hole is chosen to be a circle around the origin until now, yet one can always move it to

any location through a conformal transformation.
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5.5 Discussion

We have started this chapter by proposing higher dimensional generalization of

differential entropy using integral geometry. Suggested generalization clarifies the

necessity of spherical symmetry. By applying this method on 3d asymptotically

AdS geometries we have shown that differential entropy can be extended to excited

states having spherical symmetry. In the rest of the chapter we have used this

definition to study first law of entanglement on general spacelike surfaces.

The first law of entanglement for the vacuum state of the CFT corresponds to

first law of thermodynamics for a Rindler horizon in the bulk. The differential

entropy uses minimal surfaces to construct a generic surface in the bulk. Using

this construction we have seen that the first law of differential entropy corresponds

to surface deformations of the ‘hole’ according to linearized Einstein equations. We

have demonstrated that the linearized perturbations in the first law can be modeled

as appearance of conical defects inside the hole. In the construction of the first law

of differential entropy we have defined the concept of differential modular energy,

which measures the change of area in terms of the energy density of the excitation

introduced within the ‘hole’. We have demonstrated the relation further for conical

defect and planar BTZ geometries. To be able to demonstrate the first law for

states dual to conical defect geometries we have derived the modular hamiltonian

for a state dual to conical defect solutions in the bulk in section 5.4. This modular

hamiltonian is approximate in 1/N , since the mutual information in the parent

theory is ignored.

The extension of the first law to general surfaces shows us that deformations of

the surfaces and changes in the area of the surface due to local stress energy have

information theoretic origin in the underlying theory. Although these phenomena

are very simple and natural in the bulk perspective, the way that they are en-

coded in the boundary CFT might be complicated even in simple settings. Our

demonstration puts an emphasis on this point.

We have observed again and again along this chapter and the previous one that

studying a region in two different manifolds is a problematic task in many cases.

It needs an identification scheme between two different manifolds even if they are

infinitesimally close to each other along the deformation space. Our construction

is free from such ambiguities since we have kept the number of degrees of freedom

that each boundary observer can access to fixed. Therefore our results can be used

to understand how to introduce energy associated to the matter onto holographic

tensor codes [85,86].

The information theoretic origin of area deformations has been studied in the
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literature recently [73, 74]. It has been observed that the excitations cause area

deficit. Yet this observation depends on the comparison scheme of the manifolds

as emphasized. In our construction we have observed an area excess rather than a

deficit. The underlying reasons behind the area excess are: weak energy condition

and the strong subadditivity of entanglement entropy. We do not think our result

are in conflict with the existing literature on the area deficit. In our calculation

one of the two contributions to the change of area comes as the area deficit term

exactly same with the form observed in [73] and interpreted as the reduction of

entanglement entropy due to matter. However we have also observed that the

deficit term scales with the integer n in AdS3/Zn geometries. In addition the sign

of the term flips for a thermal state, i.e. the area deficit becomes area excess for

perturbation around the planar BTZ (5.1.3).

As a final remark the author thinks that differential entropy is not the adequate

way to study information theoretic notions in the bulk. The connection between

integral geometry and differential entropy strongly indicates that the discrete ver-

sion of the differential entropy is coincidental. The discrete expression (2.3.1)

is simply due to the inverse of the kernel for integral equation (5.2.2) being a

quadratic in 2d. Moreover differential entropy strongly necessitates spherical sym-

metry. In the next chapter we will study the emergent aspects of the bulk in a

more general and adequate way.

5.A First law of differential entropy for thermal

states

Although the local expression for modular hamiltonian does not exist for any

state, thermal states in 2d CFT admit such expression. In general, the states

that are conformally equivalent to an annulus, admit local expression for modular

Hamiltonians in 2d CFTs [127]. Without covering all such cases, we will focus

on modular Hamiltonian for thermal state and use it to show explicitly that first

law of differential entropy holds as it has to. Indeed one can see the first law

of differential entropy as a necessary check on the local expressions of modular

Hamiltonians. Let us first study briefly the derivation of modular Hamiltonian of

thermal state.

We will use the expression (2.4.8) to demonstrate the first law for thermal state.

The thermal states are dual to BTZ black holes above certain temperature. The

transition from thermal gas to black hole is known as Hawking-Page transition

[152]. While we will not restrict the energy distribution of the perturbation in

the modular energy side of the calculation, in the differential entropy side we
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5. Pushing the first law of entanglement into the bulk in AdS3/CFT2

will consider homogeneous perturbations. Let us look at the contributions of the

differential modular energy. Consider a perturbation on the state, then δ〈HDE〉 is

given by

δ〈HDE〉 =
(
−2πR csch[2πR/β]2 + β coth[2πR/β]

) ∫
dx δT00(x) (5.A.1)

Before giving an expression in terms of the radius of the hole. Let us look at the

dual geometry. The metric for the non-rotating planar BTZ black hole can be

written in Fefferman-Graham coordinate as

ds2 =
L2

z2

[
dz2 +

(
1 +

µ

4
z2
)2

dx2 −
(

1− µ

4
z2
)2

dt2
]

(5.A.2)

The coordinate z takes values in the interval [0, ze = 2/
√
µ] covering the region

outside the event horizon. In the CFT, it is a thermal state on Minkowski back-

ground. The energy density and temperature of the thermal state is given by,

〈Ttt〉 =
µ

16πGNL
, T =

√
µ

2πL
(5.A.3)

The von Neumann entropy of the state at temperature T and size R is given by,

SA =
c

3
log

(
β

πε
sinh(2πR/β)

)
(5.A.4)

where ε is the short distance cut-off of the CFT. Using this expression we can

immediately deduce the radius of the hole in the bulk,

Rhole = L
√
µ coth (2πR/β) (5.A.5)

Note that the expression is identical to the conical defect one (5.3.18), when one

replaces
√
µ→ iγ. Now we can express the the change in the area of the hole due

to energy introduced within,

δA

4GN
=

1

4GN

(
Rhole −R csch[2πR/β]2

) δβ
β

(5.A.6)

where we choose to keep the variation over β since it is a better measure for deficit

angle then the total energy. One can immediately see the relation between conical

defect geometries where β/2πL takes the role of γ. It is interesting that there is

a relative sign difference between two terms. While a conical defect reduces the

area by introducing an area deficit, the analogous term in a thermal excitation

introduces an area excess rather than a deficit.
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6
The First Law of Spacetime

Deformations

6.1 Introduction

Spacetime is a stage on which matter moves under the influence of forces. This is

the common view on which most of our theories of the physical world are built. Yet

there are well motivated reasons, coming both from theory as well as observations,

to challenge this conventional point of view. From the observational side, the

fact that 96% of our Universe appears to consist of mysterious forms of energy

and matter, without a clear clue from theory about their nature or origin, should

give sufficient motivation to reconsider these fundamental concepts. And from a

theoretical perspective, besides the fact that dark energy and dark matter are still

poorly understood, we start to see many indications that the standard concepts of

matter and space time have a limited range of applicability. In particular, insights

from black hole physics together with developments through AdS/CFT strongly

suggest that our conventional notions of space time, matter, and forces are derived

from an underlying microscopic description in the form of quantum information.

The first observation on the connection between information theoretic nature of

the underlying microscopic description and geometry of spacetime comes through

the Bekenstein-Hawking entropy [14–16, 20, 139]. Somehow gravity and horizons

carry essential information about the truly fundamental constituents of Nature. It

is a long standing problem: what are the fundamental constituents of Bekenstein-

Hawking entropy for a generic black hole? Although there are answers for par-

ticular black holes through AdS/CFT [140–142], the generic black holes are not

understood in terms of their microscopic constituents. Moreover, there are addi-

tional pieces of the puzzle on how these degrees of freedoms are represented on

the spacetime or how they builds up the spacetime? These questions manifest

themselves in the firewall paradox [29].
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6. The First Law of Spacetime Deformations

Fortunately black hole entropy is not the only observable where information theo-

retic nature of the underlying microscopic description and the geometry of space-

time comes together. It has been observed with the development of holographic

principle in the context of AdS/CFT that, there is a deep connection between

notion of area in spacetime and the entanglement entropy in the underlying mi-

croscopic state [57,58].

Sent. =
A

4GN
(6.1.1)

where area is the area of the minimal surface homologous to a boundary region.

This is the first indication that Bekenstein-Hawking type formulas apply to more

general surfaces than black hole horizons. This relation, known as Ryu-Takayanagi

formula, gives us strong hints on the emergent nature of gravity and its connection

to information theory.

The information theoretic nature of the microscopic constituents of black hole en-

tropy also reflects itself in the emergent laws of black hole mechanics [22]. It seems

that first law of thermodynamics or entanglement is a direct consequence of the

emergent behaviour. The information theory behind the first law of thermody-

namics is a universal behaviour that manifest itself almost in all the composite

systems in physics. It is a universal emergent law independent of the details of the

microscopic structure of the system. Even though different systems might have

different definitions and expressions for the energy, the relation between informa-

tion and energy at the linear level always manifest itself in the same manner. Since

notion of entanglement entropy generalizes to generic spacelike surfaces through

Ryu-Takayanagi (6.1.1) formula, it is natural to seek for an analogous first law for

arbitrary spacelike surfacess. This is the main objective of this chapter.

Covariant phase space formulation [64, 65] of the geometric theories of gravity

demonstrates the first law of black hole mechanics in a beautiful and deep way. It

unifies all the geometric theories of gravity in the way that first law appears and

gives a demonstration of the first law independent of the details of lagrangian of

the theory. It also clarifies the connection between ADM energy that is defined

at the infinity and the entropy of the black hole geometrically defined at the

horizon. Wald formalism strongly suggest that it is the area law entanglement in

spacetime that connects the perturbations of the conserved charges on homologous

spacelike surfaces in locally vacuum spacetime. We have explored this suggestion

by studying the formalism in a vector flow representation and by laying out its

connections with the bit thread proposal [28].

Before introducing the content of this chapter let us note that this chapter is

strongly connected with the next one 7. These two chapters will generalize what

we have initiated in the previous chapter 5 using differential entropy. Namely
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6.1. Introduction

we will be discovering emergent laws of spacetime mechanics on general spacelike

surfaces. Our methodology can also be applied onto null surfaces, unfortunately

within the duration of this thesis we couldn’t find such opportunity. Let us give a

brief summary and the main results of this chapter.

In the first section 6.2 we applied covariant phase space formalism 2.2 to gen-

eral spacelike surfaces to seek for a generalization of the first law of black hole

mechanics [22]. We show that on an arbitrary surface the formalism yields vari-

ations of the Brown-York quasi-local charge densities [65, 84]. In the presence

of a Schwarzschild black hole the energetic cost of surface deformations given by

Brown-York quasilocal charges corresponds to the change in the black hole entropy.

TδSBH =

∫
Sn

N(δε+ δω) (6.1.2)

where Sn is a spacelike codimension two surface, N is the redshift factor that

provides coordinate independent way to identify surfaces along the deformation

and weight factor of energy in terms of ADM energy. ε is the Brown-York surface

energy density on an infinitesimal surface element ε = εdA. δω is the work done

on an infinitesimal surface given in terms of Brown-York surface stress tensor in

the following way δω = δσµντ
µνdA. Brown-York quasilocal energy density ε and

surface stress τµν are defined as follows [84],

ε = − 1√
σ

δS

δN
, τµν =

2

N
√
σ

δS

δσµν
(6.1.3)

where σµν is the metric induced on the codimension 2 surface Sn and S is the

action. Using the entropic correspondence of the surface deformations we have

shown that this relation has an analog in elasticity theory known as the first law

of elastic deformations. Using this analogy we interpret the eq. (6.1.2) as the first

law of spacetime deformations in subsection 6.3. Although this interpretation is

proposed based on the correspondence with thermal entropy we have further elab-

orated in the next chapter 7 that information theoretic quantity that corresponds

to the left hand side of (6.1.2) is the volume entropy of the underlying phase space

which is measured by the microcanonical action in the gravitational theory.

One of the main questions we have been asking in these two chapters is: what

is the analog of black hole entropy on a general spacelike surface? We feel the

urge of raising such a question due to recently developing paradigm: spacetime is

entanglement. Drawing conclusions based on our findings on Bekenstein bound in

the bulk 4 and evident distinction between locally vacuum spaces and thermalized

regions (black holes) we seek for a different interpretation then thermal entropy

(6.1.2) on a general surface. This leads us one of the main results of the next
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6. The First Law of Spacetime Deformations

chapter. In a locally vacuum spacetime,

TδSBH = δMADM = −ωδIm (6.1.4)

where ω is the inverse characteristic time scale of the underlying dynamics and Im
is the microcanonical action that corresponds to volume entropy of phase space in

microcanonical ensemble. The adequate information theoretic interpretation on

a general spacelike surface is this volume entropy. We will explain the reasons

behind this interpretation in the next chapter.

The physics and mathematic behind why deformations on different surfaces are

equal will be studied in 6.4, 6.5. The amount of deformations has an entropic

correspondence on the horizon while an energetic (ADM) correspondence at infin-

ity. We provide a flow line picture of the first law in subsections 6.4, 6.5 where

incompressibility of the vector field naturally explains the correspondence between

different surfaces. The vector field also illustrates the connectivity of the geometry

in terms of the information flow. In subsection 6.5 we established the connection

between the first law of deformation in spacetime with bit thread picture of holo-

graphic entanglement entropy. Although two framework is not entirely identical

they have overlapping settings that we elaborate.
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6.2. Application of Wald formalism to general spacelike surfaces

6.2 Application of Wald formalism to general space-

like surfaces

In this section we exploit the generic features of the formalism and apply it to

codimension-two, spacelike surfaces in asymptotically flat, static solutions of gen-

eral relativity. Our discussions can be completely adjusted to stationary solutions

as well as asymptotically curved spaces because the only assumption that goes

into the derivation of the first law in generic spacelike surfaces is the existence of a

timelike Killing field. The application to stationary surfaces will provide an addi-

tional angular momentum term that we will elaborate later on. We have provided

the details of the calculation in the appendix 6.A using frame field formalism. In

the frame field formalism the calculation simplifies and the area term appears in

a more observable fashion. To align it with the existing literature the expressions

are presented in the metric formulation.

The key theorem in the covariant phase space formalism that leads to the first

law of black hole mechanics is presented in (5.3.10). The theorem when executed

on-shell connects the symplectic current with the exterior derivative of a D − 2

form χ. The latter yields a change in the area and energy when integrated on

the horizon and infinity respectively. On the other hand nothing prevents us from

employing this theorem to more generic surfaces. Let us start by introducing the

geometric setting of (D − 2) + 1 + 1 decomposition 6.1 where we will study χ.

Consider a static1 solution of general relativity in D spacetime dimensions. The

spacetime manifold isM = Σ×I, product of space manifold and a real line interval

I. The manifold is endowed with a metric g := gµνdx
µ ⊗ dxν . We introduce a

scalar field t(xµ) on the real line I such that t = constant describes a family of

non intersecting spacelike hypersurfaces Σt. The time function is arbitrary yet

must be a single valued function of the coordinate system. The gradient of the

time function defines a normal vector. All the normal vectors to the hypersurface

Σt must be collinear to the gradient normal vector. Hence we define the future

directed unit timelike normal to the hypersurface,

uµ = −N∂µt N := (−∂t · ∂t)−1/2
. (6.2.1)

Each spatial hypersurface Σt is also foliated by a family of (D − 2) dimensional

spacelike, closed surface (Sn)n∈R that is labeled by a real parameter n. In other

words Σt =
⋃
n(t) Sn(t). For each point p in Σt there is a unique Sn(t) that passes

through p. We will suppress explicit t dependence of the surfaces Sn(t) since we

1In general the setting explained here assumes one timelike Killing field. Generalization on

the stationary solutions will be commented along the paper.
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Nuµ

Nµ

tµ γ

Sn(t) Σt

nµ
p

Figure 6.1: Geometric setting for (D − 2) + 1 + 1 decomposition of gravitational theory is pre-

sented. The entire manifold is foliated by one parameter family of spacelike hyper-

surfaces Σt. Each spacelike hypersurface Σt is also foliated by one-parameter family

of closed surfaces denoted by Sn. uµ and nµ is the normal vector of Σt and Sn
respectively.

restrict ourselves to one of the equivalent hypersurfaces. The (D− 2) dimensional

surfaces Sn defines a natural normal co-vector through the equation of the surface

nµ ∼ ∂µSn(t)(x). The tangent space ofM at each point p decomposes into tangent

vectors on Sn and a space of vectors orthogonal to Sn at p

Tp(M) = Tp(Sn)⊕ Tp(Sn)⊥. (6.2.2)

Tp(Sn) is the two dimensional space including the future pointing timelike unit

vector field uµ and the normal vector nµ of the surface Sn. In the dual vector

basis the metric function can be decomposed in the following form

gµν = −uµ ⊗ uν + hµν = −uµ ⊗ uν + nµ ⊗ nν + σµν . (6.2.3)

hµν and σµν are first fundamental forms induced on Σt and Sn respectively. It

is this simplicity of the decomposition in the dual vector basis that we benefit

from in the frame field formalism. The calculations via frame fields is presented

in the appendix 6.A. Let us emphasize the difference between future directed unit

normal uµ and tangent vectors, ∂t = tµ∂µ of the time coordinate. In general tµ

and uµ are not collinear. They would be, only if the spatial coordinates (xi) are

chosen such that the lines xi = constant are orthogonal to the hypersurface Σt.

Hence in general tangent vectors of the time coordinate would pick an additional

component that is tangent to the hypersurface

tµ = Nuµ +Nµ. (6.2.4)

Since we will study the formalism on static solutions, in our case the relation

simplifies to tµ = Nuµ. As we will comment later, this would only drop the angular
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6.2. Application of Wald formalism to general spacelike surfaces

momentum term from the first law. It will not effect the overall conclusions.

Because of the static nature of the solution, the entire manifold can be foliated by

a family of D − 1 dimensional spatial hypersurfaces Σt that is orthogonal to the

timelike Killing field. All such hypersurfaces will be equivalent.

Before presenting the result of the decomposition of χ on Sn, let us comment on

how we identify perturbed geometry with the unperturbed one. The geometries

are identified such that infinities coincide. Moreover perturbation does not break

the symmetries of the solution hence δtµ = 0. We do not assume any additional

identification on Sn.

Let us present the expression for χ evaluated on Sn calculated using the decom-

position presented above

δQt = κ
δdA

8πGN
+ δκ

dA

8πGN
(6.2.5)

t ·Θ =
dA

8πGN

(
Nδk +

1

2
Nkµνδσµν + δκ

)
. (6.2.6)

dA is the volume form on the surface Sn. κ is the surface gravity defined as

κ ≡ 1
2bµν∇

µtν where bµν = 2u[µnν] is the bi-normal of the surface Sn(t). The

surface gravity κ can also be understood in terms of the four-acceleration of a

test mass. It is the four-acceleration of a test mass in the normal direction to

the Sn(t) that is measured from infinity. In other words, if an observer at infinity

would hold a unit test mass at a fixed orbit (i.e. by means of a long string) of the

Killing vector field tµ, then the amount of force that needs to be exerted is F =∫
Sn(t)

NnµaµdA =
∫
Sn(t)

κdA where aµ = uν∇νuµ. N translates measurements

of a local observer to ones measured from infinity. It quantifies how deep one is

in the bulk with respect to infinity. It is well known that κ appears in the same

way in the first law of black hole mechanics. Black hole temperature is defined

as TBH = κ
2π . In our construction we have evaluated it on an arbitrary closed

spacelike surface and observe the same structure. In this case it is the Unruh

temperature due to gravitational acceleration.

Let us explain the terms in t · Θ. kµν is the extrinsic curvature of the surface

Sn(t) embedded into Σt. It is the Lie drag of the first fundamental form σµν along

the unit normal nµ, kµν ≡ 1
2Lnσµν

2. We have presented the calculation of these

quantities via frame field formalism extensively in the appendix. The trace of

extrinsic curvature k = σµνkµν measures rate of expansion of the surface Sn(t)

along the direction nµ. Hence for a minimal/extremal surface, the trace vanishes.

Before elucidating the connection between quasi-local surface quantities let us

comment on the term δκ dA
8πGN

. Usually ξ · Θ vanishes when the formalism is

2Lie derivative is defined with respect to D − 1 dimensional manifold.
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6. The First Law of Spacetime Deformations

applied to bifurcation surfaces such as black hole horizons. Hence there are no

contributions from ξ ·Θ in the case of black holes (Note that, in general, the Killing

field ξ does not have to be timelike Killing field, hence we have used the notation

ξ, in these circumstances). In other words on the horizon generalized Newtonian

potential N → 0. However δQt also produces δκ dA
8πGN

. Naively, because the black

hole mass is changed, one would expect an accompanying change in the surface

gravity. Then why it doesn’t appear in the first law of black hole mechanics?

Because in the derivation of the first law via covariant phase space approach [63]

one also identifies the unit surface Killing field near the horizon, hence fixes the

variations over the κ. In other words identification over the geometries in the

presence of a black hole has one more restriction than assumed for a general surface

Sn, which is the identifications of two solutions over the horizons. In equation

(6.2.5), we observe that even if one does not identify the unit Killing field near the

horizons, δκ dA
8πGN

terms cancel each other. This cancellation becomes much more

apparent in the frame field formalism. δQt− t ·Θ can be cast into following form,

Qt − t ·Θ = −Nδ(kdA)− N

2

(
kµν −

( κ
N

+ k
)
σµν

)
δσµνdA (6.2.7)

In this form of the expression, we immediately recognize Brown-York definition of

quasilocal charges3. There is a relative sign between this expression and the one

suggested in [83, 84] due to a relative sign difference in the definition of extrinsic

curvature kµν . Using the Brown-York definition of quasilocal quantities, we can

rewrite the expression in the following form,

Qt − t ·Θ = N (δε+ τµνδσµν) (6.2.8)

= N(δε+ δω) (6.2.9)

where ε = kdA is the energy on infinitesimal area on the surface Sn(t). Similarly

ω is the amount of work that is done on the infinitesimal surface area due to

deformations of the surface. Before we comment on the implications of this relation

from the point of view of the first law on general surfaces let us have a look at

the spherically symmetric case. In addition to reproducing the first law of black

hole mechanics, we will also derive a more general relation that turns into first

law when one moves the generic surface Sn(t) to the horizon. The metric of such

a solution is given by,

ds2 = −N2dt2 +N−2dr2 + r2dΩ2
D−2 (6.2.10)

where

N2 = e2Φ = 1− 16πGNM

(D − 2)ΩD−2rD−3
(6.2.11)

3Note that we do not have an angular momentum term and the extrinsic curvature Kµν of

Σt in M vanishes. This is consequence of static nature of the solution.
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6.2. Application of Wald formalism to general spacelike surfaces

For this solution we will construct a novel first law type relation by employing

again the fundamental theorem (5.3.10) of the covariant phase space formalism.

The (D−2)-form χ will be integrated on the surface at infinity and on an arbitrary

spherical surface. ∫
S(n)

χt =

∫
∞
χt

Second term on the right yields the change in the total energy of the spacetime

δMADM =
∫
∞ χ [64,65]. Let us evaluate the term on an arbitrary surface based on

the quasilocal expressions we have derived. The extrinsic curvature in the normal

coordinates is given by kµν = 1
2N∂rσµν . Hence,

kµν = eΦ 1

r
σµν , k = (D − 2)eΦ 1

r
. (6.2.12)

Putting all pieces together and massaging the expression, one obtains the following

the first law like relation,

δMADM =
c2

8πGN

∫
S(n)

∂ne
ΦδdA− δeΦ∂ndA (6.2.13)

where the derivative in the surface normal direction is ∂n = nµ∂µ and κ = ∂ne
Φ.

On a surface of fixed radius r = constant, one can integrate this relation,

δMADM =
c2

8πGN

(
∂ne

ΦδA− δeΦ∂nA
)

(6.2.14)

We consider this equation a generalization of the first law of Schwarzschild black

hole. Before commenting on that let us have a look at the two cases where surface

Sn goes to horizon and infinity respectively. In the limit Sn → H, eΦ → 0 and

hence second term vanishes. Therefore we end up with δMADM = c2 δA
8πGN

κ, which

is the first law of black hole mechanics.

In the other limit where Sn → ∞, the first term vanishes as r → ∞ and one can

express the second term δeΦ∂nA = 1
16πGN

δ(e2Φ/r)A = −δM , where expression

(6.2.11) is used. Hence fully consistent with (6.2.14). Let us stop at this point

for a moment and try to elaborate on the physics of the generalized first law of

Schwarzschild black hole. Physically we can not simply say that this is a first law

of thermodynamics on general surfaces since there is no thermalization process

taking place. The solution could very well belong to a spherical body that is not a

black hole and we are on an arbitrary surface. On this hypothetical surface we do

not have any thermalization. One can define an Unruh temperature with respect

to infinity. However this is not really a thermal entropy rather an ambiguity in the

definition of the vacuum. Therefore the relation suggests another interpretation. It

will be elaborated in 7.4 that on general surfaces measures the change in the phase

121



6. The First Law of Spacetime Deformations

space in the microcanonical ensemble multiplied by the frequency. We believe an

entanglement interpretation is also suitable for the area term [60,145].

Sent =
A

4GN
, δM = κδSent|φ (6.2.15)

This is a generalization (6.2.14) of the first law of entanglement to the bulk physics.

At this point we do not have a strong microscopic interpretation for the second

term but we should keep in mind that this term could be removed simply by

identifying the surfaces (base and the perturbed) such that there is no variation

on Φ. In other words one compares the surfaces having same potential N . That

was what we have also executed in the first law of black hole mechanics. As we will

encounter over and over along this paper when one compares the surface charges on

a spacelike surfaces in two different manifold, there is no universal way to identify

the surfaces. Now we will visit more general aspects of the decomposition of χ on

spacelike surfaces.

6.3 The first law of deformations in spacetime

In this section we will be studying the general expression (6.2.8) for the (D − 2)-

from χ on spacelike surfaces for static solutions from the point of the thermody-

namics of deformation in elastic bodies. Let us emphasize that our study can be

completely generalized to stationary solutions and in that case one would observe

the term Nµδjµ where δjµ is known as quasilocal angular momentum. For all

practical purposes we will ignore this term and comment on that if the behaviour

is different than expected in its presence.

Let us consider a solution of general relativity4 that is thermalized through gravita-

tional collapse and hence forms a black hole. The first law of black hole mechanics

states that δMADM = TδSBH [22]. This fundamental relation can be obtained by

Stokes theorem together with (5.3.10). On a hypersurface Σt integral at infinity

yields δMADM. The infinity is the place where one can include all the energies

associated to the spacetime such as binding energy. The integral at the horizon

amounts to TδSBH. Horizon is the place where all pixels5 of the fabric of spacetime

behaves identical. Energetic costs of deformation of spacetime from the point of

infinity reduces only to a single term, change of area and associated cost is mea-

sured by surface gravity. In this setup we consider a third surface Sn(t) between

4Although we refer to general relativity along the paper, covariant phase space formalism

yields quasilocal charges for higher derivative theories as well [65].
5By pixel we refer to the quantization of the surface area in the units of Planck area.
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6.3. The first law of deformations in spacetime

horizon and infinity. One can relate the change of conserved charges on this sur-

face to either the entropy of the black hole or to the total mass of the spacetime.

In the former one has the following relation,

TδSBH =

∫
S(n)

N (δε+ τµνδσµν) . (6.3.1)

The relation is very interesting as it is reminiscent of the fundamental thermody-

namics relation of deformed bodies. Let us pause here for a moment and give a

brief description of the thermodynamics of deformation in elasticity.

In the elastic materials the first law of thermodynamics of the deformation is given

by Tds = dε+ δω. We have used lowercase notation to indicate that the relation

is a local one and hence hold for unit volume. The work density term in the

thermodynamical relation is expressed in the following way [153],

δW =

∫
F iδuidV =

∫
∂jτ

jiδui dV (6.3.2)

where ui is the displacement vector, that amounts to deformation of the body

ui = x′i − xi. Doing an integration by parts and sending the boundary term to

infinity, one can obtain the expression in terms of the strain tensor which measures

the change in the infinitesimal distance due to infinitesimal displacement

δW =

∫
δωdV = −

∫
τ jiδεij dV. (6.3.3)

where strain tensor is defined through the change in the infinitesimal length dl′2 =

dl2+2εijdx
idxj hence εij = ∂(iuj). The overall negative sign in the work expression

is due to the fact that this is the work done on the medium rather than the work

it does. Hence local expression becomes,

Tds = dε+ τ jiδεij (6.3.4)

Let us go back and compare the fist law type relation we have derived for gravity

with the first law of deformation in elasticity. The main motivation behind this

comparison is the proposal [73] that our universe has an elastic component due to

volume law entanglement. According to this proposal, the thermal nature of the

spacetime is not localized on the horizons as suggested by general relativity but

rather spread over the entire space. Hence universal information theoretic relation

manifested in such a system should follow a volume law similar to the elasticity.

Two phases of the underlying state, that are distinguished based on the entan-

glement behaviour, exists together and separated spatially. It is the competition

between these two phases that causes additional forces that is interpreted as dark

matter. Equations (6.3.1) and (6.3.4) can be useful to elaborate on the interaction

of these two phases (area vs volume) away from spherical symmetry.
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6. The First Law of Spacetime Deformations

There are many differences between phenomena of elasticity and gravity. For

example elasticity does not have same symmetry structure as theory of relativity

or there is no spin two excitations in it. Yet there are also deep analogies when they

are considered purely from an information theory perspective [73,75,77,81]. Here

we want to point out a connection between these two phenomena based on their

entropic nature. The equations (6.3.1) and (6.3.4), suggest a dictionary between

two phenomena

Gravity Elasticity

TδSBH ←→ TδS

δσµν ←→ δεij (6.3.5)

dA

8πGN
←→ s0dV

where s0 is a parameter that has the inverse dimension of the volume such as

entropy density.6 Although we suggest a mapping between black hole entropy

and entropy of the elastic material, this mapping will be elaborated in 7.4. While

entropy is associated to black hole, corresponding qantity in a general surface is

ω δIm, where ω is the characteristic frequency of the underlying d.o.f and δIm
is the change in the volume of the phase space in microcanonical ensemble. In

the current setup TδSBH in (6.3.1) is equal to −ωδIm. Our main purpose is to

interpret the gravitational side of the first law as a first law of deformation emerged

from microscopic degrees of freedom.

Although it is harder to make an identification between unperturbed quantities

due to coordinate invariance in gravity, it is meaningful to make the identification

between strain and the dynamical fluctuations of the metric. Perturbation on the

first fundamental form σµν of the co-dimension two surface measures the change

in the line element of the surface hence completely matching with the definition of

strain tensor. The very interesting point about the identification is the dimensional

reduction taking place in the gravity side. This dimensional reduction reflects itself

(or as a consequence of) in the area law of black hole entropy. One interesting

difference between the structure of the first laws is, while the first law in the elastic

deformation can be cast into a local form through the relation of densities, the

gravitational analog is a surface integral relation. This is a consequence of general

coordinate invariance in general relativity. In the next section we will investigate

whether a bi-local representation of the first law through a conserved vector flow

is possible.

6In elasticity there are different types of parameters (elastic modulus), for our identification

we only need a parameter that has the inverse dimension of volume. In [73] entropy density is

identified with the ≈ 1
GNL

in the elastic phase of gravity.
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6.4. A bilocal first law of gravity?

Let us clarify further the motivation behind the map (6.3.5). The information the-

ory behind the first law of thermodynamics reflects itself as a universal behaviour

almost in all the systems in physics. It is a universal emergent law independent

of the details of the microscopic structure of the system. Even though different

systems might have different definitions and expressions for the energy, the rela-

tion between information and energy at the linear level always manifest itself in

the same manner. We propose a map by exploiting the dimensionless quantities

in the universal first law. It is the emergent nature of the first law that forces us

to believe just like in the case of elasticity, the first law of deformations in gravity

is also due to atoms of spacetime. These degrees of freedoms at the linear level

behaves like threads.

Before finishing this section let us note that we could also establish a deformation

first law between S∞ and Sn. That would replace the left hand side of (6.3.1)

with δMADM and would not affect the right hand side. In this case the cost

of deformations on surface Sn equates to the change in the total energy of the

system. Entropy and energy is different realization of the same underlying entity,

information as advocated here [4]. In the gravitational system, change in energy

and entropy of the system manifest itself on different holographic surfaces yet

they are equal. However we do not identify the change of the surface charges on

a generic surface with entropy or total mass of the spacetime. In other words

on a generic cut on spacetime we do not associate any thermal entropy or total

mass. Therefore we will be asking what is the unifying entity that amounts to

the total change on every surface in spacetime. This unifying notion is the phase

space in the microcanonical ensemble and the change we observe on every surface

is the change on the phase space. We will close this section by stating first law of

deformations in spacetime,

ω δIm = −
∫

N(δε+ δω) (6.3.6)

6.4 A bilocal first law of gravity?

In the previous section we lay out the connection between elasticity and gravity

from an information theoretic point of view. Intentionally we call it information

theoretic since laws of thermodynamics can be derived from information theory

[154], where energetic and entropic cost is the consequence of the manipulations

of the information.

The main difference observed between gravity and elasticity is how the information

is encoded spatially. The short range entanglement together with the increasing
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6. The First Law of Spacetime Deformations

Sn

Dig
i ≈ 0

Figure 6.2: Flow line representation of the first law. Due to incompressibility of the vector

flow (Diδg
i ≈ 0), fluxes on homologous surfaces are equal. While on the horizon it

amounts to the change in the black hole entropy, at the infinity it yields change of

energy in the form of ADM mass. We show that on a generic surface Sn it measures

change of volume entropy in the microcanonical ensemble, δMADM = TδS = −ωδIm
.

number of degrees of freedom in the UV leads to area law in entanglement (6.2.15).

We observe that the volume contributions in the elastic version of the first law is

replaced by the area terms in gravity. In addition, we noticed that while the first

law of elastodynamics or hydrodynamics exhibits a local form, it is a quasi-local

expression in gravity. These quasi-local expressions can be localized by consider-

ing infinitesimal balls [74, 155] yet it still preserves its integral form. We do not

prefer this sort of localization, rather we want to understand its global structure.

Remember that the main identity that relates the surface integrals of χ was the

closedness of the form on shell when the symplectic current (2.2.2) vanishes. Hence

there is no extra flux coming in between the two surfaces SH and Sn.

In the presence of (D − 2)-form χt, the space does not need to endowed with a

metric structure to study the thermodynamics of deformations. In other words

expressions of differential forms are less restrictive and has no reference to the

metric structure of the manifold. This statement can be seen in the derivation

of χt via frame field formalism (6.B.1). On the other hand, in most cases the

metric of the manifold is known and χt is expressed through the perturbations of

it. Given a metric, the (D − k)-form can be converted into a k-vector via Hodge

star operator. Using the construction described in (6.2.3) for the static solutions,

the D− 2 form χt can be converted into a vector field by considering the (D− 1)

dimensional submanifold Σt of M.

δgi = hij(?χt)j (6.4.1)

In a static system7 tµ is orthogonal to Σt and Nµ vanishes. Hence D dimensional

manifold and it is dynamics can be represented by the metric of Σt induced by its

7Similar constructions can be applied to stationary solutions, where one chooses special
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6.4. A bilocal first law of gravity?

embedding in M and a real valued function N defined on the (D − 1)-manifold

((Σt, h), N). The vector field δgi when integrated along a surface on the unper-

turbed manifold ((Σt, h), N) amounts change of surface charges.

TδS =

∫
H
δgidAi δMADM =

∫
S∞

δgidAi (6.4.2)

The fundamental theorem when considered on-shell reflects itself in the conserva-

tion of the vector field vi with respect to covariant derivative defined on Σ.

Diδg
i ≈ 0 (6.4.3)

where ≈ sign stands for on-shell condition including the linearized equation of the

perturbation. Di is the covariant derivative defined with respect to hij (6.2.3)

and it is equal to projection of the full covariant derivative to the hypersurface

Divj = hki h
l
j∇kvl. Divergenceless of the vector field (6.4.3) is equivalent to the

linearized form of Gauss-Codazzi equations.

The vectorial representation of the first law is quite interesting since it provides

a physical picture on why integrals on the two surfaces equal to each other. The

fundamental theorem (5.3.10) implies the incompressibility of the vector flow and

hence the vector field provides one to one map between change of surface quanti-

ties. It is appealing to give a bi-local interpretation to the fist law. However as

you notice, δgi has ambiguities in its definition. Namely any vector field that is

divergenceless can be added to its definition without altering physics. This is the

consequence of coordinate invariance of the theory.

δgi ∼ δgi + di Did
i = 0 (6.4.4)

The total derivative term vanishes when integrated on the closed surfaces hence has

no affect on the total flux through closed surfaces. However it prevents us to give

a canonical bilocal form to the first law. The same kind of ambiguity exist in the

definition of χξ and extensively studied in [64]. Interestingly one particular form

of ambiguity (χξ → χξ + Z where Z is a closed form) is set to zero in AdSd+1

to explicitly identify the changes on the CFT with the gravitational quantities.

Because these ambiguities does not vanish in AdSd+1 by itself since the minimal

surfaces are not closed.

partial hypersurfaces such that Killing field tµ is orthgonal to these surfaces. However such a

coordinate system can not be used to foliate entire D dimensional manifold which is not our

interest anyway.
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6. The First Law of Spacetime Deformations

6.5 Flow line representation of the first law and

bit threads

Until now we have studied the Wald formalism on asymptotically flat solutions of

general relativity, however almost everything stated so far is also true for asymp-

totically AdS solutions. In asymptotically AdS solutions, Wald formalism also

reconciles the first law of holographic entanglement entropy and modular energy

of the boundary CFT [62]. This entanglement first law can also be seen as the

first law of topological black holes in asymptotically AdS solutions. On the other

hand the use of formalism in the context of the first law of holographic entan-

glement entropy is very limited due to the necessity of a bifurcation Killing field.

Only empty AdSd+1 posseses such Killing fields. These Killing fields ξ generates

the Rindler horizons on which the χξ amounts to δA/4GN. Then the area of the

Rindler horizon is identified by the entanglement entropy of the underlying theory

via Ryu-Takayanagi formula [57,58].

Ryu-Takayanagi formula is widely studied and applied in many context but its

conceptual underpinnings are still under investigation. One possible explanation

of why minimal/extremal surfaces yield the entanglement entropy of the region in

the CFT homologous to the minimal surface in the bulk, comes via the bit thread

picture of the information flow proposed in [28]. The physical picture provided

through bit threads is promising as it provides a conceptual understanding on the

Ryu-Takayanagi formula. The proposal provides an intuitive bulk based picture on

why the von Neumann entropy on the boundary region A is provided by the mini-

mal surface in the bulk. Bit threads naturally distinguish quantum correlations in

the form of entanglement from classical ones. However the proposal is much less

practical when it comes to calculate. We are going to make an observation on its

connection to the vector flow representation of χξ that can expand the possible

applications of the framework.

The bit thread construction starts with two main constraints on the flow line vector

field. The vector field is defined to satisfy following two main property,

∇ava = 0, |v| ≤ C (6.5.1)

where C is a positive constant. The first condition ensures that flow lines are

decompressible and hence does not intersect each other anywhere. The second

condition ensures that there is an upper bound in the number of flow lines one

can put on a surface. The constant C takes the role of 4GN and provide a natural

explanation on why entanglement entropy measured on the minimal surface is

in the units of 4GN. The von Neumann entropy on a boundary interval A is
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6.5. Flow line representation of the first law and bit threads

measured by the maximum possible flux configuration on A consistent with the

two constraints above.

S(A) = max
v

∫
A

v (6.5.2)

The divergenceless condition implies that flux through A equals that through any

homologous surface. Together with the maximization process this leads a satura-

tion of the flow lines on the bottleneck of the submanifold having boundary A. In

other words all the field lines that ends up in the region A needs to pass through

the surface homologous to A and their density saturates the bound implied on

the second constraint (6.5.1). In this surface all the flow lines are expected to be

orthogonal and hence they yield the area of the minimal surface in the units of

C. This is the bit thread picture behind the Ryu-Takayanagi formula. It should

be noted that flow configuration is gauge dependent and there is a considerable

freedom on the configuration. For example near the boundary one can insert flow

lines that starts and ends on the boundary without intersecting the bottleneck.

Such flow lines are allowed due to large volume near the boundary. The gauge

dependence of the flow configuration is strongly interrelated with the diffeomor-

phisms in gravity. Note that the exact same gauge dependence is observed in the

flow line representation of the χξ (6.4.4), which is the main obstacle in front of a

canonical bi-local first law. Due to gauge dependence bit threads can not be phys-

ical observables by themselves but one can construct gauge independent quantities

out of them such as flux of bit threads on a given surface.

Given a Riemannian manifold with a boundary one can come up with the flow

satisfying the constraints above. The picture presented above is static in the sense

that it does not provide dynamical evolution of the thread configuration nor it gives

how the bit thread configuration modifies under the deformation of the manifold.

Surely it should be connected to Einstein equations. One can deform the manifold

through a deformation parameter and compare the flow lines in a fixed gauge, then

change in the flow lines should be constrained under the Einstein equations.

Let us consider a manifold Σ endowed with a metric hij and associated flow lines

vi describing the entanglement of a boundary region A. Note that there is not

just one flow configuration that describes the entire entanglement structure of the

microscopic state, it is rather specific to a density matrix describing a subregion on

the boundary. Remember that the vector field vi measures the area homologous to

the boundary region of interest. Therefore when one perturbs the metric linearly,

location of the surface where the flow lines are maximized does not change due to

extremality/minimality of the surface. One should only recalibrate the flow lines

on the same surface such that they saturate the modified bound [156].8 i.e. one

8As extensively studied in [156] the deformation of the area functional by a small parameter
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6. The First Law of Spacetime Deformations

can add and remove some flow lines (6.5.1).

Our goals is to see whether the vector field description of the Wald formalism

can be connected with the flow lines of bit thread picture for a single boundary

interval. The connection we propose is between the vector field δgi and the linear

change on the flow lines δvi due to a perturbation of the metric. We will focus on

what the constraint (6.4.3) implies for the bit tread vector field near the bottleneck.

Studying the behaviour of the deformed flow in the neighborhood of the bottleneck

will be suitable for our purposes since away from that one has so much freedom

to cast the flow lines into a desired form. Let us call the minimal surface m

homologous to the boundary region A. The deformed vector field and metric can

be expanded around the undeformed ones,

h′ij = hij + λh
(1)
ij + ... (6.5.3)

vi = vi0 + λ vi1 + ... (6.5.4)

where λ is the deformation parameter and vi0 is the flow on the initial manifold.

We would like to see whether deformation on the vector flow vi1 satisfies the conser-

vation equation (6.4.3). Both vi and vi0 satisfies incompressibility condition with

respect to manifolds they are defined. On the other hand the condition (6.4.3) is

slightly different in the sense that it is the conservation of first order deformation

of the vector field with respect to the initial manifold. Generally Div
i
1 does not

vanish everywhere based on the divergenceless condition, however we will check

whether vi1 satisfies the condition on a minimal surface. Once it satisfies the de-

sired condition on the bottleneck whether it can be extended to entire manifold

without violating the obstruction conditions [156] is a different problem. For now

we will not be ambitious and stick to the condition on the minimal surface. Conve-

nient coordinate system to study a hypersurface is Gaussian normal coordinates.

In GNC, the metric of D − 1 dimensional space can be expressed in the following

way,

ds2 = dσ2 + h̃abdx
adxb (6.5.5)

where σ is a parameter denoting hypersurfaces and h̃ij is the induced metric on

the same hypersurface. On the initial manifold, vi0 is normal to the surface where

it saturates the bound (6.5.1). Hence,

vλ0 = u, va0 = 0 (6.5.6)

namely, there is no tangential components of the vector field on the surface. Using

divergenceless condition for vi at the first order, we can show that

Div
i
1 +D

(1)
i vi0 = 0. (6.5.7)

λ sets a new bound on the maximum number of threads.
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D
(1)
i denotes the linear term in covariant derivative in the expansion of λ. D

(1)
i vi0 =

δΓjjiv
i
0. Since vi0 vanishes in the tangential directions,

Div
i
1 = −δΓjjσv

σ
0 . (6.5.8)

In GNC connections become expressions of extrinsic curvature of the surface Γijλ =

kij . Because of the minimality condition, k = 0 on the surface,

(Diδv)m = 0. (6.5.9)

where subscript m indicates the condition satisfies on the surface. This is the

same condition with dχ ≈ 0. Yet whether the condition (6.5.9) can be extended

everywhere on the manifold is different or whether it can be introduced as an

additional constraint on the max flow min cut theorems for small deformations of

the manifold according to Einstein equations. Let us now go back to the covariant

phase space formalism and discuss in which setups it can be reconciled with the

bit thread formulation.

When Wald formalism is applied to AdSd+1 using the Rindler horizon generating

Killing fields ξµ then the equations (6.4.2) produces the change on the holographic

entanglement entropy together and change in the modular energy.

δSent. =

∫
m

δgiξdAi δHmod. =

∫
A

δgiξdAi (6.5.10)

Moreover in this background one can perform the construction outlined in section

(6.2). AdSd+1 is also static and can be foliated by the constant time slices. The

Killing field becomes timelike on constant time hypersurface. In addition we de-

scribe the vector field δgi in the same manner (6.4.1). In this background with

bifurcation Killing field ξ, vector field δgi matches the vector field δvi describing

the modification of the flow lines at the linear level due to a perturbation on the

metric.

6.6 Conclusion and Discussion

In this chapter we study the covariant phase space formalism on codimension

two spacelike surfaces and make observations regarding the emergent nature of

gravitation at the linear order.

• First law of spacetime entanglement: We have generalized the first law

of a Schwarzschild black hole to spherical holographic surfaces (6.2.15). In

the limit that holographic surface approaches to black hole horizon one re-

produces well known first law. We have advocated that areas of codimension
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two surfaces in the spacetime measure entanglement across regions separated

by the surface. In other words the notion of area is result of dimensional re-

duction in entanglement in the underlying theory. Based on such postulate,

we interpret eq. (6.2.15) as the first law of spacetime entanglement. On the

other hand the relation does not hold for a generic surface and is limited to

spherically symmetric systems. The interpretation for a general surface is

done through the analogy to elasticity.

• First law of spacetime deformations: We have shown that D − 2 form

χt yields changes on Brown-York quasi local charge densities on a general

spacelike surface [65]. When the formalism applied to a general surface in

the presence of a Schwarzschild black hole, one recognizes the connection

between entropy of the black hole and quasi local charges defined on the sur-

face. The relation (6.3.1) is very reminiscent to thermodynamics of elastic

deformations. Based on their analogy through first law, we have provided

a map between these two phenomena. Our map discovers the geometric

correspondence between perturbations of metric and strain. It is interesting

that we have discovered this analogy purely from information theoretic ar-

guments. The main difference between the first laws is while elastic one has

a local form gravitational analog possesses a qusilocal form due to general

coordinate invariance. In addition the entropy and energy is measured on

different surfaces in gravity, which brings us to the next conclusion.

• Spacetime as a perfect conductor: Wald formalism beautifully unifies

different geometric theories of gravity and provides a canonical definition of

the black hole entropy as Noether charge. In addition it provides a system-

atic derivation of the first law of black hole thermodynamics. The essential

component of the derivation is on shell closedness of χt. This property

allows one to equate deformations on homologous surfaces. We provide a

vector flow representation of χ via Hodge duality on D− 1 dimensional spa-

tial submanifold. In this representation, incompressibility of the flow lines

connects the deformations on homologous surfaces. We observed that the

vector field corresponds to gravitational field when χ is considered with a

timelike Killing field t and it coincides with the bit variations on the vector

flow of the bit thread picture [28] when considered with horizon generating

Killing field ξ in AdS. Therefore we concluded that the closedness of the

form is strongly connected with the area law entanglement in the underlying

theory.
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6.A Conserved charges in frame field formalism

The frame field formalism, á la Palatini will provide us the simplicity and clarity

to study covariant phase space approach of black hole thermodynamics in general

spacelike surfaces for general relativity.

In the first-order orthonormal frame formalism, the Lagrangian of general rel-

ativity in D-dimensions is expressed in terms of the frame field 1-form ea and

connection 1-form ωab which are both SO(D − 1, 1) Lie algabra-valued. These are

the independent dynamical variables of the theory. The spacetime metric in terms

of the frame fields is given by, gµν = ηabe
a
µe
b
ν , where ηab is the Minkowski metric.

The curvature 2-form is defined by Rab = Dωab = dωab + ωac ∧ ωcb.

The Lagrangian D-form for general relativity is a function of the frame and the

connection 1-form via the curvature 2-form,

L(e, ω) = εa...bcd e
a ∧ ...eb ∧Rcd

(we set 16πG = c = 1)

ω(e) should be regarded as a function of the vielbein e. It is determined by the

condition that the variation of the action with respect to ω vanishes. It is instruc-

tive to see the explicit variation of the Lagrangian before presenting equations

motion and their geometric meanings.

δL = δea ∧ ∂L

∂ea
+Dδωab ∧ ∂L

∂Rab
(6.A.1)

= δea ∧ ∂L

∂ea
+ δωab ∧D ∂L

∂Rab
+ d

(
δωab ∧ ∂L

∂Rab

)
From this equation one can read off equations of motion together with the sym-

plectic potential. Equation of motion determining the ω is,

εabc...df e
c ∧ ... ∧ ed ∧Def = 0

where D is Lorentz-covariant exterior derivative. The vanishing of this equation

implies, Dea = 0, which is equivalent to the torsion free condition. The solution

sets the connection, ω, in terms of frame fields, e. If one starts with the solution

of ω at the level of Lagrangian then one has the second order frame formalism. To

see the action of Lorentz-covariant exterior derivative, let’s give the first structure

equation explicitly.

Dea = dea + ωab ∧ eb = 0

The variation of the action with respect to the frame fields yield the other equation

of motion.

εab...cde e
b ∧ ...ec ∧Rde = 0
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When the solution of the first structure equation is used for the equation of motion

of the frame fields, it becomes equivalent to the vanishing of Ricci tensor so, one

recovers the vacuum Einstein equations.

One, can further read off the symplectic potential from eq.(6.A.1).

Θ(δω) ≡ δωab ∧ ∂L

∂Rab
(6.A.2)

= εabd...f δω
ab ∧ ed... ∧ ef

the final experssion is the symplectic potential for general relativity. Using the def-

inition of Noether current (2.2.3), we write the explicit expression in the following

way,

Jξ = d

(
ξ · ωab ∧ ∂L

∂Rab

)
− (ξ · ωab) ∧D ∂L

∂Rab
+ ξ ·Rab ∧ ∂L

∂Rab
− ξ · L

where we have used Lξω = ξ · R + D(ξ · ω) in the expression for J . The goal is

to express the current as a closed form up to e.o.m. D ∂L
∂Rab

vanishes by the first

structure equation. Explicitly, ξ · L is,

ξ · L = ξ · ea ∧ ∂L

∂ea
+ ξ ·Rab ∧ ∂L

∂Rab

this expression combined with the third term in J vanishes by the e e.o.m.

Jξ ≈ d
(
ξ · ωab ∧ ∂L

∂Rab

)
(6.A.3)

Now one can simply read the Noether charge,

Qξ = ξ · ωab ∧ ∂L

∂Rab
(6.A.4)

Now we can give the explicit expression for, D − 2-form χ,

χ = δQξ − ξ ·Θ = δ

(
ξ · ωab ∧ ∂L

∂Rab

)
− ξ ·

(
δωab ∧ ∂L

∂Rab

)
= ξ · ωab ∧ δ ∂L

∂Rab
+ δωab ∧ ξ · ∂L

∂Rab
(6.A.5)

Integral of the (D− 2)-form over the boundary of the manifold yields the first law

of black holes, which is the special case of the variational identity obtained for

generic spherical surfaces in a spherically symmetric static solution.
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6.B Adiabatic variables in stationary systems

Consider a stationary solution of general relativity in D spacetime dimension. It

possesses a timelike Killing vector field, ξµ. We pick a partial Cauchy surface on

this solution such that ξµ is orthogonal on the boundaries of the surface. At first

instance this may not seem plausible due to hypersurface orthogonality condition.

However we consider only partial Cauchy surfaces and we are not interested in

foliation of this surface along the orbits of ξ. For example, in the case of Kerr

black hole, one can find such spacelike surface as soon as one stays outside of the

horizon. This surfaces are also considered in [157] as zero angular momentum

observer surfaces (ZAMO). In all the cases covered in this work, the codimension

2 surface stays outside of any event horizon.

Noether Charge on spacelike surfaces:

Let us start by studying the form of Noether charge on codimension-2 spacelike

surfaces. Define the area element as the D − 2-form

dAab ≡
∂L

∂Rab
= εabc...de

c ∧ · · · ∧ ed

and the (D − 2)-form χ is

δQ− ξ ·Θ = iξω
abδdAab + δωab ∧ iξdAab (6.B.1)

We will study and extract the variables in δQ and ξ ·Θ on the surface of consid-

eration. Let’s start with the Noether charge,

Q = iξω
abdAab

On any D − 2 dimensional surface residing on the partial Cauchy surface with a

normal ξµ, Noether charge becomes surface acceleration times the area.

Q = −κnabdAab = 2κdA

where

nab = nµνeaµe
b
ν , κ =

1

2
nµν∇µξν

are the bi-normal to S (converted to a Lorentz tensor) and the surface acceleration

at S, respectively. We observe that the first part of the Noether charge indeed is

iξ(ω
e)ab = eµb e

a
ν∇µξν = −1

2
nabn

µ
ν∇µξν = −κnab

where eµb is the inverse frame. Here we used the definition of nab and κ, and the

fact that the bi-normal is normalized to nµνnµν = −2.

Before focusing our attention on the symplectic potential part of the variational
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relation. We would like to point out an interesting observation that is clear via

frame field formalism.

In the Wald formalism, black hole entropy is given by the Noether charge,
∫
Q̃ξ

and the variation on the entropy of the black hole in the first law is simply obtained

by the variation of the Noether charge. The term including symplectic potential

ξ ·Θ(δω) vanishes since ξ|H = 0 as a property of Killing horizons. Then the first

law reduces to the following variational relation,∫
H
δQ =

∫
∞
δQ− ξ ·Θ (6.B.2)

while term on the right amounts to the variation on the ADM energy of spacetime,

the term on left is not exactly equal to TδS(= κδA). One would also expect to see

the variation on the surface gravity since the temperature of the perturbed system

has also changed as it depends on the mass of the black hole. It has been justified

in [REF: Black Hole entropy is Noether Charge] that the correct identification of

the manifolds leads stationarity of the surface gravity. However, we will demon-

strate that variation on the surface gravity actually is canceled when one considers

the presypmlectic potential on the surface. The expression (6.A.5) includes terms

having variation on the surface gravity, δ(ξ · ωab) ∧ ∂L
∂Rab

. Internal cancellation

of the variation on the surface gravity between Noether charge and existence of

presymplectic potential in χξ is the actual reason behind the stationarity of the

surface gravity in the first law of black hole mechanics. This cancellation is even

more important when one study variational approach of covariant phase space for-

malism on general spacelike surfaces since Killing field does not vanish on general

surfaces. Now, let’s focus our attention to the other term, ξ ·Θ.

Presypmlectic potential on spacelike surfaces:

The D−2 dimensional surface has two normal vectors, timelike one, ξµ and space-

like “radial” one, nµ. Then on the surface, we have

et = 0 and en = 0

The statement is trivial in the sense that dual forms of normal vectors vanishes on

the surface, in other words volume form on the surface does not contain the line

elements along the normal directions. Then, the first structure equations take the

form

deθi = eθj ∧ ωθiθj
0 = eθj ∧ ωnθj (6.B.3)

0 = eθj ∧ ωtθj
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6.B. Adiabatic variables in stationary systems

summation convension is used and θj denotes the elements on the surface. The

geometric meaning of the first equation of (6.B.3), is the following. If we consider

a surface as a D−2 dimensional Riemannian manifold, then the forms ωθiθj of this

manifold are the same as those in the ambient manifold.

Consider now the second and third equations in (6.B.3). By Cartan’s lemma, these

equations imply the following linear relations.

ωn,tθi = kn,tθiθj e
θj (6.B.4)

by n, t we denote one equation for each normal direction. We will be particularly

interested in knθiθj . The second fundamental form of D−2 dimensional surface in

ambient D− 1 dimensional Riemannian manifold (because of the orthogonality of

ξµ to the hypersurface, system can be considered in a D− 1 dimensional manifold

with Euclidean signature.) is given in the diagonalizing frame by

Π = knθiθi e
θi ⊗ eθi

and knθiθi denotes the principal curvatures, eigenvalues of the second fundamental

form. Remind yourself,

ξ ·Θ = −δωab ∧ iξdAab = 2Nεtnbc...d δω
nb ∧ ec ∧ ... ∧ ed

= 2N
∑
θi

εtnθ1...θi..θD−2
eθ1 ... ∧ δ(kθieθi)... ∧ eθD−2

(6.B.5)

where we have denoted principal curvatures with a single index, kθi . ξ ·Θ mea-

sures the change in each principal curvature together with the line element of

the curvature lines. The terms kθie
θi should be considered as canonically conju-

gate variables to eθi . For spherically symmetric solution we obtain the desired

expression.

ξ ·Θ = δ(e2φ)∂rdA

To sum up in general dimensions we have the following expression

χ =
∑
θi

eθ1 ... ∧
(
2κ δeθi − 2Nδ(kθie

θi)
)
... ∧ eθD−2 (6.B.6)

It is clear that we have D − 2 pairs of independent variables. These are the

variables of an adiabatic change. The first group of variables are the variations

of the frame fields. All of them together yields the change of area, which we

consider as a measure of entanglement entropy of the spacetime. It is a measure of

connectivity in the macroscobic sense, which is translated as entanglement entropy

in the microscopic realm. The other set of variables, (kθie
θi) are the reminiscent

of what we see as the change of Newtonian potential, δe2φ, in the spherically

symmetric case. Simply because (kθie
θi) = −e2φ for each principal direction when

the system is spherically symmetric.
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6. The First Law of Spacetime Deformations

6.B.1 The fundamental variational identity in frame field

formalism

Let’s start by giving the off-shell expression for the Noether current.

Jξ = dQξ + ξaCa (6.B.7)

where Ca are the constraint equations on a fixed-time slice. That is,

Ca =
∑
φ

(
r∑
i=1

(Eφ)b1...bsc1...a...crφ
c1...ci...cr
b1...bs

εci −
s∑
i=1

(Eφ)b1...bi...bsc1...cr φc1...crb1...a...bs
εbi

)
(6.B.8)

where φ is a type (r, s) tensor and the D − 1-from εbi is the natural volume form

on the co-dimension one surfaces. The expression for the off-shell current in the

frame field formulation is given by,

Jξ = dQξ − (ξ · ea) ∧ ∂L

∂ea
− (ξ · ωab) ∧D ∂L

∂Rab
(6.B.9)

The demonstration of the fundamental theorem in the Cartan formulation is as

follows,

d(δQξ − ξ ·Θ) = δJξ + δ

(
(ξ · ea) ∧ ∂L

∂ea

)
+ δ

(
(ξ · ωab) ∧D ∂L

∂Rab

)
− d(ξ ·Θ)

(6.B.10)

= δΘ(Lξφ)− δ(ξ · L) + δ

(
(ξ · ea) ∧ ∂L

∂ea

)
+ δ

(
(ξ · ωab) ∧D ∂L

∂Rab

)
− d(ξ ·Θ)

(6.B.11)

= ω(φ, δφ,Lξφ) +

(
δea ∧ ξ · ∂L

∂ea

)
+

(
ξ · ea ∧ δ ∂L

∂ea

)
+(

δωab ∧ ξ ·D ∂L

∂Rab

)
+

(
ξ · ωab ∧ δ D ∂L

∂Rab

)
(6.B.12)

In the second line definition of the Noether current is used, (2.2.3) and in the

third, we plugged in the expression for δ(ξ · L), (6.A.1).

To sum up, we have demonstrated explicitly that exterior derivative of (D−2)-form

χ yields presymplectic potential together with e.o.m. and linearized ones.

dχ = ω(φ, δφ,Lξφ) + δφa ξ · Eφa + ξ · φa δEφa (6.B.13)
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7
Adiabatic Principle and Origin

of Inertia

You should call it entropy, for two reasons. In the

first place your uncertainty function has been used in

statistical mechanics under that name, so it already

has a name. In the second place, and more

important, nobody knows what entropy really is, so

in a debate you will always have the advantage.

— John von Neumann to Claude Shannon.

7.1 Introduction

In the previous chapter, we have generalized the first law of black hole mechanics

to general spacelike surfaces using covariant phase space formalism. We have

interpreted this generalization as the first law of deformations in spacetime based

on the analogies with elasticity. To be able to draw analogies with elasticity

we kept the thermal entropy in the picture. On the other hand we have explicitly

commented on the fact that, on a codimension two spacelike surface the concept of

thermal entropy doesn’t adequately reflect the physics. Although one can advocate

the existence of the thermal bath in a non inertial frame due to Unruh effect,

we view it as an ambiguity in our theoretical description rather than an actual

thermalization process. Moreover one does not observe a degeneration in the

separation of time scales while approaching a generic spacelike surface. We will

further discuss which other properties force us to distinguish the horizon from

other spacelike surfaces. We will propose the entropic measure of the volume of

the phase space in the microcanonical ensemble as the corresponding notion which

is measured by the microcanonical action in the gravitational theory.

The previous chapter is about the emergent aspects of linearized gravity. It ex-

plores the information theoretic realizations of perturbative gravitational excita-

tions on a given background geometry. In this chapter we will be asking a different
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7. Adiabatic Principle and Origin of Inertia

question: how does a probe explores so called ‘background geometry’, what is the

principle behind geodesic motion? These questions are very different in nature

then ones answered in the previous chapter. The difference between setup studied

in the previous chapter and this one finds its roots in the question whether Ein-

stein field equations imply geodesic motion, or geodesic motion is an additional

postulate that is independent of field equations. Einstein himself was also aware

of this distinction and pointed it out that geodesic motion is introduced into the

theory as an additional postulate [158,159].

In this chapter we propose an underlying principle for geodesic equation. It is

proposed that underlying our universe there exists a microscopic fast dynamical

system, from which our usual macroscopic concepts such as matter and forces

have to be derived. Specifically, we will argue that all inertial forces, including

gravity, are a consequence of the fact that the phase space volume of the underlying

system is influenced by macroscopic variables such as the positions of material

objects. When a fast dynamical system is driven by one or more slow variables,

the fast system reacts back on the slow variables, and creates a reaction force. This

reaction force can be studied in a systematic expansion using the small parameter

that controls the separation of time scales between the slow and the fast variables.

In leading order, the reaction force on the slow system follows from the adiabatic

principle that the phase space volume of the fast system is preserved. In quantum

mechanics this principle is a stated in the Born-Oppenheimer approximation. The

existence of the inertial and gravitational force thus follows from general physical

principles, and as we will see, requires very little information about the underlying

dynamical system except its phase space volume, its density of states and the

typical time scale of its dynamics, all as a function of the slow variables. In

subsection 7.2 we have demonstrated adiabatic principle and emergent reaction

forces for an ergodic system consists of N d.o.f.

The first order correction to the adiabatic reaction force is due to the Berry phase

[160], which is described by an abelian connection on the space of slow variables.

In specific situations the Berry connection can be naturally generalized to a non-

abelian gauge field. The next order reaction force is represented in terms of a

metric on the space of slow variables, while in higher order other tensor fields

are expected to appear [161]. Given these facts, it is natural to propose that the

other forces of nature (as well as the the full relativistic form of gravity) can all be

understood as reaction forces caused by the same underlying microscopic system.

In this thesis we don’t discuss these corrections and their possible relation with

gauge forces any further, but instead we will focus our attention on the leading

adiabatic reaction force and its connection with gravity and inertia 7.3.

The concept of an adiabatic reaction force is closely related to that of an entropic
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force [11]. The main difference between these two types of emergent forces is the

degree in which the time scales of the fast dynamical system and the slow macro-

scopic variables are separated. Our conventional space time description works well

as long as the dynamics of the underlying system is much faster than that of the

observed phenomena. When the separation of time scales becomes small the fast

dynamical will start to behave as a thermal heath bath for the slow variables. We

argue that this is precisely what happens near event horizons. It appears that the

separation of the time scales between the microscopic and macroscopic variables is

controlled by the red shift factor, and thus starts to breaks when one approaches a

surface of infinite redshift (=horizons). As a result in the near horizon region grav-

ity slowly degenerates from an adiabatic reaction force in the Born-Oppenheimer

regime into a genuine entropic force in the usual thermodynamic sense. At the

horizon the separation of time scales completely breaks down, and gravity, matter

and all other notions that involve space and time cease to exist as well defined con-

cepts since their definitions relied in an essential way on the separation of scales.

This distinction between entropic and adiabatic regimes let us interpret the in-

formation theoretic correspondence of deformations on a spacelike surface with

the notion of volume entropy1 which measures the volume of the phase space in

microcanonical ensemble. This volume entropy is measured by the microcanonical

action in the gravitation theory 7.4. Hence we present the main result of this

chapter,

δXMADM = −ωδXIm − F gµδXµ (7.1.1)

where X is the slow variable corresponding to the location of the macroscopic

objects on spacetime. Im is the microcanonical action and corresponds to the

volume entropy of Gibbs and ω is level spacing of the energy levels in the underlying

fast system.

In sections 7.5, we have studied the Newtonian limit of the covariant version of

the adiabatic principle (7.1.1). The surface expression of the gravitational force

is reproduced. In the Newtonian regime we show that the entropy (Im) becomes

entanglement entropy and the level-spacing ω is given by the Unruh temperature

of the non inertial frame. Hence we conclude that our proposal reproduces the

previous hypothesis on the entropic origin of inertia [11]. In the Newtonian regime,

the principle behind the inertia can be summarized as the invariance of entangle-

ment structure of the underlying state with respect to the local deformations of

the macroscopic slow variable.

To sum up, we will study the conceptual implications of what we developed so far

1Volume entropy introduced here should not be confused with the idea introduced in [73]. In

our context it is an entropic measure on the volume of the phase space and it follows area law

in spacetime.
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7. Adiabatic Principle and Origin of Inertia

to the emergent gravity paradigm. We will elaborate some of the ideas presented

in [11] and clarify some of the misunderstandings that originated thereafter. We

will put forward the adiabatic principle as the underlying microscopic mechanism

through which inertia emerges. Our discussion will be presented in a covariant

fashion when it comes to general relativity. We will enquire the following concep-

tual problems.

• What is the microscopic principle behind inertia?

• What is the information theoretic notion that amounts to the integral of χt
(5.3.10) on general surfaces? Is it the change of entropy or total energy?

• What is adiabatic principle, adiabatic invariance, and adiabatic reaction

force and what distinguishes it from an entropic one?

We will answer these questions in general relativity. For us general relativity is

the true theory in its domain of validity and everything proposed here should be

demonstrated in it. We think it is most beneficial to start by explaining concept

of adiabatic reaction force.

7.2 Adiabatic Principle

Adiabatic principle is one of the fundamental principles of nature that reflect itself

in many different branches of physics. In essence it is about the fact that when two

systems which are separated by a gap in the timescale hierarchy then these two

systems can not efficiently communicate. In other words, a system adjust itself to

an affect that is slow compared to the timescale of the system. This readjustment

leaves some relevant attributes of the system invariant approximately. The adia-

batic principle that will be considered here follows from its quantum mechanical

consideration. We state it as follows:

A physical system stays in its instantaneous eigenstate when it is deformed slowly

with respect to the characteristic time scale of the system.

As a result of the coupling of two system having distinct characteristic time scales,

adiabatic reaction forces arise. Let us refer these two systems as slow and fast sys-

tems according to the characteristic time scales of their dynamics. In the adiabatic

averaging approximation, the energy of the fast system calculated for frozen slow

variables, acts as a potential in which the slow system moves. Coupling of two

systems manifests itself in the fast system as the parametric dependence of its

Hamiltonian on the position of the slow system. Due to the separation of time
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scales, the fast system remains in same energy eigenstate with respect to the de-

formations of the slow variable. In the limit of infinitely slow variations, this fact

can be used to determine the reaction force entirely from the principle that the

phase space below an energy eigenstate remains constant. The quantities that re-

main approximately constant are called adiabatic invariants. Entropic force is also

a form of adiabatic reaction force where the entropy of the system serves as the

adiabatic invariant. In general the volume of the phase space of the fast system

becomes the adiabatic invariant.

We will discuss the adiabatic principle and the reaction forces deriving from it

on systems having ergodic behaviour. The main purpose of this section is to

illustrate the connection of the principle of adiabatic invariance to emergence of

inertial forces through a first law type relation.

Adiabatic reaction force in an ergodic system

In this section we will discuss the generalization of adiabatic reaction forces to

many degrees of freedom N . The special case is where degrees of freedom are

decoupled and system is integrable. In this case one has N adiabatic invariants

and total phase space is the sum of phase spaces of individual d.o.f. This kind

of a system is trivial extension of the adiabatic principle for a single harmonic

oscillator.

We will consider the generalization of the adiabatic principle to a fast ergodic

system that consists of many coupled degrees of freedom. Slow system will be

coupled to microcanonical ensemble of the fast one.

Let us consider that slow system is coupled to the fast system through it is position

on the space denoted by Xi where i runs in {1, 2...(D − 1)}. We denote the 2N

dimensional phase space of the fast system by the parameters (qa, pa) where a runs

in {1, 2...N}. Consider the Hamiltonian of the fast system parametrically depends

on the slow variable Xi.

Hfast ≡ H(pa, qa;Xi) (7.2.1)

Since adiabatic affection of the system takes place very slowly one can study its

affects on the distribution function of the phase space perturbatively. The energy

eigenvalues below a given adiabatically varying eigenstate becomes constant, at

least to a very good approximation. This statement is a consequence of the fact

that under very slow variations the energy eigenvalues do not cross. The statement

becomes exact in the limit of infinitely slow variations. According to the Bohr-

Sommerfeld quantization rule, the number of states below an energy eigenstate is

given by the volume of the phase space contained inside the corresponding energy
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7. Adiabatic Principle and Origin of Inertia

surface measured in units of ~N . Given the fact that this number stays constant,

we arrive at the following adiabatic invariant for ergodic systems [161]

Ω(E,X) =
1

(2π~)N

∫
...

∫
dpNdqN Θ(E(X)−H(p, q;X)) (7.2.2)

where Θ is the Heaviside step function. This is the generalization of the action

variable (1.1.5) to ergodic systems. It counts the number of energy eigenvalues

below a certain value. Although we have emphasized that we are in the micro-

canonical ensemble this quantity does not count the number of possible states at

a certain energy rather all the levels below a certain energy. The microcanonical

form of the ensemble will become clear in the definition of the expectation values

of the observables and density of states. Using the expression of adiabatic invari-

ant one can extend the definition of action variable to ergodic case. This is exact

analog of thermodynamical entropy ST yet we prefer to call it volume entropy S

which makes it clear that it is the entropic measure of the volume of the phase

space under a certain energy level. This measure of entropy is also known as the

Gibbs entropy in the microcanonical ensemble [8].

S = log Ω(E,X) (7.2.3)

This entropy will be used as an adiabatic invariant. We will show that gravitational

analog of the entropy is the microcanonical action. One can derive the first law of

adiabatic principle via variation of the slow variable,

dE = TdS + FidX
i (7.2.4)

where one can express the force in the usual way as the gradient of the energy.

Fi = −∂XE(S,X)S (7.2.5)

where subscript S denotes the stationarity of the entropy. This is the adiabatic

reaction force in a system of N degree of freedom at the leading order. What is

denoted as temperature should be considered a measure of the level spacing of

the energy levels, and describes the response of the energy under small changes in

the phase space volume. However, it is important to note that there is no actual

change of phase space volume in an adiabatic process. One can obtain further

relations from (7.2.4) that relates the entropy and the force. This is typically the

notion of entropic force,

Fi = ∂XS(E,X)|E
1

TV
= ∂ES(E,X)|x. (7.2.6)
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Fδx

Figure 7.1: Influence of the nuclei on the phase space of the electrons causes the molecular force

between each molecule known as Bohr-Oppenheimer force. Virtual replacement of

a molecule encounters a reaction force that emerges due to invariance of the phase

space volume in an adiabatic deformation.

Contrary to the common understanding it does not lead to an increase in the

entropy rather energy of the system adjust itself such that entropy is invariant.

The expression (7.2.5) is also known as Born-Oppenheimer force 7.1. The Born-

Oppenheimer approximation can be turned into a systematic approach by parametriz-

ing the separation of time scales between the slow and the fast system using a small

parameter. In leading order the quantum state of the total system can be factor-

ized into a product of the energy eigenstate of the fast system with the state of

the slow system. In this regime the dynamics of the slow system can be described

by an effective Hamiltonian that includes a potential term equal to the energy

eigenvalue of the fast system. The resulting adiabatic reaction force is thus equal

to the gradient of this energy eigenvalue with respect to the slow variable and is

known as the Born-Oppenheimer force.

An important aspect of the Born-Oppenheimer approximation is that as long as

the time scales are widely separated the slow system can be treated fully quantum

mechanically and maintains all its quantum properties, even though it is coupled

to a system with many degrees of freedom.

Let us close this section on the discussion of why the ensemble of the fast system

is considered to be microcanonical even though phase space of the system is calcu-

lated by counting the states below a certain energy rather than near that energy.

Any quantity derived from S necessarily involves differentiation with respect to E,

X or possibly some other variable and therefore is given by an expression defined

only on the energy surface [162]. Moreover density of states by which one can

calculate the ensemble average is defined in the following way,

ρ0(p, q) =
δ
(
E(X)−H(p, q;X)

)
∂EΩ(E,X)

. (7.2.7)
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This is the density of states frozen with respect to the slow variable. Also it

represent the zeroth order density of states in the pertubative analysis of adiabatic

modification of the system. This is the measure where Born-Oppenheimer force is

defined as an ensemble average.

~F = −〈∂XH(p, q;X)〉 (7.2.8)

where

〈....〉 =

∫
dpNdqN .... ρ0 (7.2.9)

This is the standard definition of the average in the micro-canonical ensemble as

used in textbooks on statistical mechanics. Note that for an ergodic system the

time average of any physical quantity is given by the average over the energy

surface.

To sum up, it is explain that, adiabatic principle yields similar expressions to the

first law of thermodynamics, yet their origin is different. It is also emphasized that

the emergent force is due to existing of an adiabatic invariant whose invariance

causes a reaction force to the deformations by the slow dynamics.

7.3 Inertia as an Adiabatic Reaction Force

In the previous section we have discussed the deformation of a fast system by

a slow variable and emerging reaction force exerted by the fast system on the

slow one. In other words the fast system builds a potential for slow system. In

essence this aligns with the current understanding of emergent gravity, where the

moduli space of the underlying gauge theory corresponds to emergent space. In

other words, the integrated out matrix degrees of freedom builds a potential which

becomes the spacetime for the probe. The setups where one can carry out exact

calculations starting from the gauge theories are mostly supersymmetric. There

are also attempts to go beyond supersymmetry [163]. We will also assume that

the underlying fast system is a U(N) gauge theory, yet we will not refer to the

details of it. It is also not necessary from the point of adiabatic reaction forces,

since it can be derived independent of the details of the fast dynamics.

In this section, using the tools introduced in the first chapter we will demonstrate

the adiabatic first law in gravity by means of generic surfaces on spacetime. We

will elaborate on the adiabatic invariant in gravitational systems and show its

connection to microcanonical action in gravity. We will show that the integral of χt
on spacelike surfaces measures the change in the phase space of the microcanonical
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ensemble (7.2.2). As a consequence of the area law in gravity, change of phase space

includes terms proportional to area.

The general philosophy we adhere to is that any geometric solution M in a well

defined semi-classical gravitational theory corresponds to a state |M〉 in thermo-

dynamic limit of ordinary quantum mechanical systems. The geometric solution

M is the emergent potential derived by integrating out the fast degrees of freedom

of the corresponding state |M〉. On this quantum mechanical state we introduce a

probe that takes the role of a slow parameter. Although adiabatic approximation

preserves the coherence of a quantum mechanical probe, for all practical purposes,

the classical probe will suffice.

The underlying state |M〉 is stationary in the decoupling limit of the fast-slow sys-

tems. Hence the geometric description of it corresponds to a stationary solution of

a gravitational theory possessing a timelike Killing field tµ2. Although |M〉 has an

exact timelike Killing symmetry without the slow variable,(or in the leading order

of the adiabatic approximation) the symmetry becomes an approximate notion

due to the coupling of the underlying Hamiltonian to the slow parameter (7.2.1).

The corresponding statement in the underlying quantum mechanical system is,

ρ = ρ0 +

∞∑
n=1

λnρ(n), [Ĥfast, ρ0] = 0 (7.3.1)

where ρ is the density matrix of the fast system in the adiabatic approximation.

λ is the parameter of the approximation and should be on the order of the ratio

of the characteristic scales. The invariant phase space is measured with respect to

ρ0.

The adiabatic first law will be demonstrated in the emergent geometric setup but

the principle behind is a microscopic one. The starting point is the fundamental

theorem of covariant phase space formulation (5.3.10). We consider the snapshot

of the |M〉 at a point in time t = constant that corresponds to a constant time

hypersurface Σt in the geometric description. Energy of the state is measured

from the point of infinity and defined by the ADM mass of the solution. On

this solution we consider a holographic screen, a codimension two surface in M,

which captures the microscopic information of the state partitioned according to

holographic surface Σ = Σin∪Σout and associated subalgebras. We prefer to define

holographic screen through the subalgebra associated to Σin since factorization of

Hilbert space in quantum gravity is problematic [164,165].

According to the holographic paradigm, the subalgebra associated to Σin can

be encoded on the surface Sn that separates Σin and Σout. The entanglement

2Although we have carried out explicit computations particularly for general relativity in the

first part, our arguments apply to higher derivative theories as well.
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entropy is also defined through the subalgebra without explicitly referring to the

factorization of the state. The dimensional reduction (holographic principle) is

the consequence of the area law entanglement in the underlying state |M〉. Let us

consider a third surface surrounding the probe Σp. The fundamental theorem of

covariant phase space formulation implies,∫
Σout/Σp

ω(φ, δφ, δtφ) =

∮
Sn

χt +

∮
Sp

χt −
∮
S∞

χt (7.3.2)

where Σout/Σp indicates the region Σout excluding the region of the probe Σp.

The location of the probe corresponds to the slow variable explained in (7.2).

Perturbation on the underlying state is caused by the change in the slow variable

δφ ≡ δXφ. The presymplectic current vanishes since δtφ = 0. The integral around

infinity amounts to a change in the energy of system δMADM in the form of ADM

mass.

δMADM =

∮
S∞

χt (7.3.3)

We first replace the surface integral around the probe by a volume integral us-

ing the Stokes theorem. Then assuming that the initial geometry satisfies field

equations, we are left with the linearized field equations in (6.B.13):

dχt = −2tµ(δXEµν)dΣν (7.3.4)

where dΣν is the volume element of Σp. We will replace the linearized equations for

the gravitational field by the change in the location of the probe. The perturbation

is due to a virtual displacement of the location of the probe

dχt = −tµ(δXTµν)dΣν . (7.3.5)

Without loss of generality the form of stress energy tensor is assumed to be Tµν =

ρuµuν + tµν . There are two equivalent ways to describe the situation. In the first

case, we can assume a Dirac delta distribution for the probe ρ(x) ≡ ρδD−1(xi −
Xi). In this snapshot of the D − 1 dimensional hypersurface, one can vary the

location of the probe X ′i = Xi + δXi then show that integral around the probe

amounts to the force term.

We will demonstrate the force term in a different way which reflects the fictitious

character of the deformation more naturally. Suppose one just starts with the

background geometry. In this background we first introduce the probe in the

location Xi which causes a change in the total energy of the system δMADM. We

consider another perturbation on the initial unperturbed geometry by introducing

the source to the location Xi + δXi which yields a change in the total energy of
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δMADM

ωδIm =
∫
N(δε+ δω)

Fδx

Figure 7.2: Adiabatic principle in gravity. The equation on the left is interpreted as the first

law of deformation in spacetime. The invariance of the phase space with respect

to deformations that does not become part of the system, causes reaction forces

on the probe. The adiabatic principle in gravitation is formulated as δMADM =

ωδIm − Fδx.

the system δM ′ADM. The difference of energies of two perturbation amounts to

virtual change in the location of the probe∮
Sp

χt = −

(∫
Σp

ρ (∇µN)uνdΣν

)
δXµ = −F gµδXµ. (7.3.6)

Note that dΣν = uµdV and u · u = −1. The additional minus sign appears in the

definition of reaction force. Hence we end up with following relation,

δXMADM = −ωδXIm − F gµδXµ (7.3.7)

where we defined ωδXIm ≡
∮
Sn
χt and Im stands for the microcanonical action

attributed to the region Σin. The connection to the microcanonical action will be

elaborated in the next section. The (7.3.7) is interpreted as follows: invariance of

the microcanonical action against deformations of the probe that do not become

part of the phase space associated to Σin causes a change in the energy of the

underlying state such that a reaction force on the probe emerges. The entropic

origin is also hidden in this statement i.e. it is the invariance of the entropy of the

volume (7.2.3) of the phase space that causes reaction force.

Let us continue the discussion by the following thought experiment on black holes

to observe the invariance of the phase space against perturbations that are not

merged into the system or cross the surface Sp.

Physical process version of the first law and invariance of the phase

space

First law of black hole mechanics [22] when considered for a Schwarzschild black

hole states that the change in the entropy of the black hole is proportional to
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change in the energy of the system.

TδSBH = δMADM (7.3.8)

This is a simple yet profound relation that yields the thermodynamic nature of the

black holes. The natural way to understand this relation is considering two black

hole solutions such that their mass is infinitesimally close to each other. These

two solutions have different horizon areas again infinitesimally close to each other.

The variation on the mass and on the area of the horizon are related to each other

according to the first law.

On the other hand, one can demonstrate the first law by lowering mass and finally

dropping it into the black hole [166]. The picture provided in such a thought

experiment is giving more information about what happens during the process.

Let us briefly go over this thought experiment. For our purposes we will simplify

the experiment by considering Schwarzschild black holes. In the same way the box

dropped into the black hole will have no electric charge.

One starts the experiment by introducing a probe having mass m which will be

later dropped into the black hole having mass MADM and entropy SBH. When

a probe is introduced into the system, the total energy of the system changes by

an amount of the energy of the probe. The increase in the energy of the system

depends at which point of the geometry the mass is introduced, simply because

ADM mass is measured at infinity. The increase in the ADM mass in terms of

the mass m is given by Nm. At the point of time where the mass is introduced

to the system, the total energy of the system changes by an amount δM(= Nm).

It would be absurd to think that the black hole entropy changes at the moment

the mass m is introduced into the system. It would violate causality. Hence in

the beginning there is an increase in the energy of the system, yet the black hole

entropy stays the same.

Again by applying Stokes theorem on the initial hypersurface Σ, it becomes obvious

that
∫
SH
χ = 0 and δMADM =

∫
Σ
dχ. Using the closedness of dχ one can replace

the integral over the spacelike hypersurface Σ with the null surface on the black

hole horizon,
∫

Σ
dχ =

∫
H dχ. Assuming that all the matter eventually will falls

into the black hole, one can show that
∫
H dχ ∼ κδA using the Raychaudhuri

equation.

Rather than the process itself, we are interested in the point where the probe mass

is introduced into the system. It is easy to see that black hole entropy does not

change on this hypersurface. More importantly integral χ vanishes on any closed

surface between the horizon SH and infinity which doesn’t include the probe. The

moment probe passes through a holographic surface, one expects an increase on

volume of the phase space equal to an amount of Nm, this is an example of non
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adiabatic transition. As we will show in the next section, the change in the entropy

is measured by the change in the microcanonical action of gravity.

7.4 Microcanonical Action as the Adiabatic

Invariant

Information about the observables in a quantum field theory can be extracted from

the Euclidean generating functional

Z(~, J) =

∫
Dφ e−1/~ (S[φ]+

∫
J·φ). (7.4.1)

The form of the generating functional manifestly covariant. The generating func-

tional can be interpreted as a partition function with the following correspondence,

~↔ T, Energy↔ S[φ]. (7.4.2)

The canonical ensemble of the statistical physics studies systems under fixed tem-

peratures. It is not most general or fundamental formulation of the statistical

mechanics. Rather it can be derived from the microcanonical formulation. Funda-

mental postulates of statistical mechanics, ergodicity and conservation of energy

manifest itself naturally in the microcanonical formulation. In renormalizable

quantum field theories canonical and microcanonical formulations are equivalent

to each other [167]. However distinction becomes more important for the systems

that does not have any temperature. Another distinction between the microcanon-

ical description of ordinary quantum field theories and gravity is that fixing the

energy in a quantum field theory corresponds to restricting the integral of the

Hamiltonian on the entire manifold while in gravity this can be done simply by

restricting the boundary data. Hence microcanonical ensemble in gravity corre-

sponds to fixing the energy flux on the boundary in the form of quasilocal energy

density and angular momentum [168]. The change of boundary data amounts to a

Legendre transformation between the energy density and the inverse temperature,

which are thermodynamically conjugate variables.

In this section we will comment on the the physical interpretation of the surface

charge
∫
χt from a microscopic point of view. We interpret that its invariance

leads to the adiabatic reaction forces. In section 7.2 adiabatic invariant amounts

to the volume of the phase space in microcanonical ensemble. We will now show

that the adiabatic invariant in gravity is also connected to the volume of the phase

space in microcanonical ensemble. Let us start by reminding ourself the expression

of χt in terms of the change in The Noether charge Qt and symplectic potential
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Θ. ∫
S

χt =

∫
S

δQt − t ·Θ (7.4.3)

The symplectic potential appears as a boundary term in the variation of the La-

grangian (2.2.1). One can add additional boundary terms that corresponds to

changing the ensemble where the observables are calculated in. The boundary

term that transform the ensemble to microcanonical is the Noether charge

Im =

∫
M
L−

∫
∂M

dt ∧ Qt. (7.4.4)

This is the form of microcanonical action derived by Brown and York [169] and

elaborated by Wald within the covariant phase space formalism [65]. The variation

of this action yields the form χt as a boundary term

δIm =

∫
M
δEabδgab −

∫
∂M

dt ∧ ( δQt − t ·Θ) (7.4.5)

=

∫
M
δEabδgab −

∫
∂M

dt ∧ χt (7.4.6)

Fixing this data on the boundary corresponds to fixing the total energy of the

system. The relative minus sign is due to the direction of the boundary integral.

While we have considered the integral of χt on the surfaces with outward directed

surface normal nµ, the surface normal of the boundary is defined on the opposite

direction (7.3.2).

When the equations of motion holds for a region of spacetime, the change in the

action that is associated to the same region, becomes equal to the change in the

boundary data in the microcanonical ensemble. For a stationary solution the

boundary integral along the time axis can be carried out. We assume that there

is a characteristic time scale for the underlying fast system where change in the

action due to the deformations of the slow parameter is localized within (7.3.7)

this scale 3. Hence we can safely assume that the contribution to the integral

will come within this range of time in the case of an adiabatic affection of the

system. Therefore the adiabatic invariant in the first law (7.3.7) is identified with

the microcanonical action in gravity

ω δIm = −
∫
S(n)

χt (7.4.7)

3For thermal systems, time coordinate becomes periodic in inverse tempreture, β to prevent

conical singularities near the origin. In this case volume of the phase space becomes finite

dimensional and proportional to inverse tempreture.
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Frequency or inverse level spacing is defined as the inverse characteristic time

scale of the system ω = 1
Tchar.

. This is also the time scale for the system to adjust

itself to a non adiabatic transition. In terms of the microscopics, we propose that

microcanonical action counts the volume entropy of Gibbs. Therefore even there

is no degeneracy for a particular macrostate, the entropy does not vanish as it

counts the number of states below a certain energy eigenstate. We propose that,

δS ≡ −δIm TV = ω (7.4.8)

With this identification the adiabatic first law (7.3.7) becomes,

δXE = TV (δXS)− F gµδXµ (7.4.9)

7.5 Newtonian limit

It is an interesting exercise to study what χt yields on generic surfaces in the

Newtonian limit of general relativity. Newtonian limit is interesting in the sense

that one can see the backreaction of the probe on the geometry. Therefore when the

energy of the system is conserved, namely the probe is moved by the system rather

then an external virtual affection of the system, we should be able to recognize

force expression on general surfaces. In other words when δE = 0, the change in

the phase space is equal to the derived force ωδIm = Fδx. This was also how the

entropic force as the origin of inertia is first presented [11].

We use the following solution as the Newtonian limit of general relativity in D

dimensions

ds2 = −
(

1 +
2Φ

c2

)
dt2 +

(
1− 2Φ/c2

D − 3

)
d~x2. (7.5.1)

Note that the solution does not need to be spherically symmetric. We will expo-

nentiate the solution to simplify the calculation. This is only for computational

convenience, by no means we demand exponentiated metric to be a solution of

general relativity

ds2 = −e2Φ/c2dt2 + e−2Φ/(D−3)c2d~x2. (7.5.2)

The above ansatz reduces to the Newtonian limit of general relativity in the leading

order and that is the only requirement. Spatial section of the metric can be

expressed in the following form

hij = e2σηij (7.5.3)
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where σ = −Φ/c2

D−3 and ηij is flat metric. We will make use of the fact that hij is

related to the flat space through a Weyl transformation. We will plug this solution

into the expressions (6.2.5),

δE =
c4

8πG

∮
κ δdA−N(δk + kijδσij)dA− Fδx (7.5.4)

The surface charges of the metric (7.5.1) is related to the one defined in the flat

space in the following way,

σ̃ij = e2σσij (7.5.5)

k̃ij = eσ (kij + σij∂ησ) (7.5.6)

k̃ = e−σ (k + (D − 2)∂ησ) . (7.5.7)

σij and kij are the first and second fundamental forms of (D − 2) surface embed-

ded into flat space which serves as a reference manifold. ∂η = ηi∂i is the normal

derivative of codimension two surface in flat space. ∂η will be fixed under defor-

mations. The problem we had encountered in the fully relativistic theory namely

how to identify deformed manifold with the unperturbed one does not exist in the

Newtonian limit. One can use the flat space as the reference manifold and only

vary Newtonian manifold. Therefore variation is only on the Newtonian potential

Φ and not on σij , kij or any quantity defined with respect to the flat geometry

ηij . The philosophy we follow here is similar to the derivation of the adiabatic

first law of inertia (7.3.7). We perturbed the initial manifold in two different ways

and compare these two different configuration. Newtonian solution is already a

perturbation therefore changing the potential in the base solution is equivalent,

in the leading order, to compare it with a different configuration of the potential.

The final expression will be given in terms of the geometry of the initial Newtonian

metric, not in terms of the quantities defined on the flat reference manifold. We

will drop all the factors of 1/c2 and 8πGN for now and put them back at the end.

Based on this setup we will give the expressions for δQ − t · Θ using the general

expression,

δQ = e−σ(∂ηN) (D − 2)δσdA︸ ︷︷ ︸
δdA

= (∂ηΦ)(D − 2)δσdAη (7.5.8)

t ·Θ = Ne−σ(D − 2)∂η(δσ) dA = ∂η(δσ) dAη (7.5.9)

where N = eΦ/c2 and all the subscripts η indicates that the quantity is calculated

with respect to the reference flat manifold. These expressions should be given in

terms of the quantities of unperturbed space which is not flat and related to the

flat space through a Weyl transformation (7.5.5). We will give the expressions in

terms of ∂n = e−σ∂η which is the normal derivative in the undeformed solution
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κδdA

δxF

δE

Φ = Φ0

Figure 7.3: In the Newtonian limit, entropic measure of the microcanonical phase space is iden-

tified with entanglement entropy of the underlying state. Invariance of the en-

tanglement structure of the underlying theory causes the emergent reaction force,

δE =
∫
κδdSent − Fiδxi.

(7.5.2) and the area element of the surface embedded in it, which is denoted by

dA.

δQ = eΦ(∂nΦ)

(
−D − 2

D − 3

)
δΦdA︸ ︷︷ ︸

δdA

(7.5.10)

t ·Θ = eΦ

(
−D − 2

D − 3

)
∂nδΦ dA (7.5.11)

Change in the energy of the system is given by

δE =
c4

16πG

∮
δQ− t ·Θ− Fδx =

c2

8πG

∮
eΦ(∂nΦ)δdA+ eΦ

(
D − 2

D − 3

)
∂nδΦ dA.

(7.5.12)

If we expand eΦ in powers of 1/c2, we see order by order contribution to the change

of energy. Note that change of area implicitly at the order 1/c2 (7.5.10), so that
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term does not appear in the leading order,

δE =
c2

8πG

∮ (
D − 2

D − 3

)
∂nδΦ dA+

1

8πG

∮
(∂nΦ)δdA+

(
D − 2

D − 3

)
Φ ∂nδΦ dA− Fδx.

(7.5.13)

The first term on the right hand side is Gauss’s law for gravity (or integral version

of the Poisson equation), that measures the change of energy due to addition of

gravitational charges inside the surface. The second one corresponds to work done

by the force on a test mass, m outside of the region. One can use electrostatic

analogy to observe that this term indeed gives the gravitational force in the most

general case presented in three dimensions,

Fiδx
i =

−1

4πGN

∮
(δxΦ∂nΦ− Φ∂nδxΦ) dAn (7.5.14)

In other words, one can redistribute the entire gravitational charge contained inside

the region over the surface without changing the forces on the particles. Consider-

ing variations on the potential caused by changing the location of the probe (the

change of the potential that test mass feels due to virtual change in its location)

which can be obtained from the Green’s function for the Laplacian, we obtain,

Fiδx
i =

1

8πGN

∮
(∂nΦ)δdA+

(
D − 2

D − 3

)
Φ ∂nδΦ dA. (7.5.15)

This is the generalized force expression expressed as a surface integral. It is inter-

esting that in the Newtonian limit we end up with an expression having change of

area due to fictitious relocation of a probe. The connection between fixed space-

time and dynamical one is made through the weak field limit of general relativity

(7.5.1) which open us a window to understand the underlying physics.

Although the surface expression ωδIm (which is shown to be proportional to the

change in the volume of phase space) looks like changing this is an illusion due

to conservation of energy. It would change if we let system evolve and let the

gravitational waves propagate through the surface and let the probe pass the

surface. But remember we were moving the probe fictitiously on a frozen moment

of time. In other words the whole setup is at a constant time slice and on this

time slice we are probing the hamiltonian virtually. Indeed the surface expression

(7.5.15) is invariant under fictitious deformations. It is the change of energy that

corresponds to work done by the force. In other words we use the relation between

action and slow variable by keeping the energy fixed (1.1.8).
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7.5.1 Microscopics of the Newtonian regime

It is explained that when the system is deformed fictitiously at a constant time 4,

the phase space of the underlying dynamics stays invariant. This invariance re-

flected itself as a reaction force that one can calculate simply by F = −∂xE(x)|Im .

In general when system continues to evolve, the probe will pass the surface and

non adiabatic transitions will occur. Therefore general relation that also governs

the non adiabatic transitions, manifests itself in the form of a first law,

δE = −ωδIm − Fδx (7.5.16)

The entropic version of the force F = TV ∂xS(x)|E can be interpreted through the

conservation of energy in a closed system in contrast to the manipulation of the

system from outside by fictitious affections.

Let us look at a special case where the D − 1 dimensional manifold is foliated

by equipotential surfaces. This is a natural foliation since Newtonian potential

naturally determines the energy scale with respect to the infinity where energy of

the entire system is well defined. When the surface is chosen to be an equipotential

one Φ = Φ0, the Φ in the second term in (7.5.15) can be pulled out of the integral

and since δΦ is sourced by only the particles outside the screen, the remaining

integral just gives zero. Let us study the result from a microscopic perspective,

where the change amounts to a change in the phase space having energy levels ω

ωδIm =
−1

8πGN

∮
(∂nΦ) δdA (7.5.17)

In the Newtonian limit one can localize this identity by dividing surface into area

elements. This sort of localization is not unique in general relativity due to general

coordinate invariance, as explained in section 6.4. The changes in phase space of

the underlying theory in the Newtonian limit becomes solely determined by the

area of the holographic screen. We propose the following identification,

ω =
∂nΦ

2π
δdN = δ

dA

4GN
. (7.5.18)

To align our language with [11], we replaced −Im = S = N . Frequency of the

harmonic oscillators on the holographic surface is given by the Unruh temperature

associated to the screen, ω = TU. The change in the phase space can also be

expressed in terms of the potential of the probe (7.5.10),

δdN = −D − 2

D − 3
δΦdN (7.5.19)

4One can also consider a deformation which is not taking place at a constant time slice but

happens in a much slower than the time scale of the fast dynamics.
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Negative sign indicates that when probe passes the holographic screen, there is an

increase in the volume of the phase space. Newton potential keeps track of the

changes of information per unit bit. The equation (7.5.19) together with (7.5.18)

indicates that the change in the phase space that is equal to the area is proportional

to change in the Newtonian potential of the surface.

7.6 Conclusion and Discussion

In this chapter we revisited the proposal that inertial forces have entropic origin

[11]. We reconsidered the proposal from a relativistic point of view using covariant

phase space formalism. The idea of entropic force is elaborated and generalized as

adiabatic reaction force which follows from the principle of adiabatic invariance.

We also proposed that on a general spacelike surface, volume of the phase space

is the correct notion corresponding to adiabatic invariant. We argue that in a

geometric theory of gravity, change in the entropy of the volume of the phase is

measured by the microcanonical action which agrees with the general definition of

the volume entropy as the measure a of volume of a phase space in microcanonical

ensemble. We provided reasons to distinguish it from thermal entropy. Let us

summarize our conclusions on this chapter:

• Adiabatic first law: In this chapter we clarify the distinction between

the first law that corresponds to fluctuations of gravitational field and the

first law type relation that emerges due to deformations caused by a probe.

The former is studied in the previous chapter 6. We start by introducing

adiabatic first law in an ergodic system 7.2. The principle relates energy,

force and volume of the phase space. The realization of the adiabatic first

law in gravity is demonstrated in section 7.3. We clarified some of the mis-

understandings that originated thereafter the entropic gravity proposal. In

particularly, the concept of reaction force makes it clear that it is not the

change of entropy that causes inertial forces, rather it is the invariance of en-

tropy that requires energy to adjust itself such that a reaction force emerges

as gradient of the energy. Because of the distinction between locally vac-

uum spaces and thermalized regions we proposed the notion of phase space

volume entropy. It counts the number of energy eigenvalues below a certain

state. We have proposed that change in the entropy is measured by the

microcanonical action in a geometric theory of gravity. Our interpretations

apply also to higher derivative theories of gravity.

• Microcanonical action is entanglement entropy in the Newtonian

limit: In the Newtonian limit, on equipotential surfaces, the microcanonical
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action that measures volume of the phase space δIm becomes change of area

of the surface. In this limit, one can localize the quasilocal expressions by

referencing to the flat manifold. In this local form of the expression we deduce

that level-spacing between energy levels corresponds to Unruh temperature.

Moreover, we have derived Gauss’s law and well known surface expression

of the gravitational force as the Newtonian limit of Brown-York quasilocal

charges.

• Adiabatic invariance and LOCC: Invariance of phase space with respect

to local deformations of the slow variable is consequence of the fact that lo-

cal operations and classical communications can’t increase/decrease entan-

glement. Hence entropic origin of inertia should not be considered as change

of entropy, it is rather caused by change of energy under the invariance of

entropy.

• Emergence gravitational waves and gauge fields: Finally we would

like to emphasize that adiabatic reaction force is the zeroth order affect of

the underlying fast system. We interpret this zeroth order affect as inertia

or geodesic motion. One can also study subleading contributions to reaction

force in a systematic expansion over the ratio of characteristic time scales of

the slow and fast systems [161]. These subleading terms come in the form

of a symmetric and anti-symmetric tensors. Therefore reaction of the fast

system provides space to generate gravitational fields and gauge fields. We

leave studying these subleading terms in a future study. It would be a strong

check of the hypothesis provided here.
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Samenvatting

In deze scriptie, hebben we de hypothese onderzocht dat zwaartekracht een emer-

gent fenomeen is. We beginnen eerst met het onderzoeken van wat een emergent

verschijnsel betekend vanuit een algemeen perspectief, en vervolgens verklaren we

de betekenis van het concept, middels het onderzoek in deze scriptie.

De moderne fysica, met de komst van de kwantumfysica, is gewend geraakt om de

wereld in hirarchien van complexiteiten te zien. Elke klasse binnen de hirarchie is

het resultaat van de relaties en interacties van de bouwstenen van de hirarchien

binnen die klasse en eromheen. Emergentie is het proces waarin een radicaal

anders en samenhangend systeem ontstaat, als gevolg van de relaties van zijn

componenten. De fysica van de emergerende laag in een hirarchie drukt zich uit

in een nieuwe taal die geen verwijzingen hoeft te hebben naar de bouwstenen.

Hoewel het duidelijk is dat elke structuur binnen de hirarchie voortkomt uit de

interacties van zijn bestanddelen binnen en met de omgeving, is het betwistbaar

of men de eigenschappen van de emergerende hirarchie kan construeren en af kan

leiden uitgaande van onderliggende structuren. Wij geloven dat een dergelijke

reductionistische constructie in principe mogelijk is wanneer men rekening houdt

met de omstandigheden.

Het fenomeen emergentie is overal aanwezig. Water kwam als medium voort uit

de interacties van moleculen die bestaan uit twee waterstofatomen en een zuur-

stofatoom. Verschillende takken van de wetenschap kunnen gekaderd worden door

de relatie van emergentie; chemie komt voort uit de natuurkunde, terwijl biologie

voortkomt uit chemie, enzovoort. Misschien is een van de mooiste voorbeelden

van emergente verschijnselen, die van thermodynamica, die vooral interessant is

voor deze scriptie. Toen de wetten van de thermodynamica geformuleerd werden,

wisten fysici niet dat die wetten het resultaat waren van het collectieve en het sta-

tistische gedrag van de onderliggende microscopische structuren. De ontwikkeling

van statische fysica legde de details van de emergentie van thermodynamica bloot.

Hoewel opkomst een enorme rol speelt in de fysica, heeft het geen fundamen-

teel belang voor de beschrijving van elementaire deeltjesfysica. Natuurkundigen

geloven dat er een aantal krachten en deeltjes zijn die niet kunnen worden her-
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Samenvatting

leid tot de onderliggende bestanddelen. Zwaartekrachtveld wordt lang beschouwd

als een dergelijke fundamentele, elementaire beschrijving. Alle pogingen om de

zwaartekracht te kwantificeren via veldtheoretische benaderingen en tot zinloos.

Er was geen consistente renormalisatieprocedure om oneindigheden uit de theorie

te verwijderen.

Het verband tussen zwarte gaten en thermodynamica, en de komst van de snaar-

theorie, met name ijktheorie / zwaartekracht (AdS / CFT) dualiteit, leidde tot

nieuwe perspectieven over de oorsprong van zwaartekracht. Het paradigma ver-

schoof naar een richting waarin de klassieke ruimte-tijdbeschrijving over zwaar-

tekracht niet meer als een elementaire beschrijving wordt beschouwd. Het was

eerder grof en gemiddeld, een emergente beschrijving van enkele onderliggende

microscopische structuren. Met andere woorden, wat wordt waargenomen als het

weefsel van ruimte-tijd, vergelijkbaar met water, bestaat uit atomen, of eigenlijk,

kwantumbits.

Laten we de nadruk leggen op dat, hoewel het emergent verschijnsel van de zwaar-

tekracht een van de dominante paradigma’s is met betrekking tot de oorsprong

van, hoe en waaruit zwaartekracht ontstaat, varieert op basis van onderzoeks-

richtingen. Een dominant perspectief met een solide basis is het overwegen van

emergentie door dualiteit. Klassieke zwaartekracht is de emergente beschrijving

die voldoet aan de onderliggende conforme veldtheorie wanneer kwantumeffecten

worden onderdrukt door grote aantallen volgens AdS / CFT. We zullen dit per-

spectief hier niet verder onderzoeken, omdat dit in detail is onderzocht in deze

scriptie. Een andere perspectief, dat we in deze scriptie in detail hebben on-

derzocht, is het identificeren van de grove- emergente- waarnemingen binnen de

klassieke beschrijving van zwaartekracht, namelijk ruimte-tijd, zonder expliciet te

verwijzen naar een duale theorie. Hoewel deze poging enigszins verschilt van een

op dualiteit gebaseerde emergentie, maakt het de nodige conceptuele sprongen,

gebaseerd op de lessen van AdS / CFT. Daarom hebben we geconcludeerd dat dit

laatste perspectief op de emergente zwaartekracht geen sterke basis heeft, zoals

vanuit het perspectief van de gauge. Het is echter zeer belangrijk, omdat het ons

mogelijk maakt interessante fenomenen (zoals donkere materie en donkere energie)

in ons universum te begrijpen, dat geen anti-Sitter-ruimte is en daarom niet goed

in het de beschrijving van het holografische paradigma past.

In deze scriptie hebben we ons vooral gericht op het toepassen van de verbindingen

tussen de kwantuminformatie en geometrie die worden waargenomen in de fysica

van zwarte gaten, en de holografie op meer algemene ruimteachtige oppervlakken.

We zullen uitweiden over wat de conclusies en resultaten van deze scriptie zijn.

Het eerste hoofdstuk start het onderzoek naar het verband tussen kwantuminfor-

matie en zwaartekracht via de informatieparadox in het zwarte gat. Of de informa-
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tie van objecten die in een zwart gat vallen al dan niet kan worden teruggewonnen

tijdens de verdamping van het zwarte gat, is een al lang bestaande vraag. In de

jaren 90 werd gepostuleerd dat de Hilbert-ruimte geassocieerd met het interieur

van een zwart gat complementair is aan de Hilbert-ruimte die de Hawking-straling

ondersteunt. Hoewel een wiskundig solide formulering van de dualiteit niet was

geconstrueerd, werd voorgesteld dat het complementariteitsbeginsel de informa-

tieparadox oplost. In 2012 werd vastgesteld dat het complementariteitsbeginsel

een intern conflict in zijn axioma’s zou kunnen hebben, namelijk tussen effectieve

veldtheorie en het gelijkwaardigheidsbeginsel. In deze scriptie beschouwen we een

meer verifieerbare en daarom strikte versie van het principe dat bekend staat als

causal patch-complementariteit. In deze versie kan schending van de principes

van lokaliteit en de toepasbaarheid van effectieve veldtheorie alleen worden geve-

rifieerd door waarnemers, die elkaar overlappende causale patches hebben. Met

andere woorden, waarnemers kunnen een dergelijke paradox alleen verifiren als

ze de mogelijkheid hebben om te communiceren. Een super-waarnemer die toe-

gang heeft buiten zijn lichtkegel, mag de inconsistenties van het principe in deze

benadering niet kaderen. In de causale patch-complementariteit hebben we aan-

getoond dat twee waarnemers, een infalling en een externe, de experimenten niet

kunnen uitvoeren binnen de geldigheid van effectieve veldtheorie. Daarom heeft

een operationele, verifieerbare versie van de complementariteit geen last van in-

terne consistenties, omdat deze niet kan worden uitgevoerd binnen de effectieve

veldtheorien.

Hoewel we een analyse voorleggen van een op de waarnemers gebaseerde versie van

de complementariteit, onthult onze analyse niet hoe informatie over het zwarte gat

wordt gedragen via het verdampingsproces. Op dit punt denken we dat het de ab-

solute plaats is wat ten onrechte wordt aangenomen. Als we hier even mogen

speculeren, zouden we kunnen stellen dat de informatieoverdracht plaatsvindt op

een niet-lokale manier, tot het niveau van infrarood vrijheidsgraden, of tot lange

golflengten in vergelijking met de lokale kromming van ruimte-tijd, en daarom

kan het niet worden onderzocht door lokale waarnemers. Er zijn veel ideen over

hoe absolute lokaliteit kan worden gewijzigd. We behandelen deze voorstellen in

detail in deze scriptie en zullen er daarom hier niet nogmaals naar verwijzen. De

richting van deze scriptie wordt sterk benvloed door de mogelijkheid dat effectieve

veldtheorie kan worden aangepast vanwege niet-lokaal gecodeerde informatie, die

verborgen is voor de lokale fysica. Een soortgelijk effect kan worden waargenomen

in de elasticiteit van verstrengelde polymeren, waar dergelijke systemen twee ver-

schillende dynamieken regelen die worden ontkoppeld vanwege de scheiding van

tijdschalen, maar toch kan worden waargenomen hoe lange afstand stringy soor-

ten vrijheidsgraden de lokale fysica beinvloeden als gevolg van het resultaat van

langdurig elastisch gedrag.
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Met deze motieven zoeken we informatietheoretische waarnemingen, afgeleid van

de onderliggende theorie. Een van de doelen die in deze scriptie worden nage-

streefd, is het uitwerken van het microscopisch mechanisme, waardoor macrosco-

pische objecten traag worden. Het is een uiterst moeilijke taak om deze waarne-

mingen eenvoudig te identificeren met behulp van de relativiteitstheorie, omdat

het geen microscopische beschrijving biedt. Daarom volgen we een strategie door

het toepassen van lessen uit de holografie, waarbij gravitatietheorie een overeen-

komstige dubbele microscopische beschrijving heeft. Het holografische paradigma

stelt dat verstrengelingentropien van de dubbele microscopische beschrijving zijn

gecodeerd als segmenten met minimale oppervlakken in de gravitatiebeschrijving.

Hoewel dualiteit beperkt is tot de minimale oppervlakken, is het waarschijnlijk dat

informatietheoretische correspondenties van meer algemene ruimteachtige opper-

vlakken op een meer gecompliceerde manier worden gecodeerd in de microscopische

theorie. Dit idee weerspiegelt zich in de notie van differentile entropie, evenals de

verbinding met integrale geometrie.

We hebben verder onderzocht hoe materie met ruimtetijd samenwerkt vanuit

een informatietheoretisch perspectief. We hebben gezien dat je de Bekenstein-

gebonden in de zwaartekracht kan waarnemen, als de gebonden in de entropie

tussen complementaire regio’s in de onderliggende theorie toeneemt. We hebben

ook kwantitatieve verschillen aangegeven tussen pure toestanden en gemengde toe-

standen en hebben hun impact op de gravitatietheorie beoordeeld. Wij geloven dat

onze bevindingen een belangrijke rol spelen bij het begrijpen van de entropie van

de zwaartekracht in de Sitter-ruimte, zoals onlangs bepleit door Verlinde. Helaas

zijn de meeste van onze conclusies beperkt tot sferisch symmetrische systemen.

In zekere zin is dit te verwachten, omdat de Bekenstein-binding ook stiekem deze

symmetrie in zijn formulering aanneemt. Met andere woorden, de factor 2π in

de binding is het resultaat van sferische symmetrie. Dit is duidelijk geverifieerd

in de QFT-derivatie van de binding met behulp van de positiviteit van relatieve

entropie. De nieuwigheid van onze benadering is het verband tussen de bulkversie

van de gebonden en de dubbele conforme veldtheorie.

In opkomende fenomenen definieert het collectieve gedrag van onderliggende be-

standdelen een begrip van entropie. In de thermodynamica kwantificeert entropie

bijvoorbeeld onwetendheid met betrekking tot de toestand van het microscopische

systeem. Op een lineair niveau hangen energie en entropie nauw samen; deze rela-

tie wordt de eerste wet genoemd. Het verband tussen zwaartekracht en emergent

gedrag werd voor het eerst waargenomen door de ontdekking van de entropie van

zwart gaten, kort nadat de eerste wet werd geformuleerd van de mechanica van

zwart gaten, als de relatie tussen massa en het oppervlak van het zwarte gat. In

deze scriptie streven we naar een generalisatie van de eerste wet op algemene ruim-

teachtige oppervlakken. De reden achter een dergelijk onderzoek is dat binnen de
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holografische context wordt begrepen dat de eerste wet van verstrengelingentropie

in de onderliggende microscopische theorie zichzelf weerspiegelt als de eerste wet

op minimale oppervlakken. Een natuurlijke vraag die volgde, was of zo’n relatie

kan worden uitgebreid tot elk oppervlak.

Een terugkerend probleem dat we tijdens ons onderzoek tegenkwamen, was de

moeilijkheid om ruimtetijden te vergelijken van verschillende toestanden die ver-

bonden zijn door een energetische vervorming. Deze obstructie is een natuurlijk

gevolg van de diffeomorfisme invariante formulering van relativiteit. Er is geen

natuurlijk referentiepunt om een oppervlak te identificeren en de verandering er-

van onder vervormingen te bestuderen. Deze kwestie is minder problematisch in

het kader van holografie, omdat men de grens van ruimtetijd als een natuurlijk

referentiepunt kan gebruiken. Recente ontwikkelingen binnen het holografische

paradigma maken het mogelijk om niet alleen grensverankerde minimale opper-

vlakken te identificeren, maar ook algemene ruimteachtige oppervlakken. Deze

opties bieden ons de mogelijkheid om de eerste wet van verstrengelings entropie in

een grens te duwen als een eerste wet van differentile entropie in de bulk. Deze eer-

ste wet manifesteert zich als een reactie van ruimte op energie. Bovendien hebben

we geconstateerd dat, in tegenstelling tot de algemene mening over energetische

excitaties die gebiedstekorten veroorzaken, hebben we aangetoond dat er, wanneer

naar de grens wordt verwezen, oppervlakte-overschotten zijn. Het geeft aan dat

een gebiedstekort een enigszins willekeurig begrip is, omdat het afhangt van het

identificatieschema van een vervormde oplossing in relatie tot het oorspronkelijke.

Nadat we hebben aangetoond dat de eerste wet van verstrengeling kan worden

verplaatst van minimale oppervlakken naar generieke ruimteachtige oppervlakken

via integrale geometrie in 3D, veranderen we onze koers naar meer algemene op-

lossingen in alle dimensies, in plaats van anti de Sitter-space.

De wiskunde achter de eerste wet van zwarte gaten mechanica kan het best wor-

den begrepen binnen de covariante fase ruimteformalisme. Het formalisme verenigt

verschillende theorien van zwaartekracht vanuit het perspectief van de emergente

wetten van zwarte gaten mechanica. Verder maakt het het mogelijk om eerste wet-

type relaties te bestuderen op andere oppervlakken dan de horizons van zwarte

gaten. Dit is een vrijheid die we in deze scriptie uitgebreid hebben benut. We

hebben de volgende twee vragen geformuleerd: ten eerste, wat zouden de conse-

quenties zijn van het toepassen van deze formulering op algemene oppervlakken

vanuit het oogpunt van emergente wetten? En ten tweede, wat zou dit ons leren

over het begrip inertia? In het laatste deel van deze scriptie hebben we deze vra-

gen beantwoord. We hebben de entropie van zwaartekracht opnieuw geformuleerd

en verder uitgewerkt. In deze herformulering wordt de emergentie van traagheid

gemodelleerd als de reactiekracht op een adiabatische vervorming van het systeem.
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Met andere woorden, het systeem behoudt zijn toestand door op langzame vervor-

mingen te reageren. Het idee dat zwaartekracht een emergent fenomeen is, stelt

natuurlijk een onderscheid voor tussen tijdschalen van het onderliggende micro-

scopisch systeem en de macroscopische sonde die ermee in wisselwerking staat.

Een microscopisch systeem bestaat uit Planckiaanse vrijheidsgraden. Daarom is

de dynamiek veel sneller in vergelijking met een macroscopische sonde. Het is

deze scheiding van tijdschalen die het mogelijk maakt dat een snel systeem re-

ageert op veranderingen, veroorzaakt door een langzaam systeem, en de energie

van het systeem aanpast, zodat de zogenaamde adiabatische invarianten van het

systeem behouden blijven. Wanneer de locatie van de macro-sonde als een para-

meter in de toestand van het systeem wordt beschouwd, hebben we aangetoond

dat de traagheidswet van Newton gelijk is aan de adiabatische eerste wet. De

adiabatische eerste wet werpt een relatie tussen verandering in de energie, micro-

canonieke entropie en kracht, op een manier vergelijkbaar met de eerste wet van

de thermodynamica.

Bovendien hebben we gepostuleerd dat men een maat voor het volume van een

faseruimte van ruimte-tijdregio’s die zijn omgeven door gesloten oppervlakken kan

associren. Interessant is dat deze maatregel overeenkomt met de micro-canonieke

werking van de zwaartekracht. Het is de invariantie van het volume van de fase-

ruimte die een reactiekracht oplevert, vanwege de aanpassing van de energie van

het systeem. We hebben aangetoond dat covariant faseruimte-formalisme een ca-

nonieke methode aanbiedt om veranderingen in het volume van een faseruimte van

regio’s in ruimtetijd te meten. Deze notie generaliseert de entropie van het zwarte

gat.

Een andere interessante bevinding van ons onderzoek is dat de eerste wet van

zwarte gaten mechanica een bijzondere, speciale vorm is van een meer algemene

eerste wet, die we de eerste wet van ruimte-tijd vervormingen noemden. Het is be-

kend dat zwaartekracht en elasticiteit intutieve overeenkomsten hebben, met name

dat de algemene relativiteitstheorie zwaartekrachtmodelleerd als een elastische

vervorming van ruimte-tijd. Onze bevindingen weerspiegelen deze eigenschappen

vanuit een meer informatie-theoretisch perspectief. We hebben waargenomen dat

zwaartekracht dimensionaal geprojecteerde elasticiteit is op twee co-dimensionale

oppervlakken. Wij geloven dat de reden achter een dergelijke dimensionale re-

ductie het principe van lokaliteit en de lokale Lorentz-symmetrie van de theorie

is. Bovendien dwingt diffeomorfisme-invariantie dat verweven is in de algemene

relativiteitstheorie deze elastische aard een integrale vorm te hebben in plaats van

een lokale.

Toekomstige richtingen:

Door dit onderzoek, terwijl we streven naar een generalisatie van de eerste wet van
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zwarte gaten mechanica op algemene oppervlakken, belanden we in een analogie

tussen zwaartekracht en elasticiteit, puur gebaseerd op informatie-theoretische ar-

gumenten. Het belangrijkste kwantitatieve informatietheoretische verschil tussen

beide is dat elasticiteit entropie schaalt met het volume van het systeem, terwijl

het schaalt met het gebied in zwaartekracht. Ons universum heeft een thermisch

karakter, maar het is niet duidelijk of deze thermische natuur gecentraliseerd is

aan de kosmologische horizon of verspreid is in de bulk. Als het het laatste is, kan

men beweren dat het vanwege zijn volume, zoals entropie, elastisch gedrag regelt.

Wij geloven dat ons onderzoek methodes en kaders kan aanbieden om de relatie

tussen elastische en zwaartekrachtsfasen op een covariante manier te bestuderen.

Een andere interessante richting voor onderzoek zou de tweede wet van ruimtetijd-

mechanica kunnen zijn. Met andere woorden, wat de generalisatie van de tweede

wet van zwarte gaten mechanica naar algemene oppervlakken zou zijn. Als we hier

een moment over mogen speculeren, wijzen we op ons vermoeden met betrekking

tot het verband tussen de tweede wet en het feit dat de klassieke oplossing van de

actie een extremum is in de ruimte van mogelijke veldconfiguraties. De hint ligt in

de identificatie van microcanonieke actie met de volume-entropie van Gibbs. We

willen deze mogelijkheid graag onderzoeken in toekomstig onderzoek.
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In this thesis, we have investigated the hypothesis that gravity is an emergent

phenomena. We start by examining what emergent phenomena means from a

general point of view, and then explain the meaning of the concept, as it is studied

in this thesis. Modern physics, with the advent of quantum physics, has become

habituated to seeing the world in hierarchies of complexities. Each class within

the hierarchy is the result of the relations and interactions of the building blocks

of the hierarchies within the class and around it.

The emergence of a phenomenon is the process in which a radically different and

coherent system arises, as a result of the relations of its components. The physics

of the emergent layer in a hierarchy is understood in a new language that does not

need to refer to its building blocks. Although it is clear that each structure within

the hierarchy arises from the interactions of its constituents within and with the

environment, it is arguable whether one can construct and deduce the properties

of the emergent hierarchy starting from underlying structures. We believe such a

reductionist construction, in principle, is possible when one takes the environment

into account.

The phenomena of emergence is everywhere in existence. Water as a medium

emerges from the interactions of molecules that consist of two hydrogen atoms

and an oxygen atom. Different branches of science can also be viewed through the

relation of emergence; chemistry emerges from the world of physics, while biology

emerges from chemistry and so on. Perhaps one of the most beautiful examples of

emergent physics is that of thermodynamics, which is of particular interest for our

thesis. When the laws of thermodynamics had been formulated, physicists were

unaware that those laws were a result of the collective and statistical behaviour

of the underlying microscopic structures. It was the development of statistical

physics that uncovered the details of the emergence of thermodynamics.

Although emergence plays a tremendous role in physics, it has not been of funda-

mental importance for the description of elementary particle physics. Physicists

believe that there are some forces and particles which cannot be reduced to its

underlying constituents. Gravitational field has long been considered to be such
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a fundamental, elementary description. However, all the attempts to quantize

gravity through field theoretic approaches end up futile. There was no consistent

renormalization procedure to remove infinities from the theory.

The connection between black holes and thermodynamics and the advent of string

theory, particularly gauge theory/gravity (AdS/CFT) duality led to new perspec-

tives emerging regarding the origin of gravity. The paradigm shifted towards a

direction, in which the classical space-time description of gravity is not considered

as an elementary description. Rather it was coarse-grained and averaged-out, an

emergent description of some underlying microscopic structures. In other words,

what is observed as the fabric of space-time, similar to water, is made out of atoms

or, in fact, quantum bits.

Let us emphasize that, although emergence of gravity is one of the dominant

paradigms regarding the origin of gravity, how and from what gravity emerges

varies, based on research directions. One dominant perspective with strong foun-

dations is considering emergence through duality. Classical gravity is the emergent

description of underlying (dual) conformal field theory when quantum effects are

suppressed by a big number according to AdS/CFT. We will not explore this per-

spective further here, as it has been examined in detail in the thesis. The other

perspective, which we have investigated in detail in the thesis is identifying the

coarse-grained - emergent - observables within the classical description of gravity,

namely space-time, without explicitly referring to a dual theory. Although this

attempt slightly differs from a duality-based emergence, it makes the necessary

conceptual jumps, based on the lessons from AdS/CFT. Therefore we concluded

that the latter perspective on the emergent gravity, does not have as strong a foun-

dation as it does from the perspective of the gauge/gravity description. However,

it is highly important, as it might allow us to understand interesting phenomena

(dark matter, dark energy) of our universe, which is not an anti-de Sitter space,

and hence, does not fit nicely into holographic paradigm as of today.

In this thesis, we have mainly focused on how to apply the connections between

the quantum information and geometry observed in black hole physics, and the

holography to more general space-like surfaces. Let us expand further what the

conclusions and results of the thesis are.

The first chapter initializes the investigation on the connection between quantum

information and gravity through the black hole information paradox. Whether or

not the information of objects that fall into a black hole can be recovered during

the evaporation of the black hole, has been a long-standing question. In the 90s,

it was postulated that the Hilbert space associated to the interior of a black hole

is complementary to the Hilbert space that supports the Hawking radiation. Al-

though mathematically solid formulation of the duality was not constructed, it was
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proposed that the complementarity principle resolves the information paradox. In

2012, it was found that the principle of complementarity might have an internal

conflict in its axioms, namely between effective field theory and the equivalence

principle. In this thesis we consider a more verifiable and, hence, strict version of

the principle known as causal patch complementarity. In this version, violation

of the principles of locality and the applicability of effective field theory can only

be verified by observers, who have intersecting causal patches. In other words,

observers can verify such a paradox, only if they have the possibility to commu-

nicate. A super-observer that has access outside of its light cone, is not allowed

to frame the inconsistencies of the principle in this approach. In the causal patch

complementarity, we have shown that two observers, an infalling observer and an

external one, cannot conduct the experiments within the validity of effective field

theory. Hence an operational, verifiable version of the complementarity does not

suffer from internal consistencies, as it cannot be performed within the effective

field theories.

Although we put forward an analysis on the observer-based version of the comple-

mentarity, our analysis does not reveal how information of the black hole is carried

out through evaporation process. At this point, we believe it is the absolute local-

ity that is falsely presumed. If we are allowed to speculate here for a moment, we

would state that the information transfer takes place in a non-local way, to infra-

red degrees of freedom, or to long wavelengths compared to the local curvature

of space-time, and hence cannot be probed by local observers. There are many

ideas on how absolute locality can be modified. We have covered these proposals

in detail in the thesis and hence will not be referring to them once again here. The

direction of the thesis is influenced strongly by the possibility that effective field

theory can be modified due to non-locally encoded information, which is hidden

from local physics. A similar effect can be observed in the elasticity of entangled

polymers, where such systems govern two different dynamics that are decoupled

due to separation of timescales, yet one can observe how long-range stringy types

of degrees of freedom alter the local physics as a result of long time-scale elastic

behaviour.

Having these motives, we seek information theoretic observables, derived from

underlying theory. One of the goals pursued in the thesis is elaborating the micro-

scopic mechanism, by which macroscopic objects gain inertia. It is an extremely

hard task to identify these observables simply via theory of relativity, as it does

not provide any microscopic description. Hence, we follow a strategy on applying

lessons learned from holography, where gravitational theory has a corresponding

dual microscopic description. Holographic paradigm states that entanglement en-

tropies of the dual microscopic description have been encoded as areas of minimal

surfaces in the gravitational description. Although duality is limited to the mini-
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mal surfaces, it is likely that information theoretic correspondences of more general

space-like surfaces are encoded in a more complicated manner in the microscopic

theory. This idea reflects itself in the notion of differential entropy, as well as its

connection to integral geometry.

We further investigated how matter interacts with space-time from an informa-

tion theoretic perspective. We have observed that the Bekenstein bound in gravity

becomes apparent, as the bound on the entropy between complementary regions

in the underlying theory increases. We have also indicated quantitative differ-

ences between pure states and mixed state excitations and assessed their impact

on the gravitational theory. We believe our findings play an important role for

understanding the entropic modifications of gravity in de Sitter space, as advo-

cated recently by Verlinde. Unfortunately, most of our conclusions are limited to

spherically symmetric systems. In a way, this is to be expected, as the Bekenstein

bound also secretly assumes this symmetry in its formulation. In other words,

the factor of 2π in the bound is the result of spherical symmetry. This has been

clearly verified in the QFT derivation of the bound using the positivity of relative

entropy. The novelty of our approach is the connection of the bulk version of the

bound and the dual conformal field theory.

In emergent phenomena, the collective behaviour of underlying constituents define

a notion of entropy. For example, in thermodynamics, entropy quantifies ignorance

regarding the state of the microscopic system. At a linear level, energy and entropy

are tightly related; this relation is called the first law. The connection between

gravity and emergent behaviour was first observed through the discovery of black

hole entropy, soon after the first law of black hole mechanics was formulated as

being the relation between mass and the surface area of the black hole. In this

thesis, we seek a generalization of the first law on general space-like surfaces. The

reason behind such an investigation is that within the holographic context, it is un-

derstood that the first law of entanglement entropy in the underlying microscopic

theory reflects itself as the first law on minimal surfaces. A natural question that

followed was whether such a relation can be extended to any surface.

One recurring problem we encountered during our research was difficulty in com-

paring space-times of different states that are connected through an energetic

deformation. This obstruction is a natural result of the diffeomorphism invariant

formulation of relativity. There is no natural reference point to identify a surface

and study its change under deformations. This issue is less problematic in the

framework of holography, as one can use the boundary of spacetime as a natural

reference point. Recent developments within the holographic paradigm make it

possible to identify not only boundary anchored minimal surfaces, but also general

space-like surfaces. These possibilities provides us with the opportunity to push
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the first law of entanglement entropy in the boundary as a first law of differential

entropy into the bulk. This first law manifests itself as the reaction of area to

the energy. Moreover, we observed that contrary to the general opinion on ener-

getic excitations causing area deficits, we have shown that when referenced to the

boundary, there are area excesses. It indicates that an area deficit is a somewhat

arbitrary notion, as it depends on the identification scheme of a deformed solution

with the initial one.

After demonstrating that the first law of entanglement can be moved from minimal

surfaces to generic space-like surfaces via integral geometry in 3D, we change our

direction to more general solutions in any dimensions, rather than anti de Sitter

space.

The mathematics behind the first law of black hole mechanics is best understood

within the covariant phase space formalism. The formalism unifies different the-

ories of gravity from the perspective of emergent laws of black hole mechanics.

Further, it allows one to study first law-type relations on surfaces other than black

hole horizons. This is a freedom we have exploited heavily in this thesis. We have

formulated the following two questions: firstly, what would be the consequences of

applying this formulation on general surfaces from the point of view of emergent

laws? And secondly, what would this teach us regarding the notion of inertia? In

the last part of the thesis, we have answered these questions. We reformulated and

elaborated on the entropic gravity. In this reformulation, the emergence of inertia

is modelled as the reaction force to an adiabatic deformation of the system. In

other words, the system preserves its state by reacting to slow deformations. The

idea of gravity being an emergent phenomena, naturally proposes a distinction

between timescales of underlying a microscopic system and the macroscopic probe

interacting with it. A microscopic system consists of Planckian degrees of freedom.

Hence, its dynamics is much faster, when compared to a macroscopic probe. It is

this separation of timescales that allows a fast system to react to changes caused

by a slow system, and adjust its energy, such that the so-called adiabatic invariants

of the system are preserved. When the location of the macro-probe is considered

to be a parameter in the state of the system, we have shown that Newtons law

of inertia is equivalent to the adiabatic first law. The adiabatic first law casts a

relation between change in the energy, micro-canonical entropy and force, in a way

similar to the first law of thermodynamics.

In addition, we have postulated that one can associate a measure for the volume of

a phase space of space-time regions enclosed by closed surfaces. Interestingly, this

measure corresponds to the micro-canonical action of gravity. It is the invariance

of the volume of the phase space that yields a reaction force, due to the adjustment

on the energy of the system. We have shown that covariant phase space formalism
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provides a canonical method to measure changes in the volume of a phase space

of regions in space-time. This notion generalizes the black hole entropy.

Another interesting finding of our research is that the first law of black hole me-

chanics is a particular, special form of a more general first law, which we named

the first law of space-time deformations. It is known that gravity and elasticity

have intuitive similarities, specifically that general relativity models gravity as an

elastic deformation of space-time. Our findings reflect these properties from a more

information theoretic perspective. We observed that, gravity is dimensionally pro-

jected elasticity on two co-dimensional surfaces. We believe the reason behind such

dimensional reduction is the principle of locality and the local Lorentz symmetry

of the theory. Moreover, diffeomorphism invariance embedded in general relativity

enforces this elastic nature to be in the integral form, rather than a local one.

Future directions:

Through this research, while seeking a generalization of the first law of black hole

mechanics onto general surfaces, we end up in an analogy between gravity and

elasticity, purely based on information theoretic arguments. The main quantita-

tive information theoretic difference between them is that entropy scales with the

volume of the system in entropy, while it scales with area in gravity. Our universe

has thermal character, yet it is not clear whether this thermal nature is localized

on the cosmological horizon or distributed in the bulk. If it is the latter, one can

argue that due to its volume, like entropy, it governs elastic behaviour. We believe

our research may provide methods and frameworks to study the relation between

elastic and gravitational phases in a covariant fashion.

Another interesting direction for investigation would be the second law of space-

time mechanics. In other words, what the generalization of the second law of black

hole mechanics to general surfaces would be. If we allow ourselves to speculate

here for a moment, we would point out our suspicion regarding the connection

between the second law and the fact that the classical solution of the action is

an extremum in the space of possible field configurations. The hint resides in the

identification of micro-canonical action with the Gibbs volume entropy. We would

like to investigate this possibility in future research.

190



Acknowledgement

It would not have been possible to see the end of this journey without the support

of many others.

Firstly, I would like to thank my supervisor, Erik Verlinde, for giving me this

opportunity. I am grateful to him for sharing his knowledge, enthusiasm and joy

while doing research and for giving me freedom to follow my own interests and

opening his research program to me. I am indebted for his efforts on encouraging

me to be more independent and strong person.

I would also like to thank my first collaborator I-Sheng Yang, who engaged me

into a conceptual yet clear and solid research project. I am truly thankful for his

patience and honesty towards me and to our research.

During my time in physics, perhaps Nava is the person that I am most strongly

coupled to. He was a great colleague and friend. I am grateful for our discussions,

for his proof readings on most of this thesis and my papers, and mostly being a

strong support on difficult times. I have learned much from him not only about

physics but also about life.

It was always a motivation boost to talk about physics with Fotis. It is a great

pleasure to still have him as a close friend. I am thankful for his relaxed attitude.

Two other close friends I am truly indebted are Laurens and Francesca. Both of

them provided their genuine support in most difficult times. It was always a relief

and joy to talk with them. I am thankful for their presence.

I would also like to thank Manus Visser for his collaboration.

As a not very organized person, I would like to give a special thanks to the sup-

port staff at IOP, especially Anne-Marieke, Joost, Natalie, Fatima, and Yocklang,

who provide their help with care and kindness regarding the issues that I had

encountered during daily life in the institute.

I would like to thank Reisa for helping me in the dutch translation of the summary

of this thesis.

191



Acknowledgement

I would like to thank, Ata Aydin for his advises and always encouraging me on

this path.

I would like to thank my mother and brother, whose support I had always felt

along this journey.

Finally I would like to thank my partner in life, Ceren. I can not express how

grateful I am for her presence in my life.

192





Em
ergent Law

s of Spacetim
e M

echanics              Irfan Ilgin   2019


	Preface & Thesis Guide
	Introduction
	Brief history of information in physicsThe author is not an expert on the history of physics hence he will be presenting occasions/developments that has impact on his understanding of the universe from the perspective of information.
	Adiabatic principle and reaction force
	A new form of information

	Black holes and information
	Black hole information paradox
	Firewall formulation of the paradox

	Spacetime geometry and information
	The first law of spacetime deformations
	Origin of inertia and adiabatic principle


	Reviews
	Symplectic mechanics
	Symplectic structure of gauge theories

	Covariant phase space formulation of gravity
	Differential entropy
	Modular hamiltonian
	Bekenstein bound
	Holographic entanglement entropy in AdS3/Zn

	Causal Patch Complementarity
	Introduction and Summary
	Weak Complementarity
	Theory within a causal patch
	Fitting into the causal patch while being low-energy

	Causal patch for an old Schwarzschild black hole
	Inside: the interior mode A
	Outside: the early Hawking quanta R

	Generalizations
	Discussion
	Information paradox and the quantum second law
	Causal patch complementarity


	Bekenstein bound in the bulk and AdS/CFT
	Introduction
	A simple first law
	Puzzles about the first law
	Thermal perturbation

	Relative Entropy through Energy and Scale
	Perturbation theory at the non linear level
	Appearance of Radial Scale
	Higher Dimensional Generalizations for Perturbative Excitations

	Bekenstein bound and AdS/CFT
	Mixed state excitations at the linear level
	 Bekenstein Bound in the Bulk
	Comparison with Araki-Lieb bound

	Conclusion and Discussion

	Pushing the first law of entanglement into the bulk in AdS3/CFT2
	Introduction
	Differential entropy via integral geometry
	Differential entropy for excited states

	The first law of differential entropy
	Differential modular energy
	Seeing inside the hole
	Bulk interpretation of first law for differential entropy
	The first law of differential entropy and emergence of gravitostatics

	Modular Hamiltonian for conical defects
	Approximate modular hamiltonian of a state dual to conical defects
	The first law of differential entropy for conical defect

	Discussion
	First law of differential entropy for thermal states

	The First Law of Spacetime Deformations
	Introduction
	Application of Wald formalism to general spacelike surfaces
	The first law of deformations in spacetime
	A bilocal first law of gravity?
	Flow line representation of the first law and bit threads
	Conclusion and Discussion
	Conserved charges in frame field formalism
	Adiabatic variables in stationary systems
	The fundamental variational identity in frame field formalism


	Adiabatic Principle and Origin of Inertia
	Introduction
	Adiabatic Principle
	Inertia as an Adiabatic Reaction Force
	Microcanonical Action as the Adiabatic Invariant
	Newtonian limit
	Microscopics of the Newtonian regime

	Conclusion and Discussion

	Bibliography
	Contributions to Publications
	Samenvatting
	Summary
	Acknowledgement

