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A B S T R A C T

Machine learning techniques have been frequently applied to map urban deprivation (commonly referred to as
slums) in very high-resolution satellite images. Among these, Deep Convolutional Neural Networks have shown
exceptional efficiency in automated deprivation mapping at the local scale. Yet these networks have never been
used to map very small heterogeneous deprivation areas (pockets) at large scale. This study proposes and
evaluates a U-Net-Compound model to map deprivation pockets in Bangalore, India. The model only relies on
RGB satellite images with a resolution of 2m as these are more commonly accessible to local urban planning
departments. The experiment assumes a practical situation where only limited reference data is available for the
model to learn the spatial morphology of deprivation pockets. It tests whether an updated map of deprivation
pockets can be obtained with limited information. The model performance to map a large number of deprivation
pockets is examined by incrementally changing the model architecture and the amount of training data. Results
show that the proposed model is sensitive to the amount of spatial information contained in the training data.
Once sufficient spatial information is learnt through a few samples, the city scale mapping accuracy outperforms
existing models in mapping small deprivation pockets, achieving a Jaccard Index of 54%. This study demon-
strated that a well-designed convolutional neural network can map the existence, extent, as well as distribution
patterns of deprivation pockets at the city scale with limited training data, which is essential for upscaling
research outputs to provide important information for the formulation of pro-poor policies.

1. Introduction

More than half of the world's population is living in cities, and this
proportion is expected to be 68% by 2050 (UN, 2018). The rapid
growth of urban population, especially in the global south, is often
beyond the planning and management capability of local governments
in providing housing and basic infrastructure (Hachmann et al., 2018;
Martinez et al., 2008), which, among other issues, contributes to the
expansion of deprived areas (often referred to as slums). Such areas are
inhabited by an increasing number of dwellers deprived of durable
housing and basic services (Ezeh et al., 2017; Habitat, 2003) and are
significantly underestimated in their number (Hofmann et al., 2015;
Taubenböck et al. 2018b, 2018c; Taubenböck and Wurm, 2015). The
role of such areas is manifold. On the one hand, they pave the way for
their inhabitants to urban functions, yet, on the other hand, restrain
them under poor living conditions (Taubenböck et al., 2018a; Turok
and Borel-Saladin, 2018). However, data on the morphology of de-
prived areas such as location, extent and dynamics is often not avail-
able, outdated or inconsistent.

The increasing availability of multi-temporal very high resolution

(VHR) satellite image data allows earth observation (EO) based mon-
itoring for detailed and frequent observation of urban deprivation dy-
namics in space and time (Kuffer et al., 2016a; Mahabir et al., 2016),
and capturing spatial changes of deprivation over an arbitrary period of
time (Kit and Lüdeke, 2013; Veljanovski et al., 2012). In general, EO-
based deprivation mapping activities are largely based upon two pre-
mises. First, the physical appearance of a human settlement can be a
strong indicator of their socio-economic conditions and can be used as a
proxy to locate urban deprivation (Arribas-Bel et al., 2017; Jain, 2008;
Taubenböck et al., 2009). Second, the physical appearance of depri-
vation can be encoded as shared image features for classifying and
mapping deprivation (Graesser et al., 2012; Kohli et al., 2012; Kuffer
et al., 2016b). Hence, an EO-based approach explicitly leverages the
spatial information captured in images for either object or feature-
based deprivation mapping (Benediktsson et al., 2003; Pesaresi, 2000;
Pesaresi et al., 2008). Consequently, EO-based results can complement
and help to validate the missing spatial dimension in deprivation
modeling (Roy et al., 2014). However, the above premises are weakly
supported due to varying deprivation morphology. For example, socio-
economically deprived areas can be hidden by their physical
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morphology while areas morphologically similar to deprived areas can
be formal areas (Baud et al., 2010; Kuffer et al., 2016a; Mahabir et al.
2016, 2018). Another unsolved problem is that rule sets and feature sets
are not only region specific but also image dependent (Liu et al., 2017).
For instance, the variability of deprivation morphology and size has
been observed at both city and global scale, indicating limited trans-
ferability of object-based rule sets and image feature sets from one case
to another (Taubenböck et al., 2018a). Thus it is questionable on how to
design features that best represent patterns (LeCun et al., 2015), espe-
cially due to limited knowledge of heterogeneous morphology of de-
privation (Kuffer et al., 2016a). One alternative is to arbitrarily select
and assess the capability of several features to capture deprivation
heterogeneity (Graesser et al., 2012). However, in addition to over-
looking very important features, such an approach may suffer from
overfitting considering the commonly limited availability of training
data within a high dimensional feature space (Huang and Zhang, 2013).

Deep learning, as a representation learning, outperforms conven-
tional machine learning in two aspects: (1) it operates directly on raw
data inputs and (2) automatically learns discriminative representations
for detection and classification (LeCun et al. 2010, 2015). Deep Con-
volutional Neural Networks (DCNN) are one type of deep learning
models that can process multi-dimensional data arrays. They have al-
ready been applied to airborne image classification (Albert et al., 2017;
Längkvist et al., 2016; Maggiori et al., 2017) and also to map depri-
vation within cities (Li et al., 2017; Mboga et al., 2017; Persello and
Stein, 2017). However, these experiments only focused on small frac-
tions of urban areas with large contiguous patches of deprivation which
have rather clear boundaries and are surrounded by distinctively dif-
ferent urban morphologies. In addition, sufficient labeled deprivation
data in these areas in conjunction with 4-band pansharpened VHR
multi-spectral images allowed to train a model with a complex archi-
tecture (Mboga et al., 2017). Some of the experiments used up to 60%
of available data for training to predict the other 40% (Jenerette et al.,
2016), which assumed most of the deprived information is known and
set the experiment far from being realistic, where such data is com-
monly limited. With such ideal setups, the potential of DCNNs along
with many other machine learning-based techniques are insufficiently
displayed. For example, in rapidly growing cities, the locations, and in
particular the boundaries of deprivation, are not available or very
outdated in municipal maps. In urban planning practice, large patches
of deprivation are not as common as we assume. A recent study shows
that the typical size of slums can be as small as 0.016 km2 with many
concentrated towards the small end of the size distribution (Friesen
et al., 2018). Given the fact that many small deprivation areas are not
well captured in previous studies (Kit and Lüdeke, 2013; Wurm et al.,
2017), neglecting the very small ones across the entire city, will leave
deprivation dynamics largely unknown and exclude such areas from
improvement programs.

This study uses Bangalore, India, as an empirical case, to explore the
potential of DCNN in mapping very small deprivation areas, also re-
ferred to as deprivation pockets. The design of the study considers the
characteristics of a typical city in the global south experiencing rapid
urban transformation and growth, where such areas are highly dy-
namic, and the reference data is outdated. These deprivation pockets
are commonly packed with very dense and small slum shacks with
heterogeneous morphology. Many pockets are too small to meet the
official minimum size criteria to be recognized by the slum map pro-
duced by the city government (India, 2015; T. Saharan, 2018). “A
compact area of at least 300 populations or about 60–70 households of
poorly built congested tenements, in unhygienic environment usually
with inadequate infrastructure and lacking in proper sanitary and
drinking water facilities” in the State/UT are categorized as identified
Slums (India, 2011). This study departs from the situation of limited
data accessibility, commonly found in global south cities, where only
RGB images equivalent to Google Earth images are publicly and freely
available for training the model. Such data are more commonly found

in local planning offices compared to expensive pansharpened multi-
spectral VHR images (Duque et al., 2017; Guo et al., 2016; Klaufus,
2010; Kohli et al., 2016a). Several studies addressed data accessibility
issues and used the freely accessible Google Earth images (Jenerette
et al., 2016; Kalma et al., 2008; Li et al., 2017), however, these relied on
ideal situations where either large proportions, normally over 60%, of
the deprivation pockets are known and available for model training, or
where spectral bands other than RGB are used. None of the above
studies addressed data accessibility restrictions, amount of known de-
privation pockets, the small size of such areas, and unknown features of
deprivation morphology jointly. The presented research differs from the
existing studies by assuming multiple practical limitations found in a
typical global south city and using DCNN as a representation learning
model to resolve these limitations in support of city level small size
deprivation monitoring. Collectively, the study aims to answer two
questions related to data and model architecture: (1) How can limited
training data incrementally bring the information of deprivation mor-
phology to a DCNN model? (2) How can the model architecture be
optimized to utilize the information contained in limited data?

2. Methodology

This study is set in the context of EO-based deprivation monitoring,
where the morphology of urban deprivation is only fuzzily defined
(Taubenböck and Kraff, 2014). Spatial indicators such as building size
(object), density and settlement shape (settlement) or geographic lo-
cation (environ) as defined by the generic slum ontology constitute a
conceptual schema, which, however, needs to be adapted to local slum
characteristics (Kohli et al., 2012). A recent study found large varia-
tions in urban deprivation morphologies across the globe in terms of
building or shack density, height, size, orientation and settlement het-
erogeneity (Taubenböck et al., 2018a). Given the absence of a con-
sistent morphological quantification for urban deprivation, this study
explores the potential of DCNN in detecting very small deprivation
areas through representative learning without predefined morpholo-
gical indicators in a typical city in the global south. The methodological
design of the study recognizes multiple practical limitations, commonly
missing in existing studies, by satisfying the following real-world
boundary conditions: (1) with only one deprivation pocket above the
typical size of 0.016 km2 (Friesen et al., 2018), all deprivation pockets
in the study area are very small (under the typical size), (2) only very
few large ones are properly labeled on an outdated reference map and
can be used for training the model, (3) only regular RGB images
without pansharpening are accessible, and (4) the computational cost of
model training should be handled by consumer laptops/desktops.

2.1. Study area and data

The case study is set in the city of Bangalore, the administrative
capital of the state of Karnataka, India (Fig. 1(a)). The most recent
census report shows that the population has already reached over 8.5
million in 2011 (Chandramouli and General, 2011). In the past three
decades, the officially reported population in deprivation pockets
doubled comprising 8.39% of the total city population (Chandramouli
and General, 2011; Roy et al., 2018), whereas potentially a large
number remains unidentified (Roy et al., 2018). The large population in
deprivation is scattered around the entire city, often in very small de-
privation pockets with blue tent roofs (Fig. 1(b)) (Krishna et al., 2014).
The average size of deprivation pockets in Bangalore, marked in 2017
by local experts, is only 1,483m2, being less than one-tenth of the ty-
pical size of slums (Friesen et al., 2018). The study area is covered by a
tile of a WorldView-2 scene acquired by DigitalGlobe (one of the Google
Earth image providers) (Fig. 1(c)). The tile covers the Bangalore East
Core zone and its eastern suburbs of Mahadevapura zone (Fig. 1(c)),
with a horizontal extent at the scale of 104 m. Such a scale approximates
the definition of meso- or city-scale in many urban environments
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around the globe entitling this study to be city-level deprivation de-
tection (Muller et al., 2013; Oke, 2002).

The WorldView-02 multispectral RGB provided by DigitalGlobe
acquired in February 2017 for the entire study area is used as the base
image for model training and testing. As the WordView-2 imagery is
one of the source images of Google Earth images, we used the RGB
bands of the Worldview-2 images to “simulate” Google Earth images.
Within our research project, we had access to Worldview-2 images.
However, most researchers in the Global South will not have easy ac-
cess to such commercial images. Therefore, we restricted our metho-
dology to work with RGB images. The spatial extent of this image is
3888×4096 pixels (approximately 8× 8 km) (Fig. 1(c)) with a re-
solution of 2m. The ground truth data (used for training, validation and
testing) is comprised of the Google Earth image mosaic (year 2017) as
the base image and associated vector reference labels, available as a
base map. To obtain the most up-to-date information of existing pockets
of deprivation, the DynaSlum project recruited local experts to map all

deprivation areas within the city (see description at: https://www.
esciencecenter.nl/project/dynaslum). The project focuses on modeling
city and slum dynamics, for which a base map of deprivation areas
(including pockets) is generated by a local survey using Google Earth
imges combined with on-site inspection in May 2017 and used as our
input data (Roy et al., 2017). Yet the base map of labeled pockets is
subject to several uncertainties. The expert knowledge varies among
experts in defining the boundaries of pockets even same set of visual
elements such as tone, shape, size and texture on either the image or the
ground are adopted (Kohli et al., 2012). In addition, the labels based
upon a mosaic of multiple source images acquired at different times in a
year may present inconsistent deprivation information. And a gap of
few months in a highly dynamic city can cause many differences, which
leads to a potential risk of feeding the DCNN with poorly labeled in-
formation and misleading the model in learning the morphology of
deprivation. Among all of the surveyed 141 pockets in the study area,
the average size in this area is 1,472m2, while the minimum and

Fig. 1. Study area in Bangalore, India shown in the WorldView-02 multispectral image in February, 2017. (a) Location of Bangalore in India and the spatial extent of
the study area relative to the Bangalore metropolitan area. (b) Histogram of deprivation pocket size in the study area. (c) Surveyed pockets in the study area with
zoom-in snippet of contrast between deprivation and their surroundings. (d)–(g) Sample pocket morphology at the same location (from left to right) at the time of
image acquisition in February 2017, June 2016, April 2016, and November 2015.
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maximum values are 31m2 and 18,052m2, respectively. The largest
pocket is thus only slightly larger than the typical size (0.016 km2) as
found by Friesen et al. (2018). Due to the very small size, the physical
appearance of pockets can be sensitive to the change of even a few
numbers of shacks. Even the third largest pocket in the study area
highlighted by a green box (Fig. 1(c)) displays a significant difference
due to the change of few shelters. While this pocket is dominated by
elongated shelters in February 2017 (Fig. 1(d)), its morphology is sig-
nificantly different in mid-2016 with few incomplete shelters
(Fig. 1(e)). And it, in fact, evolved into an entirely different morphology
within only half a year between the end of 2015 (Fig. 1(f)) and mid-
2016 (Fig. 1(g)).

To explore the potential of DCNN in learning the deprivation mor-
phology and mapping, this study adopts the ‘typical size of slums’
(Friesen et al., 2018) and considers it as a rough threshold to choose
training samples from the study area. Thus only the four largest pockets
with the size at the level of S ˜ 10−2km2 are selected (labeled in green in
Fig. 2(a)) for the following rationale: (1) the selections are significantly
larger and more likely to be identified (also known in official data) than
other pockets in the study area, and (2) reference data in cities like
Bangalore with many small deprivation pockets will be more reliable
for larger pockets than for the smaller ones as a change of few shacks in
a pocket can significantly modify its physical appearance. Another two
patches of non-deprivation sample areas are also selected as training
data to inform the model about non-deprivation morphology
(Fig. 2(a)). An zoomed-in visualization of the samples are shown in
Fig. 2(b). The selected deprived pockets comprise 3% of the total
number of such areas in the study area (Fig. 2(a)). These areas are
18,052m2, 12,749m2, 9,691m2, and 9,008m2, respectively and

marked sequentially from 1 to 4 (Fig. 2(b)). The size of the fifth largest
pockets drops to 8,051m2. Overall, 115 out of the total of 141 pockets
in the selected study area are well below 2,000m2 and 94 are below
700m2 (Fig. 1(b)).

The experiment starts with a test of the model performance at the
local level, where prediction in a small area is needed with large frac-
tion of deprivation areas is known. Then the challenge of detecting
small deprivation pockets is rendered by involving the entire study area
at city level. The major steps of the experimental workflow are shown
in Fig. 3.

2.2. Deprivation pockets mapping through the U-Net-CPD

To learn the information from limited training samples, the U-Net
DCNN is chosen as the starting point as its architecture has been proved
to be efficient in dealing with limited training samples of either medical
or satellite image data (Iglovikov et al., 2017; Iglovikov and Shvets,
2018; Ronneberger et al., 2015). Here, the original U-Net is modified by
adding a series of dilated convolutional operations right at the begin-
ning of the network to produce multi-scale low-level feature maps be-
fore information loss through the convolutional and max pooling op-
erations (Fig. 4). The U-Net in its compound form (U-Net-CPD) is a fully
convolutional network (FCN) that takes input image patches of arbi-
trary size and generates an output of dense pixel level segmentation
maps of equal size (Long et al., 2015). Since the original FCN upsamples
predictions directly back to the size of the input image patch, the final
segmentation may suffer from coarse prediction boundaries. Instead,
the U-Net-CPD, as compared to the original U-Net, takes advantage of
the encoder-decoder architecture, which has been applied in other

Fig. 2. Input data for model training. (a) The location of training samples numbered and highlighted by green and blue boxes in the study area, (b) zoomed-in
illustration of the samples. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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networks such as the SegNet for semantic segmentation
(Badrinarayanan et al., 2015). The encoder component continuously
applies 3× 3 convolutional kernels and 2×2 max pooling operations
to extract maps with hierarchical features such as edges, shapes, and
objects, while the decoder incrementally upsamples the feature map by
using the extracted feature maps as guidelines to resolve the segmen-
tation boundaries. By copying and concatenating the hierarchical fea-
ture maps to each of the upsampling steps, the U-Net-CPD recovers the
predictions to the size of the input image with a dense pixel level

segmentation and clear boundaries. The encoding comprises of 3×3
convolutional kernels, which may be insufficient to capture the edge
information of objects with different sizes. For instance, the kernel may
capture the edges of dwellings yet fail in delineating the boundaries of
pockets. Thus dilated kernels are employed to capture the low-level
features such as edges at the input block of the model. These dilated
kernels maintain the number of weights in the kernel while expanding
the field-of-view of the kernel by inserting zeros in the kernel. In this
way, the dilated kernel with an expanded field-of-view is capable of

Fig. 3. Workflow with major steps involved in the experiment.

Fig. 4. The U-Net-CPD DCNN with encoder-decoder architecture combined with dilated kernels for multi-scale low-level feature extraction.
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capturing low-level edge features at different sizes or scales (Yu and
Koltun, 2015). Imposing such low-level edge information is expected to
improve the mapping of boundaries in the output as prediction accu-
racy can be very sensitive to small pockets of different sizes. As the
input image patch is of 32× 32, only three dilated kernels with dilation
rates of 1, 2 and 4 are used to produce field-of-views of 3× 3, 7× 7
and 15×15, respectively (Yu and Koltun, 2015). The dilation rates
ensure the field-of-views are restricted by the size of the input image
patch.

With a resolution of 2m, even the largest deprivation pocket is
comprised of only a few thousands of pixels, and limited numbers of
discriminative image patches with the size of 32× 32 can be drawn.
Therefore, intense data augmentation is applied to generate dis-
criminative samples (Iglovikov et al., 2017; Ronneberger et al., 2015).
The samples are produced by first drawing a large amount of 32×32
samples without considering whether the samples overlap or not and
then by applying augmentation to increase the variation of the samples.
Augmentation includes random rotation, shifting, flipping, minimal
shearing and stretching, and is restricted affine transformations. It si-
mulates the variations of deprivation morphologies and a small amount
of sensor distortion. During training, the input data is split into 70%
and 30% for training and validation, respectively.

2.3. The strengths and weaknesses of the U-Net-CPD

The performance of the proposed U-Net-CPD is first evaluated for
small fractions of the study area containing the larger deprivation
pockets. This local-scale analysis focuses only on the four largest sam-
ples and evaluates how the proposed model responds to incremental
information contained in the training data. It is similar to a few pre-
vious studies where only small and homogenous areas of deprivation
were used to evaluate the model performance (Mboga et al., 2017;
Persello and Stein, 2017). These studies assumed that most areas of
deprivation in a small urban area are known, and only a small part had
to be predicted. These assumptions are ideal to reach high prediction
accuracy but are not very realistic for providing information to urban
planning and decision support. Yet they can set the starting point to
understand the learning and predicting power of the U-Net-CPD.

Next, we investigate the prediction power of the U-Net-CPD at the
city scale by adding incremental information of deprivation. Fully
convolutional neural networks (FCN) with dilated kernels (DK) as well
as the original U-Net used in a previous study (Demir et al., 2018;
Iglovikov et al., 2017; Iglovikov and Shvets, 2018; Li et al., 2018;
Seferbekov et al., 2018) for local level slum prediction and land use
classification are employed for benchmarking. These models are FCN
with 4 and 6 layers of dilated kernels (FCN-DK4 and FCN-DK6) and U-
Net. The performance of the U-Net-CPD will be visualized to examine
the morphology of correctly and falsely predicted deprivation pockets.

2.4. Accuracy assessment

Assuming limited quality in the reference data caused by temporal
changes and manual delineation, two scenarios are formulated to cap-
ture the deprivation on the ground:

(1) The prediction shows agreement with the reference data in
capturing deprived areas on the ground (Fig. 5(a)), and (2) both the
prediction and reference data partially capture parts of the deprived
areas without full agreement (Fig. 5(b)).

Therefore, accuracy assessment metrics regarding how the predic-
tion resembles the location and extent of areas delineated by the re-
ference data are used. The primary accuracy metrics is the Jaccard
Index (Jaccard, 1912), also known as intersection over union. It is a
very restrictive metric evaluating the similarity between two datasets
and has been applied as an area-based accuracy assessment in image
analysis (Hernandez-Stefanoni and Ponce-Hernandez, 2004; Singh and
Garg, 2013). Here, the accuracy of prediction regarding the extent of

deprived areas as denoted by the reference data is measured through:

=
∩

∪
J (Prediction, Reference) Prediction Reference

Prediction Reference
.

(1)

The second metric is the existence accuracy of prediction, assessed
by searching within a buffer zone at the location of the reference label.
The search area is the circumcircle of the smallest bounding box over
the reference label. Once the prediction is found in that search area, it is
considered as a correct existence prediction. To compare achieved ac-
curacies with those of previous studies, a third metric, the more con-
ventional producer accuracy (PA) is employed for comparison.

2.5. Pattern analysis

Besides mapping individual areas of deprivation in terms of extent
and location (Kuffer et al., 2018), investigating the model performance
from a geographic perspective helps to understand the collective pat-
terns of deprivation process. Since deprivation information should
possibly not be made publicly available at resolutions that could harm
individual and group privacy, spatial clustering is deployed at different
scales to study the deprivation distribution captured by the model from
local to city scale. The multi-scale distribution of predicted deprivation
is compared to the one of the reference data by (1) using the Ripley's K-
function to investigate the level of concentration of deprivation com-
pared to a random distribution, and (2) visualizing kernel density of
clusters at different scales in the study area.

3. Results

The results show the model performance at both local and city scale,
the impacts of incremental training samples, model performance com-
parison with a fixed amount of training samples, model performance
from a geographic perspective, model operation through the lens of
convolutional kernels, and the weakness and strength of the model
performance.

3.1. Model performance at the local level

For local scale analysis, the largest deprivation pocket (out of the
four largest ones) is used for training, and the remaining three are used
for testing. It means that around 37% of the information about the
deprivation pockets is available for training the U-Net-CPD to predict
the remaining 63%. The training follows the 70/30 rule to further
partition the known 37% deprived areas into 70% and 30% for training
and validation. Two samples without deprivation, i.e. negative samples,

Fig. 5. Two scenarios of prediction: (a) prediction partially resembles the ex-
tension of a deprivation pocket denoted in the reference data, and (b) predic-
tion fails to capture the extension of the deprivation pocket denoted by the
reference data yet correctly locates the existence of the pocket which had not
been included in the reference data.
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are also selected as shown in Fig. 2. Using the Jaccard Index as accuracy
metrics, the training and validation converge at around 98% after 100
epochs of training. Since the training data has been augmented and can
be slightly different from the original inputs, the study also examines
how the trained model performs on the original data. Then the largest
pocket used for training is also fed into the trained model along with the
test data of the other three largest deprivation pockets. Similarly, the
largest two areas equivalent to 62% information of all the four largest
areas are then used to train the model, achieving a training accuracy of
98%.

Although only the largest pocket is used for training, the predictions
for the third and fourth largest pockets accuracy are above 70%
(Fig. 6(a)–(d)). As the model achieves training accuracy of 98% on
augmented data, the prediction accuracy on the actual largest pocket is
89.9%. The poor prediction in Fig. 6(b) (Table 1) is caused by the
model's failure in learning relevant deprivation morphology from the
training data. However, the data augmentation helps to generalize the
spatial morphology (Fig. 6(a)) so that the model can still partially
capture varying deprivation morphologies (Fig. 6(b) and (d)). As the
morphology in Fig. 6(c) is similar to the training data (Fig. 6(a)), most
of the deprivation pockets are successfully predicted and labeled. The
relatively low prediction accuracy of 73.67% in Fig. 6(c) compared to

the accuracy obtained in Fig. 6(d) can be attributed to the non-depri-
vation area falsely included in the reference data. This highlights the
influence of the uncertainties in the reference data (see Fig. 7).

When the largest two pockets (Fig. 6(e) and (f)) are used for
training, the spatial information is better captured in Fig. 6(h) than in
Fig. 6(d) with an accuracy of 83.19% as the model is able to learn a
similar morphology shown in Fig. 6(f). This highlights the DCNN's
sensitivity to the spatial morphology in the image. The accuracies

Fig. 6. The local level analysis of model performance on large deprivation pockets. Training with the largest pocket shown in (a) with augmentation and prediction of
all the top four largest areas shown in (a)–(d). Training with the top two largest pockets shown in (e) and (f) with augmentation and prediction of all the four largest
pockets shown in (e)–(h).

Fig. 7. Local sensitivity coefficient of model prediction over a changing amount
of training data.
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achieved in this local level experiment are summarized in Table 1. In
addition to the Jaccard Index (JI), the producer accuracy (PA) is pro-
vided.

3.2. Model performance at the city level

This study found that the prediction accuracy can be quite low at
the city level especially when training data include only a small fraction
of the large number of deprivation pockets, commonly of much smaller
size. When the training sample is increased, namely from the largest
pocket to using the largest two, the prediction accuracies of all the
models improve significantly. For instance, the Jaccard index (JI) of U-
Net and FCN-DK6 increased by 10% from 22.64% and 11.19% to
32.68% and 21.39%, respectively (Table 2). This indicates that the
second largest pocket as shown in Fig. 6(b) and (c) adds abundant in-
formation for the model to learn 10% more about all the pockets in the
study area. In contrast, the third largest pocket contributes less in-
formation to the model to learn the spatial morphology of the areas.
This is particularly prominent for the FCN-DK models as the JI only
improves from 21.05% and 21.39% to 21.33% and 22.42%, respec-
tively. Since the amount of training data is the only parameter guiding
the training of the model, it is common to conduct a local sensitivity
analysis of the effect of changing training data as opposed to a global
sensitivity analysis to reduce computational expense (UN, 2018). The
local sensitivity is measured by the local sensitivity coefficient ap-
proximated by the first-order coefficient in the Taylor series expansion
of the changing accuracy against the changing amount of training data.
Often, the coefficient is denoted as ∂

∂

Y
p
, where Y is the accuracy output

measured by the JI, and p is the model parameter measuring the
amount of training data in this case. In Fig. 7, the U-Net and U-Net-CPD
seem to be more sensitive to the added information of the third largest
pocket. Then the fourth largest pocket introduces additional morpho-
logical information to capture deprivation in the study area, which
again can be observed through the improved performance of FCN-DK
models. Although the U-Net-CPD is the least sensitive to the extra in-
formation brought by the second largest pocket, the model already
obtains significantly higher accuracy by using only the largest pocket
(Table 2). Another potential reason of limited sensitivity to the added
information of the second largest pocket is that the U-Net-CPD is a more
complicated architecture, which demands more training data for im-
proving the prediction accuracy. Through the process of increasing
training samples, the performance of U-Net and U-Net-CPD improves

steadier than the FCN-DK models implying the U-Net models learn and
generalize added and augmented information more efficiently.

Analyzing the prediction accuracy of all the deprivation pockets
individually in the study area brings insights into the learning and
mapping mechanisms of the models. In the scenario of using all the four
largest pockets as training data, the U-Net-CPD performs quite uni-
formly on all the 141 deprivation pockets (Fig. 8(d)), which leads to an
average accuracy of 53.99% over the entire study area (Table 2). In
comparison, the other models display a major weakness in predicting
small pockets (Fig. 8(a)–(c)). In particular, the FCN-DK models perform
similarly with slight improvements in predicting larger pockets by in-
creasing dilated convolutional layers from 4 to 6. However, these
models still miss most of the small pockets with zero JI accuracy
(Fig. 8(a) and (b)). At this point, it can be confirmed that the U-Net-CPD
outperforms the other models mainly on predicting small pockets,
which is attributed to the multi-scale low-level feature extractor. The
extracted low-level features such as edges help to resolve the prediction
boundaries, which significantly impact the accuracy in predicting very
small pockets.

3.3. Insights through the U-Net-CPD

Apart from comparing the models by both varying and fixed number
of training samples, a visual interpretation is provided to investigate
how the model sees and learns from the data through the lens of the
convolutional kernel (Fig. 9). An input patch with deprivation pockets
is used for illustration (Fig. 9(a)). The patch is located in the south part
of the second largest pocket and can be identified in Figs. 1(b), Fig. 6(b)
and (f). The pocket is highlighted by a red line. A panchromatic image
of the same patch is also provided for visualizing the details (Fig. 9(b)).
When the patch is fed into the U-Net-CPD trained on the largest pocket,
32 feature patches are produced (Fig. 9(c)) by the first convolutional
block with a size of 32× 32 (Fig. 4). These low-level features extracted
or “seen” by the model are expected to be edges, shapes or brightness.
However, since the model is only trained on one area with images of 2-
m resolution, the features seem to be blurred and the boundaries be-
tween deprivation and non-deprivation are also unclear. The model
trained by using only the largest pocket insufficiently maps the second
largest one in Fig. 6(b). Once the model is trained by all four largest
pockets, the feature patches produced by the same convolutional block
of the model are less blurred and more meaningful for interpretation.
For instance, the number 0 feature patch in Fig. 9(d) highlights the
lighter roofs while number 1 and 9 highlight most of the vertical edges.
Some kernels may have learnt to be sensitive to colors thus producing
feature patches as number 20 and 24 in Fig. 9(d), where blue roofs
likely activate brighter pixels in the feature patches. These low-level
features could be further weighted and combined to produce high-level
features such as shack clusters and neighborhoods, where clusters of
shelters are recognized as deprivation pockets.

3.4. Distribution patterns of slums

Due to extensional uncertainties in predicting the boundaries of
deprivation pockets, this study further analyzes the possibility to

Table 1
The performance of the U-Net-CPD at the local level shown as Jaccard Index
(JI) and producer accuracy (PA).

Training with 1 sample Training with 2 samples

PA JI PA JI

Largest pocket 89.90% 84.36% 91.04% 86.78%
2nd largest pocket 38.63% 30.82% 83.65% 78.56%
3rd largest pocket 77.13% 73.67% 94.17% 89.31%
4th largest pocket 81.55% 77.24% 90.81% 83.19%

Table 2
The U-Net-CPD performance on predicting deprivation pockets at city level benchmarked by FCN-DK models and the original U-Net. Metrics are producer accuracy
(PA), Jaccard index (JI) and existence accuracy (EA).

Training with 1 sample Training with 2 samples Training with 3 samples Training with 4 samples

PA JI EA PA JI EA PA JI EA PA JI EA

FCN-DK4 13.22% 11.37% 63/141 24.82% 21.05% 73/141 28.74% 21.33% 84/141 30.61% 27.39% 92/141
FCN-DK6 16.21% 11.19% 57/141 25.15% 21.39% 79/141 29.37% 22.42% 82/141 34.13% 29.84% 88/141
U-Net 31.09% 22.64% 68/141 42.41% 32.68% 89/141 43.76% 37.40% 88/141 61.55% 46.82% 102/141
U-Net-CPD 36.69% 30.75% 74/141 44.36% 35.72% 94/141 52.95% 42.27% 106/141 70.41% 53.99% 131/141
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capture the existence of deprivation in the form of the spatial dis-
tribution density. In the evaluation of the model performance of cap-
turing the distribution patterns of deprivation pockets, the Ripley's K-
function shows that areas labeled in the reference data display a strong
concentrated pattern compared to a random pattern below a scale of
1800m, where the measured K value falls under the expected K value
(Fig. 10(a)). At scales larger than 1800m, the red curve is below the
expected random distribution denoted by the blue line, indicating a
more sparse distribution than random patterns. The predicted pockets
in the study area show a similar distribution compared to the reference
data. However, the concentration is only valid at scales below 1500m
(Fig. 10(b)), and the level of concentration is slightly lower than the one
in the reference data and exhibits patterns close to a random distribu-
tion. Thus, inference with regards to the clustering patterns of depri-
vation pockets is only valid within 1500–1800m, where distribution is
not sparse and random. At the scale of the study area, the pocket dis-
tribution can be considered as sparse and random implying deprivation
as a pervasive phenomenon around the entire city.

Clusters of deprivation pockets can be visually explored through a
kernel density analysis given a properly selected kernel size. According
to the results from the Ripley's K-function, three kernel sizes are used
within 1500m with increments of 500m. The cluster density is also
weighted by the size of deprivation pockets so that a high probability
value indicates the concentration of deprivation with large size. For
each of the kernel sizes, the patterns in reference data (Fig. 11(a)–(c))

and prediction (Fig. 11(d)–(f)) are visually similar, meaning geographic
patterns observed in reference data matches the prediction.

Choosing 500m as the kernel size means that all deprivation
pockets within a distance of 500m are considered as one cluster. While
few clusters can be found to the south of the study area in both the
reference data (Fig. 11(a)) and prediction (Fig. 11(d)), many high
density spots only highlight individual pockets as “self-evident” pat-
terns. If 1500m is selected as the kernel size, clusters can still be
identified as the kernel size is within the threshold found by the Ripley's
K-function. However, in both the reference data (Fig. 11(c)) and pre-
diction (Fig. 11(f)), the density is rather flat. The spread of the contour
lines indicates that only a weak concentration is found with the large
kernel size. The kernel size of 1000m appears to be neutral compared
to the larger and smaller kernel sizes. The clusters are quite preeminent
in both the reference data (Fig. 11(b)) and prediction (Fig. 11(e)) in-
dicating that clustering of deprivation pockets can be found at the scale
of 1000m. Thus, it is more likely to observe pockets within than beyond
1000m from any existing pocket in the study area.

3.5. Weakness and strength of the U-Net-CPD

Missed pockets in the prediction highlight the weakness of the U-
Net-CPD. Typical samples are displayed where the model failed to
capture deprivation pockets (Fig. 12). These missed areas are evaluated
with JI accuracy of 0, which can be observed in Fig. 8(d). The largest

Fig. 8. Model performance on individual pockets in the study area by using the four largest pockets as training data. The FCN-DK4 and FCN-DK6 prediction
accuracies (JI) are shown in (a) and (b). The U-Net and U-Net-CPD performances are shown in (c) and (d), respectively.
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Fig. 9. Sample 32×32 patch seen by trained model. (a) Sample patch fed into the model with reference label. (b) Same sample patch shown by panchromatic image
with a resolution of 0.5 m for visualizing the details of the morphology of deprivation. Low level features seen through the 32 kernels at the first convolutional block
of the U-Net-CPD trained by (c) the largest pocket and (d) both the largest and second largest pockets.
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Fig. 10. Multi-scale cluster pattern analysis through the Ripley's K-function. (a) Level of clustering of deprivation pockets at different scales in reference data; (b)
Level of clustering of predicted pockets at different scales.

Fig. 11. Kernel density analysis of deprivation pocket clustering overlaid on the satellite image with a kernel size of 500m, 1000m, and 1500m for reference data in
(a)–(c) and prediction in (d)–(f).
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missed pocket is ranked at 60th in size among all 141 areas (Fig. 12(a)).
Other missed ones shown in Fig. 12(b)–(c) are ranked at 76th, 85th, and
119th. A reason for this omission might be that the model has been
trained on typical data with low intra-class variance. The first row in
Fig. 12 are original images with a resolution of 2m fed into the model
while the second row shows corresponding areas in panchromatic
images with a resolution of 0.5 m. The 60th largest pocket is in fact
roughly labeled by the reference data with only three small dwellings in
the labeled extent (Fig. 12(a)). The pocket in Fig. 12(b) is interleaved
with trees, and there is no similar morphology in the training samples
for the model to learn. While the model fails to capture the narrow
pocket stripe mixed with trees, the model cannot sufficiently capture or
overestimates small pockets to the north part of the image (Fig. 12(c)).
When very few small deprived dwellings are surrounded by non-de-
privation built-up areas with a different morphology, the model may
still fail to distinguish the deprivation pockets (Fig. 12(d)).

The strength of the U-Net-CPD is highlighted by samples that are
insufficiently labeled or omitted in the reference data but detected by
the model (Fig. 13(a) and (b)). Similarly, original images and corre-
sponding panchromatic images are provided for visualization. The
model performance is difficult to assess when predictions are mor-
phologically similar to deprivation but omitted in reference data. These
poorly built shacks may be located at either construction sites
(Fig. 13(c)) or surrounded by bare land (Fig. 13(d)) at the periphery. It
is thus difficult to assess if these model outputs are false predictions.

4. Discussions

4.1. Data and model performance

The model performance largely depends on the amount of training
data relative to the size of the study area. Local level prediction of large
deprivation pockets is much more promising than predictions of mor-
phologically diverse small pockets scattered across the city. At local
level, it is very likely to achieve a high producer accuracy once one
third or even more than half of all the deprivation pockets are known.
On the one hand, this confirms the strength of DCNN models. On the
other hand, sufficient high-quality training data limited the difference
among the performances of models as the dataset is always likely to
bring acceptable results through several models.

In practice, training data for urban deprivation detection at a large
scale is commonly very limited. The conclusion about model perfor-
mance at a local scale can hardly be generalized to a city level.
Compared to other natural image segmentation (Chen et al., 2018; He
et al., 2016; Hoo-Chang et al., 2016; Martin et al., 2001; Pal and Pal,
1993), satellite image segmentation is restricted by data availability
mainly due to limited access to VHR image data in economically re-
source-constrained areas. Segmentation with regard to deprivation de-
tection is further restricted by a lack of reliable ground truth data for
model training. However, DCNN is very sensitive to the spatial in-
formation contained in data. As shown in section 3.1, a slight change in
the diversity in even a very small amount of training data can impact
the way the model sees and predicts samples. Information increments in

Fig. 12. Four examples of omissions in predicting deprivation pockets labeled by the reference data: (a) Few scattered dwellings labeled roughly by reference data,
(b) extremely small dwellings interleaved with trees, (c) narrow stripes of deprived areas comprising of extremely small dwellings, and (d) dwellings within formal
built-ups.
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training data would help the model to learn more generalized in-
formation about the target deprivation morphology, while misleading
information would send the model into the trap of “garbage in, garbage
out” (GIGO). So dealing with limited training data is an ongoing dis-
cussion in computer science and the machine learning community (Cui
et al., 2015; Dundar et al., 2015; Wang et al., 2015). Many of the most
recent application of the U-Net explicitly addressed intense augmen-
tation of limited training data to generate more diverse and generalized
training samples (Çiçek et al., 2016; Dong et al., 2017; Iglovikov and
Shvets, 2018; Ronneberger et al., 2015). Unfortunately, in the appli-
cation of DCNN to deprivation detection, such discussion is rarely
found. Studies exclusively display the strength of proposed models and
tend to show only part of the story and miss to discuss application re-
levant limitations for deprivation mapping (Ibrahim et al. 2018a,
2018b; Li et al., 2017; Mboga et al., 2017).

4.2. Learnt features and model performance

Resolving the prediction boundaries produced by DCNN models is a
major theme in improving the semantic segmentation results. Utilizing
low level features learnt at the first few blocks of DCNN to reconstruct
the details of inputs has proven to be beneficial in not only natural
image segmentation (Kavukcuoglu et al., 2010; Lee et al., 2016) but
also deprivation mapping in this study. The benefit is more prominent
in mapping small deprivation pockets than large ones as few pixels of
the boundary shift may significantly impact the extent and existence of
very small pockets. Thus concatenating multi-scale low-level features in

the U-Net-CPD largely improves the JI accuracy of small deprivation
pocket prediction. So far there is hardly any evidence that bias exists in
the model in detecting the morphology of small pockets as the model
can either underestimate or overestimate the extension of small pockets
(Fig. 10(c)). Yet it is quite convincing that the DCNN models in-
accurately predict many small pockets because small pockets are sen-
sitive to falsely predicted boundaries.

Using low-level features is non-trivial since they may include many
specifications other than edges such as colors, contrasts and brightness.
Thus, it is expected that low-level features can be further explored,
better understood and used more efficiently. The further application of
learnt features for other classification tasks directly reduces to sufficient
understanding and interpretation of the learnt features. Fortunately, the
information seen by the kernel can also be seen by humans for visual
exploration. In this study, only features produced at low level are vi-
sualized. A more systematic investigation is recommended to under-
stand how low-level features are weighted and combined to activate a
segmentation of objects with clear boundaries. Understanding the fea-
tures can be also useful to produce a rich and discriminative feature
space because features are automatically learnt as opposed to artifi-
cially designed with potentially insufficient prior knowledge. These
features can be used for feature-based classification and tasks.

4.3. The uncertainties in deprivation mapping

Uncertainties arise in input data, model training, and prediction in
terms of extensional and existential uncertainties. The uncertainty

Fig. 13. Four examples of capturing deprivation pockets omitted in reference data: (a) partially labeled areas complemented by model prediction, (b) completely
omitted area detected by the model, (c) construction site with morphological similarity detected by the model, and (d) group of morphological deprivation pockets
with elongated shapes are captured.
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produced at one step also propagates and is mixed with successive
uncertainties. For instance, the uncertainty in reference data brings
further uncertainties in learning deprived area morphology during
model training. Data augmentation also produces uncertainties. These
uncertainties ultimately accumulated in the final prediction map.
Among all types of uncertainties, the boundary uncertainty of reference
data is most critical as it flows in as manually digitized boundaries and
independent of the scope of model design, which renders the un-
certainty intrinsic in the data during model training and testing. As
discussed in section 4.1, poor training data leads to poor results, and
therefore also confuse machine learning techniques. Although one may
expect an improvement of model performance by either working on the
input data such as augmentation or better designing the model to utilize
low-level features, the improvement is expected to hit its limit due to
the quality of input information. There are also different views on the
improvement of boundary uncertainty. While some study suggests that
uncertainties in reference data can be reduced by including additional
local knowledge (Kohli et al., 2016b), another treated uncertainties in
boundary definition as a reflection of multi-dimensionally deprived
areas apart from the morphological definition (Pratomo et al., 2017). If
the boundary uncertainty is a manifestation of multi-dimensionality in
defining deprivation, then one needs to recognize the trade-off between
intrinsic uncertainties in the input data and machine learning-based
model performance. In this sense, the output of a DCNN can be
weighted by its significance in capturing existential and extensional
information of deprived areas.

In dealing with the model output, the uncertainties can, if intrinsic
and not controllable, be encoded so that potential end-users of the
output can be informed about the reliability of the outputs. One po-
tential option is to encode uncertainties as probabilities by providing
the prediction probability map as a heat map instead of rigid “depri-
vation and non-deprivation” binary map. Correspondingly, accuracy
assessment of the output should be adapted, which relates to the pur-
pose of showing either the location or the extension of deprivation.
Although the JI accuracy is a rigid metric that evaluates exact deprived
area boundaries in the output map, the feasibility of proposing less rigid
metrics is worth further discussion.

Besides mapping urban deprivation, using the mapped information
triggers further uncertainties. The level of aggregation needs to be de-
fined to provide collective distribution patterns of slums at neighbor-
hood, city or regional level.

4.4. Scaling and transferring deep learning based deprivation mapping

All the issues of input data, learnt features and uncertainties dis-
cussed above can magnify when the deep learning based mapping of
deprivation scales from local or city level up to regional or continental
level, as well as been transferred to other geographic regions. At the
local level within a same city, data availability as well as relatively
similar deprivation morphology render the efficiency of deep learning
based deprivation mapping. However, the varying and complex depri-
vation morphology across cities, countries and continents (Kuffer et al.,
2017; Taubenböck et al., 2018a) is largely ignored at local level ana-
lysis as machine learning techniques have only been applied to very
homogeneous small areas, leaving the performance assessment of deep
learning technique biased. When mapping at larger scales, data avail-
ability becomes the primary concern as the requirement of input data
specifications varies across cities and regions. For instance, many local
governments have limited access to very high spatial resolution ima-
gery, nevertheless, high spatial resolution does not necessarily guar-
antee optimal mapping results in all situations (Wang et al., 2019).
Furthermore, the transferability of deep learning based deprivation
mapping needs to be considered (Duque et al., 2017). Given the fact
that mapping results are sensitive to input data and model architecture
as shown in this study, at least two levels of transferability need to be
addressed in large scale deprivation mapping: (1) the transferability of

features learnt from one city or region to others, and (2) the transfer-
ability, if not found in the features, but in the model architecture ap-
plied in one city or region to others. The transferability of either the
learnt features or the model architecture determines the computation
resources as whether to use pre-trained model, or train a existing
model, or fine-tune the existing model architecture before training, or
even design a model from scratch (Wurm et al., 2019a). Apart from
computation, less transferability also means extra workload to treat
each city or region as a special case, and more labeling activities and
uncertainties are introduced.

5. Conclusions

This study is a first attempt to use DCNN to map very small depri-
vation pockets in a larger area while considering several practical issues
such as limited data accessibility, unreliable/generalized ground truth
data and insufficient computational resources. Although DCNN is cap-
able of capturing deprivation morphology by using limited training
samples, the city level mapping result is significantly worse than the
one obtained at the local level. The DCNN is sensitive to not only the
amount of training samples provided but also the morphological in-
formation contained in the training sample. Thus, providing training
data with rich and well-generalized information is important for DCNN
to learn and capture precise spatial specifications of deprivation. The
situation of limited data can be complemented by data augmentation to
provide more variations in the training data. However, the improve-
ments brought by the augmentation may not be significant.

Apart from the limitation of training data, the prediction accuracy
largely depends on the boundary prediction of deprivation pockets.
Inaccurate segmentation is manifested in poor boundary prediction and
can especially impact the accuracy of very small deprivation pocket
prediction. The boundary issue can be effectively resolved by opti-
mizing the model architecture to utilize low-level features in recovering
object boundaries. The proposed U-Net-CPD explicitly concatenates
low-level features to the last block of the model leading to improved
boundary predictions. The improvement is preeminent in the prediction
of small pockets. A slight boundary shift may significantly impact the
predicted extension of small pockets. Leveraging the power of learnt
features in other feature-based classifications worth further research as
understanding and interpreting the learnt features are non-trivial tasks.
Evaluating the accuracy of prediction is difficult when only unreliable
reference data is available. For instance, predicted areas that are mor-
phologically similar to deprivation, but omitted in the reference data,
require further effort in accuracy assessment.

From a pragmatic point of view, deprivation mapping highlights the
potential of efficiently monitoring the multi-dimensionality of an urban
phenomenon by using ground validated remote-sensed based informa-
tion. The mapping allows supporting planning and policy development
as well as monitoring the implementation of policies in large and fast-
growing cities in the global south, where information on deprivation
locations and dynamics is often scarce. Furthermore, such information
could help in the calibration and validation of micro-simulation com-
puter models.

Acknowledgements

The authors would like to acknowledge the support of the SimCity
project (contract number: C.2324.0293) and Dynaslum (Data Driven
Modelling and Decision Support for Slums) project (contract number:
27015G05), which are managed by the Dutch national research council
(NWO) and the Dutch organization for ICT in education and research
(SURF) to provide resources for this research. We acknowledge the
European Space Agency (ESA) and DigitalGlobe Foundation for pro-
viding the image data through its Third Party Missions.

J. Wang, et al. Remote Sensing of Environment 234 (2019) 111448

14



References

Albert, A., Kaur, J., Gonzalez, M.C., 2017. Using convolutional networks and satellite
imagery to identify patterns in urban environments at a large scale. In: Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, pp. 1357–1366.

Arribas-Bel, D., Patino, J.E., Duque, J.C., 2017. Remote sensing-based measurement of
Living Environment Deprivation: improving classical approaches with machine
learning. PLoS One 12, e0176684.

Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. Segnet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation. 1511.00561.

Baud, I., Kuffer, M., Pfeffer, K., Sliuzas, R., Karuppannan, S., 2010. Understanding het-
erogeneity in metropolitan India: the added value of remote sensing data for ana-
lyzing sub-standard residential areas. Int. J. Appl. Earth Obs. Geoinf. 12, 359–374.

Benediktsson, J.A., Pesaresi, M., Amason, K., 2003. Classification and feature extraction
for remote sensing images from urban areas based on morphological transformations.
IEEE Trans. Geosci. Remote Sens. 41, 1940–1949.

Chandramouli, C., General, R., 2011. Census of India 2011. Provisional Population Totals.
Government of India, New Delhi.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2018. Deeplab: se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., 2016. 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer, pp. 424–432.

Cui, X., Goel, V., Kingsbury, B., 2015. Data augmentation for deep neural network
acoustic modeling. IEEE Trans. Audio Speech Lang. Process. 23, 1469–1477.

Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D.,
Raskar, R., 2018. Deepglobe 2018: A Challenge to Parse the Earth through Satellite
Images. (ArXiv e-prints).

Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y., 2017. Automatic brain tumor detection and
segmentation using U-Net based fully convolutional networks. In: Annual Conference
on Medical Image Understanding and Analysis. Springer, pp. 506–517.

Dundar, M., Kou, Q., Zhang, B., He, Y., Rajwa, B., 2015. Simplicity of kmeans versus
deepness of deep learning: a case of unsupervised feature learning with limited data.
In: Machine Learning and Applications (ICMLA), 2015 IEEE 14th International
Conference on. IEEE, pp. 883–888.

Duque, J.C., Patino, J.E., Betancourt, A., 2017. Exploring the potential of machine
learning for automatic slum identification from VHR imagery. Remote Sens. 9.

Ezeh, A., Oyebode, O., Satterthwaite, D., Chen, Y.-F., Ndugwa, R., Sartori, J., Mberu, B.,
Melendez-Torres, G., Haregu, T., Watson, S.I., 2017. The history, geography, and
sociology of slums and the health problems of people who live in slums. Lancet 389,
547–558.

Friesen, J., Taubenböck, H., Wurm, M., Pelz, P.F., 2018. The similar size of slums. Habitat
Int. 73, 79–88.

Graesser, J., Cheriyadat, A., Vatsavai, R.R., Chandola, V., Long, J., Bright, E., 2012. Image
based characterization of formal and informal neighborhoods in an urban landscape.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 1164–1176.

Guo, Z., Shao, X., Xu, Y., Miyazaki, H., Ohira, W., Shibasaki, R.J.R.S., 2016. Identification
of Village Building via Google Earth Images and Supervised Machine Learning
Methods 8. pp. 271.

Habitat, U., 2003. Slums of the World: the Face of Urban Poverty in the New Millennium.
United Nations Human Settlements Programme, Nairobi.

Hachmann, S., Arsanjani, J.J., Vaz, E., 2018. Spatial data for slum upgrading: volunteered
Geographic Information and the role of citizen science. Habitat Int. 72, 18–26.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778.

Hernandez-Stefanoni, J.L., Ponce-Hernandez, R., 2004. Mapping the spatial distribution
of plant diversity indices in a tropical forest using multi-spectral satellite image
classification and field measurements. Biodivers. Conserv. 13, 2599–2621.

Hofmann, P., Taubenböck, H., Werthmann, C., 2015. Monitoring and modelling of in-
formal settlements-A review on recent developments and challenges. In: 2015 Joint
Urban Remote Sensing Event (JURSE). IEEE, pp. 1–4.

Hoo-Chang, S., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D.,
Summers, R.M., 2016. Deep convolutional neural networks for computer-aided de-
tection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans.
Med. Imaging 35, 1285.

Huang, X., Zhang, L., 2013. An SVM ensemble approach combining spectral, structural,
and semantic features for the classification of high-resolution remotely sensed ima-
gery. IEEE Trans. Geosci. Remote Sens. 51, 257–272.

Ibrahim, M.R., Haworth, J., Cheng, T., 2018a. URBAN-i: from Urban Scenes to Mapping
Slums, Transport Modes, and Pedestrians in Cities Using Deep Learning and
Computer Vision. 1809.03609.

Ibrahim, M.R., Titheridge, H., Cheng, T., Haworth, J., 2018b. predictSLUMS: A New
Model for Identifying and Predicting Informal Settlements and Slums in Cities from
Street Intersections Using Machine Learning. 1808.06470.

Iglovikov, V., Mushinskiy, S., Osin, V., 2017. Satellite Imagery Feature Detection Using
Deep Convolutional Neural Network: A Kaggle Competition. 1706.06169.

Iglovikov, V., Shvets, A., 2018. TernausNet: U-Net with VGG11 Encoder Pre-trained on
ImageNet for Image Segmentation. 1801.05746.

India, G.o, 2011. Slums in India: a statistical compendium. In: Government of India,
Ministry of Housing and Poverty Alleviation New Delhi.

India, G.o, 2015. Slums in India: a statistical compendium. In: Government of India,

Ministry of Housing and Poverty Alleviation New Delhi.
Jaccard, P., 1912. The distribution of the flora in the alpine zone. 1. New Phytol. 11,

37–50.
Jain, S., 2008. Remote sensing application for property tax evaluation. Int. J. Appl. Earth

Obs. Geoinf. 10, 109–121.
Jenerette, G.D., Harlan, S.L., Buyantuev, A., Stefanov, W.L., Declet-Barreto, J., Ruddell,

B.L., Myint, S.W., Kaplan, S., Li, X., 2016. Micro-scale urban surface temperatures are
related to land-cover features and residential heat related health impacts in Phoenix,
AZ USA. Landsc. Ecol. 31, 745–760.

Kalma, J.D., McVicar, T.R., McCabe, M.F., 2008. Estimating land surface evaporation: a
review of methods using remotely sensed surface temperature data. Surv. Geophys.
29, 421–469.

Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., Cun, Y.L., 2010.
Learning convolutional feature hierarchies for visual recognition. In: Advances in
Neural Information Processing Systems, pp. 1090–1098.

Kit, O., Lüdeke, M., 2013. Automated detection of slum area change in Hyderabad, India
using multitemporal satellite imagery. ISPRS J. Photogrammetry Remote Sens. 83,
130–137.

Klaufus, C., 2010. Watching the city grow: remittances and sprawl in intermediate Central
American cities. Environ. Urbanization 22, 125–137.

Kohli, D., Sliuzas, R., Kerle, N., Stein, A., 2012. An ontology of slums for image-based
classification. Comput. Environ. Urban Syst. 36, 154–163.

Kohli, D., Sliuzas, R., Stein, A.J.J.S., 2016a. Urban Slum Detection Using Texture and
Spatial Metrics Derived from Satellite Imagery. J. Spat. Sci. 61, 405–426.

Kohli, D., Stein, A., Sliuzas, R., 2016b. Uncertainty analysis for image interpretations of
urban slums. Comput. Environ. Urban Syst. 60, 37–49.

Krishna, A., Sriram, M., Prakash, P., 2014. Slum types and adaptation strategies: identi-
fying policy-relevant differences in Bangalore. Environ. Urbanization 26, 568–585.

Kuffer, M., Pfeffer, K., Sliuzas, R., 2016a. Slums from space—15 years of slum mapping
using remote sensing. Remote Sens. 8, 455.

Kuffer, M., Pfeffer, K., Sliuzas, R., Baud, I., 2016b. Extraction of slum areas from VHR
imagery using GLCM variance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9,
1830–1840.

Kuffer, M., Pfeffer, K., Sliuzas, R., Baud, I., van Maarseveen, M., 2017. Capturing the
diversity of deprived areas with image-based features: the case of Mumbai. Remote
Sens. 9.

Kuffer, M., Wang, J., Nagenborg, M., Pfeffer, K., Kohli, D., Sliuzas, R., Persello, C., 2018.
The scope of earth-observation to improve the consistency of the SDG slum indicator.
ISPRS Int. J. Geo-Inf. 7, 428.

Längkvist, M., Kiselev, A., Alirezaie, M., Loutfi, A., 2016. Classification and segmentation
of satellite orthoimagery using convolutional neural networks. Remote Sens. 8, 329.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436.
LeCun, Y., Kavukcuoglu, K., Farabet, C., 2010. Convolutional networks and applications

in vision. In: ISCAS, pp. 253–256.
Lee, G., Tai, Y.-W., Kim, J., 2016. Deep saliency with encoded low level distance map and

high level features. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 660–668.

Li, R., Liu, W., Yang, L., Sun, S., Hu, W., Zhang, F., Li, W., 2018. Deepunet: a deep fully
convolutional network for pixel-level sea-land segmentation. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens.

Li, Y., Huang, X., Liu, H., 2017. Unsupervised deep feature learning for urban village
detection from high-resolution remote sensing images. Photogramm. Eng. Remote
Sens. 83, 567–579.

Liu, H., Huang, X., Wen, D., Li, J., 2017. The use of landscape metrics and transfer
learning to explore urban villages in China. Remote Sens. 9, 365.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440.

Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2017. Convolutional neural networks
for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens.
55, 645–657.

Mahabir, R., Croitoru, A., Crooks, A., Agouris, P., Stefanidis, A., 2018. A critical review of
high and very high-resolution remote sensing approaches for detecting and mapping
slums. Urban Science 2, 8.

Mahabir, R., Crooks, A., Croitoru, A., Agouris, P.J.R.S., 2016. Regional Science. In: The
Study of Slums as Social and Physical Constructs: Challenges and Emerging Research
Opportunities 3. pp. 399–419.

Martin, D., Fowlkes, C., Tal, D., Malik, J., 2001. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on. IEEE, pp. 416–423.

Martinez, J., Mboup, G., Sliuzas, R., Stein, A., 2008. Trends in urban and slum indicators
across developing world cities, 1990–2003. Habitat Int. 32, 86–108.

Mboga, N., Persello, C., Bergado, J., Stein, A., 2017. Detection of informal settlements
from VHR images using convolutional neural networks. Remote Sens. 9, 1106.

Muller, C.L., Chapman, L., Grimmond, C., Young, D.T., Cai, X., 2013. Sensors and the city:
a review of urban meteorological networks. Int. J. Climatol. 33, 1585–1600.

Oke, T.R., 2002. Boundary Layer Climates. Routledge.
Pal, N.R., Pal, S.K., 1993. A review on image segmentation techniques. Pattern Recognit.

26, 1277–1294.
Persello, C., Stein, A., 2017. Deep fully convolutional networks for the detection of in-

formal settlements in VHR images. IEEE Geosci. Remote Sens. Lett. 14, 2325–2329.
Pesaresi, M., 2000. Texture analysis for urban pattern recognition using fine-resolution

panchromatic satellite imagery. Geogr. Environ. Model. 4, 43–63.
Pesaresi, M., Gerhardinger, A., Kayitakire, F., 2008. A robust built-up area presence index

by anisotropic rotation-invariant textural measure. IEEE J. Sel. Top. Appl. Earth Obs.

J. Wang, et al. Remote Sensing of Environment 234 (2019) 111448

15

http://refhub.elsevier.com/S0034-4257(19)30467-5/sref1
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref1
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref1
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref1
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref2
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref2
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref2
arxiv:1511.00561
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref4
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref4
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref4
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref5
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref5
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref5
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref6
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref6
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref7
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref7
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref7
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref8
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref8
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref8
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref8
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref9
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref9
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref10
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref10
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref10
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref11
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref11
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref11
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref12
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref12
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref12
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref12
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref14
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref14
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref15
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref15
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref15
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref15
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref16
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref16
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref17
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref17
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref17
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref18
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref18
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref18
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref19
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref19
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref20
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref20
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref21
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref21
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref21
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref22
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref22
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref22
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref23
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref23
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref23
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref24
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref24
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref24
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref24
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref25
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref25
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref25
arxiv:1809.03609
arxiv:1808.06470
arxiv:1706.06169
arxiv:1801.05746
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref30
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref30
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref31
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref31
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref32
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref32
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref33
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref33
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref34
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref34
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref34
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref34
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref35
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref35
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref35
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref36
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref36
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref36
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref37
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref37
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref37
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref38
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref38
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref39
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref39
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref40
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref40
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref41
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref41
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref42
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref42
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref43
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref43
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref44
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref44
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref44
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref45
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref45
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref45
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref46
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref46
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref46
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref47
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref47
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref48
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref49
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref49
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref50
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref50
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref50
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref51
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref51
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref51
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref52
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref52
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref52
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref53
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref53
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref54
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref54
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref54
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref55
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref55
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref55
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref56
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref56
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref56
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref57
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref57
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref57
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref58
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref58
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref58
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref58
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref59
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref59
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref60
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref60
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref61
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref61
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref62
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref63
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref63
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref64
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref64
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref65
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref65
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref66
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref66


Remote Sens. 1, 180–192.
Pratomo, J., Kuffer, M., Martinez, J., Kohli, D., 2017. Coupling uncertainties with accu-

racy assessment in object-based slum detections, case study: jakarta, Indonesia.
Remote Sens. 9, 1164.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for biomedical
image segmentation. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, pp. 234–241.

Roy, D., Lees, M.H., Palavalli, B., Pfeffer, K., Sloot, M.A., 2014. The emergence of slums: a
contemporary view on simulation models. Environ. Model. Softw 59, 76–90.

Roy, D., Lees, M.H., Pfeffer, K., Sloot, M.A., 2017. Modelling the impact of household life
cycle on slums in Bangalore. Comput. Environ. Urban Syst. 64, 275–287.

Roy, D., Lees, M.H., Pfeffer, K., Sloot, M.A., 2018. Spatial segregation, inequality, and
opportunity bias in the slums of Bengaluru. Cities 74, 269–276.

Seferbekov, S., Iglovikov, V., Buslaev, A., Shvets, A., 2018. Feature pyramid network for
multi-class land segmentation. In: The IEEE Conference On Computer Vision And
Pattern Recognition (CVPR) Workshops.

Singh, P.P., Garg, R., 2013. Automatic road extraction from high resolution satellite
image using adaptive global thresholding and morphological operations. J. Indian
Soc. Remote Sens. 41, 631–640.

Roy, D., Palavalli, B., Menon, N., King, R., Pfeffer, K., Lees, M., Sloot, M.A., 2018. Survey-
based socio-economic data from slums in Bangalore, India. Sci. Data 5, 170200.

Saharan, T., B, I., Pfeffer, Karin, 2018. ‘Slum’ and the City: exploring relations of informal
settlements comparatively in Chennai, India and Durban, South Africa. In: Faculty of
Social and Behavioural Sciences (FMG). University of Amsterdam, pp. 182.

Taubenböck, H., Kraff, N., 2014. The physical face of slums: a structural comparison of
slums in Mumbai, India, based on remotely sensed data. J. Hous. Built Environ. 29,
15–38.

Taubenböck, H., Kraff, N., Wurm, M., 2018a. The morphology of the Arrival City-A global
categorization based on literature surveys and remotely sensed data. Appl. Geogr. 92,
150–167.

Taubenböck, H., Kraff, N.J., Wurm, M., 2018b. The Blind Spot–Reducing Knowledge Gaps

in Urban Poverty with Earth Observation Interacting with Structured and
Unstructured Geodata.

Taubenböck, H., Staab, J., Zhu, X., Geiß, C., Dech, S., Wurm, M., 2018c. Are the poor
digitally left behind? ndications Urban Divides Based Remote Sensing Twitter Data.
ISPRS International Journal of Geo-Information 7, 304.

Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., Dech, S., 2009. Urbanization in
India–Spatiotemporal analysis using remote sensing data. Comput. Environ. Urban
Syst. 33, 179–188.

Taubenböck, H., Wurm, M., 2015. Ich weiß, dass ich nichts weiß–Bevölkerungsschätzung
in der Megacity Mumbai. Globale Urbanisierung. Springer, pp. 171–178.

Turok, I., Borel-Saladin, J., 2018. The theory and reality of urban slums: pathways-out-of-
poverty or cul-de-sacs? Urban Stud. 55, 767–789.

UN, 2018. 2018 revision of world urbanization prospects. In: United Nations Department
of Economic and Social Affairs.

Veljanovski, T., Kanjir, U., Pehani, P., Oštir, K., Kovačič, P., 2012. Object-based Image
Analysis of VHR Satellite Imagery for Population Estimation in Informal Settlement
Kibera-Nairobi, Kenya. Remote Sensing-Applications. InTech.

Wang, H., Chen, S., Xu, F., Jin, Y.-Q., 2015. Application of deep-learning algorithms to
MSTAR data. In: Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE
International. IEEE, pp. 3743–3745.

Wang, J., Kuffer, M., Pfeffer, K., 2019. The role of spatial heterogeneity in detecting urban
slums. Comput. Environ. Urban Syst. 73, 95–107.

Wurm, M., Stark, T., Zhu, X.X., Weigand, M., Taubenböck, H.J.I.J.H., Sensing, R., 2019.
Semantic Segmentation of Slums in Satellite Images Using Transfer Learning on Fully
Convolutional Neural Networks. ISPRS Journal of Photogrammetry and Remote
Sensing 150, 59–69.

Wurm, M., Taubenböck, H., Weigand, M., Schmitt, A., 2017. Slum mapping in polari-
metric SAR data using spatial features. Remote Sens. Environ. 194, 190–204.

Yu, F., Koltun, V., 2015. Multi-scale Context Aggregation by Dilated Convolutions. 1511.
07122.

J. Wang, et al. Remote Sensing of Environment 234 (2019) 111448

16

http://refhub.elsevier.com/S0034-4257(19)30467-5/sref66
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref67
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref67
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref67
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref68
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref68
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref68
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref69
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref69
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref71
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref71
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref70
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref70
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref73
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref73
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref73
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref74
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref74
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref74
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref72
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref72
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref75
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref75
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref75
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref76
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref76
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref76
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref77
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref77
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref77
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref78
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref78
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref78
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref79
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref79
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref79
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref80
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref80
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref80
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref81
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref81
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref82
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref82
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref83
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref83
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref84
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref84
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref84
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref85
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref85
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref85
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref86
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref86
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref87
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref87
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref87
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref87
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref89
http://refhub.elsevier.com/S0034-4257(19)30467-5/sref89
arxiv:1511.07122
arxiv:1511.07122

	Deprivation pockets through the lens of convolutional neural networks
	Introduction
	Methodology
	Study area and data
	Deprivation pockets mapping through the U-Net-CPD
	The strengths and weaknesses of the U-Net-CPD
	Accuracy assessment
	Pattern analysis

	Results
	Model performance at the local level
	Model performance at the city level
	Insights through the U-Net-CPD
	Distribution patterns of slums
	Weakness and strength of the U-Net-CPD

	Discussions
	Data and model performance
	Learnt features and model performance
	The uncertainties in deprivation mapping
	Scaling and transferring deep learning based deprivation mapping

	Conclusions
	Acknowledgements
	References




