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Abstract

Reparameterizable densities are an important
way to learn probability distributions in a
deep learning setting. For many distributions
it is possible to create low-variance gradient
estimators by utilizing a ‘reparameterization
trick’. Due to the absence of a general repa-
rameterization trick, much research has re-
cently been devoted to extend the number
of reparameterizable distributional families.
Unfortunately, this research has primarily fo-
cused on distributions defined in Euclidean
space, ruling out the usage of one of the most
influential class of spaces with non-trivial
topologies: Lie groups. In this work we define
a general framework to create reparameteri-
zable densities on arbitrary Lie groups, and
provide a detailed practitioners guide to fur-
ther the ease of usage. We demonstrate how
to create complex and multimodal distribu-
tions on the well known oriented group of
3D rotations, SO(3), using normalizing flows.
Our experiments on applying such distribu-
tions in a Bayesian setting for pose estimation
on objects with discrete and continuous sym-
metries, showcase their necessity in achieving
realistic uncertainty estimates.

1 INTRODUCTION

Formulating observed data points as the outcomes of
probabilistic processes, has proven to provide a useful
framework to design successful machine learning mod-
els. Thus far, the research community has drawn almost
exclusively from results in probability theory limited to
Euclidean and discrete space. Yet, expanding the set
of possible spaces under consideration to those with a
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non-trivial topology has had a longstanding tradition
and giant impact on such fields as physics, mathemat-
ics, and various engineering disciplines. One significant
class describing numerous spaces of fundamental inter-
est is that of Lie groups, which are groups of symmetry
transformations that are simultaneously differentiable
manifolds. Lie groups include rotations, translations,
scaling, and other geometric transformations, which
play an important role in several application domains.
Lie group elements are for example utilized to describe
the rigid body rotations and movements central in
robotics, and form a key ingredient in the formula-
tion of the Standard Model of particle physics. They
also provide the building blocks underlying ideas in a
plethora of mathematical branches such as holonomy in
Riemannian geometry, root systems in Combinatorics,
and the Langlands Program connecting geometry and
number theory.

Many of the most notable recent results in machine
learning can be attributed to researchers’ ability to com-
bine probability theoretical concepts with the power of
deep learning architectures, e.g. by devising optimiza-
tion strategies able to directly optimize the parameters
of probability distributions from samples through back-
propagation. Perhaps the most successful instantiation
of this combination, has come in the framework of Vari-
ational Inference (VI) (Jordan et al., 1999), a Bayesian
method used to approximate intractable probability
densities through optimization. Crucial for VI is the
ability to posit a flexible family of densities, and a way
to find the member closest to the true posterior by
optimizing the parameters.

These variational parameters are typically optimized
using the evidence lower bound (ELBO), a lower bound
on the data likelihood. The two main approaches to ob-
taining estimates of the gradients of the ELBO are the
score function (Paisley et al., 2012; Mnih and Gregor,
2014) also known as REINFORCE (Williams, 1992),
and the reparameterization trick (Price, 1958; Bonnet,
1964; Salimans et al., 2013; Kingma and Welling, 2013;
Rezende et al., 2014). While various works have shown
the latter to provide lower variance estimates, its use
is limited by the absence of a general formulation for
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all variational families. Although in recent years much
work has been done in extending this class of reparam-
eterizable families (Ruiz et al., 2016; Naesseth et al.,
2017; Figurnov et al., 2018), none of these methods
explicitly investigate the case of distributions defined
on non-trivial manifolds such as Lie groups.

The principal contribution of this paper is therefore
to extend the reparameterization trick to Lie groups.
We achieve this by providing a general framework to
define reparameterizable densities on Lie groups, under
which the well-known Gaussian case of Kingma and
Welling (2013) is recovered as a special instantiation.
This is done by pushing samples from the Lie algebra
into the Lie group using the exponential map, and by
observing that the corresponding density change can
be analytically computed. We formally describe our
approach using results from differential geometry and
measure theory.

In the remainder of this work we first cover some pre-
liminary concepts on Lie groups and the reparameteri-
zation trick. We then proceed to present the general
idea underlying our reparameterization trick for Lie
groups (ReLie1), followed by a formal proof. Addition-
ally, we provide an implementation section2 where we
study three important examples of Lie groups, deriving
the reparameterization details for the n-Torus, TN , the
oriented group of 3D rotations, SO(3), and the group
of 3D rotations and translations, SE(3). We conclude
by creating complex and multimodal reparameterizable
densities on SO(3) using a novel non-invertible normal-
izing flow, demonstrating applications of our work in
both a supervised and unsupervised setting.

2 PRELIMINARIES

In this section we first cover a number of preliminary
concepts that will be used in the rest of this paper.

2.1 Lie Groups and Lie Algebras

Lie Group, G: A Lie group, G is a group that is also
a smooth manifold. This means that we can, at least
in local regions, describe group elements continuously
with parameters. The number of parameters equals
the dimension of the group. We can see (connected)
Lie groups as continuous symmetries where we can
continuously traverse between group elements3. Many
relevant Lie groups are matrix Lie groups, which can
be expressed as a subgroup of the Lie group GL(n,R)
of invertible square matrices with matrix multiplication

1Pronounced ‘really’.
2Our implementation is available at

https://github.com/pimdh/relie
3We refer the interested reader to (Hall, 2003).

as product.

Lie Algebra, g: The Lie algebra g of a N dimen-
sional Lie group is its tangent space at the identity,
which is a vector space of N dimensions. We can see
the algebra elements as infinitesimal generators, from
which all other elements in the group can be created.
For matrix Lie groups we can represent vectors v in
the tangent space as matrices v×.

Exponential Map, exp(·): The structure of the al-
gebra creates a map from an element of the algebra to
a vector field on the group manifold. This gives rise to
the exponential map, exp : g→ G which maps an alge-
bra element to the group element at unit length from
the identity along the flow of the vector field. The zero
vector is thus mapped to the identity. For compact con-
nected Lie groups, such as SO(3), the exponential map
is surjective. Often, the map is not injective, so the
inverse, the log map, is multi-valued. The exponential
map of matrix Lie groups is the matrix exponential.

Adjoint Representation, adx: The Lie algebra is
equipped with with a bracket [·, ·] : g × g → g,
which is bilinear. The bracket relates the structure
of the group to structure on the algebra. For exam-
ple, log(exp(x) exp(y)) can be expressed in terms of
the bracket. The bracket of matrix Lie groups is the
commutator of the algebra matrices. The adjoint rep-
resentation of x ∈ g is the matrix representation of the
linear map adx : g→ g : y 7→ [x, y].

2.2 Reparameterization Trick

The reparameterization trick (Price, 1958; Bonnet,
1964; Salimans et al., 2013; Kingma and Welling, 2013;
Rezende et al., 2014) is a technique to simulate samples
z ∼ q(z, θ) as z = T (ε; θ), where ε ∼ s(ε) is indepen-
dent from θ 4, and the transformation T (ε; θ) should
be differentiable w.r.t. θ. It has been shown that this
generally results in lower variance estimates than score
function variants, thus leading to more efficient and bet-
ter convergence results (Titsias and Lázaro-Gredilla,
2014; Fan et al., 2015). This reparameterization of
samples z, allows expectations w.r.t. q(z; θ) to be
rewritten as Eq(z;θ)[f(z)] = Es(ε)[f(T (ε; θ))], thus mak-
ing it possible to directly optimize the parameters of a
probability distribution through backpropagation.

Unfortunately, there exists no general approach to defin-
ing a reparameterization scheme for arbitrary distribu-
tions. Although there has been a significant amount
of research into finding ways to extend or generalize
the reparameterization trick (Ruiz et al., 2016; Naes-
seth et al., 2017; Figurnov et al., 2018), to the best

4At most weakly dependent (Ruiz et al., 2016).
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Figure 2.1: Illustration of reparameterization trick of a Lie group v. the classic reparameterization trick.

of our knowledge no such trick exists for spaces with
non-trivial topologies such as Lie groups.

3 REPARAMETERIZING
DISTRIBUTIONS ON LIE
GROUPS

In this section we will first explain our reparameteriza-
tion trick for distributions on Lie groups (ReLie), by
analogy to the classic Gaussian example described in
(Kingma and Welling, 2013), as we can consider RN
under addition as a Lie group with Lie algebra RN
itself. In the remainder we build an intuition for our
general theory drawing both from geometrical as well
as measure theoretical concepts, concluded by stating
our formal theorem.

3.1 Reparameterization Steps

The following reparameterization steps (a), (b), (c) are
illustrated in Figure 2.1.

(a) We first sample from a reparameterizable distribu-
tion r(v|σ) on g. Since the Lie algebra is a real vector
space, if we fix a basis this is equivalent to sampling a
reparameterizable distribution from RN . In fact, the
basis induces an isomorphism between the Lie algebra
and RN (see Appendix G).

(b) Next we apply the exponential map to v, to obtain
an element, g ∼ q̂(g|σ) of the group. If the distribu-
tion r(v|σ) is concentrated around the origin, then the
distribution of q̂(g|σ) will be concentrated around the
group identity. In the Gaussian example on RN , this
step corresponds to the identity operation, and r = q̂.
As this transformation is in general not the identity

operation, we have to account for the possible change
in volume using the change of variable formula5. Addi-
tionally the exponential map is not necessarily injective,
such that multiple points in the algebra can map to
the same element in the group. We will have a more in
depth discussion of both complications in the following
subsection.

(c) Finally, to change the location of the distribution q̂,
we left multiply g by another group element gµ, apply-
ing the group specific operation. In the classic case this
corresponds to a translation by µ. If the exponential
map is surjective (like in all compact and connected
Lie groups), then gµ can also be parameterized by the
exponential map6.

3.2 Theory

Geometrical Concepts When trying to visualize
the change in volume, moving from the Lie algebra
space to that of the group manifold, we quickly reach
the limits of our geometrical intuition. As concepts like
volume and distance are no longer intuitively defined,
naturally our treatment of integrals and probability
densities should be reinspected as well. In mathematics
these concepts are formally treated in the fields of differ-
ential and Riemannian geometry. To gain insight into
building quantitative models of the above-mentioned
concepts, these fields start from the local space behav-
ior instead. This is done through the notion of the
Riemannian metric, which formally corresponds to "at-

5In a sense, this is similar to the idea underlying nor-
malizing flows (Rezende and Mohamed, 2015)

6Care must be taken however when gµ is predicted by
a neural network to avoid homeomorphism conflicts as
explored in (Falorsi et al., 2018; de Haan and Falorsi, 2018)
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(a) f∗(m′) no density (b) g∗(m′) with density

Figure 3.1: Example of the two non-injective mappings, f(x) = 1 and g(x) = x2 + c, where the blue line denotes
the initial Gaussian density of m′, and the orange line the transformed density. In (a) the pushforward measure
of m′ by f collapses to δ1, while for (b) the pushforward measure by g has a density.

taching" to the tangent space TpG at every point p a
scalar product 〈 , 〉p. This allows to measure quantities
like length and angles, and to define a local volume
element, in small infinitesimal scales. Extrapolating
from this approach we are now equipped to measure
sets and integrate functions, which corresponds to hav-
ing a measure on the space7. Notice that this measure
arose directly from the geometric properties defined
by the Riemannian metric. By carefully choosing this
metric, we can endow our space with some desirable
properties. A standard choice for Lie groups is to use a
left invariant metric, which automatically induces a left
invariant measure ν, called the Haar measure (unique
up to a constant):

ν(gE) = ν(E), ∀g ∈ G,E ∈ B[G],

where gE is the set obtained by applying the group
element to each element in the set E. More intuitively,
this implies that left multiplication doesn’t change
volume.

Measure Theoretical Concepts Perhaps a more
natural way to view this problem comes from measure
theory, as we’re trying to push a measure on g, to a
space G with a possibly different topology. Whenever
discussing densities such as r in RN , it is implicitly
stated that we consider a density w.r.t. the Lebesgue
measure λ. What this really means is that we are
considering a measure m, absolutely continuous (a.c.)
w.r.t. λ, written as m� λ8. Critically, this is equiva-
lent to stating there exists a density r, such that

m(E) =

∫
E

r dλ, ∀E ∈ B(RN ),

7We refer the interested reader to (Lee, 2012).
8See definition 1, Appendix C

where B(RN ) is the Borel σ-algebra, i.e. the collection
of all measurable sets. When applying the exponen-
tial map, we define a new measure on G9, technically
called the pushforward measure, exp∗(m)10. However,
G already comes equipped with another measure ν, not
necessarily equal to exp∗(m). Hence, if we consider
a prior distribution that has a density on ν, in order
to compute quantities such as the Kullback-Leibler di-
vergence we also need exp∗(m)� ν, meaning it has a
density q̂ w.r.t. ν.

In the case the exponential map is injective, it can
easily be shown that the pushforward measure has a
density on ν11. However, that these requirements are
not necessarily fulfilled can be best explained through
a simple example: Consider f : R → R, s.t. f(x) =
1,∀x ∈ R, this function is clearly differentiable (see Fig.
1(a)). If we take a measure m′, with a Gaussian density,
the pushforward of m′ by f is a Dirac delta, δ1, for
which it no longer holds that f∗(m′)� λ. Intuitively,
this happens because f is not injective since all points
x ∈ R are mapped to 1, such that all the mass of the
pushforward measure is concentrated on a single point.

Yet, this does not mean that all non-injective mappings
can not be used. Instead, consider g : R → R, s.t.
g(x) = x2 + c,∀x ∈ R with c ∈ R a constant, and m′
as before (see Fig. 1(b)). Although g is clearly not
injective, for the pushforward measure by g we still have
g∗(m′)� λ. The key property here, is that it’s possible
to partition the domain of g into the sets (−∞, 0) ∪
(0,∞) ∪ {0}. For the first two, we can now apply the
change of variable method on each, as g is injective
when restricted to either. The zero set can be ignored,

9We can do this since the exponential map is differen-
tiable, thus continuous, thus measurable.

10See definition 3, Appendix C
11In fact, as discussed before we can always reduce to

this case by defining a measure with limited support.
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since it has Lebesgue measure 0. This partition-idea
can be generally extended for Lie groups, by proving
that the Lie algebra domain can be partitioned in a set
of measure zero and a countable union of open sets in
which the exponential map is a diffeomorphism. This
insight proven in Lemma E.5, allows us to prove the
general theorem:
Theorem 3.1. Let G, g, m, λ, ν be defined as above,
then exp∗(m)� ν with density:

p(a) =
∑

x∈g:exp(x)=a

r(x)|J(x)|−1, a ∈ G, (1)

where J(x) := det

(∑∞
k=0

(−1)k

(k + 1)!
(adx)k

)
Proof. See Appendix E.6

Location Transformation Having verified the
pushforward measure has a density, q̂, the final step is
to recenter the location of the resulting distribution. In
practice, this is done by left multiplying the samples by
another group element. Technically, this corresponds
to applying the left multiplication map

Lgµ : G→ G, g 7→ gµg

Since this map is a diffeomorphism, we can again apply
the change of variable method. Moreover, if the mea-
sure on the group ν is chosen to be the Haar measure,
as noted before applying the left multiplication map
leaves the Haar measure unchanged. In this case the
final sample thus has density

gz ∼ q(gz|gµ, σ) = q̂(g−1
µ gz|σ)

Additionally, the entropy of the distribution is invariant
w.r.t. left multiplication.

4 IMPLEMENTATION

In this section we present general implementation de-
tails, as well as worked out examples for three inter-
esting and often used groups: the n-Torus, TN , the
oriented group of 3D rotations, SO(3), and the 3D
rotation-translation group, SE(3). The worst case repa-
rameterization computational complexity for a matrix
Lie group of dimension n can be shown12 to be O(n3).
However for many Lie groups closed form expressions
can be derived, drastically reducing the complexity.

4.1 Computing J(x)

The term J(x) as appearing in the general reparameter-
ization theorem 3.1, is crucial to compute the change

12See Appendix D.4.

of volume when pushing a density from the algebra to
the group. Here, we given an intuitive explanation for
Matrix Lie groups in d dimensions with matrices of
size n× n. For a formal general explanation, we refer
to Appendix D.

The image of the exp map is the d dimensional manifold,
Lie group G, embedded in Rn×n. An infinitesimal
variation in the input around point x ∈ g, creates an
infinitesimal variation of the output, which is restricted
to the d dimensional manifold G. Infinitesimally this
gives rise to a linear map between the tangent spaces
at input and output. This is the Jacobian.

The change of volume is the determinant of the Ja-
cobian. To compute it, we express the tangent space
at the output in terms of the chosen basis of the Lie
algebra. This is possible, since a basis for a Lie algebra
provides a unique basis for the tangent space through-
out G. This can be computed analytically for any x,
since the exp map of matrix Lie groups is the matrix
exponential, for which derivatives are computable. Nev-
ertheless a general expression of J(x) exists for any
Lie Group and is given in terms of the complex eigen-
value spectrum Sp(·) of the adjoint representation of
x, which is a linear map:

Theorem 4.1. Let G be a Lie Group and g its Lie
algebra, then it can be shown that J(x) can be computed
using the following expression

J(x) :=
∏

λ∈Sp(adx)
λ 6=0

λ

1− e−λ
(2)

Proof. See Appendix D.4

4.2 Three Lie Group Examples

The n-Torus, TN : The n-Torus is the cross-product
of n times S1. It is an abelian (commutative) group,
which is interesting to consider as it forms an important
building block in the theory of Lie groups. The n-Torus
has the following matrix representation:

T (α) :=

Bα1 . . .
Bαn

 , Bα :=

[
cosα − sinα
sinα cosα

]
,

where α = (α1, · · · , αn) ∈ Rn. The basis of the Lie
algebra is composed of 2n×2n block-diagonal matrices
with 2× 2 blocks s.t. all blocks are 0 except one that
is equal to L:

L(α) =

α1L
. . .

αnL

 , L :=

[
0 −1
1 0

]
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The exponential map is s.t. the pre-image can be
defined from the following relationship L(α) 7→ T (α):

exp(L(α+ 2πk)) = exp(L(α)), k ∈ Zn

The pushforward density is defined as

J(L(α)) = 1

q̂(T (α)|σ) =
∑
k∈Zn

r (α+ 2kπ|σ) (3)

It can be observed that there is no change in volume.
The resulting distribution on the circle or 1-Torus,
which is also the Lie group SO(2), is illustrated in
Appendix B.

The Special Orthogonal Group, SO(3): The Lie
group of orientation preserving three dimensional rota-
tions has its matrix representation defined as

SO(3) := {R ∈ GL(3,R) : R>R = I ∧ det(R) = 1}

The elements of its Lie algebra so(3), are represented by
the 3D vector space of skew-symmetric 3× 3 matrices.
We choose a basis for the Lie algebra:

L1,2,3 :=

0 0 0
0 0 −1
0 1 0

 ,
 0 0 1

0 0 0
−1 0 0

 ,
0 −1 0

1 0 0
0 0 0


This provides a vector space isomorphism between R3

and so(3), written as [ · ]× : R3 → so(3). Assuming
the decomposition v× = θu×, s.t. θ ∈ R≥0, ‖u‖ = 1,
the exponential map is given by the Rodrigues rotation
formula (Rodrigues, 1840)

exp(v×) = I + sin(θ)u× + (1− cos(θ))u2
× (4)

Since SO(3) is a compact and connected Lie group
this map is surjective, however it is not injective. The
complete preimage of an arbitrary group element can
be defined by first using the principle branch log(·)
operator to find the unique Lie algebra element next
to the origin, and then observing the following relation

exp(θu×) = exp((θ + 2kπ)u×) k ∈ Z

In practice, we will already have access to such an
element of the Lie algebra due to the sampling approach.
The pushforward density defined almost everywhere as

J(v) =
‖v‖2

2− 2 cos ‖v‖
(5)

q̂(R|σ) =
∑
k∈Z

r

(
log(R)

θ(R)
(θ(R) + 2kπ)

∣∣∣∣σ) (θ(R) + 2kπ)2

3− tr(R)
,

where R ∈ SO(3) and

θ(R) = ‖ log(R)‖ = cos−1

(
tr(R)− 1

2

)

(a) SO(3)

(b) SE(3)

Figure 4.1: Plotted the log relative error of analytical
and numerical estimations of J(x) for the groups SO(3)
and SE(3), equations (5), (6). Numerical estimation of
Jacobian performed by taking small discrete steps of
decreasing size (x-axis) in each Lie algebra direction.
The error is evaluated at 1000 randomly sampled points.

The Special Euclidean Group, SE(3): This Lie
group extends SO(3) by also adding translations. Its
matrix representation is given by[

R u
0 1

]
, u ∈ R3, R ∈ SO(3)

The Lie algebra, se(3) is similarly built concatenating
a skew-symmetric matrix and a R3 vector

S(ω,u) =

[
ω× u
0 0

]
, u, ω ∈ R3,

A basis can easily be found combining the basis ele-
ments for so(3) and the canonical basis of R3. The
exponential map from algebra to group is defined as[

ω× u
0 0

]
7→
[
exp(ω×) V u

0 1

]
,

where exp(·) is defined as in equation (4), and

V = I+

(
1− cos(‖ω‖)
‖ω‖2

)
ω×+

(
‖ω‖ − sin(‖ω‖)

‖ω‖3

)
ω2
×
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From the expression of the exponential map it is clear
that the preimage can be described similar to SO(3).
Finally the pushforward density is defined almost ev-
erywhere as

J(S(ω,u)) =

[
‖ω‖2

2− 2 cos ‖ω‖

]2

(6)

q̂(M |σ) =∑
k∈Z

r

(
S

(
ω

‖ω‖
(‖ω‖+ 2kπ),u

) ∣∣∣∣σ)[ ‖ω + 2kπ‖2

2− 2 cos ‖ω‖

]2

,

where ω and u such that S(ω,u) = log(M). The log
can be easily defined from the log in SO(3).

5 RELATED WORK

Various work has been done in extending the repa-
rameterization trick to an ever growing amount of
variational families. Figurnov et al. (2018) provide
a detailed overview, classifying existing approaches
into (1) finding surrogate distributions, which in the
absence of a reparameterization trick for the desired
distribution, attempts to use an acceptable alterna-
tive distribution that can be reparameterized instead
(Nalisnick and Smyth, 2017). (2) Implicit reparameter-
ization gradients, or pathwise gradients, introduced in
machine learning by Salimans et al. (2013), extended by
Graves (2016), and later generalized by Figurnov et al.
(2018) using implicit differentiation. (3) Generalized
reparameterizations finally try to generalize the stan-
dard approach as described in the preliminaries section.
Notable are (Ruiz et al., 2016), which relies on defining
a suitable invertible standardization function to allow
a weak dependence between the noise distribution and
the parameters, and the closely related (Naesseth et al.,
2017), focusing on rejection sampling.

All of the techniques above can be used orthogonal to
our approach, by defining different distributions over
the Lie algebra. While some even allow for reparameter-
izable densities on spaces with non-trivial topologies13,
none of them provide the tools to correctly take into
account the volume change resulting from pushing den-
sities defined on RN to arbitrary Lie groups. In that
regard the ideas underlying normalizing flows (NF)
(Rezende and Mohamed, 2015) are the closest to our
approach, in which probability densities become in-
creasingly complex through the use of injective maps.
Two crucial differences however with our problem do-
main, are that the change of variable computation now
needs to take into account a transformation of the un-
derlying space, as well as the fact that the exponential

13For example Davidson et al. (2018) reparameterize the
von Mises-Fisher distribution which is defined on SM , with
S1 isomorphic to the Lie group SO(2).

(a) Line symmetry

(b) Triangular symmetry

Figure 5.1: Samples of the Variational Inference model
and Markov Chain Monte Carlo of Experiment 6.1.
Outputs are shifted in the z-dimension for clarity.

map is generally not injective. NF can be combined
with our work to create complex distributions on Lie
groups, as is demonstrated in the next section.

Defining and working with distributions on homoge-
neous spaces, including Lie groups, was previously in-
vestigated in (Chirikjian and Kyatkin, 2000; Chirikjian,
2010; Wolfe and Mashner, 2011; Chirikjian, 2011;
Chirikjian and Kyatkin, 2016; Ming, 2018). Barfoot
and Furgale (2014) also discuss implicitly defining dis-
tributions on Lie groups, through a distribution on
the algebra, focusing on the case of SE(3). However,
these works only consider the neighbourhood of the
identity, making the exponential map injective, but the
distribution less expressive. In addition, generally only
Gaussian distributions on the Lie Algebra are used
in past work. Cohen and Welling (2015) devised har-
monic exponential families which are a powerful family
of distributions defined on homogeneous spaces. These
works all did not concentrate on making the distribu-
tions reparameterizable. Mallasto and Feragen (2018)
defined a wrapped Gaussian process on Riemannian
manifolds through the pushforward of the exp map
without providing an expression for the density.
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Figure 5.2: Samples from conditional SO(3) distribution p(g|x) for different x, where x has the symmetry of
rotations of 2π/3 along one axis of Experiment 6.2. Shown are PCA embeddings of the matrices, learned using
Locally Invertible Flow (LI-Flow) with Maximum Likelihood Estimation.

6 EXPERIMENTS

We conduct two experiments on SO(3) to highlight the
potential of using complex and multimodal reparame-
terizable densities on Lie groups14.

Normalizing Flow To construct multimodal distri-
butions Normalizing Flows are used (Dinh et al., 2014;
Rezende and Mohamed, 2015):

Rd f−→ Rd r·tanh−→ Rd ∼= g
exp−→ G,

where f is an invertible Neural Network consisting of
several coupling layers (Dinh et al., 2014), the tanh(·)
function is applied to the norm and a unit Gaussian
is used as initial distribution. The hyperparameter r
determines the non-injectivity of the exp map and thus
of the flow. r must be chosen such that the image
of r · tanh is contained in the regular region of the
exp map. For sufficiently small r, the entire flow is
invertible, but may not be surjective, while for bigger r
the flow is non-injective, with a finite inverse set at each
g ∈ G, as exp is a local diffeomorphism and the image of
r · tanh has compact support. For details see Appendix
E. For such a Locally Invertible Flow (LI-Flow), the
likelihood evaluation requires us to branch at the non-
injective function and traverse the flow backwards for
each element in the preimage.

6.1 Variational Inference

In this experiment we estimate the SO(3) group ac-
tions that leave a symmetrical object invariant. This
highlights how our method can be used in probabilistic
generative models and unsupervised learning tasks. We
have a generative model p(x|g) and a uniform prior
over the latent variable g. Using Variational Inference
we optimize the Evidence Lower Bound to infer an
approximate posterior q(g|x) modeled with LI-Flow.

14See Appendix A for additional details.

Results are shown in Fig. 5.1 and compared to Markov
Chain Monte Carlo samples. We observe the symme-
tries are correctly inferred.

6.2 Maximum Likelihood Estimation

To demonstrate the versatility of the reparameterizable
Lie group distribution, we learn supervised pose estima-
tion by learning a multimodal conditional distribution
using MLE, as in (Dinh et al., 2017).

We created data set: (x, g′ = exp(ε)g) of objects x
rotated to pose g and algebra noise samples ε. The
object is symmetric for the subgroup corresponding to
rotations of 2π/3 along one axis. We train a LI-Flow
model by maximizing: Ex,g′ log p(g′|x). The results in
Fig. 5.2 reveal that the LI-Flow successfully learns a
multimodal conditional distribution.

7 CONCLUSION

In this paper we have presented a general framework
to reparameterize distributions on Lie groups (ReLie),
that enables the extension of previous results in repa-
rameterizable densities to arbitrary Lie groups. Fur-
thermore, our method allows for the creation of com-
plex and multimodal distributions through normalizing
flows, for which we defined a novel Locally Invertible
Flow (LI-Flow) example on the group SO(3). We em-
pirically showed the necessity of LI-Flows in estimating
uncertainty in problems containing discrete or continu-
ous symmetries.

This work provides a bridge to leverage the advantages
of using deep learning to estimate uncertainty for nu-
merous application domains in which Lie groups play
an important role. In future work we plan on further
exploring the directions outlined in our experimental
section to more challenging instantiations. Specifically,
learning rigid body motions from raw point clouds or
modeling environment dynamics for applications in
optimal control present exciting possible extensions.
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