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Interactions between aboveground and belowground organisms are important drivers

of plant growth and performance in natural ecosystems. Making practical use of such

above-belowground biotic interactions offers important opportunities for enhancing

the sustainability of agriculture, as it could favor crop growth, nutrient supply, and

defense against biotic and abiotic stresses. However, the operation of above- and

belowground organisms at different spatial and temporal scales provides important

challenges for application in agriculture. Aboveground organisms, such as herbivores

and pollinators, operate at spatial scales that exceed individual fields and are highly

variable in abundance within growing seasons. In contrast, pathogenic, symbiotic,

and decomposer soil biota operate at more localized spatial scales from individual

plants to patches of square meters, however, they generate legacy effects on plant

performance that may last from single to multiple years. The challenge is to promote

pollinators and suppress pests at the landscape and field scale, while creating positive

legacy effects of local plant-soil interactions for next generations of plants. Here,

we explore the possibilities to improve utilization of above-belowground interactions

in agro-ecosystems by considering spatio-temporal scales at which aboveground

and belowground organisms operate. We identified that successful integration of

above-belowground biotic interactions initially requires developing crop rotations and

intercropping systems that create positive local soil legacy effects for neighboring as
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well subsequent crops. These configurations may then be used as building blocks

to design landscapes that accommodate beneficial aboveground communities with

respect to their required resources. For successful adoption of above-belowground

interactions in agriculture there is a need for context-specific solutions, as well as sound

socio-economic embedding.

Keywords: above-belowground biotic interactions, sustainable agriculture, spatio-temporal scales, agroecology,

steering communities

INTRODUCTION

The pressure on agricultural and natural resources is increasing

due to human population growth, ongoing urbanization, climate
change, and the growing demand for bio-based products. Given
that the world population is expected to increase up to 11 billion
people during the 21st century, a key question for society is how
to meet the growing demands for food, feed, biomass, and other
ecosystem services sustainably (Godfray et al., 2010; Rockström
et al., 2017). Achieving global food security in the coming decades
will require major changes in the whole food system, including
food consumption patterns, waste management, and the food
provision chain (Godfray et al., 2010), as well as a redesign of
agricultural systems (Pretty et al., 2018).

Current agricultural systems produce food and feed at
high levels of efficiency, but often require large inputs of
external resources, which can have strong negative impacts
on the environment (Pretty, 2018). For example, in high-
input production systems considerable leaching of nutrients into
ground and surface water, emission of greenhouse gases into the
atmosphere, and loss of biodiversity from intensive agricultural
landscapes have been reported (Matson et al., 1997; Hallmann
et al., 2017; Rockström et al., 2017). It has long been recognized
that the use of ecological principles in agro-ecosystems can
benefit crop productivity (de Wit, 1960; Dore et al., 2011).
Still, further integration of ecological knowledge into agriculture
may offer important opportunities for enhancing sustainability
(Tittonell, 2014; Struik and Kuyper, 2017) by balancing crop
production with other ecosystem functions, such as retention of
nutrients and natural control of pests and diseases (Bommarco
et al., 2013; Pretty et al., 2018).

For at least the last three decades ecologists have

acknowledged that understanding plant growth and performance

requires integration of both aboveground and belowground

biotic interactions (Brown and Gange, 1990; Wardle et al.,
2004; van Dam and Heil, 2011). However, the research field

on “aboveground-belowground interactions” has developed

primarily in natural systems. It has been suggested that

integrating this knowledge into agriculture offers possibilities

for aiding sustainable crop production (van der Putten et al.,
2009; Orrell and Bennett, 2013; Pineda et al., 2017) and for

ecosystem service provision (A’Bear et al., 2014), but thus

far relatively little progress has been made in applying this

concept in production systems. One key aspect that might

complicate reliable application in agriculture or horticulture

is the vastly different spatial and temporal scales at which

aboveground-belowground biotic interactions operate (Bardgett
et al., 2005; van der Putten et al., 2009; Bommarco et al., 2013).
Information on appropriate spatio-temporal scales is crucial
for effectively rolling out policies into management practices
(Kleijn et al., 2018a).

In the current paper we make the next step toward
integrating above-belowground interactions in ecosystems
by pointing at the different scales at which belowground
vs. aboveground interactions are being influenced by the
surrounding environment. We use current ecological knowledge
to explore how above-belowground biotic interactions can
be used to benefit pollination, pest and pathogen control,
crop production, soil carbon and nutrient cycling, and other
ecosystem services in agro-ecosystems.We explicitly consider the
spatio-temporal scales at which aboveground and belowground
organisms operate and propose how this could help to redesign
current agricultural landscapes. We identify research priorities
and discuss the need of good socio-economic guidance for
further integration of above-belowground interactions in a more
ecological, or nature-inclusive, agricultural practice.

ABOVE- AND BELOWGROUND BIOTIC
COMMUNITIES

Aboveground Biotic Communities
Aboveground, crops are affected by both beneficial and
antagonistic organisms, which impacts the economics of farming
practices (Losey and Vaughan, 2006; Gallai et al., 2009;
Holland et al., 2016). Crops are under attack of herbivores
and foliar pathogens, while benefitting from pollination by
insects. In agricultural fields, wild insects, such as bees and
hoverflies, account for up to half of all flower visits of various
important crops and lead to substantial yield increases (Garibaldi
et al., 2013). At the same time crops benefit from indirect
defense by insects parasitizing and predating on herbivorous
natural enemies. Biological control of specific pests has been
implemented for a long time in greenhouses, orchards, and arable
crops (van Lenteren, 2012), but also through stimulation of
natural insect populations (Landis et al., 2000; Tscharntke et al.,
2005; Gurr et al., 2016; Rusch et al., 2016). The complexity of
interactions in the field is substantially greater than in closed
production systems such as greenhouses, because pollinators and
enemies move around the agricultural landscape where they use a
variety of resources both on and off the cropping field at different
points in time. Such conditions generally are not present in more
closed systems, such as in greenhouses.
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The spatial organization of landscapes has been shown
to strongly affect aboveground biotic interactions. For arable
cropping systems, semi-natural habitats are crucial for the
persistence of populations of pollinators and natural enemies
(Steffan-Dewenter et al., 2002; Kennedy et al., 2013; Barrios
et al., 2018; Karp et al., 2018). Pollinators are largely dependent
on semi-natural habitats outside agricultural fields for provision
of alternative food resources and nesting sites (Kleijn et al.,
2018b). Both abundance and species diversity of pollinators
increases with an increasing percentage of semi-natural habitat
in the surrounding 0.5–3 km (Steffan-Dewenter et al., 2002;
Kennedy et al., 2013). At the same time, semi-natural habitats,
such as flower strips, hedgerows and forest patches, provide
habitat or alternative resources for both herbivores and their
natural enemies (Landis et al., 2000). Most studies show that
increases in the percentage of semi-natural habitat in agricultural
landscapes enhance biocontrol by reducing pest abundance
(Shackelford et al., 2013; Veres et al., 2013). Recent research
indicates that not only the amount of semi-natural habitat, but
also its spatial configuration strongly determines the degree of
pollination and pest control (Tscharntke et al., 2005; Rusch
et al., 2016; Baillod et al., 2017). Consequently, the spatial
ecology of the aboveground community is a crucial factor that
should be considered when designing agricultural landscapes and
intercropping systems (Allema et al., 2014).

Next to spatial optimization, efficient pollination and pest
control will further require that the relevant invertebrate
populations, or the function that they have, can be maintained
through time. An important prerequisite for this is that the
arable fields and the surrounding landscape together provide
resource continuity through the year (Schellhorn et al., 2015).
For example, Riedinger et al. (2013) show that flower visitation
by bumblebees in late-flowering sunflower fields was significantly
enhanced in landscapes with high cover of early-flowering oilseed
rape crops. Crops with a later phenology that use the same
pollinators may then benefit from the legacies of earlier crops.
Currently, efforts are already made to “tailor” the characteristics
of both the cropped fields and the surrounding area toward
optimizing resource continuity for natural enemies of pests
(Holland et al., 2016). However, this practice needs to be applied
more regularly and needs to integrate temporal legacy effects
of aboveground ecosystem services such as pollination and pest
control and their high temporal turnover.

Belowground Biotic Communities
Soil organisms can have substantial effects on crop growth
and health. For example, belowground pests and pathogens
can cause major crop losses (Haas and Défago, 2005), while
(symbiotic) mutualists, such as diazotrophic bacteria (N2-fixers;
Canfield et al., 2010), arbuscular mycorrhizal fungi (van der
Heijden and Hartmann, 2016; Bowles et al., 2017) and plant
growth-promoting rhizobacteria (Lugtenberg and Kamilova,
2009; Raaijmakers et al., 2009) can enhance plant resource
uptake and stimulate plant growth and nutrition, as well as
resistance to stress and pests (Raaijmakers et al., 2009; Yang et al.,
2009). Further, heterotrophic fungal and bacterial communities
play a key role in the decomposition of organic matter and

transformation of soil nutrients and may contribute to pest
control or enhance plant tolerance thereby influencing plant
nutrition and growth (Wardle et al., 2004; Raaijmakers and
Mazzola, 2016).

Plant species cultivate specific soil communities (Raaijmakers
et al., 2009) which can persist in the soil as legacy effects
that in turn influence the growth of plants in next generations
(also termed “plant-soil feedback”) (Bever et al., 2010; Wubs
and Bezemer, 2018), and/or of neighboring plants (Kos
et al., 2014). These effects can be mediated by living plant
roots, as well as by plant litter inputs, because plant-specific
decomposer communities might specialize in breaking down
organic substrates from the plants they are associated with
(Rashid et al., 2013; Veen et al., 2015). Specific decomposers may
accelerate soil nutrient cycling and thereby potentially favor plant
species future growth. Although most soil biotic legacy effects are
highly localized, they can persist in the soil for years and even up
to decades (Wubs et al., 2019) and as a result have a major impact
on future plant growth and dynamics, as well as on carbon and
nutrient cycling in the entire ecosystem.

The spatial extent of soil legacy effects depends strongly on
the spatial configuration of plant species and varies at scales
ranging from individual plants to plant patches, both in natural
habitats (Ettema and Wardle, 2002; Bardgett et al., 2005) and
in crop fields (Haas and Défago, 2005). The magnitude and
direction of temporal legacy effects also strongly depend on the
plant growth form (Kardol et al., 2006; Cortois et al., 2016)
and competitive or facilitative interactions with neighboring
plants (Casper and Castelli, 2007; Müller et al., 2016). For
example, early-successional wild plant species, which have an
ecology comparable to the ancestors of crop species, often
build up negative soil legacy effects that reduce subsequent
growth of plants and accelerate plant succession (Kardol et al.,
2006). Wild species cope with such negative feedback effects
via cyclic dynamics in plant community composition, a model
underpinning crop rotation (Mariotte et al., 2018). Negative
feedbacks may also control spatial diversity in the plant
community, and this knowledge may be used to enhance the
efficiency of intercropping systems (Zhang and Li, 2003; Barel
et al., 2018). A key challenge is to develop intercropping and crop
rotation systems that optimally use positive and avoid negative
plant-induced legacy effects (Mariotte et al., 2018).

Above-Belowground Biotic Interactions
In both natural and agricultural ecosystems, aboveground
and belowground communities do not only affect plants,
but via plants they also influence each other (Bardgett and
Wardle, 2010). These interactions can be mediated by many
different components of the biotic community, including, above-
and belowground herbivores and pathogens, aboveground
parasitoids and pollinators, and belowground mutualists, and
decomposer organisms (A’Bear et al., 2014; Heinen et al., 2018).
Such aboveground-belowground interactions can be mediated
via changes in plant primary and secondary chemistry (van der
Putten et al., 2001; Kostenko et al., 2012) and play an important
role in driving the functioning of ecological communities
(Bardgett and Wardle, 2010). For example, belowground
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herbivores and pathogens may prime or reduce parasitoid or
pollinator attraction by modifying plant volatile emissions or
shoot tissue quality (Lucas-Barbosa et al., 2011; Soler et al.,
2012). In turn, aboveground herbivores may stimulate root
exudation, which can increase the activity of the soil community
and thereby ecosystem processes such as carbon and nitrogen
cycling (Bardgett andWardle, 2003). Also, soil decomposers may
enhance plant productivity and quality via enhanced nutrient
cycling, which can both increase susceptibility to pests and
herbivory via increased food quality or decrease herbivore
performance via increased levels of secondary metabolites
(A’Bear et al., 2014).

In agro-ecosystems, above-belowground interactions can be
used to improve sustainable crop production (Orrell and
Bennett, 2013; Tamburini et al., 2016), because these interactions
may optimize ecosystem services such as biological control
of herbivore populations by natural enemies, pollination, and
soil nutrient cycling (A’Bear et al., 2014; Pineda et al., 2017).
For example, arbuscular mycorrhizal fungi, growth-promoting
rhizobacteria, and earthworms can improve plant nutrition and
hence prime plant defenses to above- or belowground pests or
can enhance the attraction of pollinators (Gange and Smith,
2005; van Groenigen et al., 2014). Managing networks of above-
belowground interactions has the potential to simultaneously
improve plant nutrition, resistance to pathogens, and benefits
from mutualists (Orrell and Bennett, 2013; Mariotte et al., 2018).

Utilizing above-belowground interactions for agro-
ecosystems requires unraveling the spatio-temporal scales at
which the key players in complex agro-ecological networks
operate and affect each other (Bommarco et al., 2013).
Aboveground pollinator and pest communities operate on
a field or landscape spatial scale and are not restricted to
interactions with individual plants (Figure 1). In contrast,
plant-soil interactions often play out at much finer spatial scale
of an individual root or plant (Ettema and Wardle, 2002),
and have long-lasting legacy effects (Wubs et al., 2019), e.g.,
because many soil-borne organisms have persistent “dormant”
stages (Lennon and Jones, 2011). Complex network interactions
of antagonists and symbiotic mutualists in the soil will then
influence subsequent plant growth and performance highly
locally (Raaijmakers and Mazzola, 2016; van der Heijden
and Hartmann, 2016). A major challenge for applying the
aboveground-belowground interaction concept in agriculture
will be to integrate management of pests, pollinators, and
crop diversity at the landscape and field scale with local
plant-soil interactions at the level of individual plants or plant
patches (Figure 1).

Identifying combinations of above-belowground biotic
interactions that positively feed back to crop growth and
ecosystem functioning in space and time will be essential in
order to utilize these interactions for sustainable agriculture
(Figure 2). By using new analytical approaches we can quantify
above-belowground interactions from a network perspective
(van der Heijden and Hartmann, 2016; Ramirez et al., 2018),
and connect network characteristics to functional properties
(Morriën et al., 2017). Currently progress is made on research on
whole phytobiomes (Leach et al., 2017; Sánchez-Cañizares et al.,

2017), i.e., all aboveground and belowground taxa associated
with plants, to capture the complexity and unravel the web of
interactions between them (Ledford, 2015). This will help to
identify the combinations of above-belowground interactions
that may aid future sustainable agriculture.

RESEARCH PRIORITIES AND
IMPLICATIONS FOR REDESIGNING
AGROECOSYSTEMS

Steering Aboveground Communities
Increasingly, knowledge of aboveground spatial and temporal
dynamics is being used to design agricultural landscapes to
enhance multiple ecosystem services (Schellhorn et al., 2015;
Landis, 2017). Concrete steps that farmers and researchers
may take to enhance and optimize ecosystem services include
considerations of field size and shape, the inclusion of
intentionally managed non-crop habitats and crop spatio-
temporal diversity. To increase functional biodiversity in
agricultural landscapes smaller field sizes need to be maintained
or created (Fahrig et al., 2015). Modeling studies suggest that
dispersed rather than aggregated distribution of conservation
habitats is likely to yield greater ecosystem services in agricultural
landscapes (Cong et al., 2016), although large contiguous reserves
will still be required to safeguard most other biodiversity. Where
semi-natural habitats are lacking, adding designed habitats
can provide beneficial organisms with shelter, floral resources,
and alternate prey (Landis et al., 2000; Gurr et al., 2017).
Finally, harvesting crops in sequence and having sufficient
off-field resources when crops are not available will provide
resource continuity through the year to maintain aboveground
invertebrate populations (Schellhorn et al., 2015).

For pollinators, both the composition and configuration
of crop and non-crop habitats is important to maintain
effective communities (Barrios et al., 2018; Hass et al.,
2018). Practices that increase flower-rich habitats can
enhance pollinator conservation at the farm and landscape
level (Dicks et al., 2015; Holland et al., 2015; Kleijn
et al., 2018b). For example, targeted wildflower plantings
increased pollinator abundance in an adjacent pollination-
dependent crop, increasing yields, and repaying the cost of
floral installation in 3–4 years (Blaauw and Isaacs, 2014).
Also, new studies show that in combination with the
presence of floral resources, adding artificial nesting sites
can increase abundance of aboveground nesting wild bees
(Dainese et al., 2018).

Natural enemies also respond to landscape and local habitat
structure in ways that influence pest suppression services
(Bianchi et al., 2006). In general, as landscape complexity and
the amount of non-crop habitat increase, the abundance and
diversity of natural enemies and pest suppression may also
increase (Chaplin-Kramer et al., 2011; Shackelford et al., 2013;
Veres et al., 2013), but effects can be inconsistent (Barrios et al.,
2018; Karp et al., 2018). Targeted interventions to specifically
create and manage habitats that enhance natural enemies and
pest suppression is promising (Gurr et al., 2017). For example,
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FIGURE 1 | Figure showing the scale of current aboveground (AG), belowground, (BG) and AG-BG knowledge.

FIGURE 2 | Conceptual diagram of AG-BG interactions. Shown is part of a crop rotation with alternating intercrops along a multi-stage sequence (may include cover

crops). Solid arrows indicate factors that influence crop yields in the present year, dashed arrows indicate past effects. The thick solid arrows indicate the influence of

overriding factors. The previous years’ intercrop has created soil legacies (A & B) which may impact the growth of both concurrent crops (C & D). In addition, soil

legacies may affect presence and impact of AG pollinators and pests (indirect effect of legacy A on C or also on D). The conditions in the field will largely be

determined by overriding landscape and soil factors, which will modify the outcomes of the AG-BG interactions in the focal field.
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natural enemy abundance and diversity generally increase in
wildflower plantings adjacent to agricultural fields (Morandin
et al., 2014; Blaauw and Isaacs, 2015; Tschumi et al., 2016b), and
their spillover into adjacent crops can increase yields (Tschumi
et al., 2016a). Also, smaller field sizes can suppress the abundance
of pests via increasing spatial diversity (Baillod et al., 2017).
Finally, at the scale of individual plants, the colonization of
foliar diseases may be prevented by optimizing the aboveground
microbiome composition on plants, i.e., in the phyllosphere,
(Ritpitakphong et al., 2016), but how this works out in practice
and across whole fields is still unknown.

Steering Soil Communities
Manipulating soil communities via the legacies that crop
species leave behind belowground may be mediated via the
identity, functional traits and diversity of crop species (e.g., via
intercropping). Legacy effects should be optimized for nutrient
cycling, beneficial interactions between plants, and soil biota
and disease suppression (Brooker et al., 2015; Dias et al., 2015;
Mariotte et al., 2018). Considering all these different types
of legacy effects is novel when compared to traditional crop
rotation, which was strongly focusing on suppressing crop
species-specific soil-borne diseases. The particular sequence of
plants growing in the soil will determine subsequent legacy effects
(Wubs and Bezemer, 2018) and plant root traits may provide
a way to predict beneficial sequences of plant species (Bardgett
et al., 2014; Cortois et al., 2016). In addition, repeated application
of organic substrates can have a strong positive influence on the
capacity of decomposer communities to recycle nutrients (Rashid
et al., 2013; Hartmann et al., 2015; Martínez-García et al., 2018),
offering the potential to steer soil communities to benefit plant
growth and nutrition. Moreover, increased levels of soil organic
matter can suppress soil-borne diseases (Bonanomi et al., 2010;
Korthals et al., 2014).

Soil communities can also be steered via direct inoculation
of soils with microbial strains or communities. Inoculation with
strains that benefit plant growth and nutrition, such as specific
strains of arbuscular mycorrhizae, may boost plant nutrition
(Adam et al., 2016). Microbial inoculations are generally
successful in experimental settings, but single-strain inoculations
often work less well in large-scale agriculture because of
competition by the resident soil community (Raaijmakers
and Mazzola, 2016). Diverse microbial communities are often
resistant to invasion and establishment of new species due to a
lack of available (“empty”) niches (Mallon et al., 2015). Therefore,
inoculation of strains of soil microbes may aid crop growth most
likely in highly controlled environments, such as greenhouses,
where competition of the existing microbial community can be
controlled, but less well in the field. In field soil it may be
necessary to introduce microbial strains together with biotic
or abiotic environmental disturbances to create empty niches
in the existing community and to allow establishment of new
strains (Adam et al., 2016). It is possible that targeted engineering
of the host microbiome can help to steer beneficial plant-soil
interactions for agriculture (Oyserman et al., 2018).

Inoculation studies in the context of nature restoration have
shown that whole-soil inocula, which include intact microbial

communities, outperform inocula of individual mycorrhizal
strains (Rowe et al., 2007; Emam, 2016). For example relatively
small whole-soil inocula (150ml) into 0.25 m2 plots promoted
plant performance within a 2m radius from the inoculation
in just two growing seasons (Middleton and Bever, 2012). On
a larger scale (≥1,000 m2), soil inoculations have successfully
influenced plant performance and composition in natural
systems by steering soil community composition into different
developmental trajectories (Wubs et al., 2016). In that study,
also soil inoculation worked better in subsoil than in intact
topsoil. Based on these findings, it seems promising to focus on
field-scale inoculation of whole microbial communities in agro-
ecosystems, but it is important to determine the conduciveness
of the existing soil community for uptake of the inoculum. It will
be necessary to set up field trials, to be able to investigate the
optimal spatial and temporal scales of soil inoculation, and to find
out how soil inoculation should be integrated into crop rotation
schemes and can be combined with high-tech management
tools and precision farming. Such efforts should go hand-in-
hand with breeding programs for optimal plant-microbiome
interactions (Raaijmakers andMazzola, 2016) and engineering of
plant microbiomes (Oyserman et al., 2018).

Steering Above-Belowground Interactions
Management tools are mostly directed toward steering either
aboveground or belowground biotic communities. A key future
challenge will be to integrate these tools and jointly steer
above-belowground interactions for positive plant, field- and
landscape-scale feedbacks (Figure 2). As belowground processes
are local and can last for long periods of time, we propose
to take these processes as a starting point for steering above-
belowground interactions. It will be essential to design spatio-
temporal configurations of crops by combining principles from
crop rotation and intercropping (Brooker et al., 2015; Dias et al.,
2015; Mariotte et al., 2018) to maximize the benefit of soil
legacy effects on both neighboring and follow-up crops (Barel
et al., 2018; Ingerslew and Kaplan, 2018; Figure 2). Whereas
intercropping itself may yield higher crop biomass via enhanced
nutrient uptake or reduced disease spread (Brooker et al.,
2015), rotating intercrops designed to maximally benefit from
belowground legacy effects can further enhance crop production
(Figure 2). The mechanisms by which intercrops benefit crop
growth will determine the spatial scale of intercropping; where
crops interacting via more efficient resource use will need to
grow in closer proximity (e.g., rows) than crops that primarily
function to prevent the spread of diseases (e.g., strips or mixed
monocropping; Brooker et al., 2015). Finally, optimal intercrop-
rotation systems may include specific organic amendments
and inoculations to steer specialized soil communities in the
rotation sequence. Optimal intercrop-rotations can then be
used as building blocks to redesign agricultural landscapes for
steering aboveground processes, such as pollination, avoidance of
aboveground diseases and stimulation of natural enemies, taking
field size and shape, and the amount and configuration of natural
habitats into account (Tscharntke et al., 2005; Baillod et al., 2017).

To implement intercropping and crop rotation in an
optimal above-belowground context requires targeted screening
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of combinations of crops and above-belowground processes
that drive positive plant, field-, and landscape-scale feedbacks.
Adopting a functional-trait based approach will provide a
valuable framework for getting a mechanistic understanding
of how inter- and intraspecific combinations of crop species
link to ecosystem functioning (Bardgett et al., 2014; Ke
et al., 2015; Martin and Isaac, 2015). Screening needs to be
done at scales relevant to farmers and should take taking
local abiotic and biotic soil conditions into consideration
in order to obtain knowledge about how integrating above-
belowground interactions into agricultural management impacts
both ecosystem functioning and profit for farmers (Kleijn
et al., 2018a). In addition, to determine the spatial extent and
consequences of plant-induced soil legacy effects in agricultural
settings will require using a spatially-explicit approach in
belowground agro-ecology (see Quist et al., 2017; Schrama
et al., 2018). Further, testing interactions between crops and
above-belowground interactions across realistic above- and
belowground spatiotemporal dimensions can be explored using
process- or individual-based models (van der Putten et al., 2009;
Evers et al., 2018). Differences in mobility and dispersal of
organisms living above- or belowground can be representedmore
easily in such models than in field experiments.

CONTEXT-DEPENDENCY

Environmental Context
Although above-belowground biotic interactions have a strong
potential to aid sustainable agriculture, the ecological context
in which they operate varies strongly across the globe and this
can alter how they drive crop growth and ecosystem functioning
(Agrawal et al., 2007; Pittelkow et al., 2015; Karp et al., 2018;
Figure 2). The impact of soil legacies on plants is strongly
dependent on climatic conditions (De Long et al., 2018), as well
as biotic and abiotic environmental conditions (Bezemer et al.,
2006; Casper and Castelli, 2007; Ke et al., 2015). For example, the
magnitude and direction of plant growth responses to soil legacy
effects can be modified by soil texture or chemistry (Bezemer
et al., 2006). Similarly, the diversity of aboveground predator
and parasitic insects varies along environmental gradients of
temperature and habitat diversity (Corcos et al., 2018). These
examples highlight that it is crucial to find site-specific solutions
when implementing ecological processes in agriculture (Reynolds
et al., 2014; Tittonell, 2014; Tittonell et al., 2016) and that we
thus need a thorough understanding of the context-dependency
of these processes.

To investigate context-specific solutions, we can use state-of-
the-art structural equation modeling approaches to disentangle
multiple causal pathways (Grace et al., 2012; Shipley, 2016). For
a thorough understanding it is essential to combine data on
crop performance (quantity and quality) across a wide range of
environmental contexts (Cui et al., 2018). Data from dynamic,
cloud-based databases can be used and connected to researchers
and farmers, such as through the use of Resource Watch (http://
resourcewatch.org/). In such databases information should be
collected on results of management practices on the scale
of individual farms and landscapes (e.g., yields, disease, and

pollution) across the globe (e.g., Jones et al., 2018). Using mobile
phone apps, individual farmers can contribute their information
on management and yields directly. Such a system is already
operative in a micro-insurance network of African farmers,
where high spatial resolution weather data are coupled with
crop failure claims submitted by individual smallholder farmers
(Acre Africa, http://acreafrica.com/). Also, smallholder farmers,
connected through their mobile phones, can now exchange
solutions for specific farming problems within a global network
(WeFarm, http://wefarm.org/). Big data sharing technology and
the use of open datasets are rapidly expanding (Culina et al.,
2018) and will allow the inclusion of many more relevant
parameters, across a range of scales, resulting in a wealth of
data that allow efficient searches for the optimal response to
environmental conditions (by coupling climate, soil, hydrology,
epidemiology etc. data and models). The open nature of these
databases and tools mean they can be provided for free to the
participating farmers allowing these solutions to be improved
iteratively. Naturally, big data approaches should not interfere
with testing novel management practices as big data can only be
used to optimize existing practices.

Socio-Economic Context
It is possible to arrive at the better solutions in agro-ecological
terms (e.g., yield, nutrient losses, greenhouse gas emissions
etc.); however, it is also critically important to study the socio-
economic feasibility and the policy changes needed to facilitate
the transition. First of all, successful adoption of ecological
principles in agriculture will depend to a large extent on the
behavior of people (Cinner, 2018). In addition, it is critically
dependent on the economic benefit for farmers, and those
benefits need to be expressed at spatio-temporal scales relevant
to farmers (Kleijn et al., 2018a). Moreover, all changes challenge,
at least to some extent, the “normal” way of doing things (Magrini
et al., 2016). This “normal” way, also denoted as the socio-
technical regime, is a coherent set of social and technological
elements that underpins basic societal functions (Holtz et al.,
2008). For agro-ecological systems, some innovations may be
easy to incorporate on-farm or elsewhere in the food system
as they complement already existing practices and norms.
Other innovations may require fundamental changes in farming
practices, food systems, payment schemes, and/or agro-food
policies to be implemented.

Application of inoculants, for instance, may be part of
incremental innovations, while more radical ideas (named sharp-
key approaches), such as intercropping with a range of different
crop species to support above-belowground biotic interactions or
combining whole-field soil inoculations with high-tech farming
solutions may lead to and require a disruptive change of the
socio-technical regime. More radical changes may encompass
bio-technical aspects, such as development of cultivars that
constitute good companions in mixtures (Zuppinger-Dingley
et al., 2014), integrating management for above-belowground
interactions into precision farming, or processing of more diverse
products in the food industry. In addition, it will also include
administrative procedures (e.g., what constitutes a field under
strip cropping conditions, what is the legal status of applied
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inocula), and explicit and implicit rules in economic transactions,
e.g., concerning purity of product, added value of diversification
for consumers, and patentability of products.

Applying ecological principles to agriculture calls for coupled
innovations (Roep et al., 2003; Wiskerke and Van der Ploeg,
2004; Rasmussen et al., 2018), where changes are not only
made in the bio-technical domain, but also in the economic,
administrative and innovation support domains (Tittonell et al.,
2016; Meynard et al., 2017). Such reconfiguration of food
systems is not only complicated in itself; it is also complex
because multiple societal actors are involved, which results in
feedbacks that create unexpected emergent societal dynamics.
At the same time, the most positive social-ecological outcomes
of applying ecological principles are achieved when landscape
restoration and diversification of agronomic practices are
combined (Rasmussen et al., 2018). Together, this suggests that
successful redesign of agricultural systems will require a multi-
scale and multi-stakeholder approach (Jordan andWarner, 2010;
Kessler et al., 2016; Struik and Kuyper, 2017). Close, on-site and
hands-on collaboration between farmers, ecologists, consumers,
civil society organizations, and agro-food businesses, in “living-
labs,” in a learning by doing context, will not only build mutual
understanding and trust, but will also significantly enhance the
co-production and sharing of applied ecological knowledge and
speed up agricultural innovation processes. Research to support
agro-ecological changes requires flexibility to adjust research
questions in response to emerging demands, capabilities to
communicate results in a timely and understandable manner
(Clark et al., 2016), and a fundamental change of existing
political and economic frameworks that impact on both the
dynamics of agro-ecological systems and funding for research
on agro-ecology.

CONCLUSION

We argue that applying ecological principles to agriculture
requires an aboveground-belowground approach with explicit
consideration and integration of the spatio-temporal scales of
operation of above- and belowground processes. Knowledge
from natural systems provides the basis to further the
integration of an above-belowground approach for sustainable
agriculture. A key innovation will be to use optimal intercrop-
rotation combinations in spatio-temporal configurations that
allow for steering above-belowground interactions. This should
be done in such a way that these interactions result in
positive plant, field- and landscape-scale feedbacks. The highly
localized and long-term nature of soil-borne legacies suggests
that rotating intercrops with positive plant-soil interactions
need to be used as building blocks within the agricultural
landscape. The spatio-temporal placement of these blocks should

then be designed to yield positive crop-landscape feedbacks
accommodating the mobile and dynamic nature of aboveground
communities. A key research priority will be to design optimal
intercrop-rotation combinations and determine the spatio-
temporal scales at which targeted management should be

applied. To develop management and crops that are tailor-
made for specific environmental contexts, it will be crucial to
integrate local knowledge and experience in global open source
databases of agro-ecological technologies and their efficacy
across environmental conditions. Finally, successful adoption of
integrated above-belowground biotic approaches in agriculture
requires adequate consideration of the enabling environment
shaped by social, governance, and economic factors along the
transition toward sustainable food and agricultural systems.
We see a new role for ecologists to initiate the necessary
interdisciplinary and cross-societal coalitions needed to reach
this goal.
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