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Abstract
Analysis of population genetic structure has become a standard approach in population genetics. In polyploid complexes,
clustering analyses can elucidate the origin of polyploid populations and patterns of admixture between different cytotypes.
However, combining diploid and polyploid data can theoretically lead to biased inference with (artefactual) clustering by
ploidy. We used simulated mixed-ploidy (diploid-autotetraploid) data to systematically compare the performance of k-means
clustering and the model-based clustering methods implemented in STRUCTURE, ADMIXTURE, FASTSTRUCTURE and INSTRUCT under
different scenarios of differentiation and with different marker types. Under scenarios of strong population differentiation,
the tested applications performed equally well. However, when population differentiation was weak, STRUCTURE was the only
method that allowed unbiased inference with markers with limited genotypic information (co-dominant markers with
unknown dosage or dominant markers). Still, since STRUCTURE was comparatively slow, the much faster but less powerful
FASTSTRUCTURE provides a reasonable alternative for large datasets. Finally, although bias makes k-means clustering
unsuitable for markers with incomplete genotype information, for large numbers of loci (>1000) with known dosage k-
means clustering was superior to FASTSTRUCTURE in terms of power and speed. We conclude that STRUCTURE is the most robust
method for the analysis of genetic structure in mixed-ploidy populations, although alternative methods should be considered
under some specific conditions.

Introduction

Studying population structure is of key importance for
understanding patterns of gene flow and admixture and for
inferring the demographic history of populations. Thanks to
increased computational power, the recent decades have

seen a rapid development and application of methods and
software to infer population structure. The clustering algo-
rithm implemented in STRUCTURE (Pritchard et al. 2000) is by
far the most popular, but there are several alternatives. As a
result, reporting population structure has become a standard
element of population genetic studies. Although some of the
available methods have in principle been developed for
diploids, they can be and have been used for polyploids,
including datasets encompassing individuals of different
ploidy (mixed ploidy).

The occurrence of multiple ploidy levels within the same
species likely represents the early phases of polyploid
speciation. Population genetic structure in polyploid com-
plexes can thus provide unique insights in the origin of
polyploid populations and patterns of admixture within and
between ploidy levels (Kolar et al. 2017). Studying struc-
ture of an established mixed-ploidy species or species group
also aids inference on the recurrent origins of polyploids
and strength of gene flow across the ploidy barrier. For
example, Monnahan et al. (2019) used clustering methods
to explore genome-wide single nucleotide polymorphism
(SNP) data of Arabidopsis arenosa and to formulate a
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baseline hypothesis of inter-ploidy admixture, which was
further tested by coalescent simulations. Zozomová-Lihová
et al. (2015) used clustering approaches to demonstrate
genetic separation between diploid and tetraploid cytotypes
of Cardamine amara. However, the potential biases that
could arise when combining diploid and polyploid data
utilizing clustering methods developed for diploids, have
not been investigated systematically.

A key source of potential bias is the fact that diploids and
polyploids cannot be genotyped with the same precision,
because of the difficulties associated with genotyping
polyploids (Dufresne et al. 2014). This stems from the fact
that in polyploids there is not simply one, but several het-
erozygous genotypes that differ in the dosage of the various
alleles. For example, a di-allelic locus in a tetraploid has
three different heterozygote genotypes (AAAB, AABB, and
ABBB), and this number increases with increasing ploidy
(pentaploids: 4; hexaploids: 5; octoploids: 7). Since it is
often difficult to infer the dosage from marker phenotypes,
these heterozygotes can often not be distinguished from
each other. This in turn complicates accurate estimation of
the allele frequencies, on which most clustering algorithms
rely for inference. To circumvent such genotyping problems
–as well as problems with the development of co-dominant
markers—researchers have used dominant markers such as
AFLPs for the analysis of polyploid species (e.g. Španiel
et al. 2011; Kuzmanović et al. 2013). However, dominant
markers hardly solve the problem as they simply present a
further reduction of the available genotype information and
potentially increases the inter-ploidy bias.

The problems with incomplete genotypes and dominant
markers may become especially problematic in cases where
the study species does not have a single ploidy level, but
represents a mixture of different ploidies. This is because
the degree of information loss due to unknown dosage
inevitably increases with the ploidy level, since higher
ploidy levels will have more unknown allelic states. For
example, band presence in AFLP identifies the presence of a
dominant allele (A), but does not inform on the number of
copies of that allele. Band absence identifies absence of the
dominant allele. This principle causes inherently different
band frequencies between ploidy levels. For example, under
HW equilibrium (with q representing the frequency of the
recessive allele B), the recessive homozygote genotype
corresponding to band absence would occur at a frequency
q2 in a diploid population, but only at a frequency q4 in a
tetraploid population (Moody et al. 1993). In other words,
band absence becomes increasingly rare with higher ploidy.
As a result, samples may cluster by ploidy rather than by
actual genetic signal. This is especially problematic for
empirical studies that seek to infer the number of origins of
polyploidy through clustering analyses (e.g., Kolar et al.
2012; Mandak et al. 2016; Tomasello and Oberprieler

2017). Therefore, it is of critical importance to theoretically
evaluate the conditions under which potential biases can
arise and their severity.

Here, we use simulated data to test whether the presence
of multiple ploidy levels biases the inference of population
genetic structure using several clustering methods/software
programs. More specifically, we ask whether k-means
clustering (as implemented in ADEGENET; Jombart (2008))
and the model-based approaches implemented in STRUCTURE

(Pritchard et al. 2000), FASTSTRUCTURE (Raj et al. 2014),
ADMIXTURE (Alexander et al. 2009), and INSTRUCT (Gao et al.
2007) erroneously aggregate individuals according to
ploidy, even when there is no divergence between ploidy
levels. Furthermore, we ask whether such bias increases
with the reduction of information due to unknown dosage
and dominance. We do this for different levels of differ-
entiation between two simulated mixed-ploidy populations,
for different marker types and different numbers of loci and
individuals.

Methods

Simulations

To test for possible ploidy-related bias in the clustering
methods, we simulated mixed-ploidy data where there is no
differentiation between ploidy levels, but there is differ-
entiation among populations. When clustering of the
simulated data shows grouping by ploidy level –rather than
by population– this is a clear sign of bias in the used
method. Though this approach makes the unrealistic
assumption of a complete absence of a reproductive barrier
between the ploidy levels, it is a useful null model that fits
the purposes of this paper; our aim is to uncover potential
bias, not to accurately model the effects of the genetic
relationships between ploidy levels.

We simulated two populations, both containing N=
1000 individuals, equally split between 500 diploids and
500 autotetraploids. The modelled species is a hermaphro-
ditic (monoecious) annual with completely random mating
within populations, including the possibility of selfing. The
two populations are connected by migration at rate m,
which is varied over simulation scenarios in order to obtain
a range of different strengths of population differentiation.
A set of l biallelic selectively neutral SNP loci is simulated;
all loci are independently segregating (unlinked) since this
is an assumption made by most of the tested clustering
methods and best represents current genotyping practices.
Mutation, with possibility of reverse mutation, takes place
at a rate u, which was set at u= 0.0001 for all simulation
scenarios, unless stated otherwise. This value resulted in a
suitable level of genetic variation at the modelled SNPs.
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The model is not individual-based but instead tracks the
allele frequencies at all loci in the two populations. Each
population is therefore modelled as a vector of l integers,
each representing the number of copies of one of the two
alleles (A or B) present in the population. The value of each
integer can range from 0 (fixation of the B allele) to 3000
(fixation of the A allele). The latter number derives from the
fact that there are 500 diploids and 500 tetraploids, and
therefore a total of 500*2+ 500*4= 3000 copies of the
haploid genome present in each population.

Every generation, the drawing of gametes is simulated by
drawing random numbers from a binomial distribution,
based on the allele frequencies stored in the vectors while
allowing for migration and mutation. For every locus in
every population first the expected allele frequency is cal-
culated after mutation. For example, when the number of
allele copies in a population is 3000 (so fixation), the
expected frequency after mutation is 1.0 − 0.0001=
0.9999. Then, in a similar way, this expected frequency is
adjusted for the expected migration from the other popu-
lation, taking into account the frequency of the allele in that
population. Then a random number was drawn from a
binomial distribution, using the expected frequency as the
probability parameter and 3000 for the size parameter (the
number of trials). In the integer vector, the number of allele
copies for this locus and population was then replaced by
the randomly drawn number. This was repeated for 100,000
generations, which was more than enough to reach
mutation-migration-drift equilibrium. The model was cre-
ated and run in R, heavily relying on the rbinom() function.

After the simulation was finished, genotypes were con-
structed for a sample of n diploid and n tetraploid indivi-
duals from each population, based on the vector of allele
copy numbers at the final generation. From these genotypes,
three different datasets were created: (1) Co-dominant data.
This dataset simply contained the full diploid and tetraploid
genotypes with known dosage. (2) Data with unknown
dosage. For this dataset, the tetraploid individuals had
dosage information removed for heterozygous loci, mean-
ing that genotypes AAAB, AABB, and ABBB all had
phenotype AB. The diploid genotypes remained unchanged.
3) Dominant data. The A allele was chosen to be dominant
and the B allele recessive. The dataset was then coded as
presence-absence based on the presence of the A allele
(comparable to the coding of AFLP data). The three datasets
were then (if necessary) written to external files in the
appropriate formats for the different clustering software
packages.

Scenarios

In our default simulation scenario, we tested the effect of
the strength of the population differentiation on the quality

of the clustering results. For this, we used the two popula-
tions as described above with eight different migration rates
ranging from m= 0.1 to m= 0.001, resulting in multilocus
FST-values between 0 and 0.15. We performed 10 inde-
pendent simulations for each of those migration rates. The
simulated genomes contained 100 loci, each with a mutation
rate of u= 0.0001. At the end of the simulation, 400 indi-
viduals were randomly sampled, 100 diploids and 100 tet-
raploids in each of the two populations. To test the effect of
the level of genetic variation, this same simulation scenario
was also run with a mutation rate of u= 0.00001.

In our second scenario, we explored the trade-off
between sampling more individuals or sampling more
loci. For this we selected two migration rates (m= 0.01 and
m= 0.001) that resulted in relatively weak and strong
population structure (average FST -values across replicates of
0.016 and 0.12, respectively). We then varied the number of
simulated loci (10, 30, 100, 300, and 1000), and the total
number of sampled individuals (40, 120, and 400), simu-
lating all pairwise combinations of number of loci and
individuals (10 replicates per combination).

Finally, we simulated a scenario with a modern
genotyping-by-sequencing (GBS) dataset where a limited
number of individuals was genotyped at a large number of
SNP-markers. For this, the total number of sampled indi-
viduals was set at 40 and the number of loci at 10,000. As in
the first scenario above, eight migration rates were used
between 0.1 and 0.001 (with 10 replicates each). For this
scenario, we did not create a dataset with dominant markers,
as such datasets do not occur in practice. Another problem
of GBS datasets is undercalling: heterozygotes that are
called as as homozygotes, because only one of the alleles is
present in the data as a result of insufficient sequencing
depth. This problem is expected to be more severe in
polyploids than in diploids, since polyploids have partial
heterozygotes in which it is more likely that the rare allele
(e.g. the B-allele in an AAAB genotype) is not present
among the sequences. However, we did not include any
undercalling in our simulated datasets: preliminary simula-
tions revealed that it does not lead to any differences in
inferred allele frequencies between diploid and polyploid
populations and is therefore not expected to lead to spurious
clustering.

Clustering analyses

The two simulated populations were analysed using the five
clustering methods detailed below. Reflecting these two
simulated populations, we set k= 2 (number of clusters to
be inferred= 2) for all analyses. As such, we did not per-
form an estimation of the optimal number of clusters k, as
this value is not informative about potential spurious clus-
tering. For example, even if the optimal number of clusters
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would be (correctly) estimated as k= 2, this could both
reflect (correct) clustering of individuals by population, or
(incorrect) clustering of individuals by ploidy.

K-means is a general-purpose clustering method that
attempts to find the best clustering of objects into k groups
by optimising the among-groups sum of squares. In genetic
analyses, k-means is used either as a stand-alone analysis of
population structure, as one of the steps in a DAPC analysis
(Jombart et al. 2010), or in an Analysis of Molecular Var-
iance framework (Meirmans 2012). We used the find.clus-
ters() function from the R-package ADEGENET v. 2.1.1
(Jombart 2008; Jombart and Ahmed 2011) to perform the k-
means analysis on all three datasets (co-dominant known
and unknown dosage, and dominant). This function is
usually executed as part of a DAPC analysis, which also
includes selection of axes from a Principal Components
Analysis and a Discriminant Analysis. However, we did not
perform these additional analyses as they are more difficult
to automate across a large number of datasets (see helpfile
provided with ADEGENET). Therefore, the analysis as we
performed it is equivalent to performing a k-means analysis
on the matrix of within-individual allele frequencies (which
can take values of 0, 0.5, and 1 in diploids, and values of 0,
0.25, 0.5, 0.75, and 1 in tetraploids).

STRUCTURE performs Bayesian assignment of individuals
to a predefined number of clusters (Pritchard et al. 2000). It
can accommodate data from any ploidy level and allows
specifying whether dosage information is known. In addi-
tion, STRUCTURE can handle dominant data, coded as pre-
sence/absence data, with the possibility to specify the
known ploidy of individuals. We ran STRUCTURE v 2.3.4 on
all three datasets (co-dominant with known and unknown
dosage, and dominant) using the admixture model with
uncorrelated allele frequencies. The Monte Carlo Markov
Chain was run for 100,000 steps, following a burn-in period
of 10,000 steps. This was enough to reach convergence;
trials with longer chains did not yield different results. Ten
replicates were run for every analysis and the one with the
highest overall likelihood was selected for parsing the
results.

ADMIXTURE performs maximum likelihood estimation of
ancestry of individuals based on multilocus SNP data
(Alexander et al. 2009). Though it is similar to STRUCTURE in
that it estimates the amount of admixture in individuals
(hence its name), it is based on a different optimisation
algorithm and therefore much faster. Unfortunately, ADMIX-

TURE only takes diploid data, but because its speed makes it
attractive for the large datasets resulting from modern
genotyping techniques we decided to include it anyway. For
the co-dominant data, we subsampled the tetraploid geno-
types by randomly sampling two of the four allele copies
(cf. Novikova et al. 2016; Monnahan et al. 2019). Note that
subsampling makes the tetraploids equivalent to the

diploids, since the tetraploids were derived from the same
gene pool to begin with. So this data can only be used to
judge the performance of ADMIXTURE and not any ploidy-
induced bias. However, for data with unknown dosage,
ploidy-related bias is still possible because subsampling
does not by-pass the problem that higher ploidies have
missing information, and diploids do not. We created the
dataset with unknown dosage by coding all heterozygous
tetraploid genotypes as AB and the homozygous genotypes
as AA or BB. It is not possible to run ADMIXTURE with
dominant data. ADMIXTURE v. 1.3.0 was run with the default
block relaxation algorithm, the default stopping criterion of
ε= 10−4, and 5 times cross-validation.

FASTSTRUCTURE is an alternative to STRUCTURE that was
developed especially for large SNP datasets (Raj et al.
2014). Like ADMIXTURE, FASTSTRUCTURE takes neither poly-
ploid nor dominant data. Therefore, we used the same
subsampling strategy as for ADMIXTURE to create the input
files for FASTSTRUCTURE. FASTSTRUCTURE v 1.0 was run with
the default convergence criterion of 10−6, a simple prior,
and ten replicate runs per dataset.

INSTRUCT is an extension of the STRUCTURE algorithm that
allows simultaneous inference of the population structure
and the inbreeding rate (Gao et al. 2007). Though INSTRUCT

can handle diploid or tetraploid data, the manual makes no
reference to mixed-ploidy datasets or whether it allows
unknown dosage information. For the input files we coded
the diploid data as tetraploid with two instances of missing
data. Similarly, for the dataset with unknown dosage we
coded the heterozygous loci for tetraploid individuals as A,
B, and two instances of missing data. Since INSTRUCT does
not support dominant data, we only ran INSTRUCT for two out
of the three datasets (co-dominant known vs. unknown
dosage). INSTRUCT v. 1.0 was used with 100,000 steps for the
Monte Carlo Markov Chain, following a burnin of
10,000 steps. For the MODE parameter we used the default
value of 1, to infer population structure only with admix-
ture, so without estimating the inbreeding coefficient or
selfing rate. Ten replicates were run for every analysis and
the one with the highest overall likelihood was selected for
parsing the results. Because of the exceedingly long time
required for running each replicate (>6 h, whereas STRUC-

TURE took <30 min) and the overall inconsistent perfor-
mance, we only ran INSTRUCT for the default scenario of 100
loci and 100 sampled individuals.

Parsing of results

R version 3.4.3 (R-Core-Team. 2017) was used to automate
running the clustering analyses and for parsing the output
produced by the different programs. For determining the fit
of the clustering results to either the populations (correct) or
the ploidy levels (bias), we used the approach of Meirmans
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(2019). For this, we calculated a test statistic β, which is the
absolute value of the variable coefficient (“slope”) of an
Analysis of Variance with either population (βpop) or ploidy
level (βploidy) as explanatory variable and the clustering
results at k= 2 as response variable. This β-statistic is
equivalent to calculating for every population/ploidy level
the mean proportion of individuals assigned to the first
cluster and then taking the absolute value of the difference
between the two populations/ploidy levels. The values of
the β-statistic can range from 0 to 1.

If βpop ≈ 1 and βploidy ≈ 0, this would indicate that the
clustering analysis correctly identifies the two populations
(Fig. 1a). If βpop ≈ 0 and βploidy ≈ 1, this would indicate that
the clustering analysis is biased, and identifies clusters by
ploidy level, rather than by population (Fig. 1b). If both

βpop ≈ 0 and βploidy ≈ 0, no structure is detected, and corre-
sponds neither to the populations nor to the ploidy levels
(Fig. 1d). Of course, intermediate results are possible as
well (Fig. 1c). However, it is logically impossible to
simultaneously have both βpop ≈ 1 and βploidy ≈ 1, because
their sum cannot exceed 1.

Results

Varying strength of population differentiation

For co-dominant markers with known dosage, we found
hardly any spurious clustering by ploidy (i.e., no bias). The
power to correctly detect the simulated structure differed
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Fig. 1 Example barplots showing different possible outcomes of the
clustering analysis of mixed-ploidy data, with corresponding values
for βpop and βploidy. a STRUCTURE plot showing result with correct
clustering by population; co-dominant data with known dosage, m=
0.001. b k-means plot showing almost completely biased clustering by

ploidy level; dominant data, m= 0.1. c ADMIXTURE plot showing
intermediate power to cluster by population; co-dominant data with
known dosage, m= 0.0065. d STRUCTURE plot showing absence of
clustering; co-dominant data with known dosage, m= 0.1
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between the different clustering methods. STRUCTURE and k-
means were most powerful, with close to 100% of the runs
correctly detecting the simulated structure for FST > 0.05

(Fig. 2, first column). Only for weak simulated population
differentiation (FST < 0.05), there was a marked decrease in
the power to correctly assign individuals to the populations
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(Fig. 2, first column). By contrast, ADMIXTURE and FAS-

TSTRUCTURE only achieved up to 80% correct assignment to
populations, even for the lowest simulated migration rates
corresponding to FST values up to 0.15. Finally, INSTRUCT

showed inconsistent results as indicated by the larger spread
of the points compared to the other methods. This incon-
sistency derived from a lack of convergence among repli-
cate runs of the algorithm. Furthermore, INSTRUCT was the
only method that showed a mild degree of spurious clus-
tering by ploidy for co-dominant data, albeit only for lower
FST values.

For co-dominant markers with unknown dosage infor-
mation, there was spurious clustering by ploidy for k-
means, ADMIXTURE, and INSTRUCT, mainly for cases where
FST < 0.025; STRUCTURE and FASTSTRUCTURE did not suffer
from bias. Apart from this, the five methods differed in their
power as before (Fig. 2, middle column).

For dominant markers, there was spurious clustering by
ploidy for the k-means method for cases where FST < 0.075.
In other words, due to the strong bias at these levels of
differentiation, there was virtually no power to correctly
assign individuals to populations (Fig. 1, right column).
STRUCTURE, the only other method that can deal with
dominant data, did not show any spurious clustering,
although its performance was somewhat reduced relative to
that for co-dominant data.

With a lower mutation rate, there were no changes to the
overall patterns, although the power to assign individuals
correctly was somewhat reduced, partly due to the lower
number of variable loci inherent to these simulations (Fig.
S1). This effect was most pronounced for dominant data,
where neither STRUCTURE nor k-means achieved 100% cor-
rect assignment even for the highest simulated FST values.
Perhaps counterintuitively, for methods that suffered from
bias (clustering by ploidy) with our default parameter set-
tings (for example k-means, Fig. 2), the reduced genetic
variation associated with lower mutation rate also resulted
in reduced bias (Fig. S1). This is because the bias has its
origin in the unknown allele numbers in partial hetero-
zygotes, which biases allele frequency estimates, and thus
can lead to (incorrect) assignment by ploidy. With reduced

genetic variation, there are simply less heterozygotes, and
so there is less bias.

Trading off the number of loci and individuals—
weak population differentiation

For co-dominant markers with known dosage the power to
correctly detect relatively weak simulated structure (m=
0.01; FST ≈ 0.016) increased with the number of loci and
individuals, for all methods (Fig. 3, first column). However,
adding more loci was more effective to increase power than
adding more individuals. In comparison to the other meth-
ods, Structure had lower power when the product of the
number of individuals and loci was relatively low. The other
three methods (k-means, ADMIXTURE, FASTSTRUCTURE) per-
formed better in this range, but at the cost of increased bias;
this was most pronounced for k-means clustering (Fig. 3,
first column).

For co-dominant markers with unknown dosage, the
power to correctly assign individuals under such weak
differentiation was similar to that for data with known
dosage for STRUCTURE and FASTSTRUCTURE (compare Fig. 3,
left and middle column). However, k-means clustering and
ADMIXTURE suffered from a marked increase in bias, and a
reduction in power (Fig. 3, middle column). The extent of
the bias increased with the number of loci, but not with the
number of individuals sampled.

For dominant markers, STRUCTURE’s performance was
similar as for the co-dominant markers, albeit with a
somewhat reduced power (Fig. 3, right column). In contrast,
k-means suffered strong bias; regardless of the number of
loci, the bias was always stronger than the power to cor-
rectly assign individuals to the simulated populations.
Adding more loci only made the situation worse, and add-
ing more individuals did not matter much (Fig. 3, right
column)

Trading off the number of loci and individuals—
strong population differentiation

Generally, for all methods, there was reasonable power
(Fig. 4) to correctly detect relatively strong simulated
structure (i.e., moderate differentiation; m= 0.001; FST ≈
0.12). Most notably for k-means, some bias emerged for
cases with low numbers of loci; this effect was most pro-
nounced for the dominant markers. However, averaged over
the ten replicate simulations, the bias never exceeded the
power (Fig. 4).

Simulated genotyping-by-sequencing data

For the simulated genotyping-by-sequencing data with
10,000 SNP loci and 40 sampled individuals, ADMIXTURE

Fig. 2 The degree of correct and biased clustering as a function of the
simulated population differentiation (FST), for different clustering
methods and three types of genetic data. The results are based on 10
replicate simulations for each of eight different migration rates, with
100 loci, a mutation rate of u= 0.0001, and 400 sampled individuals
(100 diploids and 100 tetraploids from each of the two populations).
Green dots show βpop, which indicates correct clustering by popula-
tion; red dots show βploidy, which indicates biased clustering by ploidy
level. Note that for ADMIXTURE and FASTSTRUCTURE, bias cannot be
calculated for co-dominant data with known dosage (hence no red
dots shown)
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and FASTSTRUCTURE, the two methods that were specifically
designed for such data, performed notably worse than the
other two methods (Fig. 5). With known dosage, STRUCTURE
and k-means always detected the correct population struc-
ture except when population differentiation was very low,
whereas ADMIXTURE and FASTSTRUCTURE required slightly
stronger differentiation. Interestingly, FASTSTRUCTURE

sometimes failed to detect any structure even for an FST

value of about 0.04.
When allele dosage was unknown, k-means and ADMIX-

TURE again showed ploidy-related bias when population
differentiation was low. In addition, ADMIXTURE also showed
markedly lower performance in detecting the correct clus-
tering by population.

Fig. 3 The degree of correct and biased clustering for different com-
binations of sample size and number of loci (averaged over ten
replicate simulations per combination), under weak population dif-
ferentiation (m= 0.01; FST ≈ 0.016). The area of the upper (green)
semicircles corresponds to the degree of correct clustering by

population (βpop); the area of the lower (red) semicircles corresponds to
the degree of biased clustering by ploidy level (βploidy). The outer and
inner light grey circles indicate β-values of 1.0 and 0.5, respectively.
Note that for ADMIXTURE and FASTSTRUCTURE, bias cannot be calculated
for co-dominant data with known dosage
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Discussion

We simulated genetic data for two mixed-ploidy popula-
tions with different degrees of differentiation to test the
power of clustering methods to correctly infer the simulated
population genetic structure and their risk of biased infer-
ence (spurious clustering by ploidy). The simulation model
was purposely kept very simple to avoid processes (such as

double reduction, a single origin of polyploidy, and pre- and
postzygotic barriers) that would lead to allele frequency
differences between the ploidy levels. Therefore, any dif-
ferences between ploidy levels in the results of the clus-
tering analyses must be due to bias. This allowed us to show
that it is possible to infer the correct population structure
without bias, even when marker information-content is
reduced due to unknown dosage or dominant scoring.

Fig. 4 The degree of correct and biased clustering for different com-
binations of sample size and number of loci (averaged over ten
replicate simulations per combination), under moderate population
differentiation (m= 0.001; FST ≈ 0.12). The area of the upper (green)
semicircles corresponds to the degree of correct clustering by

population (βpop); the area of the lower (red) semicircles corresponds to
the degree of biased clustering by ploidy level (βploidy). The outer and
inner light grey circles indicate β-values of 1.0 and 0.5, respectively.
Note that for ADMIXTURE and FASTSTRUCTURE, bias cannot be calculated
for co-dominant data with known dosage
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However, there were notable differences in power and risk
of bias between marker types and between methods. These
differences were especially obvious under scenarios of
weak differentiation, where it is more difficult to detect the
correct structure and there is thus more potential for biased
inference. Below, we will discuss our findings for each of
the methods (k-means clustering, STRUCTURE, ADMIXTURE,
FASTSTRUCTURE, & INSTRUCT). Based on this, we will

conclude with the general recommendation to use the
software STRUCTURE (Pritchard et al. 2000) for clustering
analyses involving mixed-ploidy populations.

K-means clustering

K-means is used either as a stand-alone analysis of popu-
lation structure (Burnier et al. 2009; Kolar et al. 2012;

Fig. 5 The degree of correct and
biased clustering as a function of
the population differentiation
(FST), for simulated genotyping-
by-sequencing data (10,000 loci,
mutation rate of u= 0.0001, and
40 sampled individuals). Green
dots show βpop, which indicates
correct clustering by population;
red dots show βploidy, which
indicates biased clustering by
ploidy level. Note that for
ADMIXTURE and FASTSTRUCTURE,
bias cannot be calculated for co-
dominant data with
known dosage
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Meirmans 2012; Trucchi et al. 2017) or within the frame-
work of the DAPC method (Jombart et al. 2010), of which it
is one of several steps. Even for large datasets, it takes only
seconds to complete, and is free of assumptions regarding
Hardy Weinberg and linkage disequilibrium (Jombart et al.
2010). One aspect in which k-means differs from the other
methods is that it does not give estimates of the amount of
admixture of individuals. Instead, it produces a “hard”
clustering, where individuals are always assigned to a single
population. This is much less computationally intensive
than detecting admixture, and therefore k-means was much
faster than STRUCTURE. However, this speed comes with a
high risk of biased inference (spurious clustering by ploidy).

Biased inference with k-means clustering was especially
likely for markers that have limited information, such as
dominant markers and co-dominant markers with unknown
dosage. Unfortunately, such markers are often chosen
deliberately in systems with higher ploidy. For example,
dominant markers have been advocated for polyploids for
pragmatic reasons (e.g., Meudt and Clarke 2007), as many
available population genetic tools did not work for poly-
ploid co-dominant data, but did work for dominant data.
This even led to the practice of reducing co-dominant data
with unknown dosage into dominant data (Lepsi et al. 2009;
Rodzen et al. 2004; Vallejo-Marin and Lye 2013), even
though this involves an inherent loss of information due to
the inability to detect heterozygosity (Dufresne et al. 2014).
For analyses dealing with a single ploidy level, this
approach may actually not result in a bias, as shown for
parentage and sibship analysis (Wang and Scribner 2014).
For analyses with mixed ploidy, on the other hand, biases
are to be expected. For example, due to the inherent
increased frequencies of band presence in higher ploidy
levels, principal component analyses tend to cluster indi-
viduals of the same ploidy together (Meirmans et al. 2018).

Our findings illustrate that k-means clustering is indeed
sensitive to the same issue, but it remains to be tested
whether this affects conclusions from mixed-ploidy k-
means analyses with dominantly scored data (e.g., Vallejo-
Marin and Lye 2013). Moreover, we found that bias is not
limited to dominant data, but –particularly given weak
population differentiation– also appeared with co-dominant
markers with unknown dosage (such as typical for micro-
satellites and low coverage sequencing approaches). Even
for co-dominant data with known dosage (e.g., genotyping-
by-sequencing methods with high coverage), bias arose
with a low number of individuals or loci. For the inference
of population structure of mixed-ploidy populations, k-
means may therefore only be preferred over other methods
for analysing data produced by genotyping-by-sequencing
methods with sufficient coverage to allow obtaining full
dosage information for many loci (1000 or more).

Structure

Of all methods, STRUCTURE (Pritchard et al. 2000) provided
the best power to correctly assign individuals to the simu-
lated populations, with hardly any bias, even for dominant
data or data with unknown dosage information. This is
likely attributable to the fact that STRUCTURE, unlike any of
the other methods, allows users to specify whether dosage
information is missing or not. Only with rather weak
population differentiation (FST < 0.05) the power to detect
structure decreased. This is in line with earlier simulation
studies that have tested the power of STRUCTURE with diploid
data (Evanno et al. 2005; Kalinowski 2011). However,
specifically in comparison to k-means, ADMIXTURE and FAST-
STRUCTURE, the required runtime of STRUCTURE is orders of
magnitude longer (see methods for details). Furthermore,
we noticed that it was not very clear from the STRUCTURE

manual how the input-file should be formatted, especially
for mixed-ploidy data (but see Meirmans et al. (2018) for a
hopefully clearer description; also see the online supple-
ments 3 and 4 for example datasets with haploid and cor-
rectly formatted input files, respectively). Correct
formatting of the data is critical, especially for dominant
markers: when we formatted these in a haploid presence/
absence format, an often followed procedure (e.g., Durka
et al. 2017), a very strong bias emerged (Fig. S2). Appar-
ently, STRUCTURE is only able to correctly cluster dominant
data for mixed-ploidy populations if the input file reflects
the correct ploidy of each individual. Despite STRUCTURE’s
sensitivity to input-file format and its relatively slow speed,
other methods may only offer a viable alternative in some
specific usage scenarios.

Admixture & FASTSTRUCTURE

The development of ADMIXTURE (Alexander et al. 2009) and
FASTSTRUCTURE (Raj et al. 2014) was driven by a need to
efficiently analyse the increasingly large datasets generated
with high-throughput sequencing methods. Both programs
have in principle not been designed to deal with polyploid
data. Thus, we could only use these programs for our pur-
poses by subsampling to a diploid state (see methods for
details), which meant that bias is by definition impossible
for co-dominant data with known dosage (hence, bias is not
plotted in the panels for ADMIXTURE & FASTSTRUCTURE in
Figs. 2–5 and S1). For data with unknown dosage, bias is
still possible due to missing information, and indeed
appeared with weak structure. This was particularly pro-
nounced for ADMIXTURE. Although there was less risk for
bias with FASTSTRUCTURE than with ADMIXTURE, both methods
had notably less power compared to STRUCTURE and k-means
clustering. Both ADMIXTURE and FASTSTRUCTURE have been
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designed to deal with large SNP datasets, and indeed their
performance much improves when more loci are added
–though this could not resolve ADMIXTURE’s biased infer-
ence. However, even for the simulated genotyping-by-
sequencing dataset with 10,000 SNPs, FASTSTRUCTURE was
markedly inferior to STRUCTURE under weak population
differentiation. STRUCTURE’s better power does come at a
cost: running STRUCTURE on the same large datasets took
several orders of magnitude longer than running ADMIXTURE

or FASTSTRUCTURE; STRUCTURE took about half a day per
replicate, whereas FASTSTRUCTURE took only a couple of
seconds. Nevertheless, when the population divergence is
expected to be low, STRUCTURE should be preferred over
FASTSTRUCTURE, since the researcher’s patience is likely to be
rewarded. Alternatively, for large datasets, FASTSTRUCTURE

could be used for preliminary analyses with multiple K-
values and replicates, followed by verification of a subset of
the most promising partitions by STRUCTURE (e.g., Monnahan
et al. 2019).

InStruct

Of the five tested methods, INSTRUCT (Gao et al. 2007) stood
out both for being the only method that showed bias for co-
dominant data and for providing the most inconsistent
clustering results. There generally was a lack of con-
vergence across independent replicates with different seeds
for the random number generator. This suggests that a large
number of replicates –many more than the ten replicates that
we used– should be run to make sure that the overall best
result will be obtained. Unfortunately, running INSTRUCT was
very slow, taking more than 10 times as long for a single
replicate as STRUCTURE. Because of its poor performance and
its long runtime, we only ran INSTRUCT for our standard
parameter set of 100 individuals and 100 loci (Fig. 2), and
not for the expanded parameter sets (other figures). Despite
these drawbacks, there is one argument in favor of INSTRUCT.
Unlike any of the other methods, INSTRUCT can explicitly
deal with inbreeding, which may be useful for polyploids as
these can show a higher rate of self-fertilisation than related
diploids (Barringer 2007). However, although we did not
test this option in INSTRUCT, it seems unlikely that the pro-
gram’s performance will improve given the more complex
task of simultaneously detecting inbreeding and population
structure.

Conclusions and recommendations

Correct inference of population structure with mixed-ploidy
populations critically depends on the choice of method, the
degree of population differentiation and to some extent on
the type of marker. Using simulated data, we compared the

power and potential bias of k-means clustering and the
model-based approaches implemented in STRUCTURE,
ADMIXTURE, FASTSTRUCTURE and INSTRUCT. Our results showed
that all methods performed reasonably well under scenarios
of strong population differentiation. However, as the degree
of differentiation is usually not known a priori, it is safer to
use methods that also perform well when population dif-
ferentiation is weak. In this light, STRUCTURE clearly out-
performed the other methods, with its derivative
FASTSTRUCTURE as the closest contender. The latter may
provide a reasonable alternative to STRUCTURE in cases where
computation times become prohibitive due to data volume
and population differentiation is not expected to be weak.
Although k-means clustering should generally be avoided
for markers with incomplete genotype information, it is
more powerful than FASTSTRUCTURE for large datasets (1000
or more loci) with known dosage. Future studies should test
whether the biases we identified become more pronounced
with unequal sample sizes (Puechmaille 2016). Given our
findings, it would also be useful to re-analyse published
mixed-ploidy datasets and verify whether findings may
have been affected by any of the potential biases we
identified.

Data archiving

The code used for simulations and our analyses are avail-
able from the Dryad Digital Repository: https://doi.org/10.
5061/dryad.6g635f6.
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