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A B S T R A C T

In cognitive neuroscience there is a growing interest in individual differences. We propose the Multiple Indicators
Multiple Causes (MIMIC) model of combined behavioral and fMRI data to determine whether such differences are
quantitative or qualitative in nature. A simulation study revealed the MIMIC model to have adequate power for
this goal, and parameter recovery to be satisfactory. The MIMIC model was illustrated with a re-analysis of Van
Duijvenvoorde et al. (2016) and Blankenstein et al. (2018) decision making data. This showed individual dif-
ferences in Van Duijvenvoorde et al. (2016) to originate in qualitative differences in decision strategies. Pa-
rameters indicated some individuals to use an expected value decision strategy, while others used a loss
minimizing strategy, distinguished by individual differences in vmPFC activity. Individual differences in Blan-
kenstein et al. (2018) were explained by quantitative differences in risk aversion. Parameters showed that more
risk averse individuals preferred safe over risky choices, as predicted by heightened vmPFC activity. We advocate
using the MIMIC model to empirically determine, rather than assume, the nature of individual differences in
combined behavioral and fMRI datasets.
1. Introduction

In cognitive neuroscience, there is a growing interest in individual
differences (Barch et al., 2013; Dubois and Adolphs, 2016; Foulkes and
Blakemore, 2018; Pfeifer and Allen, 2012; Sherman et al., 2018). This
paper focusses on the analysis of individual differences in combined
behavioral and functional magnetic resonance imaging (fMRI) data,
using an integrated latent variable approach, the so-called multiple in-
dicators multiple causes (MIMIC)1 model.

The MIMIC model falls into the domain of structural equation
modeling (SEM), a statistical technique popular in the social sciences,
including confirmatory factor analysis, path modeling, mediation
9B, 1018 WS, Amsterdam, the N
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analysis, and latent growth modeling (Kline, 2015). Particularly useful is
that it allows for the modeling of directional relationships between
quantitative and qualitative, as well as latent and manifest variables
(Bollen, 1992; Cooper et al., 2019; Karimi and Meyer, 2014; Tomarken
and Waller, 2005; Ullman and Bentler, 2003). SEM has found multiple
applications in cognitive neuroscience (Astolfi et al., 2004), among
which the study of individual differences in either neuroimaging, or
combined behavioral and neuroimaging data (Cooper et al., 2019; Kievit,
2018; Yarkoni and Braver, 2010; Simpson-Kent et al., 2019).

In the MIMICmodel a set of manifest (i.e. observable) variables called
‘cause indicators’ predicts one or more latent (i.e. indirectly observable)
variables, which in turn predict(s) another set of manifest variables called
etherlands.
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‘effect indicators’ (Bollen, 1984, 2002; J€oreskog and Goldberger, 1975).
Each latent variable represents an underlying construct of interest (i.e.
anxiety or temper), variability wherein can be taken to represent indi-
vidual differences, predicting and predicted by observations (Kievit et al.,
2011, 2012), see Fig. 1. If individual differences in said construct are
quantitative in nature (i.e. dimensional, spread across a continuum), the
latent variable will likewise be quantitative, as represented in what is
henceforth referred to as the ‘quantitative model’, see Fig. 1A. If indi-
vidual differences are qualitative (i.e. categorical, consisting of multiple
homogenous classes), then so is the latent variable, see the ‘qualitative
model’ in Fig. 1B.”

Previous applications of the MIMIC model to combined behavioral
and neuroimaging data studied quantitative individual differences in
intelligence (Kievit et al., 2011, 2012; Ritchie et al., 2015). Herein
structural neuroimaging measures (e.g. white matter volume) predicted
individual differences in the (latent) general intelligence factor, so-called
‘g’, which in turn predicted performance on cognitive tests. The MIMIC
model outperformed models with different directional relationships in
explaining the data. In the current study, we extend the MIMIC model to
study whether individual differences are quantitative of qualitative in
nature. We illustrate this using a decision making paradigm as the nature
of individual differences therein is still under debate.

Some argue individual decisionmaking differences to be quantitative,
represented by a latent variable with numeric values that lie on contin-
uous scale. A well-known example thereof comes from Prospect Theory,
which states that decisions are made by constructing a utility value for
each available choice option, and choosing the option with the highest
value. Individual decision making differences are then explained as
quantitative differences in utility value (Kahneman and Tversky, 1979).
The viewpoint of individual decision making differences stemming from
a quantitative latent variable finds support in a multitude of behavioral
and neuroimaging studies (Barberis, 2013; Fox and Poldrack, 2009;
Gl€ockner and Pachur, 2012; Trepel et al., 2005; Zeisberger et al., 2012).

Another possibility is that individual differences in decision making
are qualitative, represented by a latent variable containing multiple
classes or categories. An example of this lies in heuristics, wherein de-
cisions are based on incomplete or selective pieces of information. Take
for instance the ‘take-the-best’ heuristic, which entails deciding based
solely on the most valid attribute that discriminates sufficiently between
the different choice options (Dietrich, 2010; Gigerenzer and Gaissmaier,
2011; Graefe and Armstrong, 2012; Hardman and Hardman, 2009;
Newell et al., 2007). Individual differences in decision making would
come from qualitatively different heuristics being applied. The perspec-
tive of qualitative individual decision making differences also finds
support in the field of both behavioral and neuroimaging studies
(Artinger et al., 2015; Bexkens et al., 2016; Gigerenzer and Gaissmaier,
2011; Jansen et al., 2012; Mata and Nunes, 2010; Mata et al., 2010;
Fig. 1. The MIMIC model with J cause indicators (Z1, Z2, ..., ZJ) predicting a latent va
the cause indicators are neuroimaging data and the effect indicators are behavioral d
via the aforementioned indicators, variability wherein represents individual differenc
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Pachur and Galesic, 2013; Van Duijvenvoorde et al., 2016; Volz et al.,
2006, 2010). For example, Venkatraman et al. (2009) found that in-
dividuals differed qualitatively in their decision strategies (i.e. how
many, which, and how available choice attributes are utilized to reach a
decision) as predicted by striatal sensitivity.

Light may be shed on the nature of individual decision making dif-
ferences by comparing two MIMIC models applied to combined behav-
ioral and neuroimaging decision making data – one wherein the latent
variable representing individual differences is quantitative and one
wherein it is qualitative. The latent variable of the model best explaining
the data describes the nature of individual differences.

This approach may have several advantages. First, it negates the need
to rely on assumptions concerning the nature of individual differences,
instead providing a way to empirically verify this per dataset. Second,
this model-based approach requires explicit selection of variables and
definition of their effects, thus allowing for both confirmative hypothesis
testing and directional relationship inferences as opposed to more
exploratory alternatives (Cohen et al., 2017; Forstmann et al., 2011;
Kievit et al., 2011). Third, the MIMIC model enables simultaneous
analysis of combined behavioral and neuroimaging data, which has been
shown to circumvent limitations associated with using either data type
individually (Forstmann et al., 2011; Turner et al., 2016a, 2016b).

The current paper extends the MIMIC model approach in the neuro-
imaging field by Kievit et al. in several ways. First, and most importantly,
whereas Kievit et al. assumed a quantitative latent variable, the main
purpose of the current paper is provide a method to determine whether a
latent variable is quantitative vs. qualitative in nature. Second, whereas
Kievit et al. used structural MRI indices as cause indicators, we use
functional MRI (fMRI) indices. Finally, whereas Kievit et al. incorporated
quantitative behavioral indices as effect indicators, we incorporate
qualitative (binary) choices, which are common in decision making
research.

The currently proposed method relates to joint modeling, a frame-
work that likewise allows for the simultaneous modeling of behavioral
and neural data (Turner et al., 2013, 2015), even directionally as in our
SEMmodel (Palestro et al., 2018). Closest resemblance to the approach is
presented in Turner et al. (2017), wherein the neural data also loads onto
latent variables representing theory-based mechanisms that drive
behavior. While the focus in those papers was to obtain a reasonable joint
distribution for both behavioral and neural data, the focus here is on
identifying the nature of latent variables (i.e. individual differences),
potentially utilizing qualitative latent variables to obtain a joint distri-
bution. To the best of our knowledge the goal of obtaining a joint dis-
tribution for behavioral and neural data where the nature of the latent
variable is to be identified has not been considered before.

The second section of this paper introduces the MIMIC model in the
context of combined behavioral and fMRI decision making data. The
riable, which in turn predicts K effect indicators (Y1, Y2, ..., YK). In this example
ata. The latent variable represents the underlying construct indirectly observed
es. Fig. 1A) The quantitative latent model. Fig. 1B) The qualitative latent model.
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third section consists of a simulation study assessing the power of the
MIMIC model to identify the nature of individual differences, and addi-
tionally examine the models’ parameter recovery. The fourth and fifth
section illustrate MIMIC model application to combined behavioral and
fMRI decision making data (Van Duijvenvoorde et al., 2016, and Blan-
kenstein et al., 2018, respectively).

2. The MIMIC model

The behavioral data (Y) of each individual consist of binary responses
on K items, each presenting a decision problem with two choice options
(Baker et al., 2002; Fül€op, 2005; Hardman and Hardman, 2009; Payne,
1976), providing K manifest, qualitative variables. Corresponding fMRI
data (Z) consists of the mean beta values of J pre-specified regions of
interest (ROIs), resulting in J manifest, quantitative fMRI variables.

The MIMIC model (see Fig. 2) connects these variables so that J (J 2
N1) quantitative fMRI indices (Z1, Z2, ..., ZJ) predict the latent variable
(X), which in its turn predicts K (K 2 N1) qualitative behavioral item
responses (Y1, Y2, ..., YK) (Kievit et al., 2011, 2012; Ritchie et al., 2015).
The latent variable is quantitative or qualitative (i.e. consisting of two or
more latent classes).

The MIMIC model is essentially a combination of a standard forma-
tive model (i.e. manifest variables predicting a latent variable) and a
standard reflective model (i.e. a latent variable predicting manifest var-
iables) (Bollen, 1984; J€oreskog and Goldberger, 1975; Kievit et al., 2011,
2012). The manifest variables in the formative and reflective part of the
model are referred to as ‘cause indicators’ and ‘effect indicators’,
respectively.

Cause indicator coefficients (β1, β2, …, βj) describe the effect of the
cause indictors on the latent variable. If the latent variable is quantita-
tive, these coefficients indicate the change in latent variable value as the
corresponding cause indicator increases with one. The cause indicator
intercept (β0, not show in figure) denotes the latent variable score when
Z1¼ Z2¼… Zj¼ 0. If the latent variable is qualitative, the coefficients
represent the change in log odds of the latent variable assuming one
rather than another (reference) class, as the corresponding cause
Fig. 2. The MIMIC model consisting of a formative part (left) and a reflective part (
latent variable of an unknown nature (X), which in turn predicts K qualitative effect i
of one variable on the other. Double arrows indicate covariances between variables
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indicator increases with one. The cause indicator intercept gives this log
odds for when Z1¼ Z2¼… Zj¼ 0. The relationship between log odds and
probability is given by: 1 =ð1 þ e�βÞ.

Effect indicator coefficients (λ1, λ2,…, λk) and intercepts (τ1, τ2,…, τk)
describe the effect of the latent variable on the respective effect indicator.
If the latent variable is quantitative the coefficients are log odds of the
respective item taking on value 1 as opposed to 0 as the latent variable
increases with one. Intercepts indicate these log odds if X¼ 0. Were the
latent variable qualitative, then there are only effect indicator co-
efficients, one set per latent class, each describing the log odds of its item
taking on value 1 rather than 0 for the respective class.

Cause indicators may be correlated amongst each other, though too
high correlations are advised against (Bollen, 1984; Diamantopoulos and
Siguaw, 2006). Effect indicators should be conditionally independent
(i.e. uncorrelated) given the latent variable. Violation of this assumption
suggests that a relevant latent variable is not yet incorporated in the
model (Bollen, 1984; J€oreskog and Goldberger, 1975; Wang and Wang,
2012), which distorts coefficient values.

As effect indicators are predicted, they have error terms (εk). Simi-
larly, the latent variable error term (δ) implies that this variable is pre-
dicted by the cause indicators, not a mere composite thereof (Bollen,
1984; Diamantopoulos, 2006; J€oreskog and Goldberger, 1975; Wang and
Wang, 2012). Details on the mathematics of these models are found in
the Supplementary Materials.

Cause (i.e. fMRI) and effect (i.e. item) indicator scores, and latent
variable scores are expected to vary across individuals, reflecting indi-
vidual decision making differences. Model parameters (i.e. coefficients
and intercepts) are constant across individuals, representing a common
process underlying decision making.

3. The simulation study

3.1. Goals

In a simulation study we determined whether the MIMIC model has
adequate power to identify the true nature of a latent variable
right), with J quantitative cause indicators (fMRI: Z1, Z2, ..., ZJ) predicting one
ndicators (behavior: Y1, Y2, ..., YK). Unidirectional arrows indicate the influence
. For simplicity the depicted model is that of a single participant (N¼ 1).
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representing individual differences. Two types of data were simulated,
once using the MIMIC model with a quantitative latent variable (i.e. the
‘quantitative model’) and once using the MIMIC model with a qualitative
latent variable (i.e. the ‘qualitative model’) with two latent classes. Of
each data type 1000 datasets were simulated, which were then analyzed
both correctly (i.e. with the same model as data simulation) and incor-
rectly (i.e. with the other MIMIC model). The proportion of simulations
wherein fit measures favored the correct analysis over the incorrect
analysis was taken as an estimate of power to detect the true nature of the
latent variable. Additionally, parameter recovery of the correct analyses
was inspected to examine whether model parameters lend themselves to
meaningful interpretation.

3.2. Simulated data mimicking empirical data

Simulated data were made to resemble the empirical data of Van
Duijvenvoorde et al. (2016) and Blankenstein et al. (2018), to be
analyzed in the next sections, as to ensure comparability.

The Van Duijvenvoorde et al. (2016) study investigated the neural
mechanisms underlying decision making in risky choice as assessed by
the Gambling Machine Task (GMT); 6 two-choice items with 24 repli-
cations each (¼ 144 items total) were administered during a whole-brain
fMRI scan. GMT items consisted of two gambling machines that could
vary on the amount of certain gain, the amount of loss, and the proba-
bility of loss. Participants were instructed to pick the best machine. There
were simple items (i.e. only one attribute varied between machines),
conflict items (i.e. multiple attributes varied with different attributes
favoring different machines, implementing conflict), and control simple
and control conflict items (machines were identical and the correct
response was indicated, negating the need to decide). The machine with
the highest expected value ( EV ¼ gainþ PðlossÞ� loss) was objectively
the optimal (i.e. the correct) choice.

On the three simple item types the optimal choice was characterized
by either the highest gain amount (Simple: Gain), the lowest loss amount
(Simple: Loss), or the lowest loss probability (Simple: Probability). Two
out of three conflict items varied in gain and loss amount, wherein the
machine with the lowest gain and lowest loss amount (Conflict: Loss) and
the highest gain and highest loss amount (Conflict: Gain) was the optimal
choice. On the final conflict item type all attributes varied and the ma-
chine with the highest gain and lowest loss amount, and the highest loss
probability was optimal (Conflict: Loss-Gain). There were eight varia-
tions per item type, each of which was presented thrice, resulting in 24
repetitions per item type.

Van Duijvenvoorde et al. (2016) applied a mixture analysis (see also:
Jansen et al., 2012; Van Duijvenvoorde et al., 2010) to only the behav-
ioral GMT responses during the fMRI task, revealing three latent classes
of decision makers. The main focus was to study and compare compen-
satory decision makers (i.e. choice options are compared on integrated
values of their attributes, allowing disfavor on one attribute to be
compensated for by favor on another) and non-compensatory decision
makers (i.e. choice options are compared on individual attributes sepa-
rately). In the resulting ‘compensatory’ class the majority of responses on
all GMT item types were correct (i.e. optimal). The ‘non-compensatory’
class, actually consisting of two slightly distinct classes, responded
similarly, except for one item type (Conflict: Gain) which was given
mostly incorrect (i.e. suboptimal) responses. It was argued that on the
simple items both classes decided given single attribute differences,
whereas in complex items, the compensatory class chose according to EV
differences and the non-compensatory class decided given loss amount
differences. In a next step, fMRI data of both classes were examined.

The Blankenstein et al. (2018) study examined the neural mecha-
nisms associated with individual differences in decision making under
risk using a wheel-of-fortune task; 46 trials were presented to 198 par-
ticipants during a whole-brain fMRI scan. Wheel of fortune items had
participants choose between two wheels, one of which had a small
certain gain (‘safe’ option) and one had a higher gain but also a chance of
4

winning nothing (‘gambling’ option). There were 30 items where the
chance of gain of the gambling (i.e. risky) option was 50%, 8 items where
this was 25%, and 8 items where this was 75%. There were also 46
ambiguous items (i.e. the chance of gain in the gambling option was
unknown) but these data are not considered in the current application.
Decision outcomes (gain or no gain) were presented after every item. The
certain amount of gain was fixed at €3, the risky amount of gain varied
between €31 and €34. Individual differences in decision making under
risk were assumed to be quantitatively specified by individuals’ risk
aversion.

In the current study, simulated data properties varied were the
number of decision items, fMRI measures, and participants to gage the
effects thereof onMIMICmodel analysis. Variation ranges were chosen to
correspond with the empirical data properties. Thus, data were simulated
as if either 40, 120, or 200 participants (N¼ 40, 120, 200) responded to
either 3, 6, or 9 decision item types (K¼ 3, 6, 9), repeated 24 times, the
latter akin to the Van Duijvenvoorde study. The number of fMRI mea-
sures was based on the number of areas selected in the current two
empirical applications by entering task-related key words into the online
database Neurosynth (https://www.neurosynth.org/), details in sections
4 and 5. This produced 6 fMRI measures for both empirical applications.
To introduce variety we chose the range of J¼ 3, 6, 9.

3.3. Methods

Data simulation was performed in R: Version 3.4.4 (RStudio Team,
2016). Data analysis was performed in Mplus: Version 7.31 (Muth�en and
Muth�en, 2012). In the quantitative data simulation and analysis there
was one quantitative latent variable, in the qualitative simulation and
analysis there was one qualitative latent variable with two classes.

Parameter ranges were chosen to prevent complete separation, a
phenomenon wherein an effect indicator (item score) is perfectly pre-
dicted (Albert and Anderson, 1984; Heinze and Schemper, 2002;
McCullough and Vinod, 2003; Miller and Miller, 2011). In the MIMIC
model, this may occur if effect indicator coefficients become too large,
resulting in item score probabilities approximating zero or one. There-
fore, we drew effect indicator coefficients from [-2,2]. Simulations
showed that complete separation was not observed in this range. In the
quantitative model complete separation may also occur as a result of
extreme cause indicator coefficients, as these increase the range of latent
variable scores, which in turn predict the item score probabilities; more
extreme latent variable scores result in more extreme item score proba-
bilities (i.e. approximating zero or one). Therefore we drew cause in-
dicators parameters from [-1,1], simulations showed that complete
separation was not observed in this range.

Scores of N participants on J fMRI indices were drawn randomly from
a multivariate normal distribution with a mean of one and a covariance
matrix derived from the empirical data (see Supplementary Materials).
Specifically, the covariance matrix was computed from the mean corre-
lation and variance of the Van Duijvenvoorde fMRI data, assuming equal
variances and covariances for all fMRI indices. Resulting scores were
fixed over simulations and standardized prior to the generation of latent
variable scores. Standardized drawn scores ranged from �2.76 to 2.51.

Cause indicator coefficients (β1, β2,…, βj) were simulated by drawing
them randomly from uniform distribution ranging from�1 to 1. The first
coefficient was set to one (β1¼ 1) (Lang, 2010) and the intercept to zero
(β0¼ 0). Coefficients were fixed over simulations. In the analyses all
cause indicator coefficients were freely estimated, except for β1, fixed at
one, and β0, fixed at zero.

Latent variable scores (quantitative model) and latent variable class
probabilities (qualitative model) were calculated from cause indicator
scores and coefficients. Noise was added to the latent variable resulting in
a signal to noise ratio (SNR) of 0.5. In quantitative model analysis the
latent variable residual variance was estimated freely. In the qualitative
model this parameter is not estimated (Muth�en and Muth�en, 2012).

Latent variables scores were used to simulate K effect indicator (i.e.

https://www.neurosynth.org/
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item) scores, repeated K_repeat¼ 24 times, by utilizing effect indicator
coefficients (λ1, λ2, …, λk) and intercepts (τ1, τ2, …, τk), both drawn
randomly from a uniform distribution ranging from�2 to 2. These draws
were fixed over simulations. In the analyses, coefficients and intercepts
were constrained to be the same across the 24 item repetitions as the
latent variable was expected to affect these equally.

After simulation, the data were analyzed using both the quantitative
and qualitative MIMIC model. Four information criterion available in
Mplus are suitable for comparing the goodness of fit of non-nested
models. We included the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) (Atkinson, 1981; Burnham and
Anderson, 2003; Lin and Dayton, 1997; Posada and Buckley, 2004;
Vrieze, 2012). Moreover, we included the corrected AIC (AICc, or Hur-
vich and Tsai’s criterion) and adjusted BIC (aBIC), which counter po-
tential sample size related biases better than their uncorrected or
unadjusted counterparts (Burnham and Anderson, 2004; Field, 2013;
Hurvich and Tsai, 1989; Nylund et al., 2007; Stoica and Selen, 2004).
These four criteria were compared across the varying number of items,
fMRI measures, and participants to infer which criterion is most suitable
for which data properties. Lower values indicate better model fit.

3.4. Results

First, power was examined, which was defined as the proportion of
analyses producing more favourable fit estimates for the correct than for
the incorrect model. Recall that 1000 datasets were simulated for anal-
ysis per data type. Omitted were simulations wherein both the correct
and incorrect analysis produced errors and/or warnings, indicative of
estimation problems such as model non-identification. If only one anal-
ysis produced errors/warnings, the other model was considered best by
default. The number of errors/warnings produced per simulation, per
applied model, can be found in the Supplementary Materials.

The power of the MIMICmodel is shown in Fig. 3. Note firstly that the
power generally approximates values of 0.8 or higher, suggesting that the
MIMIC model can accurately identify the true nature of the latent vari-
able, whether it be quantitative or qualitative. Secondly, in the quanti-
tative model, the AIC, BIC, aBIC, and AICc perform equally well across
simulation properties. The same is observed in the qualitative model
except when the number of items is at its lowest (K¼ 3), when the aBIC
appears suboptimal compared to the other fit measures, most notably
when the number of participants is low (N¼ 40). Thirdly, in the only
cases wherein power of all fit measures fell below 0.8 (i.e. at N¼ 120,
J¼ 9, K¼ 6 of the quantitative model and N¼ 40, J¼ 9, K¼ 3 of the
qualitative model) this was largely attributable to the correct model
producing errors/warnings, rather the fit measures themselves indicating
the incorrect model to fit the data best.

The power of the model to identify the number, rather than the nature
of latent variables is briefly discussed in the Supplementary Materials.

Next, parameter recovery was assessed by examining the mean dif-
ference between simulated and estimated parameters, ‘simulated’ pa-
rameters being the parameter values used to simulate the data and
‘estimated’ parameters being the parameter values returned by MIMIC
model analysis. Good parameter recovery was characterized by mean
differences between the simulated and estimated parameters approxi-
mating zero. Omitted were simulations wherein an analysis produced an
error/warning.

Parameter recovery of both the quantitative and qualitative MIMIC
model are shown in Fig. 4.

As can be seen in Fig. 4, both in the correct quantitative and the
correct qualitative data analyses, the mean differences between esti-
mated and simulated parameters generally approximated zero, indicating
good parameter recovery. However, parameter recovery decreased at a
high number of fMRI measures and a low number of items and partici-
pants. This was more notable in the qualitative than the quantitative
model, and solely affected fMRI parameter estimates, and not the item
parameter estimates.
5

4. Empirical study – qualitative individual differences

4.1. Goals

Both the quantitative and qualitative MIMIC model were applied to
the empirical decision making data of Van Duijvenvoorde et al. (2016) to
determine if individual differences in this study were quantitative or
qualitative. The original study found these to be qualitative. Parameters
of the superior (i.e. best fitting) model were interpreted.

4.2. Methods

Of the original 144 GMT items, 50 were omitted as all participants
answered these items correctly, causing Mplus to not recognize these
items as variables. Parameters of the remaining 94 items were con-
strained so that repetitions of the same item type had equal parameter
estimates. Recall that there were six item types (i.e. effect indicators).

For ROIs (cause indicators) we refrained from using the exact brain
areas reported by Van Duijvenvoorde et al. (2016) to avoid
double-dipping. Instead, we selected brain areas related to either ‘value’
or ‘conflict’, the main aspects varied in the GMT. Entering these key-
words into the online database Neurosynth (https://www.neurosynth
.org/) yielded masks (association test, FDR, p< 0.01) of the left and
right Nucleus Accumbens (lNAcc; rNAcc), the ventromedial Prefrontal
Cortex (vmPFC), and the dorsal Anterior Cingulate Cortex (dACC), see
Table 1. The association test returns activations that occur more consis-
tently for studies mentioning the terms value or conflict than studies that
do not mention these terms.

The left and right NAcc were highly correlated. To our knowledge,
there is no evidence that these are differently involved in value coding, so
we averaged activity across these two regions. This reduced potential
effects of multi-collinearity and resulted in three rather than four ROIs.

The general linear model (GLM) of the GMT task included two re-
gressors that coded choices for simple (1) and conflict (2) items respec-
tively, and two regressors that coded control items (presenting no
decision) for the simple (3) and conflict (4) items. All regressors were
modeled at decision onset for the duration of the decision made. In a
separate GLM two additional parametric regressors of absolute EV dif-
ferences between options were included, separately for the simple and
conflict condition. These parametric regressors coded which brain re-
gions vary activation with the EV difference between choice options in
simple (5), and conflict (6) items. In all analyses only trials in which
participants chose in accordance with their dominant decision strategy
were included. Deviating responses from the dominant decision strategy
rarely happened and were modeled in an additional regressor of no
interest.

Each ROI was associated with two neural contrasts. For the value
regions (NAcc, vmPFC) these were brain responses that tracked differ-
ences in expected value to simple (1) and conflict (2) items. For the
conflict region (dACC) these were brain responses tracking decision
conflict in simple (simple> control contrast) and conflict items (con-
flict> control contrast). Fslmeants was used to extract mean beta values
for the contrasts per participant, per ROI. Taken all ROIs together, this
resulted in six fMRI measures (i.e. cause indicators).

Model selection was based solely on the AICc (or Hurvich and Tsai’s
criterion) as these data had a relatively small sample size, and only this
criterion corrects for small sample size related biases (Cavanaugh, 1997;
Dziak et al., 2017; Hurvich and Tsai, 1989; Stoica and Selen, 2004).
Better model fit is indicated by lower AICc values.

The data were analyzed with a quantitative model and a 2-class and a
3-class qualitative model. In qualitative models with >3 classes, pa-
rameters outnumbered participants, in which case the AICc favors rather
than penalizes model complexity, disallowing meaningful model com-
parison, see Supplementary Materials.

As in the simulations, the cause indicator intercept and first coeffi-
cient were set to zero (β0¼ 0) and one (β1¼ 1), respectively. Likewise,

https://www.neurosynth.org/
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Fig. 3. Power of the MIMIC model analysis for a varied number of participants (N, x-axis), fMRI measures (J, columns), and items (K, rows). The power (i.e. proportion
of simulations where the fit measures favoured the correct rather than the incorrect model, excluding simulations wherein both models produced errors/warnings) is
shown on the y-axis. Fig. 3A. Power of the MIMIC model applied to quantitative MIMIC model simulated data. Fig. 3B. Power of the MIMIC model applied to
qualitative MIMIC model simulated data.
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Fig. 4. Parameter recovery of the correctly applied MIMIC model for a varied number of participants (N, x-axis), fMRI measures (J, columns), and items (K, rows).
Parameter recovery (i.e. mean difference between simulated and estimated parameter values) is shown on the y-axis. Values closer to zero indicate more accurate
parameter recovery.

Table 1
Brain regions used in the empirical data analysis of the Van Duijvenvoorde et al.
(2016) data, including the keyword of retrieval in https://www.neurosynth
.org/, the size of the masks, and coordinates of the max. z-value in MNI space.

Area Keyword Size cluster MNI coordinates mask

Neurosynth (bilateral) x y z

Left NAcc Value 607 �10 10 6
Right NAcc Value 12 12 �8
vmPFC Value 760 �6 38 �10
dACC Conflict 558 6 14 42
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cause indicator scores were standardized. Other parameters were esti-
mated freely. Data were prepared in R and analyzed in Mplus.
4.3. Results

The AICc of the quantitative and qualitative models were compared,
see Table 2. The 2-class qualitative model produced the lowest AICc. We
therefore conclude that in these data, individual differences in decision
making are qualitative in nature.
Table 2
Fit measures for the quantitative and qualitative analysis of empirical data; *
indicates the lowest AICc. The quantitative model has one additional (free)
parameter, namely the residual variance of the latent variable.

Analysis Latent
Classes

Number of
Parameters

Number of
Cause
Parameters

Number of
Effect
Parameters

AICc

Quantitative – 18 5 12 1757.505
Qualitative 2-class 17 5 12 1749.746*
Qualitative 3-class 28 10 18 1756.923
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Next, parameters of the 2-class qualitative model were interpreted.
Effect (item) indicator parameters are given in Table 3. The first latent
class (N¼ 18) showed a high probability of responding correctly to all
items, suggesting that these participants based decisions on EV. The
second class (N¼ 22) distinguished itself by a low probability of correct
responses to the conflict item type wherein the choice option with the
highest loss amount was correct. This thus suggests that they used a loss
minimizing strategy. These results match those of Van Duijvenvoorde
et al. (2016), including individual class membership assignment. For
brevity the two classes are henceforth referred to as ‘compensatory and
‘non-compensatory’, in accordance with the original study.

The cause (fMRI) indicator parameter estimates and class means are
depicted in Table 4.

Cause indicator parameter estimates suggested that the two classes
could be distinguished by the EV effect of both simple and conflict items
in the vmPFC. Recall that it is likely that participants in the compensatory
class based decisions regarding conflict items on EV differences, whereas
participants in the non-compensatory class did not. In accordance, class
means in conflict items show more pronounced vmPFC coding of EV
differences in the compensatory than in the non-compensatory class.
Note however that the class mean in the compensatory class was negative
(i.e. the effect decreased with increasing EV differences). Therefore we
speculate that the vmPFC did not code the difference in EV but rather the
difficulty of EV based decisions, as was also proposed by several other
authors (FitzGerald et al., 2009; Hare et al., 2011; Lim et al., 2011;
Philiastides et al., 2010; Rushworth et al., 2011).

Recall that in simple items, it is likely that participants of both classes
based decisions on the sole varying attribute (amount of gain, amount of
loss, or the probability of a loss). Thus one would not expect class dis-
tinctions in vmPFC coding of EV differences. Surprisingly though, more
pronounced vmPFC coding of EV differences was associated with the
non-compensatory class. The corresponding class mean was negative,

https://www.neurosynth.org/
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Table 3
Effect parameters of the 2-class qualitative model. Per class, the estimates and corresponding probabilities of responding correctly and p-values; * indicates significant
deviation from zero of the parameter estimate (p< 0.05). Note that Mplus estimates give the log odds of responding to an item incorrectly, rather than correctly.

Item type Class 1 (N¼ 18)
“Compensatory”

Class 2 (N¼ 22)
“Non-compensatory”

Estimate p-value P(correct) Estimate p-value P(correct)

Simple: Probability �4.625 0.000* 0.990 �3.235 0.000* 0.962
Simple: Loss �3.814 0.000* 0.978 �3.338 0.000* 0.966
Simple: Gain �3.859 0.000* 0.979 �3.122 0.000* 0.958
Conflict: Loss �2.789 0.000* 0.942 �3.224 0.000* 0.961
Conflict: Gain �2.591 0.000* 0.930 2.324 0.000* 0.089
Conflict: Loss-Gain �3.766 0.000* 0.977 �1.556 0.000* 0.826

Table 4
Cause parameters of the 2-class qualitative model. Estimates represent change in
log odds of belonging to the compensatory rather than the non-compensatory
class if the corresponding fMRI measure increases with one. Class means indi-
cate the mean change in activity per class, as a function of EV (NAcc and vmPFC)
or when presented with a real item compared to a control item (dACC). * in-
dicates significant deviation from zero of the parameter estimate (p< 0.05).

fMRI index Parameters Class means

Estimate p-value Comp Non-comp

Effect EV simple items NAcc 1.000 – 0.637 �0.760
Effect EV conflict items NAcc 0.462 0.334 �0.635 �0.362
Effect EV simple items vmPFC 2.647 0.000* 0.894 �1.235
Effect EV conflict items vmPFC �1.619 0.000* �0.912 0.360
Contrast simple> control dACC 0.661 0.349 23.411 20.845
Contrast conflict> control dACC. 0.517 0.367 37.419 36.507

Table 5
Brain regions used in the empirical data analysis of the Blankenstein et al. (2018)
data, the size of the masks, and coordinates of the max. z-value in MNI space.

Area Size cluster MNI coordinates mask

(bilateral) x y z

vmPFC 709 0 42 18
dmPFC 1218 0 32 �18
Left LPFC 1488 �41 22 43
Right LPFC 41 22 43
Left SPL 622 �33 �48 62
Right SPL 33 �48 62
Left Striatum 2847 �16 9 4
Right Striatum 16 9 4
Left Insula 1080 �39 �2 �3
Right Insula 39 �2 �3
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again indicating that the vmPFC codes the difficulty of EV based choice.
This may seem counterintuitive as the non-compensatory class did not
base their decisions on EV, certainly not in simple items. Note however
that in simple items, EV differences and single attribute differences are
confounded. As such, we speculate again that these results may be taken
to suggest that the vmPFC coded for the difficulty of decision in partic-
ipants using a non-compensatory strategy.

5. Empirical study – quantitative individual differences

5.1. Goals

In this section the MIMIC model is used to determine whether indi-
vidual differences were quantitative or qualitative in the study by Blan-
kenstein et al. (2018), who assumed these to be quantitative. Parameters
of the superior model were interpreted.
5.2. Methods

The 46 risky wheel-of-fortune items were constrained so that items
with the same probability of gain (either 25%, 50%, or 75%) had the
same parameter estimates. This provides three types of items (i.e. effect
indicators).

Similar to the approach in the previous section, ROIs (i.e. cause in-
dicators) were selected from Neurosynth, based on keywords reflecting
properties varied during the task. In the wheel of fortune task, this was
‘risk’. The resulting masks (association test, FDR, p< 0.01) contained the
vmPFC, the dorsomedial prefrontal cortex (dmPFC), the lateral prefrontal
cortex (LPFC), the superior parietal lobe (SPL), the striatum, and the
insula. We aggregated over hemispheres of ROIs as again left and right
sides of the same ROIs proved highly correlated (r> 0.7), thus likely
causing multicollinearity related issues. This resulted in six ROIs, see
Table 5.

Details of the fMRI data acquisition of the Blankenstein et al. study are
described in the respective study. The GLM included two events: the
choice phase (choosing risk or choosing safe) and the outcome phase
8

(which was not of interest in the current study). Events of the choice
phase were modeled separately for choosing the risky option (‘risk’) and
for choosing the safe option (‘safe’). The least-squares parameter esti-
mates of the height of the best-fitting canonical HRF for each condition
separately were used in pairwise contrasts. These pairwise comparisons
resulted in subject-specific contrast images averaged across trials. Of
interest was the contrast risk> safe. These subject-specific risk> safe
contrasts were extracted from the a-priori defined Neurosynth ROI
masks. The MarsBaR toolbox (Brett et al., 2002; http://marsbar.source
forge.net) was used to extract parameter estimates for each ROI and for
each participant.

Six ROIs with one contrast per ROI provide 6 fMRI measures (i.e.
cause indicators). A total of 24 participants were omitted as these had
never once chosen the safe response option, disallowing the intended
risk> safe contrast, leaving N¼ 174 participants.

The data were analyzed with a quantitative model and a qualitative
model with up to six classes. As before, the cause indicator intercept was
set to zero (β0¼ 0), the first coefficient to one (β1¼ 1), and other pa-
rameters were estimated freely. Cause indicator scores were standard-
ized. As the data has no properties suggesting one fit measure would be
better than another, we compare models on the AIC, AICc, BIC, and aBIC.
Lower values indicate better fit.
5.3. Results

As the quantitative model produced the lowest AIC, AICc, BIC, and
aBIC (see Table 6), we conclude that individual differences in these de-
cision making data are quantitative in nature.

Parameters of the quantitative model were interpreted, starting with
the effect (item) indicator parameters, see Table 7. Intercepts show that,
when the latent variable is zero, people are highly likely to choose safely
in items with a low change of gain (25%), but that they are more likely to
choose the risky option in items with higher chances of gain (50% or
75%). In other words, participants made riskier decisions when the gains
thereof were more likely. The coefficients, being positive, indicate that
individuals with a high latent variable score were more likely to choose
safely. This suggests the latent variable to represent risk aversion.

http://marsbar.sourceforge.net
http://marsbar.sourceforge.net


Table 6
Fit measures for the quantitative and qualitative analysis of empirical data; * indicates the lowest estimate of the corresponding fit measure. The quantitative model has
one additional (free) parameter, namely the residual variance of the latent variable.

Analysis Latent Classes Number of Parameters Number of Cause Parameters Number of Effect Parameters AIC AICc BIC aBIC

Quantitative – 12 5 6 5179.206* 5181.219* 5216.693* 5178.699*
Qualitative 2-class 11 5 6 5656.048 5657.740 5690.412 5655.584
Qualitative 3-class 19 10 9 5317.921 5323.056 5377.277 5317.118
Qualitative 4-class 27 15 12 5284.053 5292.445 5359.028 5283.038
Qualitative 5-class 35 20 15 5299.980 5312.589 5390.575 5298.754
Qualitative 6-class 43 25 18 5397.975 5415.870 5504.189 5396.538

Table 7
Effect parameters of the quantitative model. Per class, the estimates and corre-
sponding probabilities of choosing the safe rather than the risky option, and
significance values; * indicates significant deviation from zero of the parameter
estimate (p< 0.05). Note that Mplus estimates give the log odds of choosing the
safe rather than risky option.

Item type Intercepts Coefficients

Estimate p-
value

P(safe) Estimate p-
value

P(safe)

25% chance
gain

2.092 0.000* 0.890 0.769 0.002* 0.683

50% chance
gain

�2.130 0.000* 0.106 1.042 0.000* 0.739

75% chance
gain

�3.593 0.000* 0.027 0.275 0.026* 0.568

Table 8
Cause parameters of the quantitative model. Estimates increases in the quanti-
tative latent variable as the corresponding fMRI measure increases with one; *
indicates significant deviation from zero of the parameter estimate (p< 0.05).

fMRI index Parameters

Estimate p-value

Risk> Safe dmPFC 1.000 –

Risk> Safe vmPFC �0.419 0.036*
Risk> Safe LPFC �0.025 0.940
Risk> Safe SPL �0.172 0.428
Risk> Safe striatum �0.973 0.079
Risk> Safe insula 0.815 0.068
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Cause (fMRI) indicator parameter estimates are shown in Table 8. The
vmPFC risk> safe contrast was a significant negative predictor of the
latent variable, suggesting that increased activity in this area is associ-
ated with reduced risk aversion.

Cause indicator parameter estimates suggested that activation in the
vmPFC while choosing risk versus safe was a negative predictor of the
latent variable, which in turn predicted safe (over risky) choices. This
suggests that the latent variable represents risk aversion. In other words,
individuals whomade relatively more safe choices (effect indicator) were
characterized by heightened risk aversion (latent variable) and height-
ened activation in the vmPFC when choosing safe versus risky (cause
indicator). This fits well with prior work showing that less risk-seeking
(i.e. greater risk averse) behavior is associated with attenuated activa-
tion in the vmPFC, and neighboring valuation regions such as the OFC
and striatum2 (e.g. Blankenstein et al., 2017; Sherman, Steinberg and
Chein, 2018).

6. Discussion & conclusions

6.1. Discussion

In this study we introduced the MIMIC model to determine, given
both behavioral and fMRI data, whether individual differences are
quantitative or qualitative in nature. A simulation study showed the
MIMIC model to have adequate power to detect the true nature of indi-
vidual differences. Additionally, the model proved to have generally
good parameter recovery, allowing for conceptual interpretation of said
individual differences. Application to empirical decision making data of
2 Note that the direction of effect of the striatum – although not significant –
coincides with this rationale, and confirms the findings by Blankenstein et al.
(2018) who showed that more safe choices were related to lowered striatum
activation (based on a whole-brain regression). The direction of the – non sig-
nificant – effect of the insula (a region commonly implicated in risk processing)
also fits well with prior results showing that insula activation is heightened with
more risk aversion (Sherman, Steinberg and Chein, 2018). Although these ef-
fects align well with prior work, these failed to reach significance and should
therefore be confirmed in future studies.
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Van Duijvenvoorde at al. (2016) and Blankenstein et al. (2018) illus-
trated this for qualitative and quantitative individual differences,
respectively. We conclude the MIMIC model a promising method of
determining the nature of individual differences underlying combined
fMRI and behavioral data.

Several aspects deserve consideration. First, note that the fact that
individual differences are qualitative in nature by no means implies that
the processes within each class are qualitative. For example, the empir-
ical data of Van Duijvenvoorde et al. (2018) was found to consist of two
qualitatively different classes of participants, each using a different
strategy, yet one class was concluded to use an EV maximizing strategy,
in which options are compared on quantitative EV differences. This could
be inferred from the MIMIC model parameter estimates.

Second, the MIMIC model relates both data types to the latent vari-
able simultaneously rather than sequentially. In the latter approach,
behavioral observations determine the nature of individual differences,
and the involvement of fMRI indices is estimated in a subsequent analysis
(Bolck et al., 2004; Vermunt, 2010). We chose a simultaneous approach
as this has the advantage of circumventing limitations associated with
analyzing either data type separately (Forstmann et al., 2011; Turner
et al., 2016a, 2016b). Additionally, it allows for contribution of fMRI
data in determining the nature of individual differences, giving a more
complete account thereof. Finally, compared to sequential analysis the
MIMIC model shows increased cause indicator (fMRI) parameter recov-
ery when latent classes are similar (i.e. when qualitative individual dif-
ferences are small) (Asparouhov and Muth�en, 2014). However, because
the MIMIC model includes both fMRI and behavioral data in the same
analytical model it uses more parameters than sequential alternatives,
thus requiring more observations (Jacobucci et al., 2018). In the current
study this proved not to be problematic but it may be if, for example, the
phenomenon of interest is related to many different brain regions.

Third and relatedly, in both the simulation and the empirical parts of
the current study, effect (item) indicator parameters were constrained so
that the latent variable representing individual differences had the same
effect on all repetitions of an item type. A more flexible approach would
have been to estimate these parameters freely. This was not done how-
ever, as it would, in some datasets, have resulted in the number of pa-
rameters exceeding the number of participants, causing unreliable
parameter estimates and biased fit measures (Wolf et al., 2013; Supple-
mentary Materials).

Fourth and also relatedly, some studies might require the inclusion of
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a large number cause (fMRI) or effect (behavioral) indicators, which may
lead to the necessity to estimate more parameters than the sample size
allows for. However, in such circumstances an approach may be used in
which it is tested which fMRI indices are required to model the data
adequately. In doing so, it might be useful to adopt a regularization
approach (Jacobucci et al., 2016, 2018). This may not only increase
suitability to small sample data, but also to exploratory studies wherein
brain regions of interest are not specified.

Fifth, in the current paper we compare two potential models: a
quantitative and a qualitative model, akin to a factor model (Harman,
1976; Kline, 2014; Thurstone, 1947) and a mixture model (McLachlan
and Basford, 1988; McLachlan and Peel, 2000; McLachlan et al., 2019),
respectively. Individual differences may however be simultaneously
quantitative and qualitative (i.e. there being qualitatively distinct classes
of individuals, wherein there is quantitative spread). Thus, a potential
extension would be to combine these, akin to a factor mixture model
(Clark et al., 2013; Lubke and Muth�en, 2005, 2007), in which within
qualitatively different classes, quantitative differences may exist. This,
however, is beyond the scope of the current manuscript.

Our approach here to obtain evidence for latent quantitative or latent
qualitative individual differences is to fit a model to the data and to
determine the value for each model in terms of an information criterion.
A potential problem therein is that of local minima. However, Mplus by
default uses 10 random sets of starting values in the initial stage and 2
optimizations in the final stage to minimize the risk of local minima. This
likely reduces the issue of local minima, although self-evidently no
guarantees can be given as is shown, for instance, in Jahn (2007).

Related, an important assumption of our approach is that the likeli-
hood space is smooth andwill not change too much with small changes in
the parameters. Since this is not the focus of our paper, we did not pursue
this further. However, one could check for stability across different
parameter ranges near the optimum for the evidence of one model over
another.

Also, parameter interpretation of the proposed method requires
caution when the number of participants is small compared to the
number of parameters, specifically when the number of fMRI measures
(i.e. cause indicators) is large and the number of behavioral measures
(i.e. effect indicators) is small. These results confirm a known limitation
of SEM: the requirement of relatively large sample sizes (Cooper et al.,
2019). We thus caution against using the MIMIC model for conceptual
interpretation in datasets with small sample sizes, especially when a large
number of fMRI measures is of interest. In the latter case, the afore-
mentioned regularization approach could be of use.

Finally, it must also be noted that in the simulations, some MIMIC
model analyses produced error and/or warning messages, indicative of
estimation issues like model non-identification. Thus, interpretation of
results including such messages is discouraged. Causes of errors and
warnings may be remedied by changing starting values or increasing the
number of iterations (Muth�en and Muth�en, 2012). This could not be
applied in simulations of the current study though, as these included
27� 1000 analyses, rendering manual inspection and adjustment un-
feasible. As such, analyses that produced errors and/or warnings therein
were simply omitted.

6.2. Conclusions

In conclusion, current results support the MIMIC model as a means to
identify the nature of individual differences as quantitative or qualitative
in combined fMRI and behavioral data. In doing so, the nature of indi-
vidual differences needn’t be assumed, but can be based on empirical
evidence. Conceptual interpretation of individual differences is enabled
by the model parameters. While this MIMIC model approach was illus-
trated in decision making data, it is also suitable for other types of data in
which the nature of quantitative vs. qualitative individual differences
need to be determined (Barch et al., 2013; Osaka et al., 2003; Ochsner
et al., 2006).
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