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Chapter 1

Introduction

In systems biology, it is becoming increasingly common to measure biochemical
entities at different levels of the same biological system. Hence, data fusion
problems, which focus on analyzing such data sets simultaneously to arrive at a
holistic understanding of the studied system, are abundant in the life sciences.
With the availability of a multitude of measuring techniques, one of the central
problems is the heterogeneity of the data. In this thesis, we mainly discuss two
types of heterogeneity. The first one is the type of data, such as metabolomics,
proteomics and RNAseq data in genomics. These different omics data reflect the
properties of the studied biological system from different perspectives. The second
one is the type of scale, which indicates the measurements obtained at different
scales, such as binary, ordinal, interval and ratio-scaled variables. In genomics,
an example is the measurements of gene-expression and point mutation status on
the same objects. The latter are binary data and gene-expression measurements
are quantitative data. Ideally, data fusion methods should consider these two
types of heterogeneity of such measurements and this will be the topic of this
thesis.

The goal of this thesis is to develop appropriate statistical methods capable to
fuse data sets of the two types of heterogeneity. Before going into the details of
the developed methods, we begin with a brief introduction of the concept of data
fusion in life sciences and the characteristics of the two types of heterogeneity.
Another important concept in this thesis is the concave penalty, which is the basis
of all the developed methods. Although it is not directly related to the fusion of
heterogeneous data sets, it is also introduced in Chapter 1. 1

1This chapter is based on Smilde, A.K., Song, Y., Westerhuis, J.A., Kiers, H.A., Aben, N.
and Wessels, L.F., 2019. Heterofusion: Fusing genomics data of different measurement scales.
arXiv preprint arXiv:1904.10279.
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2 Chapter 1. Introduction

1.1 Data fusion in life sciences

With the availability of comprehensive measurements collected in multiple related
data sets in the life sciences, the need for a simultaneous analysis of such data
to arrive at a global view on the system under study is of increasing importance.
There are many ways to perform such a simultaneous analysis and these go also
under very different names in different areas of data analysis: data fusion, data
integration, global analysis, multi-set or multi-block analysis to name a few. We
will use the term data fusion in this thesis. Data fusion plays an especially
important role in the life sciences, e.g., in genomics it is not uncommon to measure
gene-expression (array data or RNAseq data), methylation of DNA and copy
number variation. Sometimes, also proteomics and metabolomics measurements
are available. All these examples serve to show that having methods in place to
integrate these data is not a luxury anymore.

Without trying to build a rigorous taxonomy of data fusion it is worthwhile
to distinguish several distinctions in data fusion. The first distinction is between
model-based and exploratory data fusion. The former uses background knowl-
edge in the form of models to fuse the data; one example being genome-scale
models in biotechnology [1]. The latter does not rely on models, since these are
not available or poorly known, and thus uses empirical modeling to explore the
data. In this thesis, we will focus on exploratory data fusion. The next distinc-
tion is between low-, medium-, and high-level data fusion [2]. In low-level data
fusion, the data sets are combined at the lowest level, that is, at the level of the
(preprocessed) measurements. In medium-level data fusion, each separate data
set is first summarized, e.g., by using a dimension reduction method or through
variable selection. The reduced data sets are subsequently subjected to the data
fusion. In high-level data fusion, each data set is used for prediction or classifica-
tion of an outcome and the prediction or classification results are then combined,
e.g, by using majority voting [3]. All these types of data fusion have advantages
and disadvantages which are beyond the scope of this thesis. In this thesis, we
will focus on low- and medium-level fusion.

The final characteristic of data fusion relevant for this thesis is the hetero-
geneity of the data sets to be fused. Different types of heterogeneity can be dis-
tinguished. The first one is the type of data, such as metabolomics, proteomics
and RNAseq data in genomics. Clearly, these data relate to different parts of
the biological system. The second one is the type of scale in which the data are
measured present in the fusion problem. In genomics, an example is a data set
where gene-expressions are available and mutation data in the form of single nu-
cleotide polymorphisms(SNPs). The latter are binary data and gene-expression
measurements are quantitative data. They are clearly measured at a different
scale. Ideally, data fusion methods should consider these two levels of hetero-
geneity in data analysis and this will be the topic of this thesis. In the following
section, we will show the characteristics of these two types of heterogeneity and
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how they affect the data analysis.

1.2 Two types of heterogeneity

1.2.1 Heterogeneous measurement scales in multiple data
sets

Multiple data sets measured on the same objects may have different types of
measurement scales. The history of measurement scales goes back a long time.
A seminal paper drawing attention to this issue appeared in the 40-ties [4]. Since
then numerous papers, reports and books have appeared [5, 6, 7, 8, 9, 10]. The
measuring process assigns numbers to aspects of objects (an empirical system),
e.g, weights of persons. Hence, measurements can be regarded as a mapping from
the empirical system to numbers, and scales are properties of these mappings. In
measurement theory, there are two fundamental theorems [6]: the representation
theorem and the uniqueness theorem. The representation theorem asserts the
axioms to be imposed on an empirical system to allow for a homomorphism of
that system to a set of numerical values. Such a homomorphism into the set
of real numbers is called a scale and thus represents the empirical system. A
scale possesses uniqueness properties: we can measure the weight of persons in
kilograms or in grams, but if one person weighs twice as much as another person,
this ratio holds true regardless the measurement unit. Hence, weight is a so-called
ratio-scaled variable and this ratio is unique. The transformation of measuring
in grams instead of kilograms is called a permissible transformation since it does
not change the ratio of two weights. For a ratio-scaled variable, only similarity
transformations are permissible; i.e. x̃ = αx;α > 0 where x is the variable on the
original scale and x̃ is the variable on the transformed scale. This is because

x̃i
x̃j

=
αxi
αxj

=
xi
xj
.

Note that this coincides with the intuition that the unit of measurement is im-
material.

The next level of scale is the interval-scaled measurement. The typical exam-
ple of such a scale is concentrations of metabolites in metabolomics research and
the permissible transformation is affine, i.e. x̃ = αx+ β;α > 0. In that case, the
ratio of two intervals is unique because

x̃i − x̃j
x̃k − x̃l

=
(αxi + β)− (αxj + β)

(αxk + β)− (αxl + β)
=
α(xi − xj)
α(xk − xl)

=
xi − xj
xk − xl

.

Stated differently, the zero point and the unit are arbitrary on this scale.
Ordinal-scaled variables represent the next level of measurements. Typical

examples are scales of agreement in surveys: strongly disagree, disagree, neu-
tral, agree and strongly agree. There is a rank-order in these answers, but no
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relationship in terms of ratios or intervals. The permissible transformation of an
ordinal-scale is a monotonic increasing transformation since such transformations
keep the order of the original scale intact. Nominal-scaled variables are next on
the list. These variables are used to encode categories and are sometimes also
called categorical. Typical examples are gender, race, brands of cars and the like.
The only permissible transformation for a nominal-scaled variable is the one-to-
one mapping. A special case of a nominal-scaled variable is the binary (0/1)
scale. Binary data can have different meanings; they can be used as categories
(e.g. gender) and are then nominal-scale variables. They can also be two points
on a higher-level scale, such as absence and presence (e.g. for methylation data).

The above four scales are the most used ones but others exist [5, 6]. Counts,
e.g., have a fixed unit and are therefore sometimes called absolute-scaled variables
[8]. Another scale is the one for which the power transformation is permissible;
i.e. x̃ = αxβ;α, β > 0 which is called a log-interval scale because a logarithmic
transformation of such a scale results in an interval-scale. An example is density
[6]. Sometimes the scales are lumped in quantitative (i.e. ratio and interval) and
qualitative (ordinal and nominal) data.

An interesting aspect of measurement scales is to what extent meaningful
statistics can be derived from such scales (see Table 1 in [4]). A prototypical
example is using a mean of a sample of nominal-scaled variables which is generally
regarded as being meaningless. This has also provoked a lot of discussion [11, 10]
and there are nice counter-examples of apparently meaningless statistics that still
convey information about the empirical system [12]. As always, the world is not
black or white.

In practice, we also use other taxonomies to classify the types of measurements
[13]. A commonly used one is the Discrete-Continuous variable distinction ac-
cording to whether or not the possible number of values is countable. Therefore,
binary, nominal and ordinal scaled measurements are discrete while ratio and
interval scaled measurements are continuous. Another commonly used taxonomy
is the Quantitative-Qualitative variable distinction, which depends on whether
two different measurements differ in quality or in quantity. Thus nominal scaled
measurements are qualitative while ratio and interval scaled measurements are
quantitative. And the ordinal scaled measurements have the characteristics of
both quantitative and quantitative variables.

1.2.2 Heterogeneous information in multiple data sets

Multiple sets of measurements on the same objects obtained from different plat-
forms may reflect partially complementary information of the studied system.
Therefore, these multiple data sets may contain heterogeneous information, the
information that is common across all or some of the data sets, and the infor-
mation which is specific to each data set (often called distinct). The challenge
for the data fusion of such data sets is how to separate the common and distinct
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information existed in multiple data sets. These different sources of information
have to be disentangled from every data set to have a holistic understanding of
the studied system. Here we focus on using common and distinct components
to approximate the common and distinct variation (information) existing in mul-
tiple data sets measured on the same objects [14]. We will use a simultaneous
component analysis (SCA) model with structural sparsity patterns on the loading
matrix [15] as an example to show the idea.

A classical SCA model tries to discover the common subspace between multiple
data sets to represent the common information between these data sets. Suppose
the quantitative measurements from L different platforms on the same I objects
result into L quantitative data sets, {Xl}Ll=1, and the lth data set Xl(I×Jl) has Jl
variables. After these data sets are column centered, we can decompose them in
the SCA model framework as Xl = ABT

l + El, in which A(I ×R) is the common
score matrix; Bl(Jl×R) and El(I × Jl) are the loading matrix and residual term
respectively for Xl and R is the number of components. The common column
subspace, which is spanned by the columns of the score matrix A, represents the
common information between these L data sets.

The drawback of the SCA model is that only the global common components,
which account for the common variation across all the data sets, is modeled.
However, the real situation in multiple data sets integration can be far more
complex as local common variation across some of the data sets and distinct
variation in each data set are expected as well. With the help of the concept of
structural sparsity on the loading matrices of a SCA model, we can interpret the
common and distinct variation framework as follows. Suppose we construct a SCA
model on three column centered quantitative data sets {Xl}3l=1, the common score
matrix is A, the corresponding loading matrices are {Bl}3l=1, and Xl = ABT

l +El,
in which El is the residual term for lth data set. If the structured sparsity pattern
in {Bl}3l=1 is expressed as follows, B1

B2

B3

 =

 b1,1 b1,2 b1,3 0 b1,5 0 0
b2,1 b2,2 0 b2,4 0 b2,6 0
b3,1 0 b3,3 b3,4 0 0 b3,7

 ,

in which bl,r ∈ RJl indicates the rth column of the lth loading matrix Bl, then we
have the following relationships,

X1 = a1b
T
1,1 +a2b

T
1,2 +a3b

T
1,3 +0 +a5b

T
1,5 +0 +0 +E1

X2 = a1b
T
2,1 +a2b

T
2,2 +0 +a4b

T
2,4 +0 +a6b

T
2,6 +0 +E2

X3 = a1b
T
3,1 +0 +a3b

T
3,3 +a4b

T
3,4 +0 +0 +a7b

T
3,7 +E3.

Here ar indicates the rth column of the common score matrix A. The first com-
ponent represents the global common variation across three data sets; the 2nd,
3nd and 4nd components represent the local common variation across two data
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sets and the 5nd, 6nd and 7nd components represent the distinct variation specific
to each single data set. Therefore, the heterogeneity of data (common and dis-
tinct information existed in multiple data sets) is disentangled by the common
and distinct components. In the above example, we only show a single score and
loading vector for any specific variation, but that there can be multiple score and
loading vcectors for each (global common, local common or distinct variations).

Except for the above approach, there are also many other methods for dis-
tinguishing common and distinct components. However, the above approach has
the advantage of estimating the model complexity directly which is problematic
in most other methods. Details will be shown in Chapter 5.

1.3 Using concave penalties to induce sparsity

Although concave penalties are not directly related to the fusion of heterogeneous
data sets, they are the basis of all the developed methods in this thesis. Therefore,
it is better to have a general introduction to them at the beginning.

The comprehensive measurements in the current biological research always
result in high dimensional data sets, of which the number of variables is much
larger than the number of samples. For the analysis of such high dimensional
data sets, sparse parameter estimation (many estimated parameters are exactly
0) is always desired since it makes both the data analysis problem feasible and
the results easier to be interpreted. Some typical examples of sparse parameter
estimation include the sparse regression models [16], the low rank matrix approxi-
mation problems [17, 14, 18], the structure learning problems in graphical models
[19], and many others [20, 21, 22].

We can use a linear regression model as an example to illustrate how to achieve
sparse parameter estimation through various penalties. Suppose we have a uni-
variate response variable y ∈ R and a multivariate explanatory variable x ∈ R

J .
A standard linear regression model can be expressed as y = xTβ + ε, in which
β ∈ R

J is the coefficient vector and ε ∈ R is the error term following a normal
distribution with mean 0 and variance σ2, ε ∼ N(0, σ2). After obtaining I sam-
ples of {y,x}, we have the data sets {yi,xi}Ii=1, which can be further expressed
in their vector and matrix form as y ∈ R

I and X ∈ R
I×J . The optimization

problem associated with the standard linear model is minβ
1
2
||y − Xβ||2, and

the analytical form solution is β̂ = (XTX)−1XTy. Unfortunately, this model is
unidentifiable when J > I and ill-conditioned when the explanatory variables are
correlated. Also the estimated coefficient vector β̂ is always dense, which makes
the interpretation difficult.

Cardinality constraint can be imposed on the linear regression model as a
hard constraint to induce a sparse parameter estimation of β. If we require
only R elements of β to be nonzero, the associated optimization problem can
be expressed as minβ

1
2
||y − Xβ||2 subject to ||β||0 = R, in which ||β||0 = R
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is the cardinality constraint, || ||0 indicates the pseudo L0 norm and counts the
number of nonzero elements. Since the above optimization problem is non-convex
and difficult to solve, the cardinality constraint is always replaced by its convex
relaxation L1 norm to induce the sparsity, which results in the lasso regression
model [23]. The optimization problem associated with the lasso regression model
is minβ

1
2
||y − Xβ||2 + λ||β||1 in which λ is the tuning parameter and || ||1

indicates the L1 norm. Efficient algorithms exist to solve this convex optimization
problem [24, 25]. However, the L1 norm penalty shrinks all the elements of the
coefficient vector β to the same degree. This leads to a biased estimation of
the coefficients with large absolute values. This behavior will further make the
prediction error or CV error based model selection procedure inconsistent [26].
Many non-convex penalties, most of them are concave functions with respect to
the absolute value of β, have been proposed to tackle the drawback of the L1

norm penalty [16, 27]. They can shrink the parameters in a nonlinear manner
to achieve both nearly unbiased and sparse parameter estimation. A frequentist
version of the generalized double Pareto (GDP) [27] shrinkage can serve as an
example. The optimization problem of a linear regression model with the GDP
penalty can be expressed as minβ

1
2
||y−Xβ||2 +λ

∑J
j log(1+

|βj |
γ

), in which βj is

the jth element of β, γ is a hyper-parameter, and log(1+
|βj |
γ

) is the concave GDP
penalty on βj. The thresholding properties of the cardinality constraint, the L1

norm penalty and the GDP penalty with different values of γ are shown in Fig. 1.1.
The cardinality constraint shrinks all the coefficients, whose absolute values are
less than a selected threshold, to 0 while keeping other coefficients unchanged.
This thresholding behavior is referred to as hard thresholding [23]. The L1 norm
penalty shrinks all the coefficients to the same degree until some coefficients are
0. And its thresholding behavior is referred to as soft thresholding [23]. On the
other hand, GDP penalty shrinks the coefficients in a nonlinear manner according
to the absolute values of the corresponding coefficients. In this way, coefficients
with small absolute values are more likely to be shrunk to 0, while coefficients
with large absolute values tend to be shrunk less.

1.4 Scope and outline of the thesis

Principal component analysis (PCA) model is the basis of many commonly used
data fusion methods [28]. And both PCA and these data fusion methods assume
the used data sets are quantitative. Thus, before talking about the data fusion of
data sets with heterogeneous measurement scales, we should first introduce the
generalizations of PCA for qualitative data sets. We review the extensions of PCA
methods for the analysis of multivariate binary data sets in Chapter 2 and develop
a robust logistic PCA method in Chapter 3. After that, we are ready for the data
fusion of data sets with heterogeneous measurement scales. We generalize the
commonly used data fusion method, simultaneous component analysis (SCA), in
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Figure 1.1: Thresholding properties of the cardinality constraint, L1 norm, GDP
penalties when the same degree of shrinkage is achieved. Legend cardinality:
cardinality constraint, legend L1: L1 norm penalty, legend original: the original
values before thresholding. β in x axis indicates the original value of the coefficient
while η in y axis is the value after thresholding.

a probabilistic framework for the data fusion of the multivariate quantitative and
binary measurements data sets in Chapter 4. Finally, it comes to the data fusion
of data sets of the two types of heterogeneity. We develop an exponential family
SCA model for the data fusion of multiple data sets of mixed data types, such as
quantitative, binary or count, and introduce the nearly unbiased group concave
penalty to induce structured sparsity on the loading matrix to separate common
(global and local) and distinct variation in such mixed types data sets in Chapter
5. Finally, the thesis closes in Chapter 6 with an outlook into the future of fusing
heterogeneous data sets.



Chapter 2

PCA of binary genomics data

Genome wide measurements of genetic and epigenetic alterations are generat-
ing more and more high dimensional binary data. The special mathematical
characteristics of binary data make the direct use of the classical PCA model
to explore low dimensional structures less obvious. Although there are several
PCA alternatives for binary data in the psychometric, data analysis and machine
learning literature, they are not well known to the bioinformatics community. In
this chapter we introduce the motivation and rationale of some parametric and
nonparametric versions of PCA specifically geared for binary data. Using both
realistic simulations of binary data as well as mutation, CNA and methylation
data of the Genomic Determinants of Sensitivity in Cancer 1000 (GDSC1000)
the methods are explored for their performance with respect to finding the cor-
rect number of components, overfit, finding back the correct low dimensional
structure, variable importance etc. The results show that if a low dimensional
structure exists in the data that most of the methods can find it. When assuming
a probabilistic generating process is underlying the data, we recommend to use
the parametric logistic PCA model (using the projection based approach), while
when such an assumption is not valid and the data is considered as given, the
nonparametric Gifi model is recommended. 1

2.1 Background

Binary measurements only have two possible outcomes, such as presence and
absence, or true and false, which are usually labeled as “1” and “0”. In many
research problems, objects are characterized by multiple binary features, each
depicting a different aspect of the object. In biological research, several examples
of binary data sets can be found. Genome wide measurements of genetic and

1This chapter is based on Song, Y., Westerhuis, J.A., Aben, N., Michaut, M., Wessels, L.F.
and Smilde, A.K., 2017. Principal component analysis of binary genomics data. Briefings in
bioinformatics, 20(1), pp.317-329.

9
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epigenetic alterations are generating more and more high dimensional binary data
[29, 30]. One example is the high throughput measurements of point mutation.
Here, a feature is labeled as “1” when it is classified as mutated in a sample, “0”
when it is not. Another often observed binary data set is the binarized version
of copy number aberrations (CNA), which are gains and losses of segments in
chromosomal regions. Segments are labeled as “1” when aberration is presents in
a sample, otherwise “0” [31]. DNA methylation data can also be discretized as
binary features, where “1” indicates a high level of methylation and “0” means a
low level [30].

Compared to commonly used quantitative data, binary data has some special
mathematical characteristics, which should be taken into account during the data
analysis. In binary measurements, “0” and “1” are abstract representations of two
exclusive categories rather than quantitative values 0 and 1. These two categories
can also be encoded to any other two different labels, like “-1” and “1” or “-” and
“+”, without changing the meaning. Because “1” and “0” are only an abstract
representation of two categories, they cannot be taken interpreted as quantitative
data. Furthermore, the measurement error of binary data is discrete in nature.
Binary measurement error occurs when the wrong label is assigned to an object,
such as when a mutated gene is mis-classified as wild type. Therefore, the by
default used Gaussian error assumption for continuous data in many statistical
models is inappropriate for binary data analysis. Another aspect of binary data
is that there can be an order in the two categories. For example, presence is often
considered more important than absence. Finally, binary data can be generated
from a discrete measurement process, but also a continuous measurement process
[32].

PCA is one of the most popular methods in dimension reduction with numer-
ous applications in biology, chemistry and many other disciplines [17]. PCA can
map data points, which are in a high dimensional space, to a low dimensional
space with minimum loss of variation. The derived low dimensional features,
which provide a parsimonious representation of the original high dimensional
data, can be used in data visualization or for further statistical analysis.

Classical linear PCA methods are appropriate for quantitative data. The di-
rect use of linear PCA on binary data does not take into account the distinct
mathematical characteristics of binary data. In this chapter, we are going to
introduce, compare and evaluate some of the PCA alternatives for binary data.
First, the theory of the different approaches is introduced together with their
model properties and how the different models are assessed. Then we will in-
troduce three binary genomics data sets on which the models will be applied.
Besides the real data, realistic simulations of binary data are used to uncover
some of the properties of the different models.
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2.2 Theory

There exist two separate directions in extending PCA for binary data; paramet-
ric and nonparametric. Parametric approaches are represented by logistic PCA
methods, originating from the machine learning literature. In these methods,
PCA is extended to binary data from a probabilistic perspective in a similar way
as linear regression is extended to logistic linear regression [33, 34, 35]. Nonpara-
metric methods, originating from the psychometric and data analysis communi-
ties, include optimal scaling [36], multiple correspondence analysis [37] and many
others [38]. In this direction, PCA is extended to binary data from a geometric
perspective without probabilistic assumptions. The details for the motivation
and rationale of above approaches for binary data will be explained later in this
section. We will start by introducing classical PCA.

2.2.1 Classical PCA

Classical PCA can be expressed as a projection based approach (finding the low
dimensional space that best represents a cloud of high dimensional points) fol-
lowing Pearson [39]. The measurements of J quantitative variables on I objects
result into a matrix X(I × J) with I rows and J columns. The column vector
form of the ith row of X is xi ∈ R

J , which is taken as a point in J dimensional
space. Suppose that a low dimensional space is spanned by the columns of an
orthogonal loading matrix B(J ×R), R� min(I, J). The orthogonal projection
of xi on this low dimensional space is BBTxi. We find B by minimizing the
Euclidean distance between the centered high dimensional points xi, i = 1 · · · I,
and their low dimensional projections:

min
µ,B

I∑
i

((xi − µ)−BBT(xi − µ))2

subject to BTB = I,

(2.1)

in which the column offset term µ(J × 1) is included to center the samples, and
I is the identity matrix. The exact position of the centered ith data point xi
in this low dimensional space is represented by its R dimensional score vector
âi, âi = B̂T(xi − µ̂), where B̂ and µ̂ are the estimated values of equation 2.1.
In matrix form, we have Â = (X − 1µ̂T)B̂, âi is the ith row of Â; 1 is an I
dimensional vector of ones; the estimated offset µ̂ contains the column means of
X and X− 1µ̂T is the column centered X.

Another approach to explain PCA is the reconstruction based approach [40].
A high dimensional data point xi ∈ RJ is approximated by a linear function of the
latent low dimensional score ai ∈ RR with orthogonal coefficients B, xi ≈ µ+Bai,
BTB = I, µ is the offset term. Now, µ, A and B can be found simultaneously
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by minimizing the Euclidean distance between centered xi, i · · · I, and their low
dimensional linear approximations µ + Bai, i · · · I:

min
µ,A,B

I∑
i

(xi − µ−Bai)
2

subject to BTB = I.

(2.2)

It is well known that the above two approaches for classical PCA are equivalent
and the global optimal solution can be obtained from the R truncated singular
value decomposition (SVD) of the column centered X [41]. The solution µ̂ con-
tains the column means of X; Â is the product of the first R left singular vectors
and the diagonal matrix of first R singular values; B̂ contains the first R right
singular vectors.

Above, the classical PCA was derived from a geometrical perspective. Bishop
et al.[42] have derived another explanation for PCA from a probabilistic perspec-
tive, called probabilistic PCA. A high dimensional point xi can be regarded as
a noisy observation of the true data point θi ∈ R

J , which lies in a low dimen-
sional space. The model can be expressed as xi = θi + εi and θi = µ + Bai,
µ is the offset term as before; B contains the coefficients; ai represents the low
dimensional score vector. The noise term εi is assumed to follow a multivariate
normal distribution with mean 0 and constant variance σ2, εi ∼ N(0, σ2I). Thus
the conditional distribution of xi is a normal distribution with mean θi and con-
stant variance, xi|µ,A,B ∼ N(µ + Bai, σ

2I). µ, A and B can be obtained by
maximum likelihood estimation.

max
µ,A,B

I∑
i

log(p(xi|µ, ai,B))

=
I∑
i

log(N(xi|µ + Bai, σ
2I))

subject to BTB = I.

(2.3)

The above maximum likelihood estimation is equivalent to the least squares
minimization in classical PCA from the perspective of frequentist statistics [33].
One important implication is that all the elements in the observed matrix X are
conditionally independent of each other given the offset µ, the score matrix A
and the loading matrix B, which is the key point for the further extension to
binary data.

2.2.2 Logistic PCA

The probabilistic interpretation of PCA under multivariate normal distribution
for the observed data provides a framework for the further generalization to other



2.2. Theory 13

data types [42]. As the Gaussian assumption is only appropriate for continuous
quantitative data, it is necessary to replace the Gaussian assumption by the
Bernoulli distribution for binary observations in a similar way as from linear re-
gression to logistic linear regression [33, 35, 43]. The ijth element in observed
matrix X, xij, is a realization of the Bernoulli distribution with parameter pij,
which is the ijth element in the probability matrix Π. Specifically, the probability
that xij equals “1” is pij. Similar to probabilistic PCA, all the elements in the
observed matrix X are conditionally independent of each other given the param-
eter matrix Π(I × J). The log likelihood for observation X given the probability
matrix Π is as follows:

l(Π) =
I∑
i

J∑
j

xij log(pij) + (1− xij) log(1− pij). (2.4)

The log-odds of pij is θij, where θij = log(
pij

1−pij ), which is the natural parameter

of the Bernoulli distribution expressed in the exponential family form. Thus
pij = φ(θij) = (1 + e−θij)−1 and φ() is called the logistic function. The log
likelihood for observation X given log-odds Θ is represented as:

l(Θ) =
I∑
i

J∑
j

xij log(φ(θij)) + (1− xij) log(1− φ(θij)). (2.5)

A low dimensional structure can be assumed to exist in the log-odds Θ(I × J)
as Θ = ABT + 1µT. Here A is the object score matrix for the log-odds Θ; B is
the loading matrix; µ is the offset.

There are mainly two approaches to fit the model (equation 2.5), logistic PCA
[43] and projection based logistic PCA (logistic PPCA) [35]. The main difference
between these two approaches is whether A and B are estimated simultaneously
or sequentially. In the logistic PCA model, the score matrix A and loading
matrix B are estimated simultaneously by alternating minimization [33, 44] or
by a majorization-minimization (MM) algorithm [43].

On the other hand, logistic PPCA only estimates B directly. After B is
estimated, A is obtained by a projection based approach in the same manner
as classical PCA in equation 2.1 [35]. Score matrix A is the low dimensional

representation of the log-odds Θ̃ of the saturated model in the subspace spanned
by B. Details of the log-odds Θ̃ from the saturated model will be shown latter.
In matrix form, A = (Θ̃− 1µT)B, µ is the offset term. Then the log-odds Θ in

equation 2.5 can be represented as Θ = (Θ̃−1µT)BBT+1µT. The estimation of
parameters µ̂ and B̂, can be obtained by maximizing the conditional log likelihood
l(Θ) in equation 2.5. Then, the solution for the score matrix is Â = (Θ̃−1µ̂T)B̂.

Compared to logistic PCA, logistic PPCA has fewer parameters to estimate,
and thus is less prone to overfitting. In addition, the estimation of the scores of
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new samples in logistic PCA involves an optimization problem while for logistic
PPCA, it is a simple projection of the new data on B̂.

In a saturated model, there is a separate parameter for every individual ob-
servation. The model is over-parameterized and has perfect fit to the observed
data. For quantitative data, the parameters of the saturated model are simple
the observed data. For example, the parameters of the saturated PCA model on
observed data matrix X are the matrix X itself. For binary data, the parameter
(probability of success) of a saturated model for the observation “1” is 1; for the

observation “0” is 0. Thus, the ijth element in Θ̃ from the saturated logistic PCA
model is θ̃ij = log(

xij
1−xij ). It is negative infinity when xij = 0; positive infinity

when xij = 1. In order to project Θ̃ onto the low dimensional space spanned

by B, one needs a finite Θ̃. In logistic PPCA, positive and negative infinities
in Θ̃ are approximated by large numbers m and −m. When m is too large, the
elements in the estimated probability matrix Π̂ for generating the binary obser-
vation X are close to 1 or 0; when m is close to 0, the elements in Π̂ are close
to 0.5. In the original paper of logistic PPCA, CV is used to select m [35]. In
this paper we select m = 2.94 which corresponds to a probability of success 0.95.
This can be interpreted as using probabilities 0.95 and 0.05 to approximate the
probabilities 1 and 0 in the saturated model.

2.2.3 Theory of nonlinear PCA with optimal scaling

Another generalization of PCA to binary data is nonlinear PCA with optimal
scaling (the Gifi method). This method was primarily developed for categorical
data, of which binary data is a special case [45, 36]. The basic idea is to quantify
the binary variables to quantitative values by minimizing some loss functions.
The quantified variables are then used in a linear PCA model. The jth column of
X, X∗j, is encoded into an I×2 indicator matrix Gj. Gj has two columns, “1” and
“0”. If the ith object belongs to column “1”, the corresponding element of Gj is 1,
otherwise it is 0. A is the I ×R object score matrix, which is the representation
of X in a low dimensional Euclidean space; Qj is a 2× R quantification matrix,
which quantifies this jth binary variable to a quantitative value. For binary data,
the rank of the quantification matrix Qj is constrained to 1. This is the PCA
solution in the Gifi method. Qj can be expressed as Qj = zjwj

T, where zj is a
two dimensional column vector with binary quantifications and wj is the vector
of weights for R principal components. The loss function is expressed as:

min
A,zj,wj

J∑
j=1

(A−Gjzjwj)
2, (2.6)

in which the score matrix A is forced to be centered and orthogonal, 1TA = 0,
ATA = I, to avoid trivial solutions. The loss function is optimized by alternating
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least squares algorithms. For binary data, nonlinear PCA with optimal scaling
is equivalent to multiple correspondence analysis and to PCA on standardized
variables [38].

2.3 Model properties

2.3.1 Offset

Including the column offset term µ in component models also implies that the
column mean of score matrix is 0, i.e. 1TA = 0. Otherwise, the model is
unidentifiable. In PCA and the Gifi method, the estimated µ̂ equals the column
mean of X. Therefore, including µ in the model has the same effect as column
centering of X. In logistic PPCA and logistic PCA, the jth element of µ, µj,
can be interpreted as the log-odds of the marginal probability of the jth variable.
When only the offset µ is included in the model, Θ = 1µT, the jth element of
the solution µ̂, µ̂j, is the log-odds of the empirical marginal probability of the
jth variable (the proportion of “1” in the jth column). When more components
are included, Θ = 1µT + ABT, the solution µ̂ is not unique. If an identical
offset is required for comparing component models with a different number of
components, one can fix the offset term to the log-odds of the empirical marginal
probability during the maximum likelihood estimation.

2.3.2 Orthogonality

Similar to PCA, the orthogonality constraint BTB = I in logistic PPCA and
logistic PCA actually is inactive. If B is not orthogonal, it can be made orthogonal
by subjecting ABT to an SVD algorithm. B equals the right hand singular vectors
and A equals the product of the left hand singular vectors and the diagonal matrix
of singular values. This extra step will not change the objective value. Table 2.1
gives the orthogonality properties of the scores and loadings of the four methods
discussed above.

Table 2.1: Orthogonality properties of the scores and loadings of the four methods.
O: the columns of this matrix are orthonormal vectors, BTB = I; D: the columns
of this matrix are orthogonal vectors, BTB = D, D is a R×R diagonal matrix.

PCA Gifi logistic PCA logistic PPCA
score matrix A D O D D

loading matrix B O D O O
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2.3.3 Nestedness

Linear PCA models are nested in the number of components, which means the
first R principal components in the R+1 components model are exactly the same
as the R components model. For the Gifi method, this property only holds for
the binary data case but not in general. For logistic PPCA and logistic PCA,
this property does not hold.

2.4 Model assessment

2.4.1 Error metric

To make a fair comparison between linear PCA, the Gifi method, logistic PPCA
and logistic PCA, the training error is defined as the average misclassification rate
in using the derived low dimensional structure to fit the training set X. Each
of the four methods provides an estimation of the offset term, score matrix and
loading matrix, µ̂, Â and B̂. For linear PCA and the Gifi method, we take 1µ̂T+
ÂB̂T as an approximation of the binary matrix X; for logistic PCA and logistic
PPCA, φ(1µ̂T + ÂB̂T) is used as an approximation for the probability matrix Π,
of which the observed matrix X was generated. Since both approximations are
continuous, we need to select a threshold to discretize them to binary fitting.

In the discretization process, two misclassification errors exist. “0” can be
misclassified as “1”, which we call err0 and “1” can be misclassified as “0”,
which we call err1. Nerr0 is the number of err0 in this process, and Nerr1 is
the number of err1; N0 is the number of “0” in the observed binary matrix X,
and N1 is the number of “1” in X. A commonly used total error rate is given
by (Nerr0 + Nerr1)/(N0 + N1), which gives equal weights to these two errors.
However, this can lead to undesirable results for imbalanced binary data, i.e.
when the proportions of “1” and “0” are extreme. Usually, imbalanced binary
data sets are common in real applications, where sometimes the proportion of “1”
in the observed matrix X can be less than 5%. In such a case, err0 is more likely
to occur than err1, and hence it seems inappropriate to give them equal weights.
In imbalanced cases, a balanced error rate 0.5 × (Nerr0/N0 + Nerr1/N1) is more
appropriate [46]. To decide whether the predicted quantitative value represents
a “0” or a “1”, a threshold value has to be selected. This threshold value can be
selected by minimizing the balanced error rate in a training set after which it can
be applied to a test set in order to prevent biased (too optimistic) results.

2.4.2 Cross validation

The training error is an overly optimistic estimator of the generalization error,
which can be intuitively understood as the average misclassification rate in pre-
dicting an independent test set. Thus, we use cross validation (CV) to approxi-
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mate the generalization error. In this chapter, we use the CV algorithm named
EM-Wold [47, 48]. In this approach, validation sets of elements of the matrix
X are selected in a diagonal style rather than a row wise style. The left out
part is considered as missing. In this way the prediction of the left out part
is independent of the left out part itself. It is possible to use this approach as
all the component models in this paper can handle missing data. A 7-fold CV
procedure was used for all calculations in this paper. In each of these folds, a
component model is developed taking the missing data into account. The model
is then used to make a prediction of the missing elements. This is repeated until
all elements of X have been predicted in this way. The threshold of converting
the continuous predictions to binary predictions in CV was the same as the one
used in computing the training error.

2.5 Data Sets

2.5.1 Real data sets

The data we used is from the Genomic Determinants of Sensitivity in Cancer
1000 (GDSC1000) [30]. To facilitate the interpretability of the results, only three
cancer types are included in the data analysis: BRCA (breast invasive carcinoma,
48 human cell lines), LUAD (lung adenocarcinoma, 62 human cell lines) and
SKCM (skin cutaneous melanoma, 50 human cell lines). Each cell line is a sample
in the data analysis. For these samples, three different binary data sets are
available: mutation, copy number aberration (CNA) and methylation data. For
the mutation data, there are 198 mutation variables. Each variable is a likely
cancer driver or suppressor gene. A gene is labeled as “1” when it is classified as
mutated in a sample and as “0” when classified as wild type. The mutation data
is very imbalanced (supplemental Fig. S2.1 a): roughly 2% of the data matrix is
labeled as “1”. The CNA data has 410 observed CNA variables. Each variable is
a copy number region in a chromosome. It is labeled as “1” for a specific sample
when it is identified as aberrated and it is labeled as “0” otherwise. The CNA
data set is also imbalanced (supplemental Fig. S2.1 b): roughly 7% of the data
matrix is labeled as “1”. For the methylation data, there are 38 methylation
variables. Each variable is a CpG island located in gene promotor region. In
each variable, “1” indicates a high level of methylation and “0” indicates a low
level. The methylation data set is relatively balanced compared to other data
sets (supplemental Fig. S2.1 c): roughly 27% of the data matrix is labeled as “1”.

2.5.2 Simulated binary data sets

Binary data matrices with an underlying low dimensional structure can be sim-
ulated either from a latent variable model or as the noise corrupted version of a
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structured binary data set. In the first case the data generating process is con-
sidered to provide a quantitative data set while there is a binary read out. In the
second case the data generating process is considered to provide a binary data
set. We use both of these two approaches to study the properties of different
binary PCA methods.

Simulated binary data based on the logistic PCA model

Data sets with different degrees of imbalance and with low dimensional structures
were simulated according to the logistic PCA model. The offset term µ is used
to control the degree of imbalance and the log-odds Θ is defined to have a low
dimensional structure. The observed binary matrix X is generated from the
corresponding Bernoulli distributions.

Each element in the J × R loading matrix B is sampled from the standard
normal distribution. The Gram-Schmidt algorithm is used to force BTB = IR.
R is set to 3. The simulated I × R score matrix A has three group structures
in the samples. I samples are divided into three groups of equal size. The three
group means are set manually to force sufficient difference between the groups.
The first two group means are set to a∗1 = [2,−1, 3]T and a∗2 = [−1, 3,−2]T. The
third group mean is a∗3 = [0, 0, 0]T−a∗1−a∗2. The scores in first group are sampled
from the multivariate normal distribution N(a∗1, IR), the scores in second group
from N(a∗2, IR) and the scores in the third group from N(a∗3, IR). In this way,
scores between groups are sufficiently different and scores within the same group
are similar.

When the elements in ABT are close to 0, the corresponding probabilities are
close to 0.5. In this case, the binary observations are almost a random guess.
When their absolute values are large, the corresponding probabilities are close
to 1 or 0, the binary observations are almost deterministic. The scale of ABT

should be in a reasonable interval, not too large and not too small. A constant C
is multiplied to ABT to control the scale for generating proper probabilities. In
addition, the offset term µ is included to control the degree of imbalance in the
simulated binary data set. After Θ = CABT + 1µT is simulated as above, it is
transformed to the probability matrix Π by the logistic function φ() and xij in
X is a realization of Bernoulli distribution with parameter pij, which is the ijth

element of probability matrix Π.

Simulated binary data based on noise corruption of pre-structured bi-
nary data

Another approach of simulating binary data is by the noise corruption of a pre-
structured data set. Compared to the latent variable model, this approach pro-
vides an intuitive understanding of the low dimensional structure in the observed
binary data. Pre-structured binary data set Xtrue has structured and unstruc-
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tured parts. The goal of the current simulation is to find the variables that belong
to the structured part, while the goal of the previous simulation is to see how well
the whole data set can be approximated. The structured part is simulated as fol-
lows. R different I dimensional binary vectors are simulated first, each element is
sampled from the Bernoulli distribution with probability p, which is the degree of
imbalance in the binary data simulation. Each of these R binary vectors is repli-
cated 10 times to form the structured part. In the unstructured part of Xtrue, all
the elements are randomly sampled from Bernoulli distribution with probability
p. The observed binary data X is a noise corrupted version of the pre-structured
binary data set Xtrue. If the noise level is set to 0.1, all the elements in the binary
data Xtrue have a probability of 0.1 to be bit-flipped. The observed binary matrix
X, has R groups of 10 highly correlated variables and the other variables are not
correlated. The R groups are taken as the low dimensional structure. The above
simulation process is illustrated in the supplemental Fig. S2.4.

2.6 Results

All the computations are done in R [49]. The linear PCA model is fitted using
the SVD method after centering the data [50]. The Gifi method is fitted using
the alternating least squares approach by Homals package [36]. The logistic PCA
and logistic PPCA models are fitted using an MM algorithm with offset term
[43, 35]. The default stopping criterion is used for all the approaches.

2.6.1 Balanced simulation

The goal of this simulation is to evaluate the abilities of the four approaches in
finding back the embedded low dimensional structures in the sample space and
variable space. The simulation process is based on the logistic PCA model. The
offset term µ is set to 0 to simulate balanced binary data. The parameters are set
to I = 99, J = 50, R = 3, C = 10. The simulated balanced binary data are shown
in supplemental Fig. S2.2. First a classical PCA on the simulated probability
matrix Π and the log-odds Θ was performed. Fig. 2.1 shows the score plots of
these two PCA analyses. The difference between the score plots of linear PCA on
Π (Fig. 2.1 a) and on log-odds Θ (Fig. 2.1 b) is obvious. The scores of the linear
PCA model on Π lie in the margin of the figure, while for Θ, they lie more in the
center of the figure. This difference is related to the nonlinear logistic function φ(),
which transforms Θ to Π. Furthermore, PCA on the log-odds matrix describes
more variation in the first two PCs.

Logistic PCA, logistic PCA, Gifi and linear PCA are used to model the binary
matrix X. Two principal components are used. Offset terms are included in the
model. The score plots produced by these different approaches are shown in
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Figure 2.1: Score plot of the first two principal components (PCs) derived from
linear PCA on the probability matrix Π (left) and log-odds matrix Θ (right) used
in the binary data simulation. G1, G2 and G3 are three simulated groups in the
samples.

Fig. 2.2. The similarity between Fig. 2.1 and Fig. 2.2 indicates that the logistic
PCA model approximates the underlying log-odds Θ from the binary observation
X, while the other approaches approximate the probability matrix Π.

Another observation is that the score plots derived from logistic PPCA (Fig. 2.2
a), Gifi (Fig. 2.2 c) and linear PCA (Fig. 2.2 d) are very similar except for some
scale differences. The similarity between the Gifi and linear PCA for balanced
binary data set is understandable. For binary data, the Gifi method is equivalent
to PCA on standardized binary variables. Since the proportion of “1” and “0”
of each binary variable are similar in a balanced simulated data set, the column
mean and standard deviation of each binary variable are close to 0.5. Thus the
standardization of each binary variable will change 0 and 1 binary data to -1
and 1 data. Therefore, except for the difference in scale, Gifi and linear PCA are
almost the same for balanced binary data. For logistic PPCA, the score matrix A
is a low dimensional representation of the log-odds Θ̃ from the saturated model,
A = (Θ̃ − 1µT)B, and the Θ̃ is estimated by 2m(X − 1). This is equivalent to
changing 0 and 1 to −m and m. Thus, the true difference between linear PCA
and logistic PPCA is how to find the low dimension spanned by loading matrix
B. Logistic PPCA finds it by minimizing the logistic loss and linear PCA finds
it by minimizing the least squares loss.

The training error and CV error for different models are shown in Fig. 2.3. We
add the zero component model in which only the offset term µ is included, as the
baseline for evaluating the different methods with different numbers of compo-
nents. The estimated offset µ̂ in the zero component model is the column mean
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Figure 2.2: Score plot of first two PCs produced by the four different approaches.
a: logistic PPCA; b: logistic PCA; c: the Gifi method; d: PCA. G1, G2 and G3
are three simulated groups in the samples.
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of X for PCA and the Gifi method, while it is the logit transform of the column
mean of X for logistic PPCA and logistic PCA. All approaches successfully find
the three components truely underlying the data. It can also be observed that
logistic PCA is more eager to overfit the data. It shows a lower balanced error
rate, but a higher CV error rate for more than three components compared to
the other methods.
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Figure 2.3: The balanced training error (a) and CV error (b) for the balanced
simulated data set produced by four different approaches with different number
of components. a: training error; b: CV error. log ppca: logistic PPCA; log pca:
logistic PCA; gifi: the Gifi method; pca: linear PCA.

2.6.2 Imbalanced simulation

The goal of the imbalanced simulation is to evaluate the effect of imbalanced
simulated data on the ability of the four approaches in finding back the underlying
low dimensional structures in variable space. Since the offset µ in logistic PCA
model can be interpreted as the log-odds of marginal probabilities, we can use
the log-odds of the empirical marginal probabilities from the real data sets with
different degrees of imbalance as the offset in the simulation. The simulation
process is based on the logistic PCA model. The offset term µ is set to log-odds
of column means of real data to simulate imbalanced binary data. The parameters
I, J are set to the size of corresponding real data. The constant C is selected as
20, R is set to 3. The simulated data is shown in supplemental Fig. S2.3. We
evaluate the effect of imbalanced binary data set on the different models’ abilities
of finding back the simulated low dimensional structure. The CV error plots of
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different models are shown in Fig. 2.4. All the approaches are successful in finding
back three significant PCs.
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Figure 2.4: CV error plot for simulated imbalanced data sets with different degrees
of imbalance. a: similar as mutation data; b: similar as CNA data; c: similar as
methylation data.

2.6.3 Feature selection

For the assessment of feature importance, the binary data is simulated by noise
corruption of a pre-structured binary data set. I is 198; J is 100; R is set to 3. The
degree of imbalance is set to 0.2, and the noise level is 0.1. The simulated data is
shown in supplemental Fig. S2.4. There are noisy corrupted structures in the first
30 variables. For feature selection purposes we estimate the importance of each
feature in the model. This is performed as follows, 1

3
(b2j1 + b2j2 + b2j3), where bj2 is

the loading in the 2nd PCs for jth variable, is taken as the importance measure.
The process is repeated 15 times, the mean and standard deviation of the average
squared loading for the 100 variables are shown in Fig. 2.5. It can be observed
that highly correlated binary variables have large loadings. The variance of the
loadings derived from logistic PCA is much higher than other approaches. This
indicates that the logistic PCA model cannot make stable estimation of loadings.

2.6.4 Real data

The binary mutation, CNA and methylation data sets are analysed using the four
different approaches. The score plots and error plots from different approaches
on the real mutation data set are shown in Fig. 2.6. The CV results of PCA,
Gifi and logistic PCA in Fig. 2.6 f do not support the assumption that a low
dimensional structure exists in the mutation data. For the CV result of logistic
PPCA (Fig. 2.6 f), the minimum CV error was achieved using three components.
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Figure 2.5: Barplot with one standard deviation error bar of the mean square
loadings of linear PCA model (a), the Gifi method (b), logistic PPCA (c) and
logistic PCA (d).
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However, this minimum was only slightly lower than the zero component model.
Although the CV result of logistic PPCA is ambiguous, we can observe four
clusters in the score plot.

To explore the clusters in more detail, Fig. 2.7 shows the loading plot and
score plots with different mutation status of the logistic PPCA model. With
the corresponding loading values (Fig. 2.7 a) we determined that these clusters
were largely defined by TP53, BRAF and KRAS mutation status. Interestingly,
these genes also have the highest mutational load, suggesting that variables with
a higher aberration frequency contain more information. Cluster 1 (c1 in Fig. 2.7
b) is BRAF-mutant and TP53-mutant type; while cluster 2 (c2 in Fig. 2.7 b) is
BRAF-mutant and TP53-wild type. Cluster 3 (c3 in Fig. 2.7 c) mostly consists
of BRAF-wild and TP53-mutant cell lines, a configuration that often occurs in
all three analyzed cancer types. Cluster 4 (c4 in Fig. 2.7 c) contains BRAF-wild
and TP53-wild type cell lines, which again is a configuration that occurs across
cancer types. Finally, we observed sub-clusters of LUAD cell lines towards the
bottom of cluster 3 and 4, which consist of KRAS-mutant cell lines (Fig. 2.7 d).
As BRAF and KRAS mutations both activate the MAPK pathway in a similar
fashion, double mutants are redundant and hence rarely observed. Our results
are in line with this mutual exclusivity pattern: with the exception of a single
BRAF/KRAS double mutant, we find BRAF mutations only in cluster 1 and 2
and KRAS mutations only in cluster 3 and 4. One notable exception of the above
characterization of the clusters is CAL-51 (labeled in Fig. 2.7 c). Given its TP53
wild-type status, CAL-51 would be expected in cluster 4, but it actually resides
in the bottom-left of cluster 3. This shift left is likely due to mutations in both
SMARCA4 and PIK3CA, which have the third and fourth most negative loading
values on PC1.

The score plots and error plots from different approaches on CNA data are
shown in Fig. 2.8. There is some evidence from the CV results from all the models
in Fig. 2.8 f for a five dimensional structure in the data. However, in the score
plots of Fig. 2.8, the samples with different cancer types are not well separated
and there is no clear evidence of natural clusters. Therefore, we do not zoom in
further on this data type.

The score plots and error plots from different approaches on methylation data
are shown in Fig. 2.9. The three cancer types are well separated in all the score
plots. The similar and specific structure in the score plots of logistic PPCA,
the Gifi method and linear PCA may be related to the unique structure of the
methylation data (supplemental Fig. S2.1 c). Different cancer types have very
different methylation patterns, represented by unique sets of features. In addition,
there is some evidence from the CV results from all the models in Fig. 2.9 f for a
two dimensional structure in the data.

We use the score plot derived from logistic PPCA model on methylation data
as an example to interpret the result. The first two principal components from
the logistic PPCA applied to the methylation data show three clusters, which
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Figure 2.6: Score plot of the first two PCs, training and CV error plot of the
four different approaches for the mutation data. a: score plot of logistic PPCA ;
b: score plot of logistic PCA; c: score plot of the Gifi method; d: score plot of
PCA; e: training error plot; f : CV error plot. BRCA: breast invasive carcinoma;
LUAD: lung adenocarcinoma; SKCM: skin cutaneous melanoma. The legend of
the training error and CV error plot is the same as Fig. 2.3.



2.6. Results 27

a

Lo
ad

in
gs

 o
n 

PC
2

b

Scores on PC1

Sc
or

es
 o

n 
PC

2

Loadings on PC1

Scores on PC1

Sc
or

es
 o

n 
PC

2

c d

Scores on PC1

Sc
or

es
 o

n 
PC

2

c1

c2

c4

c3

CAL-51

Figure 2.7: Loading plot (a) and score plots of the first two PCs derived from
logistic PPCA model on mutation data. The score plots (b, c, d) are labeled
according to the mutation patterns. b: BRAF mutation labeled score plot; c:
TP53 mutation labeled score plot; d: KRAS mutation labeled score plot. Red
square: mutated; black dot: wild type. c1, c2, c3 and c4 are the plausible four
clusters in the samples on mutation data.
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Figure 2.8: Score plot of the first two PCs, training and CV error plot of the four
different approaches for the CNA data. a: score plot of logistic PPCA; b: score
plot of logistic PCA; c: score plot of the Gifi method; d: score plot of PCA; e:
training error plot; f : CV error plot. The legends for the score plot and training
error plot are the same as Fig. 2.4.
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Figure 2.9: Score plot of the first two PCs, training and CV error plot of the four
different approaches for the methylation data. a: score plot of logistic PPCA ;
b: score plot of logistic PCA; c: score plot of the Gifi method; d: score plot of
PCA; e: training error plot; f : CV error plot. The legends for the score plot and
training error plot are the same as Fig. 2.4.
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perfectly represent the three cancer types (Fig. 2.9 a). The corresponding loading
values also roughly fall into three cancer type specific clusters (Fig. 2.10), as most
variables are exclusively non-zero in a single cancer type. Notable exceptions are
GSTM1 and ARL17A, which are non-zero in two cancer types and hence each
reside between two clusters, and variables GSTT1 and DUSP22, which are non-
zero in all three cancer types and hence reside towards the center of the plot.
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Figure 2.10: Loading plot of logistic PPCA model on methylation data. The gene
names corresponding to the methylation variables, which are interpreted in the
paper, are labeled on the plot.

2.7 Discussion

In this chapter, four methods were discussed that all aim to explore binary data
using low dimensional scores and loadings. It was shown that each of the meth-
ods has different goals and therefore produces slightly different results. Linear
PCA (without the standardization processing step) treats the binary data as
quantitative data and tries to use low rank score and loading matrices to fit the
quantitative data. For binary data, the quantification process in the Gifi method
is simply a standardization of the binary variables. After quantification, the Gifi
method tries to use low rank score and loading matrices to fit the quantified bi-
nary variables. Both logistic PPCA and logistic PCA assume that the binary
data follows a Bernoulli distribution, and try to find an optimal estimation of
the log-odds matrix, which lies in the low dimensional space. Logistic PCA tries
to estimate the low dimensional log-odds matrix directly; while logistic PPCA
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estimates this matrix by the projection of the log-odds matrix from the saturated
model on a approximated low dimensional space.

For all the four approaches it is not the degree of imbalance which is the
problem. As shown in our simulation results, the low dimensional structure of
binary variables, which can be simulated from a latent variable model or by noise
corruption of a pre-structured binary data set, is the key issue for the results
of data analysis, rather than the degree of imbalance of the data set. When
there is a low dimensional structure in our simulation process, all the approaches
can successfully find the correct number of components with different degrees of
imbalance.

In both the analysis of the simulated data and of the real data, the perfor-
mance of the linear PCA method, in the criteria of training error and CV error,
is similar to other specially designed algorithms for binary data. In addition,
since the global optimum of the linear PCA model can always be achieved, the
solution is very stable. However, the linear PCA model on binary data obviously
contradicts the mathematical characteristics of binary data and the assumptions
of the linear PCA model itself. In addition, the fitted values, elements in the
product of score and loading matrix, can only be regarded as an approximation
to quantitative 0 and 1, and are thus difficult to interpret.

The results of linear PCA and the Gifi method are very similar, especially
when the degree of imbalance in each variable is approximately equal. Further-
more, there are signs of overfitting in the analysis of the CNA data by the Gifi
model. However, compared to linear PCA, the interpretability of the Gifi method
is better. The mathematical characteristics of binary data are taken into account
from the geometrical perspective and the solutions can be interpreted as an ap-
proximation of the optimally quantified binary variables.

On the other hand, logistic PPCA and logistic PCA methods take into account
the mathematical characteristics of binary data from the probabilistic perspective.
Fitted values, elements in the product of the derived score and loading matrices,
can be interpreted as the log-odds for generating the binary data, and the log-odds
can again be transformed to probability. The problem for logistic PCA is that it
is not robust with respect to the score and loading estimation, although it is able
to select the correct number of components [43]. Since both score matrix A and
loading matrix B are free parameters to fit in the optimization, the estimation
of ABT will not hesitate to move to infinity to minimize the loss function. This
represents itself in such a way that logistic PCA is prone to overfit (as can be
seen from the CV results) and the large variation in the loading estimation. The
non-robustness problem is mitigated in the logistic PPCA model. Since only the
loading matrix B is freely estimated in logistic PPCA to find the optimal model,
while the score matrix A is fixed given the loadings, the logistic PPCA model is
less prone to overfitting. Thus, the estimation of the loadings of binary variables
is more stable compared to logistic PCA. Furthermore, since the fitted values
are the linear projection of the log-odds matrix of the saturated model, its scale
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is constrained by the scale of the approximate log-odds matrix of the saturated
model, which can be specified in advance.

When assuming a probabilistic generating process is underlying the binary
data we recommend to use the parametric logistic PPCA model. When such an
assumption is not valid and the data is considered as given, the nonparametric
Gifi model is recommended.
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Figure S2.1: Heatmap of the real data sets. White color: “0”; black color: “1”.
a: mutation data; b: CNA data; c: methylation data. BRCA: breast invasive
carcinoma; LUAD: lung adenocarcinoma; SKCM: skin cutaneous melanoma.
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Figure S2.2: Heatmap of the simulated balanced data set with low dimensional
structure. White color: “0”; black color: “1”. G1, G2 and G3 are three groups
in the samples during simulation.
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Figure S2.3: Heatmap of simulated imbalanced binary data with different degrees
of imbalance. White color: “0”; black color: “1”. a: similar as mutation data; b:
similar as CNA data; c: similar as methylation data. No group structures are in
the samples.
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Figure S2.4: Heatmap of the pre-structured binary data (a) and noise corrupted
binary data (b). White color: “0”; black color: “1”.





Chapter 3

Robust logistic PCA model

Although the projection based logistic PCA model works well in our previous
data analysis, the idea of projection in the context of multivariate binary data
is not straightforward. Furthermore, the results of the model are related to the
specification of the parameter m, which is the approximation of the infinity in
the saturated model. In addition, this approach is difficult to be generalized to
the data fusion of multiple data sets with different data types. Therefore, in this
chapter we focus on developing a robust version of logistic PCA model without
the involvement of projection.

The non-robustness of the standard logistic PCA model, manifested as some
estimated parameters diverge towards infinity, is because of the used exact low
rank constraint, which is specified as the multiplication of low rank score and
loading matrices. Therefore, we propose to fit a logistic PCA model through
non-convex singular value thresholding to alleviate the non-robustness issue. An
efficient MM algorithm is implemented to fit the model and a missing value based
CV procedure is introduced for the model selection. In addition, we re-express the
logistic PCA model based on the latent variable interpretation of the generalized
linear model on binary data. The multivariate binary data set is assumed to be
the sign observation of an unobserved quantitative data set, on which a low rank
structure is assumed to exist. The latent variable interpretation of the logistic
PCA model not only makes the assumption of low rank structure easier to under-
stand, but also provides us a way to define signal-to-noise ratio in multivariate
binary data simulation. Our experiments on realistic simulations of imbalanced
binary data and low signal-to-noise ratio show that the CV error based model se-
lection procedure is successful in selecting the proposed model. And the selected
model demonstrates superior performance in recovering the underlying low rank
structure compared to models with convex nuclear norm penalty and exact low
rank constraint. Finally, a binary CNA data set is used to illustrate the proposed

37
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methodology in practice. 1

3.1 Background

Logistic PCA [34, 43] is motivated from the probabilistic interpretation of the
classical PCA model with Gaussian distributed error. The extension of the clas-
sical PCA model to the logistic PCA model is similar to the extension of linear
regression to logistic linear regression. In the classical PCA model, the low rank
constraint is imposed on the conditional mean of the observed quantitative data
set, while in the logistic PCA model, the low rank constraint is imposed on the
logit transform of the conditional mean of the observed binary data. Therefore,
the logistic PCA model can also be re-expressed in a similar way as the latent
variable interpretation of the generalized linear models (GLMs) on binary data
[13]. In logistic PCA, the observed binary data set can be assumed as the sign
observation of an unobserved quantitative data set, on which low rank structure
is assumed to exist. This intuitive latent variable interpretation not only facili-
tates the understanding of the low rank structure in the logistic PCA model, but
also provides a way to define the signal-to-noise ratio (SNR) in the simulation of
multivariate binary data.

However, the standard logistic PCA model with the exact low rank constraint,
which is expressed as the multiplication of two low rank matrices, is prone to
overfitting, leading to divergence of some estimated parameters towards infinity
[43, 51]. The same overfitting problem also happens for the logistic linear regres-
sion model. If two classes of the outcome are linearly separable with respect to
an explanatory variable, the corresponding coefficient of this variable tends to
go to infinity [13]. A common trick is adding a ridge regression (quadratic) type
penalty on the coefficient vector to alleviate the overfitting issue. If we apply the
same trick on the logistic PCA model, the quadratic penalty on the loading ma-
trix is equivalent to a quadratic penalty on the singular values of a matrix, which
is the multiplication of the score and loading matrices. Details will be shown
later. Therefore, it is possible to derive a robust logistic PCA model via the
regularization of the singular values. [52] proposed to use a nuclear norm penalty
in the low rank matrix approximation framework for the binary matrix comple-
tion problem. The proposed method is similar to the logistic PCA model except
that the column offset term is not included and the exact low rank constraint is
replaced by its convex relaxation, the nuclear norm penalty. The nuclear norm
penalty, which is equivalent to applying a lasso penalty on the singular values of
a matrix, induces low rank estimation and constrains the scale of non-zeros sin-
gular values simultaneously. However, a lasso type penalty shrinks all parameters

1This chapter is based on Song, Y., Westerhuis, J.A. and Smilde, A.K., 2019. Logis-
tic principal component analysis via non-convex singular value thresholding. arXiv preprint
arXiv:1902.09486.
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to the same degree, leading to biased parameter estimation. This behavior will
further make the CV error or the prediction error based model selection proce-
dure inconsistent [26]. On the other hand, non-convex penalties, many of which
are concave functions, are capable to simultaneously achieve nearly unbiased pa-
rameter estimation and sparsity [16, 27]. Recent research [53, 54] has also shown
the superiority of non-convex singular value thresholding (applying non-convex
penalties on the singular values of a matrix) in recovering the true signal in a
low rank approximation framework under Gaussian noise. In this chapter, we
propose to fit the logistic PCA model via non-convex singular value thresholding
as a way to alleviate the overfitting problem and to induce low rank estimation
simultaneously. A MM algorithm is implemented to fit the proposed model and
an option for missing values is included. In the developed algorithm, the updat-
ing of all the parameters has an analytical form solution, and the loss function is
guaranteed to decrease in each iteration. After that, a missing value based CV
procedure is introduced for the model selection.

Based on the latent variable interpretation of the logistic PCA model, realistic
multivariate binary data sets (low SNR, imbalanced binary data) are simulated to
evaluate the performance of the proposed model and the corresponding model se-
lection procedure. It turns out that the CV error based model selection procedure
is successful in the selection of the proposed model, and the selected model has
superior performance in recovering the underlying low rank structure compared to
the model with convex nuclear norm penalty and exact low rank constraint. Fur-
thermore, the performance of the logistic PCA model as a function of the SNR in
multivariate binary data simulation is fully characterized. Finally, a binary CNA
data set is used to illustrate the proposed methodology in practise.

3.2 Latent variable interpretation of models on

binary data

3.2.1 Latent variable interpretation of the GLMs on bi-
nary data

A univariate binary response variable y is assumed to follow a Bernoulli distribu-
tion with parameter π, y ∼ Bernoulli(π). x is a multivariate explanatory variable
and x ∈ RJ . For the GLMs on binary data, we assume that the nonlinear transfor-
mation of the conditional mean of y is a linear function of x, h(E(y|x)) = xTβ,
in which h() is the link function, E(y|x) is the conditional mean, and β is a
J dimensional coefficient vector. If the inverse function of h() is φ(), we have
E(y|x) = φ(xTβ). If the logit link is used, φ(θ) = (1 + exp(−θ))−1, which is
the logistic linear regression model, and xTβ can be interpreted as the log-odds,
which is the natural parameter of Bernoulli distribution expressed in exponential
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family distribution form. If the probit link is used, φ(θ) = Φ(θ), in which Φ(θ)
is the cumulative density function (CDF) of the standard normal distribution,
which is the probit linear regression model.

The fact that the inverse link function φ() can be interpreted as the CDF of a
specific probability distribution, motivates the latent variable interpretation of the
logistic or probit linear regression [13]. y can be assumed as the sign observation
of a quantitative latent variable y∗, which has a linear relationship with the
explanatory variable x. Taking the probit linear regression as an example, the
latent variable interpretation can be expressed as,

y∗ = xTβ + ε

ε ∼ N(0, 1)

y = 1(y∗ > 0),

in which y∗ is the latent variable, ε is the error term, and 1() is the indicator
function. The probability for the observation y = 1 is Pr(y = 1|xTβ) = Pr(y∗ ≥
0) = Φ(xTβ). A similar latent variable interpretation can be applied to the
logistic linear regression model by assuming that the error term ε follows the
standard logistic distribution. The probability density function of the logistic
distribution can be expressed as,

p(ε) =
exp(− ε−µ

σ
)

σ(1 + exp(− ε−µ
σ

))2
,

in which µ and σ are the location and scale parameters. In the standard logistic
distribution, µ = 0, σ = 1. The inverse-logit function φ() is the CDF of the
standard logistic distribution. The assumption of µ = 0 for the ε is reasonable
since we want to use the linear function xTβ to capture the conditional mean of y∗.
The assumption of σ = 1 for the ε seems restrictive, however scaling the estimated
β̂ by a positive constant as β̂/σ will not change the conclusion of the model. Since
the assumption of logistic distributed noise is not very straightforward, the latent
variable interpretation of the logistic linear regression model is not widely used.

The above latent variable interpretation of the GLMs on binary data is nat-
urally connected to the generating process of binary data [32]. Binary data can
be discrete in nature, for example when females and males are classified as “1”
and “0”. Another possibility is that there is a continuous process underlying the
binary observation. For example in a toxicology study, the binary outcome of a
subject being dead or alive relates to the dosage of a toxin used and the subject’s
tolerance level. The tolerance varies for different subjects, and the status (dead
or alive) of a specific subject depends on whether its tolerance is higher than the
used dosage or not. Thus, a continuous tolerance level is underlying the binary
outcome [13]. If we assume our binary data set is generated from a continuous
process, it is natural to use the latent variable interpretation of the probit link;
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or if it is assumed from a discrete process, we can use the logit link, and interpret
it from the probabilistic perspective rather than the latent variable perspective.
However, usually, the difference between the results derived from the GLMs using
logit or probit link is negligible [13].

3.2.2 Latent variable interpretation of the logistic PCA
model

The measurement of J binary variables on I samples results in a binary matrix
X(I × J), whose ijth element xij equals “1” or “0”. The logistic PCA model on
X can be interpreted as follows. Conditional on the low rank structure assump-
tion, which is used to capture the correlations observed in X, elements in X are
independent realizations of the Bernoulli distributions, whose parameters are the
corresponding elements of a probability matrix Π(I × J), E(X|Π) = Π. Assum-
ing the natural parameter matrix, which is the logit transform of the probability
matrix Π, is Θ(I × J), we have h(Π) = Θ and Π = φ(Θ), in which h() and φ()
are the element-wise logit and inverse logit functions. The low rank structure is
imposed on Θ in the same way as in a classical PCA model, Θ = 1µT + ABT, in
which µ(J × 1) is the J dimensional column offset term and can be interpreted
as the logit transform of the marginal probabilities of the binary variables. A
(I×R) and B(J×R) are the corresponding low rank score and loading matrices,
and R, R � min(I, J), is the low rank. Therefore, for the logistic PCA model,
we have E(X|Θ) = φ(Θ) = φ(1µT + ABT). On the other hand, in a classical
PCA model, we have E(X|Θ) = Θ = 1µT + ABT, which is equivalent to using
the identity link function. Furthermore, unlike in the classical PCA model, the
column offset µ has to be included into the logistic PCA model to do the model
based column centering. The reason is that the commonly used column centering
processing step is not allowed to be applied on the binary data set as the column
centered binary data is not binary anymore.

The logistic PCA model can be re-expressed in the same way as the latent
variable interpretation of the GLMs on binary data. Our binary observation
X is assumed to be the sign observation of an underlying quantitative data set
X∗(I × J), and for the ijth element, we have xij = 1 if x∗ij ≥ 0 and xij = 0 vice
versa. The low rank structure is imposed on the latent data set X∗ as X∗ = Θ+E,
in which E(I × J) is the error term, and its elements follow a standard logistic
distribution. The latent variable interpretation of the logistic PCA model can be
expressed as,

X∗ = Θ + E

εij ∼ Logistic(0, 1), i = 1 · · · I, j = 1 · · · J
xij = 1(x∗ij > 0), i = 1 · · · I, j = 1 · · · J.

Similar to the latent variable interpretation of the logistic linear model, the
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assumption of εij ∼ Logistic(0, 1) is not restrictive, since scaling the estimated

Θ̂ by a positive constant σ will not change the conclusions from the model.
When the standard normal distributed error is used in the above derivation, we
get the probit PCA model. The latent variable interpretation of the logistic
or probit PCA not only facilitates our understanding of the low rank structure
underlying a multivariate binary data, but also provides a way to define the SNR
in multivariate binary data simulation.

3.3 Logistic PCA via singular value threshold-

ing

3.3.1 The standard logistic PCA model

Assume the column centered Θ is Z, Z = Θ − 1µT = ABT. In the standard
logistic PCA model, the exact low rank constraint is imposed on Z as the multi-
plication of two rank R matrices A and B. The negative log likelihood of fitting
the observed X conditional on the low rank structure assumption on Θ is used
as the loss function. We also introduce a weight matrix W(I × J) to tackle the
potential missing values in X. The ijth element of W, wij, equals 0 when the
corresponding element in X is missing; while it is 1 vice versa. The optimization
problem of the standard logistic PCA model can be expressed as,

min
µ,Z

− log(p(X|Θ,W))

= − log(
I∏
i

J∏
j

(p(xij|θij))wij)

= −
I∑
i

J∑
j

wij [xij log(φ(θij)) + (1− xij) log(1− φ(θij))]

subject to Θ = 1µT + Z

rank(Z) = R

1TZ = 0,

(3.1)

in which the constraint 1TZ = 0 is imposed to make µ identifiable. Unfortunately,
the classical logistic PCA model tends to overfit the observed binary data. In
order to decrease the loss function in equation 3.1, θij tends to approach positive
infinity when xij = 1, and negative infinity when xij = 0. This overfitting problem
will be explored in more detail below. In logistic linear regression, this overfitting
problem can be solved by adding a quadratic penalty on the coefficient vector to
regularize the estimated parameters. A similar idea can be applied to the logistic
PCA model by taking it as a regression type problem. The columns of the score
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matrix A are taken as the unobserved explanatory variables, while the loading
matrix B are the coefficients. If we decompose Z into a R truncated SVD as
Z = UDVT, then A = U and B = VDT. It is easy to show that the quadratic
penalty ||B||2F =

∑
r σ

2
r , in which σr is the rth singular value of Z. Therefore,

it is possible to derive a robust logistic PCA model by thresholding the singular
values of Z.

3.3.2 Logistic PCA via non-convex singular value thresh-
olding

The most commonly used penalty function in thresholding singular values is the
nuclear norm penalty, and it has been used in solving many low rank approx-
imation problems [55, 56, 52, 51]. If the SVD decomposition of matrix Z is
Z = UDVT, the nuclear norm penalty can be expressed as

∑
r σr, in which σr

is the rth singular value. The nuclear norm penalty is the convex relaxation of
the exact low rank constraint and can be regarded as applying a lasso penalty
on the singular values of a matrix. Therefore, the nuclear norm penalty has the
same problem as the lasso penalty, it shrinks all singular values to the same de-
gree. This leads to a biased estimation of the large singular values. This behavior
will further make the prediction error or CV error based model selection proce-
dure inconsistent [26]. As an alternative, non-convex penalties can shrink the
parameters in a nonlinear manner to achieve both nearly unbiased and sparse
parameter estimation [16, 27]. Therefore, we propose to replace the exact low
rank constraint in the logistic PCA model by a concave penalty on the singular
values of Z to achieve a low rank estimation and to alleviate the overfitting issue.
We include the frequentist version of the generalized double Pareto (GDP) [27]
shrinkage, the smoothly clipped absolute deviation (SCAD) penalty [16] and the
Lq:0<q≤1 penalty [57] as examples of concave penalties in our implementation. The
concave penalty on the singular values of Z can be expressed as g(Z) =

∑
r g(σr),

in which g() is a concave function in Table 3.1, σr is the rth singular value of Z.
The thresholding properties of the exact low rank constraint, the nuclear norm
penalty, and various concave penalties with different values of hyper-parameter
are shown in Fig. 3.1. Since the nuclear norm penalty is a linear function of the
singular values, it is both convex and concave with respect to the singular values.
Also, it is a special case of the Lq penalty when setting q = 1. Thus, the algorithm
developed in this chapter also applies to the model with a nuclear norm penalty.
The penalized negative log likelihood for fitting the observed binary data X of
the logistic PCA with a concave penalty can be shown as,

min
µ,Z

− log(p(X|Θ,W)) + λg(Z)

subject to Θ = 1µT + Z

1TZ = 0,

(3.2)
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in which log(p(X|Θ,W)) and g(Z) are as described above, and λ is the tuning
parameter.

Table 3.1: Some commonly used concave penalty functions and their supergradi-
ents. σ is taken as the singular value and q, λ and γ are tuning parameters. The
supergradient is the counter-concept of the subgradient of a convex function in
concave analysis, and it is mainly used in the developed algorithms.

Penalty Formula Supergradient

Nuclear norm λσ λ

Lq λσq
{

+∞ σ = 0
λqσq−1 σ > 0

SCAD


λσ σ ≤ λ
−σ2+2γλσ−λ2

2(γ−1) λ < σ ≤ γλ
λ2(γ+1)

2
σ > γλ


λ σ ≤ λ
γλ−σ
γ−1 λ < σ ≤ γλ

0 σ > γλ

GDP λ log(1 + σ
γ
) λ

γ+σ

<
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Figure 3.1: Thresholding properties of the exact low rank constraint, Lq, SCAD
and GDP penalties when the same degree of shrinkage is achieved. exact: exact
low rank constraint, L1: nuclear norm penalty. σ indicates the original singular
value while η is the value after thresholding. Note that in contrast to SCAD
and GDP, the Lq:0<q<1 penalty has a small discontinuity region, thus continuous
thresholding can not be achieved.

3.4 Algorithm

Based on the MM principle [58, 59], a MM algorithm is derived to fit the logistic
PCA model via non-convex singular value thresholding. The derived algorithm is
guaranteed to decrease the objective function in equation 3.2 during each iteration
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and the analytical form for updates of all the parameters in each iteration and
are presented below. Although the following derivation focuses on using the logit
link function, the option for probit link is included in our implementation.

3.4.1 The majorization of the negative log-likelihood

The negative log-likelihood f(Θ) = − log(p(X|Θ,W)) can be majorized to a
quadratic function of Θ by exploiting the upper-bound of the second order gra-
dient of f(Θ). Suppose fij(θij) = − [xij log(φ(θij)) + (1− xij) log(1− φ(θij))], in
which xij and θij are the ijth elements of X and Θ, f(Θ) can be expressed as

f(Θ) =
∑I

i

∑J
j wijfij(θij). When the logit link is used, the following results can

be easily derived out, ∇fij(θij) = φ(θij)−xij, ∇2fij(θij) = φ(θij)(1−φ(θij)). As-
sume that ∇2fij(θij) is upper bounded by a constant L. Since ∇2fij(θij) ≤ 0.25
when the logit link is used [43] we can set L = 0.25. Take f(θ) as the general
representation of fij(θij), according to the Taylor’s theorem and the assumption
that ∇2f(θ) ≤ L for θ ∈ domainf , we have the following inequality,

f(θ) = f(θk)+ < ∇f(θk), θ − θk > +
1

2
(θ − θk)T∇2f(θk + t(θ − θk))(θ − θk)

≤ f(θk)+ < ∇f(θk), θ − θk > +
L

2
(θ − θk)2

=
L

2
(θ − θk +

1

L
∇f(θk))2 + c,

(3.3)
where θk is the kth approximation of θ, t ∈ [0, 1] is an unknown constant, c
is an unknown constant doesn’t depend on Θ. Therefore, we have the following
inequality about fij(θij), fij(θij) ≤ L

2
(θij−θkij+ 1

L
∇fij(θkij))2+c. Assume ∇f(Θk)

is the matrix forms of ∇fij(θkij), ∇f(Θk)) = φ(Θk) − X. The inequality of

f(Θ) can be derived out as f(Θ) ≤ L
2

∑I
i

∑J
j wij[(θij − θkij + 1

L
∇fij(θkij))2] + c =

L
2
||W � (Θ−Θk + 1

L
∇f(Θk))||2F + c, in which � indicates element-wise matrix

multiplication. Following [60], we further majorize the weighted least-squares
upper bound into a quadratic function of Θ as

L

2
||W � (Θ−Θk +

1

L
∇f(Θk))||2F

≤ L

2
||Θ−Hk||2F + c

Hk = Θk − 1

L
(W �∇f(Θk)).

(3.4)

3.4.2 The majorization of the non-convex penalty

Suppose σr is the rth singular value of Z, and g() is a concave function. From the
definition of concavity [61], we have g(σr) ≤ g(σkr ) + ωkr (σr − σkr ) = ωkrσr + c, in
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which σkr is the rth singular value of the kth approximation Zk and c is an unknown
constant. Also, ωkr ∈ ∂g(σkr ) and ∂g(σkr ) is the set of supergradients of function
g() at σkr . For all the concave penalties used in Table 3.1, their supergradient is
unique, thus ωkr = ∂g(σkr ). Therefore, g(Z) =

∑
r g(σr(Z)) can be majorized as

follows

g(Z) =
∑
r

g(σr)

≤
∑
r

ωkrσr + c

ωkr = ∂g(σkr ).

(3.5)

3.4.3 Block coordinate descent

Summarizing the above two majorization steps, we have the following majorized
problem during the kth iteration.

min
µ,Z

L

2
||Θ−Hk||2F + λ

∑
r

ωkrσr

subject to Θ = 1µT + Z

1TZ = 0

Hk = Θk − 1

L
(W �∇f(Θk))

ωkr = ∂g(σkr ).

(3.6)

This majorized problem during the kth iteration can be solved by the block coor-
dinate descent algorithm.

Updating µ

When fixing Z in equation 3.6, the analytical form solution of µ is the column
mean of Hk, µ = 1

I
(Hk)T1.

Updating Z

After deflating the offset set term µ in equation 3.6, the optimization problem
of Z becomes minZ

L
2
||Z− JHk||2F + λ

∑
r ω

k
rσr, in which J is the column center-

ing operator J = I − 1
I
11T. This optimization problem is equivalent to finding

the proximal operator of the weighted sum of singular values, for which the an-
alytical form global solution exists [62]. If the SVD decomposition of JHk is
JHk = UDVT, the analytical form solution of Z is Z = UDzV

T, in which

Dz = Diag{max(0, dr − λωk
r

L
)}, and dr is rth element of the diagonal of D.
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Initialization

The initialization Z0 and µ0 can be set according to the user imputed values, or
by using the following random initialization strategy. All the elements in Z0 can
be sampled from the standard uniform distribution and µ0 can be set to 0. In
the following algorithm, fk indicates the objective value in equation 3.2 during
the kth iteration, the relative change of the objective value is used as the stopping
criteria. εf indicates the tolerance for the relative change of the objective value.
Pseudocode of the algorithm described above is shown in Algorithm 1.

Algorithm 1 An MM algorithm to fit the logistic PCA model via non-convex
singular value thresholding.

Input: X, λ, γ;
Output: µ, A, B;

1: k = 0;
2: Compute W for missing values;
3: Initialize µ0, Z0;
4: while (fk−1 − fk)/fk−1 > εf do
5: Θk = 1(µk)T + Zk;
6: ∇f(Θk) = φ(Θk)−X;
7: Hk = Θk − 1

L
(W �∇f(Θk));

8: ωkr = ∂g(σkr );
9: µk+1 = 1

I
(Hk)T1;

10: JH = JHk;
11: UDVT = JH;

12: Dz = Diag{max(0, dr − λωk
r

L
)};

13: Zk+1 = UDzV
T;

14: Θk+1 = µk+1 + Zk+1;
15: k = k + 1;
16: end while
17: A = U;
18: B = VDz;

3.5 Real data set and simulation process

3.5.1 Real data set

The CNA data sets in Chapter 1 is used as an example of real data sets to show
the results. The characterization of the CNA data set is shown in supplemental
Fig. S1 b.
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3.5.2 Simulation process

Multivariate binary data X is simulated according to the logistic PCA model in
a similar way as Chapter 2 except that SNR is defined and there are no group
structures in the sample space. Based on the latent variable interpretation of the

logistic PCA model, we can define the SNR as SNR =
||Z||2F
||E||2F

, in which E is the

error term, and its elements are sampled from the standard logistic distribution.
The column offset term µ can be set in the same way as in Chapter 1. However
the rank R matrix Z = ABT is simulated in a slightly different way. We first
express Z in a SVD type as Z = UDVT, in which UTU = IR, VTV = IR and the
diagonal of D contains the singular values. Elements in U and V are first sampled
from N(0, 1). After that, the column mean of U is deflated to have 1TU = 0, and
the SVD is used to force U being orthogonal. Also, V is forced to orthogonality by
the Gram-Schmidt algorithm. Then, the diagonal matrix Dpre, whose R diagonal
elements are the sorted absolute values of the samples fromN(1, 0.5), is simulated.
We express D as D = cDpre, in which c is a constant used to adjust the SNR
in the simulation of the multivariate binary data. Then Θ = 1µT + Z according
to the logistic PCA model and X∗ = Θ + E according to the latent variable
interpretation. The probability matrix Π is generated as Π = φ(Θ), in which φ()
by the inverse logit link function. Finally, the multivariate binary data set X is
generated from Bernoulli distributions with the corresponding parameters in Π.

3.6 Model assessment and model selection

In this chapter we focus on evaluating the model’s performance in estimating the
simulated parameters Θ, Π, µ and Z. Also, the CV error is defined based on the
log likelihood of fitting binary data rather than misclassifying the binary data.

3.6.1 Model assessment

After a logistic PCA model is constructed on the simulated binary data, we

have the estimated parameters µ̂, Â and B̂, and Θ̂ = 1µ̂T + ˆABT and Π̂ =
φ(Θ̂) can also be computed. The model’s ability in recovering the true Θ can
be evaluated by the relative mean squares error (RMSE), which is defined as

RMSE(Θ) =
||Θ−Θ̂||2F
||Θ||2F

, where Θ is the true parameter. The RMSEs in estimating

µ and Z are defined in the same way. In some cases the mean Hellinger distance
(MHD) to quantify the similarity between the true probability matrix Π and the
estimated Π̂ is used. Hellinger distance [63] is a symmetric measure to quantify
the similarity between two probability distributions. Assuming the parameter
of a Bernoulli distribution is π and its estimation is π̂, the Hellinger distance

is defined as HD(π, π̂) = 1√
2

√
(
√
π −
√
π̂)2 + (

√
1− π −

√
1− π̂)2. The mean
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Hellinger distance between the probability matrix Π and its estimate Π̂ is defined
as MHD(Π) = 1

I×J
∑I,J

i,j HD(πij, π̂ij).

3.6.2 Model selection

For the model selection on real data, a missing value based cross validation (CV)
procedure is proposed. The CV error is computed as follows. First, elements in
X are split into the training and test sets as follows: 10% “1”s and “0”s of X
are randomly selected as the test set Xtest, which are set to missing values, and
the resulting data set is taken as Xtrain. After getting an estimation of Θ̂ from a
logistic PCA on the Xtrain, we can index the elements, which are corresponding
to the test set Xtest, as Θ̂test. Then the CV error is defined as the negative
log-likelihood of using Θ̂test to fit Xtest.

There are two tuning parameters, γ and λ, during the model selection of the
logistic PCA model with a concave penalty. However, the performance of the
model is rather insensitive to the selection of γ for some concave penalties, which
will be shown below. After fixing the value of γ, we can use a grid search to
select a proper value of λ based on the minimum CV error. First, a sequence
of λ values can be selected from a proper searching range, after which logistic
PCA models will be fitted with the selected λ values on the training set Xtrain.
A warm start strategy, using the results of a previous model as the initialization
of the next model, is used to accelerate the model selection process. The model
with the minimum CV error is selected and then it is re-fitted on the full data set
X. Because the proposed model is non-convex and its result is sensitive to the
used initialization, it is recommended to use the results derived from the selected
model as the initialization of the model to fit the full data sets.

3.7 Results

3.7.1 Standard logistic PCA model tends to overfit the
data

In this first section we will use the CNA data as an example. The algorithm
from [43] is implemented to fit the standard logistic PCA model. Constraints,
ATA = I and 1TA, are imposed. Two different standard logistic PCA models
are constructed of the CNA data, both with three components. The first model
is obtained with low precision (stopping criteria was set to εf = 10−4) while for
the other model a high precision was used (εf = 10−8). The initialization was the
same for these two models. The low precision model converged already after 220
iterations, while the high precision model did not convergence even after 50000
iterations. The difference between the final objective values of these two models
is not large, 8.12e+03 and 7.58e+03 respectively. However, as shown in Fig. 3.2,
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the scale of the loading plots derived from these two models is very different.
When a high precision stopping criteria is used, some of the elements from the
estimated loading matrix from the standard logistic PCA model tend to become
very large.
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Figure 3.2: The loading plots of the first two components derived from the low
precision (left) and high precision (right) standard logistic PCA models.

3.7.2 Model selection of the logistic PCA model with a
concave GDP penalty

Here we use logistic PCA model with a concave GDP penalty as an example to
show the CV error based model selection procedure. The data set is simulated as
follows. The offset term µ is set to the logit transform of the empirical marginal
probabilities of the CNA data to simulate an imbalanced binary data set. Other
parameters used in the simulation are I = 160, J = 410, SNR = 1 and R = 5.
First we will show the model selection procedure of λ while the hyper-parameter γ
is fixed to γ = 1. After splitting the simulated binary data set X into the training
set Xtrain and the test set Xtest, 30 λ values are selected from the searching range
[10, 5000] with equal distance in log-space. For each λ value, a logistic PCA
with a GDP penalty (εf = 10−6, maximum iteration is 500) is constructed on
Xtrain and for each model we evaluate its performance in estimating the simulated
parameters. As shown in the model selection results (Fig. 3.3), the selected
model with minimum CV error can also achieve approximately optimal RMSEs
in estimating the simulated Θ, Z and µ . However, the rank of the estimated Z
from the selected model is 3, which is different from the simulated rank R = 5.
The reason will be discussed later. The selected model is re-fitted on the full
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simulated data X, and the RMSEs of estimating Θ, Z and µ are 0.0797, 0.2064
and 0.0421 respectively.

Next, we will show the model selection process of both γ and λ. The simulated
data X is split into the Xtrain and the Xtest in the same way as described above. 30
γ values are selected from the range [10−1, 102] equidistant in log-space. For each
γ, 30 values of λ are selected from a proper searching range, which is determined
by an automatic procedure. For each value of γ, the model selection of λ is done on
the Xtrain in the same way as described above, after which the selected model is re-
fitted on the full data X. Therefore, for each value of γ, we have a selected model,
which is optimal with respect to the CV error. As shown in Fig. 3.4(left), the
difference between the RMSEs derived from these selected models is very small.
This can be caused by two reasons: the model is insensitive to the selection of γ
or the CV error based model selection procedure is not successful in selecting γ.
To clarify the correct reason, we also fit 30× 30 models on the full data X in the
same way as the above experiment. For each value of γ, the model with minimum
RMSE(Θ) is selected. As shown in Fig. 3.4(right), the value of γ does not have a
large effect on the RMSEs of the selected models, which are optimal with respect
to the RMSE(Θ). Therefore, it can be concluded that the performance of the
model is insensitive to the model selection of γ. Therefore, the strategy can be
to set a default value for γ and focus on the selection of λ.
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Figure 3.3: Model selection and performance of the logistic PCA model with a
GDP penalty. The CV error, RMSE of estimating Θ, Z and µ and the estimated
rank as a function of λ. The increased CV error and RMSEs for small λ are
the result of non-converged models after 500 iterations. The red cross marker
indicates the λ value where minimum CV error is achieved.
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Figure 3.4: The RMSE of estimating Θ, Z and µ as a function of hyper-parameter
γ of GDP penalty. Results on the left side are obtained when the optimal model is
selected based on minimum CV error while on the right hand side model selection
was based on minimum RMSE(Θ).
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3.7.3 Model selection of the logistic PCA model with other
concave penalties

For the logistic PCA models with Lq and SCAD penalty, the model is selected
and re-fitted on the full data sets in the same way as above. Fig. 3.5 shows how
the value of hyper-parameter q or γ effects the RMSEs in estimating Θ, Z and
µ from the logistic PCA models, which are optimal with respect to CV error,
with Lq penalty (left) and SCAD penalty (right). The model with Lq penalty can
achieve similar performance as the model with GDP penalty when proper value
of q is selected, while the model with SCAD penalty tends to have very large
RMSEs in estimating Θ, Z and µ for all the values of hyper-parameter γ.

q
0 0.2 0.4 0.6 0.8 1

R
M

S
E

0

0.1

0.2

0.3

0.4
Lq

#

Z

7

.

0 2 4 6 8 10

R
M

S
E

0

2

4

6

8

10
SCAD

#

Z

7

Figure 3.5: The RMSE of estimating Θ, Z and µ as a function of hyper-parameter
q in Lq penalty (left) and γ in SCAD penalty (right). The corresponding logistic
PCA models are optimal with respect to CV error.

3.7.4 The performance of the logistic PCA model using
different penalties

In this section, we compare the performance of the logistic PCA models with
the exact low rank constraint, the nuclear norm penalty, SCAD (γ = 3.7), Lq
(q = 0.5) and the GDP (γ = 1) penalty. Random initialization is used and the
maximum number of iterations is set to 10000 for all the models. Furthermore,
all models are fitted using both εf = 10−6 and εf = 10−8 to test the model’s
robustness to the stopping criteria. For the standard logistic PCA model using
the exact low rank constraint, 5 components are used. For the models with
GDP (γ = 1), nuclear norm, SCAD (γ = 3.7) and Lq (q = 0.5) penalties, the
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models are selected (the model selection results are shown in Fig. 3.3 and the
supplemental Fig. S3.1) and re-fitted on full data set in the same way as was
described above. In addition, according to the latent variable interpretation of
the logistic PCA model, the unobserved quantitative data set X∗ = Θ + E is
available in our simulation. We constructed a 5 components PCA model (with
offset term) on this latent data X∗, and this model is called the full information
model. The results of above experiment are shown in Table 3.2. Since the logistic
PCA model with nuclear norm penalty is a convex problem, the global solution
can be achieved. The results from this model are taken as the baseline to compare
other approaches. The drawback of the model with the nuclear norm penalty is
that the proposed CV error based model selection procedure tends to select a too
complex model to compensate for the biased estimation caused by the nuclear
norm penalty (supplemental Fig. S3.2, Table 3.2). Compared to the model with
nuclear norm penalty, the logistic PCA model with exact low rank constraint and
SCAD penalty tends to overfit the data, thus have bad performance in estimating
the simulated parameters Θ, Z and µ. Also these models are not robust to the
stopping criteria. Compared to the model with nuclear norm penalty, the logistic
PCA models with a GDP penalty or a Lq penalty perform well in estimating
the simulated parameters, and their results are even close to the full information
model.

Table 3.2: Comparison of the logistic PCA models with the exact low rank con-
straint, the nuclear norm penalty, the SCAD penalty, the Lq penalty, the GDP
penalty, and the full information model. The RMSEs of estimating Θ, Z and
µ, as well as the mean Hellinger distance (MHD) of estimating the simulated
probability matrix Π and the rank estimation of Ẑ are shown in the table.

penalty εf RMSE(Θ) RMSE(Z) RMSE(µ) MHD rank

exact
10−6 3.8017 7.8491 2.6023 0.0726 5
10−8 8.4955 17.0129 5.9715 0.0733 5

nuclear
norm

10−6 0.1407 0.3788 0.0701 0.0670 27
10−8 0.1405 0.3783 0.0700 0.0670 27

GDP
10−6 0.0797 0.2064 0.0421 0.0515 3
10−8 0.0786 0.2063 0.0408 0.0514 3

SCAD
10−6 3.1495 8.5635 1.5452 0.2026 88
10−8 5.6032 14.1106 3.0821 0.2109 88

Lq
10−6 0.0672 0.1836 0.0327 0.0483 4
10−8 0.0671 0.1834 0.0327 0.0484 4

full 0.0120 0.0465 0.0017 0.0258 5

The difference in the performance of the logistic PCA models with different
penalties (Table 3.2) are mainly related to how these penalties shrink the singular



3.7. Results 55

values. Therefore, we also compared the singular values of the simulated Z and
their estimations from the logistic PCA models with different penalties, and its
estimation from the full information model. The results are shown in Fig. 3.6. The
simulated low rank is 5, however the last component is overwhelmed by the noise.
Furthermore, the 4th component is less than 2 times noise level and therefore
cannot be expected to be distinguished from the noise. From Fig. 3.6(left) it
becomes clear that the logistic PCA models with exact low rank constraint and
SCAD penalty clearly overestimate the singular values of Z. And when the more
strict stopping criterion is used, the overestimation problem becomes even worse.
Fig. 3.6(right) shows that the logistic PCA model with nuclear norm penalty
underestimated the singular values of Z, and includes too many small singular
values into the model. The logistic PCA model with GDP penalty and Lq penalty
have very accurate estimation of the first three and four singular values of Z.
These results are in line with their performance measures in Table 3.2 and their
thresholding properties in Fig. 3.1. The bad performance of the model with
exact low rank constraint is mainly because the non-zero singular values are
not regularized at all (Fig. 3.1). Similarly, some of the non-zero singular values
(the values larger than γλ) are also not regularized at all for the SCAD penalty
(Fig. 3.1). This property can be more problematic for the logistic PCA model with
SCAD penalty because the selected model depends on the model with the smallest
λ value due to the used warm start strategy during the model selection process.
The low performance of the model with nuclear norm penalty is because this
penalty will over shrink the larger singular values, and the model selected based
on CV error is too complex (Fig. 3.1). On the contrary, both the models with
Lq and GDP penalties have nice thresholding properties and the corresponding
logistic models have superior performance. However, unlike SCAD and GDP, the
Lq(0 < q < 1) penalty has a small discontinuity region, continuous thresholding
can not be achieved, which could results in instable prediction [16]. Therefore,
even though the model with Lq penalty achieves slight better performance, we
still recommend to use the GDP penalty for the non-convex singular thresholding
in the logistic PCA model.

3.7.5 Performance of the logistic PCA model as a function
of SNR in the binary simulation.

In the analysis of simulated quantitative data sets using the PCA model, an
increase in SNR makes the estimation of the true underlying low rank structure
easier. Unfortunately, this is not true in the estimation of the true underlying
logistic PCA model for simulated binary data. To illustrate this, the following
experiment was performed using logistic PCA model with GDP penalty as an
example. 30 SNR values are selected from the interval [10−2, 103] equidistant in
log-space. The simulated offset term µ is set to 0 to simulate balanced binary
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data sets, the number of samples, variables, and the low rank are the same as
the experiment described above. For the binary data simulations with different
SNRs, only the constant c, which is used to adjust the SNR, changes with the
SNR. All other parameters are kept the same. For each simulated X with a
specific SNR, logistic PCA models with GDP (γ = 1) penalty and with nuclear
norm penalty are selected and re-fitted. In addition, PCA models with different
numbers of components are fitted on the latent quantitative data set X∗, and the
model with the minimum RMSE(Θ) is selected. In addition, the null model, i.e.
the logistic PCA model with only the column offset term, is used to provide a
baseline for comparison of the different approaches. The above experiments are
repeated 10 times, and their results are shown in Fig. 3.7. Results obtained from
a similar experiment but performed on imbalanced data simulation are shown in
supplemental Fig. S3.2. There, the simulated µ is set according to the marginal
probabilities of the CNA data set. Overall, the logistic PCA models with different
penalties can always achieve better performance than the null model, and the
model with a GDP penalty demonstrates superior performance with respect to
all the used metrics compared to the model with convex nuclear norm penalty.

Fig. 3.7 (left and center) shows that with increasing SNR, the estimation of the
quantitative full model improves as expected. However, for the parameters esti-
mated from the binary data this is not the case. First the estimation of the simu-
lated parameters Θ and Z improves, but when the SNR increases even further, the
estimation deteriorates again leading to a bowl shaped pattern. This pattern has
been observed before in binary matrix completion using nuclear norm penalty [52].
In order to understand this effect, considering the S-shaped logistic curve (sup-
plemental Fig. S3.3), the plot of the function E(x|θ) = φ(θ) = (1+exp(−θ))−1, in
which x and θ are a typical element of X and Θ respectively. This curve almost
becomes flat when θ becomes very large. There is no resolution anymore in these
flat regimes. A large deviation in θ has almost no effect on the logistic response.
When the SNR becomes extremely large, the scale of the simulated parameter θ is
very extreme, then even if we have a good estimation of the probability π̂ = φ(θ̂),
the scale of estimated θ̂ can be far away from the simulated θ. That is why we
observed that even though the model is able to recovered the simulated Π based
on the logistic PCA model almost exactly (Fig. 3.7 right), the estimation of Θ
and Z are not accurate (Fig. 3.7 left and center). We refer to [52] for a detailed
interpretation of this phenomenon.

3.7.6 Real data analysis

We demonstrate the proposed logistic PCA model with a GDP (γ = 1) penalty
and the corresponding model selection procedure on the CNA data set. The
model selection is done in the same way as was described above, and the result
is shown in supplemental Fig. S3.4. After that, the selected 4 components model
is re-fitted on the full data set. The score and loading plot of the first 2 compo-
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Figure 3.7: RMSE of Z (left) and Θ (middle) and the MHD of Π as a function
of increasing SNR values for simulated balanced binary data.

nents are shown in Fig. 3.8. As was explained before in [64], the CNA data set
is not discriminative for the three cancer types (illustrated in the score plot of
Fig. 3.8 left). The structure in the loading plot (Fig. 3.8 right) mainly explains
the technical characteristics of the data. Fig. 3.8 (right) shows that the gains
and losses of the segments in the chromosomal regions corresponding to the CNA
measurements are almost perfectly separated from each other in the first compo-
nent. Therefore, the variation explained of the first component is mainly because
of the difference of gains and losses in CNA measurements.

3.8 Discussion

To study the properties of the logistic PCA model with different penalties, we
need to have the ability to simulate the multivariate binary data set with an
underlying low rank structure, and the simulated structure should have a proper
SNR so that the model can find it back. The latent variable interpretation of the
logistic PCA model not only makes the assumption of low rank structure easier
to understand, but also provides us a way to define SNR in multivariate binary
data simulation.

The standard logistic PCA model using the exact low rank constraint has an
overfitting problem. The overfitting issue manifests itself in a way that some of
the elements in the estimated loading matrix B̂ (the orthogonality constraint is
imposed on A) have the tendency to approach infinity, and the non-zero singular
values of the Ẑ = ÂB̂T are not upper-bounded when strict stopping criteria are
used. This overfitting issue can be alleviated by regularizing the singular values
of Z. Both convex nuclear norm penalties and some of the concave penalties can
induce low rank estimation and simultaneously constrain the scale of the non-zero
singular values. Therefore, logistic PCA models with these penalties do not suffer
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from the overfitting problem.

However, the logistic PCA model with a GDP or a Lq penalty has several
advantages compared to the model with the nuclear norm penalty. Since the nu-
clear norm penalty applies the same degree of shrinkage on all the singular values,
the large singular values are shrunken too much. Therefore, the implemented CV
error based model selection procedure tends to select a very complex model with
too many components to compensate for the biased estimations. On the contrary,
both the GDP penalty and the Lq penalty achieve nearly unbiased estimation.
Thus the CV error based model selection is successful in selecting the logistic
PCA model with the a GDP penalty. Furthermore, the selected logistic PCA
model with a GDP or a Lq penalty has shown superior performance in recovering
the simulated low rank structure compared to the model with the nuclear norm
penalty, and the exact low rank constraint.

One exception of the used concave penalties is the SCAD penalty, which leads
to a logistic PCA model with poor performance. As stated in the Section 3.7.4, the
poor performance of the model with the SCAD penalty is mainly because of that
some of the large singular values are not regularized at all. And this drawback is
exaggerated by the wart start strategy used during the model selection process.
The poor performance of the models with the exact low rank constraint and the
SCAD penalty reminds us the importance of regularizing all the singular values
simultaneously in inducing the low rank structure for a logistic PCA model.
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Chapter 4

Fusing binary and quantitative data sets

In the current era of systems biological research there is a need for the integrative
analysis of binary and quantitative genomics data sets measured on the same
objects. One standard tool of exploring the underlying dependence structure
present in multiple quantitative data sets is simultaneous component analysis
(SCA) model. However, it does not have any provisions when a part of the data
are binary. To this end, we propose the generalized SCA (GSCA) model, which
takes into account the distinct mathematical properties of binary and quantitative
measurements in the maximum likelihood framework. Like in the SCA model, a
common low dimensional subspace is assumed to represent the shared information
between these two distinct types of measurements. However, the GSCA model
can easily be overfitted when a rank larger than one is used, leading to some of
the estimated parameters to become very large. To achieve a low rank solution
and combat overfitting, we propose to use non-convex singular value thresholding.
An efficient majorization algorithm is developed to fit this model with different
concave penalties. Realistic simulations (low signal-to-noise ratio and highly im-
balanced binary data) are used to evaluate the performance of the proposed model
in recovering the underlying structure. Also, a missing value based cross valida-
tion procedure is implemented for model selection. We illustrate the usefulness
of the GSCA model for exploratory data analysis of quantitative gene expres-
sion and binary copy number aberration (CNA) measurements obtained from the
GDSC1000 data sets. 1

4.1 Background

In biological research it becomes increasingly common to have measurements of
different aspects of information on the same objects to study complex biological

1This chapter is based on Song, Y., Westerhuis, J.A., Aben, N., Wessels, L.F., Groenen,
P.J. and Smilde, A.K., 2018. Generalized Simultaneous Component Analysis of Binary and
Quantitative data. arXiv preprint arXiv:1807.04982.
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systems. The resulting coupled data sets should be analyzed simultaneously to
explore the dependency between variables in different data sets and to reach a
global understanding of the underlying biological system. The SCA model is one
of the standard methods for the integrative analysis of such coupled data sets in
different areas, from psychology to chemistry and biology [65]. SCA discovers the
common low dimensional column subspace of the coupled quantitative data sets,
and this subspace represents the shared information between them.

Next to the quantitative measurements (such as gene expression data), it is
common in biological research to have additional binary measurements, in which
distinct categories differ in quality rather than in quantity (such as mutation
data). Typical examples include the measurements of point mutations, the bi-
nary version of CNA and DNA methylation measurements [30]. Compared to
quantitative measurement, a binary measurement only has two mutually exclu-
sive outcomes, such as presence vs absence (or true vs false), which are usually
labeled as “1” and “0”. However, “1” and “0” indicate abstract representations
of two categories rather than quantitative values 1 and 0. As such, the special
mathematical properties of binary data should be taken into account in the data
analysis. In most biological data sets, the number of “0”s is significantly larger
than the number of “1”s for most binary variables making the data imbalanced.
Therefore, an additional requirement of the data analysis method is that it should
be able to handle imbalanced data.

There is a need for statistical methods appropriate for doing an integrative
analysis of coupled binary and quantitative data sets in biology research. The
standard SCA models [65, 66] that use column centering processing steps and
least-squares loss criteria are not appropriate for binary data sets. Recently,
iClusterPlus [67] was proposed as a factor analysis framework to model discrete
and quantitative data sets simultaneously by exploiting the properties of expo-
nential family distributions. In this framework, the special properties of binary,
categorical, and count variables are taken into account in a similar way as in gen-
eralized linear models. The common low dimensional latent variables and data
set specific coefficients are used to fit the discrete and quantitative data sets. For
the binary data set, the Bernoulli distribution is assumed and the canonical logit
link function is used. The sum of the log likelihood is then used as the objective
function. Furthermore, the approach allows the use of a lasso type penalty for
feature selection. The Monte Carlo Newton–Raphson algorithm for this general
framework, however, involves a very slow Markov Chain Monte Carlo simulation
process. Both the high complexity of the model and the algorithmic inefficiency
limit its use for large data sets and exploring its properties through simulations.

In this chapter, we generalize the SCA model to binary and quantitative data
from a probabilistic perspective similar as in Collins [68] and Mo [67]. However,
the generalized SCA model can easily lead to overfitting by using a rank restriction
larger than 1, leading to some of the parameters to become very large. Therefore,
a penalty on the singular values of the matrix is used to simultaneously induce
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the low rank structure in a soft manner and to control the scale of estimated
parameters. A natural choice is the convex nuclear norm penalty, which is widely
used in low rank approximation problems [69, 51, 70]. However, the nuclear norm
penalty shrinks all singular values to the same degree, leading to biased estimates
of the important latent factors. Hence, we would like to reduce the shrinkage for
the most important latent factors while increasing the shrinkage for unimportant
latent factors. This nonlinear shrinkage strategy has shown its superiority in
recent work of low rank matrix approximation problems under the presence of
Gaussian noise [18, 54]. Therefore, we will explore the nonlinear shrinkage of the
latent factors through concave penalties in our GSCA model. The fitting of the
resulting GSCA model is a penalized maximum likelihood estimation problem.
We derive a MM [58, 59] algorithm to solve it. Simple closed form updates for
all the parameters are derived for each step in the algorithm. A missing value
based cross validation procedure is also implemented to do model selection. Our
algorithm is easy to implement and is guaranteed to decrease the loss function
monotonically in each iteration.

4.2 The GSCA model

Before the GSCA model is introduced, consider the standard SCA model. The
quantitative measurements on the same I objects from two different platforms
result into two data sets X1(I × J1) and X2(I × J2), in which J1 and J2 are the
number of variables. Assume both X1 and X2 are column centered. The standard
SCA model can be expressed as

X1 = ABT
1 + E1

X2 = ABT
2 + E2,

(4.1)

where A(I×R) denotes the common component scores (or latent variables), which
span the common column subspace of X1 and X2, B1(J1 × R) and B2(J2 × R)
are the data set specific loading matrices for X1 and X2 respectively, E1(I ×
J1) and E2(I × J2) are residuals, R, R � {I, J1, J2}, is an unknown low rank.
Orthogonality is imposed on A as ATA = IR, where IR indicates the R × R
identity matrix, to have a unique solution. A, B1 and B2 are estimated by
minimizing the sum of the squared residuals E1 and E2.

4.2.1 The GSCA model of binary and quantitative data
sets

Following the probabilistic interpretation of the PCA model [42], the high dimen-
sional quantitative data set X2 can be assumed to be a noisy observation from a
deterministic low dimensional structure Θ2(I × J2) with independent and iden-
tically distributed measurement noise, X2 = Θ2 + E2. Elements in E2(I × J2)
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follow a normal distribution with mean 0 and variance σ2, ε2ij ∼ N(0, σ2). In the
same way, following the interpretation of the exponential family PCA on binary
data [68], we assume there is a deterministic low dimensional structure Θ1(I×J1)
underlying the high dimensional binary observation X1. Elements in X1 follow
the Bernoulli distribution with parameters φ(Θ1), x1ij ∼ Ber(φ(θ1ij)). Here φ()
is the element wise inverse link function in the generalized linear model for binary
data; x1ij and θ1ij are the ijth element of X1 and Θ1 respectively. If the logit
link is used, φ(θ) = (1 + exp(−θ))−1, while if the probit link is used, φ(θ) = Φ(θ),
where Φ is the cumulative density function of the standard normal distribution.
Although in this chapter, we only use the logit link in deriving the algorithm and
in setting up the simulations, the option for the probit link is included in our
implementation. The two link functions are similar, but their interpretations can
be quite different [13].

In the same way as in the standard SCA model, Θ1 and Θ2 are assumed to lie
in the same low dimensional subspace, which represents the shared information
between the coupled matrices X1 and X2. The commonly used column centering
is not appropriate for the binary data set as the centered binary data will not
be “1” and “0” anymore. Every column will still have only 2 values but these
values are different for different columns. Therefore, we include column offset
terms µ1(J1 × 1) and µ2(J2 × 1) for a model based centering. The above ideas
are modeled as

Θ1 = 1µT
1 + ABT

1

Θ2 = 1µT
2 + ABT

2 ,
(4.2)

where, 1(I × 1) is a I dimensional vector of ones; the parameters A, B1 and B2

have the same meaning as in the standard SCA model. Constraints ATA = IR
and 1TA = 0 are imposed to have a unique solution.

For the generalization to quantitative and binary coupled data, we follow the
maximum likelihood estimation framework. The negative log likelihood for fitting
coupled binary X1 and quantitative X2 is used as the objective function. In order
to implement a missing value based cross validation procedure [71], we introduce
two weight matrices W1(I × J1) and W2(I × J2) to handle the missing elements.
The ijth element of W1, w1ij equals 0 if the ijth element in X1 is missing, while
it equals 1 vice versa. The same rules apply to W2 and X2. The loss functions
f1(Θ1) for fitting X1 and f2(Θ2, σ

2) for fitting X2 are defined as follows:

f1(Θ1) = −
I∑
i

J1∑
j

w1ij [x1ij log(φ(θ1ij)) + (1− x1ij) log(1− φ(θ1ij))]

f2(Θ2, σ
2) =

1

2σ2
||W2 � (X2 −Θ2)||2F +

1

2
||W2||0 log(2πσ2),

(4.3)

where � indicates element-wise multiplication; || ||F is the Frobenius norm of
a matrix; || ||0 is the pseudo L0 norm of a matrix, which equals the number of
nonzero elements.
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The shared information between X1 and X2 is assumed to be fully represented
by the low dimensional subspace spanned by the common component score matrix
A. Thus, X1 and X2 are conditionally independent given that the low dimensional
structures Θ1 and Θ2 lie in the same low dimensional subspace. Therefore, the
joint loss function is the direct sum of the negative log likelihood functions for
fitting X1 and X2.

f(Θ1,Θ2, σ
2) = − log(p(X1,X2|Θ1,Θ2, σ

2))

= − log(p(X1|Θ1)p(X2|Θ2, σ
2))

= − log(p(X1|Θ1)− log(p(X2|Θ2, σ
2))

= f1(Θ1) + f2(Θ2, σ
2).

(4.4)

4.2.2 Concave penalties as surrogates for low rank con-
straint

To arrive at meaningful solutions for the GSCA model, it is necessary to introduce
penalties on the estimated parameters. If we take Θ = [Θ1 Θ2], µ = [µT

1µ
T
2 ]T,

and B = [BT
1 BT

2 ]T, equation 4.2 in the GSCA model can be expressed as Θ =
1µT + ABT. In the above interpretation of the GSCA model, the low rank
constraint on the column centered Θ is expressed as the multiplication of two
rank R matrices A, B, Z = Θ− 1µT = ABT. However, using an exact low rank
constraint in the GSCA model has some issues. First, the maximum likelihood
estimation of this model easily leads to overfitting. Given the constraint that
ATA = I, overfitting represents itself in a way that some elements in B1 tend to
diverge to plus or minus infinity. In addition, the exact low rank R in the GSCA
model is commonly unknown and its selection is not straightforward.

In this chapter, we take a penalty based approach to control the scale of
estimated parameters and to induce a low rank structure simultaneously. The
low rank constraint on Z is obtained by a penalty function g(Z), which shrinks
the singular values of Z to achieve a low rank structure. The most widely used
convex surrogate of a low rank constraint is the nuclear norm penalty, which is
simply the sum of singular values, g(Z) =

∑
r σr(Z) [69], where σr(Z) represents

the rth singular value of Z. The nuclear norm penalty was also used in a related
work [70]. Although the convex nuclear norm penalty is easy to optimize, the
same amount of shrinkage is applied to all the singular values, leading to biased
estimates of the large singular values. Recent work [18, 62] already showed the
superiority of concave surrogates of a low rank constraint under Gaussian noise
compared to the nuclear norm penalty. We take g(Z) =

∑
r g(σr(Z)) as the

concave surrogate of a low rank constraint on Z, where g(σr) is a concave penalty
function of σr. After replacing the low rank constraint in equation 4.4 by g(Z),
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the model becomes,

min
µ,Z,σ2

f1(Θ1) + f2(Θ2, σ
2) + λg(Z)

subject to Θ = 1µT + Z

Θ = [Θ1 Θ2]

1TZ = 0.

(4.5)

The most commonly used non-convex surrogates of a low rank constraint are
concave functions, including Lq:0<q<1 (bridge penalty) [57, 72], smoothly clipped
absolute deviation (SCAD) [16], a frequentist version of the generalized double
Pareto (GDP) shrinkage [27] and others [62]. We include the first three concave
penalties in the algorithm. Their formulas and their thresholding properties are
shown in Table 3.1 and Fig. 3.1.

4.3 Algorithm

Based on the Majorization-Minimization (MM) principle [58, 59], an MM algo-
rithm is derived to fit the GSCA model with concave penalties. The derived
algorithm is guaranteed to decrease the objective function in equation 4.5 during
each iteration and the analytical form for updates of all the parameters in each
iteration exist.

4.3.1 The majorization of the penalized negative lilkeli-
hood

When fixing σ2, we can majorize f(Θ) = f1(Θ1)+f2(Θ2) to a quadratic function
of the parameter Θ. In addition, the concave penalty function g(Z) can be ma-
jorized to a linear function of the singular values of Z by exploiting the concavity.
The resulting majorized problem can be analytically solved by weighted singular
value thresholding [62]. The derivation process is the same as the algorithm in
Chapter 3, therefore we will only show the result here.

f(Θ) ≤ Lk
2
||Θ−Hk||2F + c

g(Z) ≤
∑
r

ωkrσr + c

Hk = Θk − 1

Lk
(W �∇f(Θk))

ωkr = ∂g(σkr ),

(4.6)

in which ∇f(Θk) = [∇f1(Θk
1) ∇f2(Θk

2)], ∇f1(Θk
1) = φ(Θk

1−X1) and ∇f2(Θk
2) =

1
σ2 (Θk

2 −X2); Lk is the upper-bound of the second order gradient of f(Θ) during
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the kth iteration, and can always set to Lk = max(0.25, 1/(σ2)k); (σ2)k is the
approximation of parameter σ2 during the kth iteration; σkr is the rth singular
value of Zk, which is an approximation of Z during the kth iteration; Θk is the
approximation of Θ during the kth iteration; c is a constant doesn’t depend on
any unknown parameters. Summarizing these two majorization steps, we have
the following majorized problem during the kth iteration.

min
µ,Z

Lk
2
||Θ−Hk||2F + λ

∑
r

ωkrσr

subject to Θ = 1µT + Z

1TZ = 0

Hk = Θk − 1

Lk
(W �∇f(Θk))

ωkr = ∂g(σkr ).

(4.7)

4.3.2 Block coordinate descent

We optimize µ, Z and σ2 alternatingly while fixing the other parameters. How-
ever, updating µ and Z depend on solving the majorized problem in equation
4.7 rather than solving the original problem in equation 4.5. Because of the MM
principle, this step will also monotonically decrease the original loss function in
equation 4.5.

Updating µ

The analytical solution of µ in equation 4.7 is simply the column mean of Hk,
µ = 1

I
(Hk)T1.

Updating Z

After deflating the offset term µ, the loss function in equation 4.7 becomes Lk

2
||Z−

JHk||2F + λ
∑

r ω
k
rσr, in which J = I − 1

I
11T is the column centering matrix.

The solution of the resulting problem is equivalent to the proximal operator of
the weighted sum of singular values, which has an analytical form solution [62].
Suppose USVT = JHk is the SVD decomposition of JHk, the analytical form
solution of Z is Z = USzV

T, in which Sz = Diag{(sr − λωr/Lk)+} and sr is the
rth diagonal element in S.

Updating σ2

By setting the gradient of f(Θ, σ2) in equation 4.5 with respect to σ2 to be 0,
we have the following analytical solution of σ2, σ2 = 1

||W2||0 ||W2 � (X2 −Θ2)||2F .
When no low rank estimation of Z can be achieved, the constructed model is
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close to a saturated model and the estimated σ̂2 is close to 0. In that case, when
σ̂2 < 0.05, the algorithm stops and gives a warning that a low rank estimation
has not been achieved.

Initialization and stopping criteria

Random initialization is used. All the elements in Z0 are sampled from the
standard uniform distribution, µ0 is set to 0 and (σ2)0 is set to 1. The relative
change of the objective value is used as the stopping criteria. Pseudocode of the
algorithm described above is shown in Algorithm 2. εf is the tolerance of relative
change of the loss function.

Algorithm 2 A MM algorithm for fitting the GSCA model with concave penal-
ties.

Input: X1, X2, penalty, λ, γ;
Output: µ̂, Ẑ, σ̂2;

1: Compute W1, W2 for missing values in X1 and X2, and W = [W1 W2];
2: Initialize µ0, Z0, (σ2)0;
3: k = 0;
4: while (fk−1 − fk)/fk−1 > εf do
5: ∇f1(Θk

1) = φ(Θk
1)−X1; ∇f2(Θk

2) = 1
(σ2)k

(Θk
2 −X2);

6: ∇f(Θk) = [∇f1(Θk
1) ∇f2(Θk

2)];
7: Lk = max(0.25, 1/(σ2)k);
8: Hk = Θk − 1

Lk
(W �∇f(Θk));

9: ωkr = ∂g(σkr );
10: µk+1 = 1

I
(Hk)T1;

11: USVT = JHk;
12: Sz = Diag{(sr − λωkr/Lk)+};
13: Zk+1 = USzV

T;
14: Θk+1 = 1(µk+1)T + Zk+1;
15: [Θk+1

1 Θk+1
2 ] = Θk+1;

16: (σ2)k+1 = 1
||W2||0 ||W2 � (X2 −Θk+1

2 )||2F
17: k = k + 1;
18: end while

4.4 Simulation

To see how well the GSCA model is able to reconstruct data generated according
to the model, we do a simulation study with similar characteristics as a typical
empirical data set. We first simulate the imbalanced binary X1 and quantitative
X2 following the GSCA model with logit link and low signal-to-noise ratio (SNR).
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After that, we evaluate the GSCA model with respect to 1) the quality of the
reconstructed low rank structure from the model, and 2) the reconstruction of
true number of dimensions.

4.4.1 Data generating process

The SNR for generating binary data is defined according to the latent variable
interpretation of the logistic PCA model. Elements in X1 are independent and
indirect binary observations of the corresponding elements in an underlying quan-
titative matrix X∗1, x1ij = 1 if x∗1ij > 0 and x1ij = 0 otherwise. X∗1 can be ex-

pressed as X∗1 = Θ1 + E1, in which Θ1 = 1µT
1 + ABT

1 , and elements in E1 follow
the standard logistic distribution, ε1ij ∼ Logistic(0, 1). The SNR for generating
binary data X1 is defined as SNR1 = ||ABT

1 ||2F/||E1||2F . Assume the quantitative
X2 is simulated as X2 = Θ2 +E2, in which Θ2 = 1µT

2 +ABT
2 and elements in E2

follow a normal distribution with 0 mean and σ2 variance, ε2ij ∼ N(0, σ2). The
SNR for generating quantitative X2 is defined as SNR2 = ||ABT

2 ||2F/||E2||2F .

After the definition of the SNR, we simulate the coupled binary X1 and quan-
titative X2 as follows. µ1 represents the logit transform of the marginal probabil-
ities of binary variables and µ2 represents the mean of the marginal distributions
of quantitative variables. They will be simulated according to the characteristics
of a real biological data set. The score matrix A and loading matrices B1, B2

are simulated as follows. First, we express ABT
1 and ABT

2 in a SVD type as
ABT

1 = UD1V
T
1 and ABT

2 = UD2V
T
1 , in which UTU = IR, D1 and D2 are

diagonal matrices, VT
1 V1 = IR and VT

2 V2 = IR. All the elements in U, V1

and V2 are independently sampled from the standard normal distribution. Then,
U, V1 and V2 are orthogonalized by the QR algorithm. The diagonal matrix
D(R × R) is simulated as follows. R elements are sampled from standard nor-
mal distribution, their absolute values are sorted in decreasing order. To satisfy
the pre-specified SNR1 and SNR2, D is scaled by positive scalars c1 and c2 as
D1 = c1D and D2 = c2D. Then, binary elements in X1 are sampled from the
Bernoulli distribution with corresponding parameter φ(θ1ij), in which φ() is in-
verse logit function and Θ1 = 1µT

1 +ABT
1 . Quantitative data set X2 is generated

as X2 = Θ2 + E2, in which Θ2 = 1µT
2 + ABT

2 and elements in E2 are sampled
from N(0, σ2). Take Z = ABT, B = [B1 B2]. In order to make 1TZ = 0, we
further deflate the column offset of Z to the simulated µ, µ = [µT

1 µT
2 ]T. This

step will not change the value of Θ1 and Θ2, thus does not affect the simulation
of X1 and X2.

4.4.2 Evaluation metric and model selection

As for simulated data sets, the true parameters Θ = [Θ1 Θ2], µ = [µT
1µ

T
1 ]T and

Z = ABT are available. Therefore, the generalization error of the constructed
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model can be evaluated by comparing the true parameters and their model esti-
mates. Thus, the evaluation metric is defined as the relative mean squared error
(RMSE) of the model parameters. The RMSE of estimating Θ is defined as
RMSE(Θ) = ||Θ − Θ̂||2F/||Θ||2F , where Θ represents the true parameter and Θ̂
its GSCA model estimate. The RMSE of µ and Z, are expressed as RMSE(µ)
and RMSE(Z) and they are defined in the same way as for Θ.

For real data sets, missing value based cross validation (CV) is used to esti-
mate the generalization error of the constructed model. Also in order to have an
estimation of the uncertainty of the CV error, we will use a K-fold CV procedure.
To make the prediction of the left out fold elements independent to the con-
structed model based on the reminding folds, the data is partitioned into K folds
of elements which are selected in a diagonal style rather than row wise from X1

and X2 respectively, similar to the leave out patterns described by Wold [47, 71].
The test set elements of each fold in X1 and X2 are taken as missing values, and
the remaining data are used to construct a GSCA model. After estimation of Θ̂
and σ̂2 are obtained from the constructed GSCA model, the negative log likeli-
hood of using Θ̂, σ̂2 to predict the missing elements (left out fold) is recorded.
This negative log likelihood is scaled by the number of missing elements. This
process is repeated K times until all the K folds have been left out once. The
mean of the K scaled negative log likelihoods is taken as the CV error.

When we define X = [X1 X2] and J = J1 + J2, the penalty term λg(Z) is not
invariant to the number of non-missing elements in X, as the joint loss function
(equation 4.4) is the sum of the log likelihoods for fitting all the non-missing
elements in the data X. Therefore, we effectively follow a similar approach as
Fan [16] by adjusting the penalty strength parameter λ for the relative number
observations. By setting one fold of elements to be missing during the CV process,
λ||X||0/(I × J) rather than λ is used as the amount of penalty. During the K-
fold CV process, a warm start strategy, using the results of previous constructed
model as the initialization of next model, is applied. In this way, the K-fold CV
can be greatly accelerated.

In the model selection process, the tuning parameter λ and hyper-parameters
(q in Lq and γ in SCAD and GDP) can be selected by a grid search. However,
previous work of using these penalty functions in supervised learning context
[57, 16, 27] and our experiments have shown that the results are not very sensitive
to the selection of these hyper-parameters, and thus a default value can be set.
On the other hand, the selection of tuning parameter λ does have a significant
effect on the results, and should be optimized by the grid search.

4.4.3 Experiments

In the loading or score plots of the following experiments and real data analysis,
we will multiply the estimated score matrix Â by

√
I, and the estimated loading

matrix B̂ by 1/
√
I to make the loading and score plots have the same scale.
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Overfitting of the GSCA model with a fixed rank and no penalty

The real data sets from the Section 4.5 are used to show how the GSCA model
with a fixed rank and no penalty will overfit the data. The algorithm (details
are in the supplemental material) used to fit the GSCA model (with an exact
low rank constraint and orthogonality constraint ATA = II) is a modification
of the developed algorithm in Section 4.3. GSCA models with three components
are fitted using stopping criteria εf = 10−5 and εf = 10−8. Exactly the same
initialization is used for these two models. As shown in Fig. 4.1, different stopping
criteria can greatly affect the estimated B̂1 from the GSCA models. Furthermore,
the number of iterations to reach convergence increases from 141 to 23991.

Related phenomena have been observed in logistic linear regression model and
logistic PCA model [43, 73] where some estimated parameters tend to diverge
towards infinity. The overfitting issue of the GSCA model with exact low rank
constraint can be interpreted in the same way by taking the columns of score
matrix A as the latent variables and the loading matrix B1 as the coefficients
to fit the binary X1. This result suggests that if an exact low rank constraint is
preferred in the GSCA model, an extra scale penalty should be added on B1 to
avoid overfitting.
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Figure 4.1: Loading plots of estimated B̂1 from the GSCA models with exact low
rank constraint using two different stopping criteria εf = 10−5 and εf = 10−8.
Note that the scales of the coordinates for εf = 10−8 (right) is over ten times
larger than those for εf = 10−5 (left).
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Comparing the generalization errors of the GSCA models with nuclear
norm and concave penalties

To evaluate the performance of the GSCA model in recovering the underlying
structure, we set up the realistic simulation (strongly imbalanced binary data
and low SNR) as follows. The simulated X1 and X2 have the same size as the
real data sets in the Section 4.5, I = 160, J1 = 410, J2 = 1000. The logit
transform of the empirical marginal probabilities of the CNA data set in the
Section 4.5 is set as µ1. Elements in µ2 are sampled from the standard normal
distribution. The simulated low rank is set to R = 10; σ2 is set to 1; SNR1 and
SNR2 are set to 1. After the simulation of X1, there are two columns only have
“0” elements, which are removed as they provide no information (no variation).

As the GSCA model with the nuclear norm penalty is a convex problem, a
global optimum can be obtained. The nuclear norm penalty is therefore used as
the baseline in the comparison with other penalties. An interval from λ0, which
is large enough to achieve an estimated rank of at most rank 1, to λt, which
is small enough to achieve an estimated rank of 159, is selected based on low
precision models (εf = 10−2). 30 log-spaced λs are selected equally from the
interval [λt, λ0]. The convergence criterion is set as εf = 10−8. The results are

shown in Fig. 4.2. With decreasing λ, the estimated rank of Ẑ increased from
0 to 159, and the estimated σ̂2 decreased from 2 to close to 0. The minimum
RMSE(Θ) of 0.184 (the corresponding RMSE(Θ1) = 0.229, RMSE(Θ2) = 0.054,
RMSE(µ) = 0.072 and RMSE(Z) = 0.446) can be achieved at λ = 38.3, which

corresponds to rank(Ẑ) = 52 and σ̂2 = 0.9271. There are sharp transitions in all
the three subplots near the point λ = 40. The reason is that when the penalty
is not large enough, the estimated rank becomes 159, and the constructed GSCA
model is almost a saturated model. Thus the model has high generalization
error and the estimated σ̂2 also becomes close to 0. Given that we only have
indirect binary observation X1 and highly noisy observation X2 of the underlying
structure Θ, the performance of the GSCA model with nuclear norm penalty is
reasonable. However, results can be greatly improved by using concave penalties.

For concave penalties, different values of the hyper-parameters, q in Lq, γ
in SCAD and GDP, are selected according to their thresholding properties. For
each value of the hyper-parameter, values of tuning parameter λ are selected in
the same manner as described above. The minimum RMSE(Θ) achieved and the
corresponding RMSE(µ) and RMSE(Z) for different values of hyper-parameter
of the GSCA models with different penalty functions are shown in Fig. 4.3. Here
all GSCA models with concave penalties can achieve much lower RMSEs in es-
timating Θ, µ and Z compared to the convex nuclear norm penalty (Lq:q=1 in
the plot). Among the three concave penalties used, Lq and GDP have better
performance.

If we get access to the full information, the underlying quantitative data X∗1
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Figure 4.2: RMSEs in estimating Θ, µ, Z (left), the estimated σ̂2 (center) and
the estimated rank(Ẑ) (right) from the GSCA model with nuclear norm penalty
as a function of the tuning parameter λ. Red cross marker indicates the model
with minimum RMSE(Θ).
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78 Chapter 4. Fusing binary and quantitative data sets

rather than the binary observation X1, the SCA model on X∗1 and X2 is simply a
PCA model on [X∗1 X2]. From this model, we can get an estimation of Θ, µ and
Z. We compared the results derived from the SCA model on the full information,
the GSCA models with nuclear norm, Lq:q=0.1, SCAD (γ = 5) and GDP (γ = 1)
penalties. All the models are selected to achieve the minimum RMSE(Θ). The
RMSEs of estimating Θ, Θ1, Θ2, µ and Z and the rank of estimated Ẑ from
different models are shown in Table 4.1. Here we can see that the GSCA models
with Lq:q=0.1 and GDP (γ = 1) penalties have better performance in almost all
criteria compared to the nuclear norm and SCAD penalties, and even comparable
with the SCA model on full information. The singular values of the true Z,
estimated Ẑ from the above models and the noise terms E = [E1 E2] are shown
in Fig. 4.4. Only the first 15 singular values are shown to have higher resolution of
the details. Since the 10th singular value of the simulated data Z is smaller than
the noise level, the best achievable rank estimation is 9. Both the Lq:q=0.1 and
GDP (γ = 1) penalties successfully find the correct rank 9, and they have a very
good approximation of the first 9 singular values of Z. On the other hand, the
nuclear norm penalty shrinks all the singular values too much. Furthermore, the
SCAD penalty overestimates the first three singular values and therefore shrinks
all the other singular values too much. These results are easily understandable
if taking their thresholding properties in Fig. 3.1 into account. Both the Lq and
the GDP penalties have very good performance in this simulation experiment.

Table 4.1: The RMSEs of estimating Θ, µ and Z and the rank of estimated Ẑ
from different models.

RMSE(Θ) RMSE(Θ1) RMSE(Θ2) RMSE(µ) RMSE(Z) rank(Ẑ)
Lq:q=1 0.1840 0.2288 0.0537 0.0724 0.4456 52
Lq:q=0.1 0.0598 0.0682 0.0353 0.0168 0.1606 9
SCAD(γ = 5) 0.1093 0.1334 0.0395 0.0376 0.2777 24
GDP(γ = 1) 0.0593 0.0675 0.0354 0.0160 0.1610 9
full information 0.0222 0.0675 0.0354 0.0030 0.0674 9

Comparing the GSCA model with GDP penalty and the iClusterPlus
model

We compared our GSCA model with GDP penalty to the iClusterPlus model on
the simulated data sets. The parameters for the GSCA model with GDP penalty
is the same as described above. The running time is 60.61s when εf = 10−8,
and 9.98s when εf = 10−5. For the iClusterPlus model, 9 latent variables are
specified. The tuning parameter of the lasso type constraint on the data specific
coefficient matrices are set to 0. The default convergence criterion is used, that is
the maximum of the absolute changes of the estimated parameters in two subse-
quent iterations is less than 10−4. The running time of the iClusterPlus model is
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Figure 4.4: Approximation of the singular values using different penalties in the
simulation experiment. Labels “L1”, “L0.1”, “SCAD”, “GDP”, “full information”
indicate the singular values of estimated Ẑ from the corresponding models; “true”
indicates the singular values of the simulated Z; “noise” indicates the singular
values of the noise term E, which has full rank.

close to 3 hours. The constructed iClusterPlus model provides the estimation of
column offset µ̂, the common latent variables Â, and data set specific coefficient
matrices B̂1 and B̂2. The estimated Ẑ and Θ̂ are computed in the same way as
defined in the model section. The RMSEs in estimating Θ, µ and Z for iCluster-
Plus are 2.571, 2.473 and 3.060 respectively. Compared to the results from the
GSCA models in Table 4.1, iClusterPlus is unable to provide good results on the
simulated data sets. Supplemental Fig. S4.2 compares the estimated µ̂1 from the
GSCA model with GDP penalty and iClusterPlus model. As shown in supple-
mental Fig. S4.2(right), the iClusterPlus model is unable to estimate the offset µ
correctly. Many elements of estimated µ̂1 are exactly 0, which corresponds to an
estimated marginal probability of 0.5. In addition, as shown in Fig. 4.5(left), the
singular values of the estimated Ẑ from the iClusterPlus model are clearly over-
estimated. These undesired results from the iClusterPlus model are due mainly
to the imbalancedness of the simulated binary data set. If the offset term µ1 in
the simulation is set to 0, which corresponds to balanced binary data simulation,
and fix all the other parameters in the same way as in the above simulation, the
results of iClusterPlus and the GSCA with GDP penalty are more comparable. In
that case the RMSEs of estimating Θ, Z in the GSCA model with GDP penalty
are 0.071 and 0.091 respectively, while the RMSEs of the iClusterPlus model are
0.107 and 0.142 respectively. As shown in Fig. 4.5(right), the singular values of
estimated Ẑ from the iClusterPlus model are much more accurate compared to
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the imbalanced case. However, iClusterPlus still overestimates the singular values
compared to the GSCA model with GDP penalty. This phenomenon is related
to the fact that exact low rank constraint is also used in the iClusterPlus model.
These results suggest that compared to iClusterPlus, the GSCA model with GDP
penalty is more robust to the imbalanced binary data and has better performance
in recovering the underlying structure in the simulation experiment.
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Figure 4.5: The singular values of estimated Ẑ using the iClusterPlus model and
the GSCA model with GDP penalty on the simulation with imbalanced binary
data (left) and with balanced binary data (right).

The performance of the GSCA model for the simulation with different
SNRs

We will explore the performance of the GSCA model for the simulated binary
and quantitative data sets with varying noise levels in the following experiment.
Equal SNR levels are used in the simulation for X1 and X2. 20 log spaced
SNR values are equally selected from the interval [0.1, 100]. Then we simulated
coupled binary data X1 and quantitative X2 using the different SNRs in the
same way as described above. During this process, except for the parameters
c1 and c2, which are used to adjust the SNRs, all other parameters used in the
simulation were kept the same. The GSCA models with GDP penalty (γ = 1),
Lq penalty (q = 0.1), nuclear norm penalty, and the SCA model on the full
information (defined above) are used in these simulation experiments. For these
three models, the model selection process was done in the same way as described
in above experiment. The models with the minimum RMSE(Θ) are selected.
As shown in Fig. 4.6, the GSCA models with concave GDP and Lq penalties
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always have better performance than the convex nuclear norm penalty, and they
are comparable to the situation where the full information is available. With
the increase of SNR, the RMSE(Z) derived from the GSCA model, which is
used to evaluate the performance of the model in recovering the underlying low
dimensional structure, first decreases to a minimum and then increases. As shown
in bottom center and right, this pattern is mainly caused by how RMSE(Z1)
changes with respect to SNRs. Although this result counteracts the intuition
that larger SNR means higher quality of data, it is in line with our previous
results in Chapter 3.

100 102
0

0.2

0.4

0.6

0.8
RMSE(7)

GDP
L

0.1

L
1

full information

100 102
0

0.2

0.4

0.6

0.8
RMSE(Z)

100 102
0

0.2

0.4

0.6

0.8
RMSE(#)

SNR
100 102

0

10

20

30

40

50

60

70
estimated ranks

SNR
100 102

0

0.2

0.4

0.6

0.8

1
RMSE(Z1)

SNR
100 102

0

0.2

0.4

0.6

0.8
RMSE(Z2)

Figure 4.6: Minimum RMSE(Θ) (top right), and the corresponding RMSE(µ)
(top left), RMSE(Z) (top center), rank estimation of Ẑ (bottom left), RMSE(Z1)
(bottom center) and RMSE(Z2) (bottom right) of the GSCA models with nuclear
norm penalty (legend “L1”), GDP penalty (legend GDP), L0.1 penalty (legend
“L0.1”) and SCA model on full information (legend “full information”) for differ-
ent SNR levels.
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Assessing the model selection procedure

The cross validation procedure and the cross validation error have been defined
in the model selection section. The GSCA model with GDP penalty is used as
an example to assess the model selection procedure. εf = 10−5 is used as the
stopping criteria for all the following experiments to save time. The values of λ
and γ are selected in the same way as was described in Section 4.4. Fig. 4.7 shows
the minimum RMSE(Θ) and minimum CV error achieved for different values of
the hyper-parameter γ. The minimum CV error changes in a similar way as
the minimum RMSE(Θ) with respect to the values of γ. However, taking into
account the uncertainty of estimated CV errors, the difference of the minimum
CV errors for different γ is very small. Thus, we recommend to fix γ to be 1,
rather than using cross validation to select it. Furthermore, setting γ = 1 as the
default value for the GDP penalty has a probabilistic interpretation, see in [27].
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Figure 4.7: Minimum RMSE(Θ) (left) and minimum CV error (right) for different
values of γ from the GSCA model with GDP penalty. One standard error bars
are added to the CV error plot.

Whenever the GSCA model is used for exploratory data analysis, there is no
need to select λ explicitly. It is sufficient to find a proper value to achieve a two
or three component GSCA model, in order to visualize the estimated score and
loading matrices. If the goal is confirmatory data analysis, it is possible to select
the tuning parameter λ explicitly by the proposed cross validation procedure.
Fig. 4.8 shows how the tuning parameter λ affects the CV errors, RMSE(Θ) and
the estimated ranks. The minimum CV error obtained is close to the Bayes error,
which is the scaled negative log likelihood in cases where the true parameters Θ
and σ2 are known. Even though, inconsistence exists between CV error plot
(Fig. 4.8, left) and the RMSE(Θ) plot (Fig. 4.8, center), the selected model
corresponding to minimum CV error can achieve very low RMSE(Θ) and correct
rank estimation (Fig. 4.8, right). Therefore, we suggest to use the proposed CV
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procedure to select the value of λ at which the minimum CV error is obtained.
Finally, we fit a model on full data set without missing elements using the selected
value of λ and the outputs of the selected model with minimum CV error as the
initialization.
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Figure 4.8: CV error, RMSE and estimated rank for different values of the tuning
parameter λ. One standard error bars are added to the CV error plot. “Bayes
error” indicates the mean log negative likelihood using simulated Θ and σ2 to
fit the simulated data sets X1 and X2. The red cross marker indicates the point
where the minimum CV error is achieved. “CV” and “fit” (right plot) indicate the
mean rank(Ẑ) derived from the models constructed in 7-fold cross validation and
the rank(Ẑ) derived from a model constructed on full data set without missing
elements (the outputs of the constructed model during cross validation are set as
the initialization).

4.5 Empirical illustration

4.5.1 Real data set

The Genomic Determinants of Sensitivity in Cancer 1000 (GDSC1000) [30] con-
tains 926 tumor cell lines with comprehensive measurements of point mutation,
CNA, methylation and gene expression. We selected the binary CNA and quan-
titative gene expression measurements on the same cell lines (each cell line is a
sample) as an example to demonstrate the GSCA model. To simplify the interpre-
tation of the derived model, only the cell lines of three cancer types are included:
BRCA (breast invasive carcinoma, 48 cell lines), LUAD (lung adenocarcinoma,
62 cell lines) and SKCM (skin cutaneous melanoma, 50 cell lines). The CNA data
set has 410 binary variables. Each variable is a copy number region, in which “1”
indicates the presence and “0” indicates the absence of an aberration. Note that,
the CNA data is very imbalanced: only 6.66% the elements are “1”. The empir-
ical marginal probabilities of binary CNA variables are shown in supplemental
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Fig. S4.1. The quantitative gene expression data set contains 17,420 variables, of
which 1000 gene expression variables with the largest variance are selected. After
that, the gene expression data is column centered and scaled by the standard
deviation of the each variable to make it more consistent with the assumption of
the GSCA model.

4.5.2 Exploratory data analysis of the coupled CNA and
gene expression data sets

We applied the GSCA model (with GDP penalty and γ=1) to the GDSC data set
of 160 tumor cell lines that have been profiled for both binary CNA (160× 410)
and quantitative gene expression (160 × 1000). The results of model selection
(supplemental Fig. S4.3) validate the existence of a low dimensional common
structure between CNA and gene expression data sets. For exploratory purposes,
we will construct a three component model instead.

We first considered the score plot resulting from this GSCA model. The first
two PCs show a clear clustering by cancer type (Fig. 4.9, left), and in some cases
even subclusters (i.e. hormone-positive breast cancer, MITF-high melanoma).
These results suggest that the GSCA model captures the relevant biology in
these data. Interestingly, when we performed PCA on the gene expression data,
we obtained score plots that were virtually identical to those resulting from the
GSCA model (supplemental Fig. S4.4, left; modified RV coefficient of the scores
matrices derived from these two models: 0.9998), suggesting that this biological
relevance is almost entirely derived from the gene expression data.
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Figure 4.9: Score plot (left), loading plot for binary CNA data X1 (center) and
loading plot for gene expression data X2 (right) derived from the constructed
GSCA model.

We then wondered whether the GSCA model could leverage the gene ex-
pression data to help us gain insight into the CNA data. To test this, we first
established how much insight could be gained from the CNA data in isolation.
Supplemental Fig. S4.5 shows the scores and loadings of the first two compo-
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nents from a three component logistic PCA model [43] applied to the CNA data.
While these do seem to contain structure in the loading plot, we believe that they
mostly explain technical characteristics of the data. For example, deletions and
amplifications are almost perfectly separated from each other by the PC1=0 line
in the loading plot (supplemental Fig. S4.6). Additionally, the scores on PC1
are strongly associated to the number of copy number aberrations (i.e., to the
number of ones) in a given sample (supplemental Fig. S4.7). Finally, the clusters
towards the left of the loading plot suggested two groups of correlated features,
but these could trivially be explained by genomic position, that is, these features
correspond with regions on the same chromosome arm, which are often completely
deleted or amplified (supplemental Fig. S4.8). Following these observations, we
believe that a study of the CNA data in isolation provides little biological insight.

On the other hand, using the GCSA model’s CNA loadings (Fig. 4.9, center),
we could more easily relate the features to the biology. Let us focus on the fea-
tures with extreme values on PC1 and for which the corresponding chromosomal
region contains a known driver gene. For example, the position of MYC ampli-
fications in the loading plot indicates that MYC amplifications occur mostly in
lung adenocarcinoma and breast cancer samples (Fig. 4.9, center; supplemental
Fig. S4.9). Similarly, ERBB2 amplifications occur mainly in breast cancer sam-
ples (Fig. 4.9, center; supplemental Fig. S4.9). Finally, PTEN deletions were
enriched in melanomas, though the limited size of the loading also indicates that
they are not exclusive to melanomas (Fig. 4.9, center; supplemental Fig. S4.9).
Importantly, these three findings are in line with known biology [74, 75, 76] and
hence exemplify how GSCA could be used to interpret the CNA data. Altogether,
using the GSCA model, we were able to 1) capture the biological relevance in the
gene expression data, and 2) leverage that biological relevance from the gene
expression to gain a better understanding of the CNA data.

4.6 Discussion

In this chapter, we generalized the standard SCA model to explore the depen-
dence between coupled binary and quantitative data sets. However, the GSCA
model with exact low rank constraint overfits the data, as some estimated param-
eters tend to diverge to positive infinity or negative infinity. Therefore, concave
penalties are introduced in the low rank approximation framework to achieve low
rank approximation and to mitigate the overfitting issues of the GSCA model.
An efficient algorithm framework with analytical form updates for all the param-
eters is developed to optimize the GSCA model with any concave penalties. All
concave penalties used in our experiments have better performance with respect
to generalization error and estimated low rank of the constructed GSCA model
compared to the nuclear norm penalty. Both Lq and GDP penalties with proper
model selection can recover the simulated low rank structures almost exactly
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only from indirect binary observation X1 and noisy quantitative observation X2.
Furthermore, we have shown that the GSCA model outperforms the iCluster-
Plus model with respect to speed and accuracy of the estimation of the model
parameters.

The superior performance of the GSCA models with the concave penalties
compared to the models with an exact low rank constraint or a nuclear norm
penalty is related to their different thresholding properties. The exact low rank
constraint thresholds the singular values in a hard manner and, therefore, only
the largest R singular values are kept. On the other hand, the nuclear norm
penalty works in a soft manner, in which all the singular values are shrunk by
the same amount of λ. The thresholding properties of the concave penalties
discussed in this chapter lie in between these two approaches. As Z = ABT and
ATA = IR, the scale of the loadings is related to the scale of the singular values of
Z. Thus, we can shrink the singular values of Z to control the scale of estimated
loading matrices in an indirect way. The exact low rank constraint kept the R
largest singular values but without control of the scale of the estimated singular
values, leading to overfitting. On the other hand, nuclear norm penalty shrinks
all the singular values by the same amount of λ, leading to biased estimation of
the singular values. A concave penalty, like Lq or GDP, achieves a balance in
thresholding the singular values. Among the concave penalties we used in the
experiment, the SCAD penalty does not work well in the simulation study. The
reason is that the SCAD penalty does not shrink the large singular values, which
therefore tend to be overfitted, while the smaller singular values are shrunk too
much.

Compared to the iClusterPlus method, only the option of binary and quanti-
tative data sets are included in our GSCA model, and at the moment no sparsity
can be imposed for the integrative analysis of binary and quantitative data sets.
However, the GSCA model with GDP penalty is optimized by a more efficient al-
gorithm, it is much more robust to the imbalanced nature of the biological binary
data and it provides a much better performance for the simulation experiments in
this chapter. Furthermore, the exploratory analysis of the GDSC coupled CNA
and gene expression data sets provided important information on the binary CNA
data that was not obtained by a separate analysis.
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4.7 Supplementary information

4.7.1 GSCA model with exact low rank constraint

The exact low rank constraint on Z can be expressed as the multiplication of
two low rank matrices A and B. The optimization problem related to the GSCA
model with exact low rank constraint can be expressed as

min
µ,Z,σ2

f1(Θ1) + f2(Θ2, σ
2)

subject to Θ = 1µT + Z

Θ = [Θ1 Θ2]

rank(Z) = R

The developed algorithm in the paper can be slightly modified to fit this
model. Similar to the paper, the above optimization problem can majorized to
the following problem.

min
µ,Z,σ2

L

2
||Θ−Hk||2F + c

subject to Θ = 1µT + Z

Hk = Θk − 1

L
(W �∇f(Θk))

1TZ = 0

rank(Z) = R.

The analytical solution of µ is also the column mean of Hk. After deflating
out the offset term µ, the majorized problem becomes minZ

L
2
||Z−JHk||2F subject

to rank(Z) = R and 1TZ = 0. The global optimal solution is the R truncated
SVD of JHk. Other steps in the algorithm to fit the GSCA model with exact low
rank constraint are exactly the same as in the paper to fit the GSCA model with
concave penalties.

4.7.2 Supplemental figures
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Chapter 5

Fusing multiple data sets with two types
of heterogeneity

Multiple sets of measurements on the same objects obtained from different plat-
forms may reflect partially complementary information of the studied system.
The integrative analysis of such data sets not only provides us with the opportu-
nity of a deeper understanding of the studied system, but also introduces some
new statistical challenges. First, the separation of information that is common
across all or some of the data sets, and the information that is specific to each
data set is problematic. Furthermore, these data sets are often a mix of quan-
titative and qualitative (binary or categorical) data types, while commonly used
data fusion methods require all data sets to be quantitative. These two types of
heterogeneity existed in multiple data sets should be taken into account in the
data fusion. In this chapter, we propose an exponential family simultaneous com-
ponent analysis (ESCA) model to tackle the potential mixed data types problem
of multiple data sets. In addition, a structured sparse pattern of the loading ma-
trix is induced through a nearly unbiased group concave penalty to disentangle
the global, local common and distinct information of the multiple data sets. A
Majorization-Minimization based algorithm is derived to fit the proposed model.
Analytic solutions are derived for updating all the parameters of the model in
each iteration, and the algorithm will decrease the objective function in each iter-
ation monotonically. For model selection, a missing value based cross validation
procedure is implemented. The advantages of the proposed method in compari-
son with other approaches are assessed using comprehensive simulations as well
as the analysis of real data from a chronic lymphocytic leukaemia (CLL) study. 1

1This chapter is based on Song, Y., Westerhuis, J.A. and Smilde, A.K., 2019. Separating
common (global and local) and distinct variation in multiple mixed types data sets. arXiv
preprint arXiv:1902.06241

93



94 Chapter 5. Fusing multiple data sets with two types of heterogeneity

5.1 Background

Multiple data sets measured on the same samples are becoming increasingly com-
mon in different research areas, from biology, food science to psychology. One
typical example from biological research is the GDSC1000 study, in which 926 cell
lines are fully characterized with respect to point mutation, copy number alter-
nation (CNA), methylation, gene expression and drug responses [30]. However,
these comprehensive measurements from the same cell lines not only provide the
opportunity for a deeper understanding of the studied biological system, but also
introduce statistical challenges.

The first challenge is how to separate the information that is common across
all or some of the data sets, and the information which is specific to each data
set (often called distinct). These different sources of information have to be
disentangled from every data set to have a holistic understanding of the studied
system. The second challenge is that measurements from different platforms
can be of different data type, such as binary, quantitative or counts. These
different data types have different mathematical properties, which should be taken
into account in the data analysis. For example, the measurement of a binary
variable only has two possible exclusive outcomes, often classified as “1” and “0”.
Examples of binary data in biology include point mutation, and the binarized
CNA and methylation data sets [30]. Taking binary measurements “1”, “0”
as the quantitative values 1, 0, and casting them into the classical data fusion
methods that assume data sets to be quantitative, clearly neglects their binary
nature.

In this chapter, we focus on the component or latent variable based data fu-
sion approaches, although other approaches exist such as undirected graphical
model based methods which are able to explore the association between data sets
of different data types [77], or between variables of different data types [78, 79].
Two commonly used latent variable based data fusion methods are simultane-
ous component analysis (SCA) [65] and iCluster [80], which both focus on using
low dimensional structures to approximate the common variation across all the
data sets. Both of these approaches have already been generalized to qualitative
data sets [67, 64]. In addition, the concept of common and distinct variation in
data fusion has been framed in [81, 14], and several methods [82, 83, 84, 85, 14]
have been proposed. One typical example is JIVE [82]. The JIVE model directly
specifies the components for the global common variation (variation across all the
data sets) and the distinct variation (variation specific to each data set) in the
model, and estimates them simultaneously. However, JIVE model is incapable to
tackle the qualitative data sets and the local common variation (variation across
some of the data sets) is ignored. Direct generalization of JIVE to account for
the local common variation is infeasible as with the increase of the number of
data sets, the possible combinations of local common variation blows up expo-
nentially. Other methods [84, 83] encounter similar problems with respect to the
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estimation of local common variation. In addition, the model selection procedure
in these methods is still an unsolved issue [86]. A promising solution was pro-
vided in [87, 15], in which a group regularization procedure was applied to provide
structured sparsity on the loading matrix where the loadings of all variables of
a given data set are forced to 0 to disentangle the common (global and local)
and distinct variation indirectly. Details will be shown in the following model
section. In the SLIDE model [15], first a series of structured sparsity patterns on
the loading matrix of a SCA model are learned using a group lasso penalty. Then,
these learned structured sparsity patterns are imposed as hard constraints on the
loading matrix of a SCA model, and the appropriate model is selected by Bi-
cross-validation [88]. The Bayesian counterpart of the SLIDE model is the group
factor analysis model [87], and the generalization of the group factor analysis to
mixed data types is the MOFA model [89]. These two Bayesian models use an
automatic relevance determination procedure to induce the structured sparsity.

The first contribution in this chapter is the generalization of the SCA model
to the exponential family SCA (ESCA) model by exploiting the exponential fam-
ily distribution to account for potentially different data types, such as binary,
quantitative or count data. The generalization is done in a similar way as the
extension of principal component analysis (PCA) to exponential family PCA [68].
The second contribution is the use of a nearly unbiased group concave penalty to
induce a structured sparse pattern on the loading matrix of the ESCA model to
disentangle the common (global and local) and distinct variation of multiple data
sets of mixed data types. In the SLIDE model [15], the structured sparse pat-
tern is induced by the group lasso penalty, which shrinks in the group level (the
groups) as a lasso penalty, and in the individual level (the individual elements
inside a group) as a ridge regression penalty. However, a lasso type penalty leads
to biased parameter estimation, as the same degree of shrinkage is applied to all
the parameters. This will shrink the nonzero parameters too much and as a result
makes the prediction or cross validation error based model selection procedures
inconsistent [90, 91]. On the other hand, concave penalties, such as generalized
double Pareto (GDP) shrinkage [27] or bridge (Lq:0<q≤1) penalty [57], are capable
to achieve nearly unbiased estimation of the parameters while producing sparse
solutions. Therefore, we replaced the group lasso penalty by a group concave
penalty on the loadings. The group concave penalty shrinks the group level as a
concave penalty, and it shrinks on the individual level as ridge regression penalty.
The third contribution lies in the derived model fitting algorithm and the model
selection procedure. A Majorization-Minimization based algorithm is derived to
fit the proposed penalized ESCA (P-ESCA) model. Analytical form solutions for
updating all the parameters of the model in each iteration are derived, and the
algorithm will decrease the objective function in each iteration monotonically.
Furthermore, the missing value problem is tackled in the developed algorithm,
and this option is used in the cross validation procedure for the model selection.
The proposed model is similar to the MOFA model, but differences exist in the
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way how the model is derived, how the structured sparsity is achieved, and how
the model is selected. These differences are detailed out in the supplementary
material.

Both the performance of the proposed P-ESCA model, and the effectiveness
of the model selection procedure are validated by extensive simulations under
different situations. The performance of the P-ESCA method is compared with
SLIDE and MOFAs. Finally, P-ESCA is exemplified by the explorative analysis
of the chronic lymphocytic leukaemia (CLL) data sets [92, 89].

5.2 P-ESCA model

In this section, we will introduce the generalization of the ESCA model. Then we
will show how to use the group concave penalty to induce the structured sparse
pattern on the loading matrix of an ESCA model to disentangle the common
(global and local) variation and distinct variation of multiple data sets.

5.2.1 Exponential family SCA

The quantitative measurements from L different platforms on the same I objects
result into L quantitative data sets, {Xl}Ll=1, and the lth data set Xl(I × Jl) has
Jl variables. In the classical SCA model, we decompose the L data sets as Xl =
1µT

l +ABT
l +El, in which 1(I×1) is a column vector with ones; µl(Jl×1) is the

column offset term; A(I×R) is the common score matrix; Bl(Jl×R) and El(I×Jl)
are the loading matrix and residual term respectively for Xl and R is the number
of components. In addition, constraints ATA = I and 1TA = 0, in which I is
the identity matrix, are imposed to make the model identifiable. The SCA model
tries to discover the common column subspace, which is spanned by the columns
of the score matrix A, in L data sets to represent their common information.
The column offset terms {µl}Ll=1 can be removed by column centering of the

corresponding data sets {Xl}Ll=1. The parameters in the SCA model can be

estimated by minimizing the sum of squares
∑L

l wl||Xl−1µT
l −ABT

l ||2F , in which
wl is the relative weight of the lth data set Xl.

The least squares loss criterion in the classical SCA model is only appropriate
for quantitative data sets. When some or all data sets are of another data type,
such as binary data, classical SCA model is not appropriate anymore. Motivated
by the previous research on exponential family PCA model [34], we use the ex-
ponential family distribution to account for the different data types of multiple
data sets, such as Bernoulli distribution for binary data, Poisson distribution for
count data and Gaussian distribution for quantitative data.

Assume x ∈ R follows the exponential dispersion family distribution [13],
and θ and α are the natural parameter and the dispersion parameter respec-
tively. The probability density or mass function can be specified as p(x|θ, α) =



5.2. P-ESCA model 97

exp [(xθ − b(θ))/α]h(x, α), in which b(θ) is the log-partition function, and h(x, α)
is a function which does not depend on the natural parameter θ. Supplemental
Table S5.1 lists the log-partition function b(θ) and its first and second order
derivatives b

′
(θ), b

′′
(θ) for Gaussian, Bernoulli and Poisson distributions. The

relationship E(x|θ) = b
′
(θ) always hold in the exponential family distribution.

Supplemental Fig. S5.1 visualizes this relationship for the Gaussian, Bernoulli
and Poisson distributions. If the lth data set Xl is quantitative, according to the
probabilistic interpretation of the PCA model [42], we assume there is a natural
parameter matrix Θl(I×Jl) underlying Xl, and the low dimensional structure ex-
ists in Θl, Xl = Θl+El and Θl = 1µT

l +AlB
T
l , and elements in the error term El

follows a normal distribution εlij ∼ N(0, σ2). The conditional mean of the observed

Xl given the low dimensional structure assumption is E(Xl|Θl) = b
′
(Θ) = Θl, in

which b
′
() is the first order derivative of the log-partition function for the Gaus-

sian distribution (supplemental Table S5.1). In exponential family PCA, the same
idea has been generalized to other members of exponential family distributions by
assuming E(Xl|Θl) = b

′
(Θl) and Θl = 1µT

l + AlB
T
l , in which the function form

of b
′
() depends on the used probability distribution (supplemental Table S5.1).

In the exponential family PCA model, the elements in Xl are conditionally in-
dependent given the low dimensional structure assumption as Θl = 1µT

l +AlB
T
l .

Take xlij and θlij as the ijth element of Xl and Θl respectively. The conditional

log-likelihood of observing Xl is log(p(Xl|Θl, αl)) =
∑I

i

∑Jl
j log(p(xlij|θlij, αl)) =∑I

i

∑Jl
j

1
αl

(xlijθ
l
ij − bl(θlij)) + c = 1

αl

[
< Xl,Θl > − < 11T, bl(Θl) >

]
+ c, in which

<,> indicates the inner product, for matrices, < Xl,Θl >= trace(XT
l Θl); c, a

constant that does not depend on the unknown parameter Θl; bl() and αl are the
element-wise log-partition function and the known dispersion parameter respec-
tively for the lth data set Xl. In the ESCA model, we assume that the natural
parameter matrices {Θl}Ll=1 lie in the same column subspace, which is spanned
by the common score matrix A. To make the model identifiable, constraints
ATA = I and 1TA = 0 are imposed. The optimization problem associated with
this ESCA model can be expressed as follows,

min
{µl}Ll ,A,{Bl}Ll

L∑
l=1

− log(p(Xl|Θl, αl))

=
L∑
l=1

1

αl

[
< 11T, bl(Θl) > − < Xl,Θl >

]
+ c

subject to Θl = 1µT
l + ABT

l , l = 1, . . . , L

1TA = 0

ATA = I.

(5.1)
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5.2.2 Separating common and distinct variation via struc-
tured sparsity

The drawback of the SCA or ESCA models is that only the global common
components, which account for the common variation across all the data sets,
is allowed. However, the real situation in multiple data sets integration can
be far more complex as local common variation across some of the data sets
and distinct variation in each data set are expected as well. Directly specifying
the components in the ESCA model for common (global and local) and distinct
variation in the same way as JIVE model [82] is infeasible, as the number of
possible combinations of local common variation will blow up exponentially with
an increasing number of data sets. A promising solution is using structured
sparsity on the loading matrix to disentangle the common (global and local) and
distinct variation indirectly [87, 15]. Structured sparsity of the data set specific
loading matrices in component based data fusion methods has been explored by
[93, 94]. The idea of using structured sparsity to disentangle the common (global
and local) and distinct variation in multiple quantitative data sets is made explicit
in [87, 15]. To illustrate the idea, we use an example with three quantitative data
sets. Suppose we construct a SCA model on three column centered quantitative
data sets {Xl}3l=1, the common score matrix is A, the corresponding loading
matrices are {Bl}3l=1, and Xl = ABT

l + El, in which El is the residual term for
lth data set. If the structured sparsity pattern in {Bl}3l=1 is expressed as follows,

 B1

B2

B3

 =

 b1,1 b1,2 b1,3 0 b1,5 0 0
b2,1 b2,2 0 b2,4 0 b2,6 0
b3,1 0 b3,3 b3,4 0 0 b3,7

 ,

in which bl,r ∈ RJl indicates the rth column of the lth loading matrix Bl, then we
have the following relationships,

X1 = a1b
T
1,1 +a2b

T
1,2 +a3b

T
1,3 +0 +a5b

T
1,5 +0 +0 +E1

X2 = a1b
T
2,1 +a2b

T
2,2 +0 +a4b

T
2,4 +0 +a6b

T
2,6 +0 +E2

X3 = a1b
T
3,1 +0 +a3b

T
3,3 +a4b

T
3,4 +0 +0 +a7b

T
3,7 +E3.

Here ar indicates the rth column of the common score matrix A. The first com-
ponent represents the global common variation across three data sets; the 2nd,
3nd and 4nd components represent the local common variation across two data
sets and the 5nd, 6nd and 7nd components represent the distinct variation specific
to each single data set. In this way, the structured sparsity pattern in the load-
ing matrices {Bl}3l=1 can be used to separate the common (global and local) and
distinct variation of multiple quantitative data sets.
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5.2.3 Group concave penalty

In [93, 94, 15], the structured sparsity is induced by a group lasso penalty on the
columns of {Bl}L1 . The used group lasso penalty is λ

∑
l

∑
r ||bl,r||2, in which λ is

the tuning parameter, bl,r indicates the rth column of the lth loading matrix Bl,
and || ||2 indicates the L2 norm of a vector. This group lasso penalty shrinks
||bl,r||2 as a lasso penalty and the elements inside bl,r as a ridge penalty. How-
ever, lasso type penalty leads to biased parameter estimation as the same degree
of shrinkage is applied to all the parameters, which will shrink the nonzero pa-
rameters too much and makes the prediction or cross validation error based model
selection procedures inconsistent [90, 91]. This leads in general to the selection of
too complex models. The SLIDE model [15] solves the model selection problem in
a two stages manner. First, varying degrees of regularization are imposed to in-
duce a series of structured sparse loading patterns. Then these structured sparse
patterns are taken as hard constraints on a new SCA model, in which a Bi-cross
validation procedure [88] is used for the final selection. This two stages approach
is similar to the often used re-estimation trick in lasso regression. However, such a
two-step strategy cannot easily be generalized to the ESCA model. For example,
if a binary data set is used and the structured sparse pattern is imposed as a hard
constraint on the loading matrices in a ESCA model, the estimated loadings of
the binary data set can easily go to infinity [51, 64].

The above issue introduced by the biased estimation of lasso type penalties
can be alleviated by using concave penalties [57, 27], which can achieve sparse
solutions and nearly unbiased parameter estimation simultaneously. Therefore,
in this chapter, we applied group concave penalties, generalized double Pareto
(GDP) shrinkage [27] and bridge (Lq:0<q≤1) penalty [57] are included as special
cases, on the loading matrices of the ESCA model to induce structured sparse
pattern. Take σlr = ||bl,r||2, in which bl,r is the rth column of Bl, and g() is a
general concave penalty function in Table 5.1. The penalty on Bl can be expressed
as λl

∑
r g(σlr), in which λl is the tuning parameter. The group lasso penalty is a

special case of the group Lq (bridge) penalty by setting q = 1. The thresholding
properties of the group Lq penalty, group GDP penalty and group lasso can be
found in supplemental Fig. S5.2. In order to account for the situation that the
data sets have an unequal number of variables, we add the weights in the same
way as in the standard group lasso regression problem, i.e. λl

√
Jl
∑

r g(σlr). The

group concave penalty on {Bl}L1 can be expressed as
∑

l

[
λl
√
Jl
∑

r g(σlr)
]
. Based

on successful results in previous work [64] we will focus on the GDP penalty, which
is differentiable everywhere in its domain and its performance is insensitive to the
selection of the hyper-parameter γ. Fig. 5.1 gives an example to show how the
group GDP (γ = 1) penalty induces structured sparsity pattern on the loading
matrices {B}3l=1.



100 Chapter 5. Fusing multiple data sets with two types of heterogeneity

198.0

23.0

1.0

173.0

38.0

96.0

31.0

30.0

123.0

177.0

100.0

198.0

40.0

11.0

174.0

118.0

136.0

161.0

103.0

28.0

106.0

B1

B2

B3

194.6

0.0

0.0

169.1

0.0

88.6

0.0

0.0

117.4

173.2

92.9

194.6

0.0

0.0

170.1

112.1

131.0

156.8

96.2

0.0

99.4

1 2 3 4 5 6 7

B1

B2

B3

Figure 5.1: How the group GDP (γ = 1) penalty induces structured sparse pattern
on {B}3l=1. Values inside the plot indicate the L2 norm of the corresponding
loading vector bl,r. Top: loading matrix before thresholding; bottom: loading
matrix after thresholding.

Table 5.1: Three commonly used group penalty functions. Take σ as the L2 norm
of a group of elements. q and γ are the tuning parameters. The supergradient is
the counter concept of the subgradient for a concave function. When the concave
function is differentiable everywhere, the supergradient is the gradient.

penalty formula supergradient

group lasso σ 1

group Lq:0<q≤1 σq
{

+∞ σ = 0
qσq−1 σ > 0

group GDP log(1 + σ
γ
) 1

γ+σ
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5.2.4 Identifiability

The constraint 1TA = 0 makes the column offset terms {µ}Ll=1 identifiable. The

columns of the score matrix A span the joint subspace
⋃L
l=1 col(Θl), in which

col() indicates the column subspace. The structured sparse pattern on the load-
ing matrices and the multiplication of the score and loading matrices provide a
way to separate the joint subspace

⋃L
l=1 col(Θl) into subspaces col(GC), col(LC),

col(D) corresponding to the global common, local common and distinct varia-
tion, col(GC)

⋃
col(LC)

⋃
col(D) =

⋃L
l=1 col(Θl). If the orthogonality constraint

ATA = I is imposed, the separated subspaces col(GC), col(LC), col(D), corre-
sponding to the global common, local common and distinct variation, are orthogo-
nal to each other, and unique as col(GC)

⋂
col(LC)

⋂
col(D) = ∅. However, there

is still a rotation freedom for the components within the subspace corresponding
to the global common or local common or distinct variation.

5.2.5 Regularized likelihood criterion

The regularized likelihood criterion of fitting the proposed P-ESCA model can be
derived as follows. To tackle the missing value problem, L weight matrices are
introduced. For the lth data set Xl, we introduce a same size weight matrix Wl,
in which wlij = 0 if the corresponding element in Xl is missing, while wlij = 1 vise
versa. This option is the basis for different missing value based cross validation
approaches. The corresponding optimization problem can be expressed as follows,

min
{µl}Ll ,A,{Bl}Ll

L∑
l=1

[
− log(p(Xl|Θl, αl)) + λl

√
Jl
∑
r

g(σlr)
]

=
L∑
l=1

[ 1

αl
(< Wl, bl(Θl) > − < Wl �Xl,Θl >) + λl

√
Jl
∑
r

g(σlr)
]

+ c

subject to Θl = 1µT
l + ABT

l , l = 1, . . . , L

1TA = 0

ATA = I

σlr = ||bl,r||2, l = 1...L; r = 1, . . . , R,
(5.2)

in which � indicates the element-wise matrix multiplication.

5.3 Algorithm

The original problem in equation 5.2 is difficult to optimize directly because of the
non-convex orthogonality constraint ATA = I and the group concave penalty g().
However, by using the Majorization-Minimization (MM) principle, the original
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difficult problem can be majorized to a simpler problem, for which analytical
form solutions can be derived for all the parameters. According to the MM
principle, the derived algorithm will monotonously decrease the loss function in
each iteration. Further details of the MM principle can be found in [58, 59].

5.3.1 The majorization of the regularized likelihood cri-
terion

Take fl(Θl) = 1
αl

[< Wl, bl(Θl) > − < Wl �Xl,Θl >] as the loss function for

fitting the lth data set Xl, and gl(Bl) =
∑

r g(σlr) as the group concave penalty
for the lth loading matrix Bl. We can majorize fl(Θl) and gl(Bl) respectively as
follows.

The majorization of fl(Θl)

Given f̃l(θ
l
ij) = bl(θ

l
ij) − xlijθlij, we have fl(Θl) = 1

αl

∑
i

∑
j w

l
ij f̃l(θ

l
ij). The first

and second gradients of f̃l(θ
l
ij) with respect to θlij are ∇f̃l(θlij) = b

′

l(θ
l
ij)− xlij and

∇2f̃l(θ
l
ij) = b

′′

l (θ
l
ij). Assume that ∇2f̃1(θ

l
ij) is upper bounded by a constant ρl,

which will be detailed below. If θl represents the general representation of θlij,

then according to the Taylor’s theorem and the assumption that ∇2f̃l(θ
l) ≤ ρl

for all θl ∈ domain(f̃l), we have the following inequality,

f̃l(θ
l) =f̃l((θ

l)k)+ < ∇f̃l((θl)k), θl − (θl)k > +

1

2
(θl − (θl)k)T∇2f̃l

[
(θl)k + t(θl − (θl)k)

]
(θl − (θl)k)

≤f̃l((θl)k)+ < ∇f̃l((θl)k), θl − (θl)k > +
ρl
2

(θl − (θl)k)2

=
ρl
2

[
θl − (θl)k +

1

ρl
∇f̃l((θl)k)

]2
+ c.

(5.3)

Here (θl)k is an approximation of θl at the kth iteration and t ∈ [0, 1] is an
unknown constant. Combining the above inequality and the majorization step
[60] of transforming a weighted least square problem to a least squares problem,
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we have the following inequality,

fl(Θl) =
1

αl

∑
i

∑
j

wlij f̃l(θ
l
ij)

≤ ρl
2αl
||Wl � (Θl −Θk

l +
1

ρl
(b

′

l(Θ
k
l )−Xl))||2F + c

≤ ρl
2αl
||Θl −Hk

l ||2F + c

Hk
l = Wl � (Θk

l −
1

ρl
(b

′

l(Θ
k
l )−Xl)) + (11T −Wl)�Θk

l

= Θk
l −

1

ρl
Wl � (b

′

l(Θ
k
l )−Xl)),

(5.4)

in which Θk
l is the approximation of Θl during the kth iteration. For the Bernoulli

distribution, an elegant bound b
′′
(θ) ≤ 0.25 can be used [43]; for the Gaussian

likelihood, b
′′
(θ) = 1; for the Poisson distribution, b

′′
(θ) is unbounded, however,

we can always set ρl = max(b
′′
(Θk

l )).

The majorization of gl(Bl)

Assume Bk
l is the kth approximation of Bl, and σklr = ||bkl,r||2. According to

the definition of a concave function [61], we always have the inequality g(σlr) ≤
g(σklr) + ωklr(σlr − σklr) = ωklrσlr + c, in which ωklr ∈ ∂g(σklr) and ∂g(σklr) is the
set of supergradients (the counterpart concept of the subgradient for a concave
function) of the function g() at σklr. When the supergradient is unique, then
ωklr = ∂g(σklr). Therefore, gl(Bl) =

∑
r g(σlr) can be majorized as follows,

gl(Bl) =
∑
r

g(σlr)

≤
∑
r

ωklrσlr + c

ωklr ∈ ∂g(σklr).

(5.5)

The majorization of the regularized likelihood criterion

Combining the above two majorization steps, we have majorized the original
complex problem in the equation 5.2 to a simper problem in each iteration as
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follows,

min
{µl}Ll ,A,{Bl}Ll

L∑
l=1

[ ρl
2αl
||Θl −Hk

l ||2F + λl
√
Jl
∑
r

ωklrσlr

]
subject to Θl = 1µT

l + ABT
l , l = 1 . . . L

1TA = 0

ATA = I

σlr = ||bl,r||2, l = 1 . . . L, r = 1 . . . R

Hk
l = Θk

l −
1

ρl
Wl � (b

′

l(Θ
k
l )−Xl), l = 1 . . . L

ωklr ∈ ∂g(σklr), l = 1 . . . L, r = 1 . . . R.

(5.6)

5.3.2 Block coordinate descent

The majorized optimization problem in equation 5.6 can be solved by the block
coordinate descent approach, and the analytic solution can be derived for all the
parameters.

Updating {µl}L1
When fixing all other parameters except µl, the analytic solution of µl in equation
5.6 is simply the column mean of Hk

l , µl = 1
I
(Hk

l )
T1.

Updating A

When fixing all other parameters except A, and deflating the offset term {µl}L1 ,
the loss function in equation 5.6 becomes

∑L
l=1

ρl
2αl
||ABT

l − JHk
l ||2F + c, in which

J = I− 1
I
11T is the column centering matrix. If we take dl =

√
ρl/αl, the above

equation can also be written in this way
∑L

l=1
1
2
||AdlBT

l − dlJHk
l ||2F . To simplify

the equations, we set B̃l = dlBl and J̃H
k

l = dlJHk
l . Then, we take B̃ as the

row concatenation of
{

B̃l

}L
l=1

, B̃T = [B̃T
1 . . . B̃

T
l . . . B̃

T
L], and take J̃H

k
as the

column concatenation of
{

J̃H
k

l

}L
l=1

, J̃H
k

= [J̃H
k

1 . . . J̃H
k

l . . . J̃H
k

L]. After that,

we have
∑L

l=1
ρl
2αl
||ABT

l −JHk
l ||2F =

∑L
l=1

1
2
||AB̃T

l − J̃H
k

l ||2F = 1
2
||AB̃T− J̃H

k
||2F .

Updating A equivalents to minimizing 1
2
||AB̃T − J̃H

k
||2F , s.t.ATA = I. Assume

the SVD decomposition of J̃H
k
B̃ is J̃H

k
B̃ = UDVT, the analytic solution for

A is A = UVT. The derivation of the above solution is shown in the following
paragraph.

To simplify the derivation, we take B = B̃ and C = J̃H
k
. So the optimization

problem is minA ||ABT −C||2F , s.t.ATA = I. This equation can be expanded as
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||ABT − C||2F = tr(BATABT) − 2tr(BATC) + tr(CTC). Since ATA = I, the
above optimization problem equivalents to maximizing a trace function problem,
maxA tr(BATC), s.t.ATA = I. Assume the SVD decomposition of CB is CB =
UDVT, we have tr(BATC) = tr(ATCB) = tr(ATUDVT) = tr(VTATUD).
According to the Kristof theorem [41], we have tr(VTATUD) ≤

∑
r drr, in which

drr is the rth diagonal element of D, and this upper-bound can be achieved by
setting A = UVT.

Updating {Bl}L1
Because ATA = I, it is easy to prove that ||ABT

l − JHk
l ||2F = ||ATABT

l −
ATJHk

l ||2F = ||Bl−(JHk
l )

TA||2F . Also, because of that the least squares problems
are decomposable, we have ||Bl−(JHk

l )
TA||2F =

∑
r ||bl,r−(JHk

l )
Tar||22, in which

ar is the rth column of A. In this way, we have the following optimization problem,

min
Bl

ρl
2αl
||ABT

l − JHk
l ||2F + λl

√
Jl
∑
r

ωklrσlr

=
ρl

2αl
||Bl − (JHk

l )
TA||2F + λl

√
Jl
∑
r

ωklrσlr

=
∑
r

[ ρl
2αl

(bl,r − (JHk
l )

Tar)
2 + λl

√
Jlω

k
lrσlr

]
subject to σlr = ||bl,r||2, l = 1 . . . L, r = 1 . . . R,

(5.7)

The above optimization problem is equivalent to finding the proximal operator
of a L2 (or Euclidean) norm, and the analytic solution exists [25]. Take λ̃lr =

λl
√
Jlω

k
lrαl/ρl, the analytical solution of bl,r is bl,r = max(0, 1− λ̃lr

||(JHk
l )

Tar||2
)(JHk

l )
Tar.

To update the parameter Bl, we can simply apply this proximal operator to all
the columns of Bl.

Initialization and stopping criteria

The initialization of the parameters {µ0
l }
L
l=1, A0, {B0

l }
L
l=1 can be set to the results

of a classical SCA model on {Xl}Ll=1 or to accept user imputed initializations.
The relative change of the objective function is used as the stopping criteria.
Pseudocode of the algorithm described above is shown in Algorithm 3, in which
fk is the value of the objective function in kth iteration, εf is the tolerance of
relative change of the objective function.

5.3.3 Variation explained ratio of the P-ESCA model

For the quantitative data set Xl, the parameters are µl, A and Bl. The total
variation explained ratio of the model for Xl is defined as varExpl = 1− ||Wl �
(Xl − 1µT

l −ABT
l )||2F/||Wl � (Xl − 1µT

l )||2F . And the variation explained ratio
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Algorithm 3 An MM algorithm for fitting the P-ESCA model.

Input: {Xl}Ll=1, {αl}
L
l=1, g(), {λl}Ll=1, γ;

Output: µ̂, Â, B̂;
1: Compute {Wl}Ll=1 for missing values in {Xl}Ll=1;

2: Initialize {µ0
l }
L
l=1, A0, {B0

l }
L
l=1;

3: Θ0
l = 1(µ0

l )
T + A0(B0

l )
T, l = 1 . . . L;

4: k = 0;
5: while (fk−1 − fk)/fk−1 > εf do
6: for l = 1 . . . L do
7: Estimate ρl according to the data type of Xl;
8: Hk

l = Θk
l − 1

ρl
Wl � (b

′
(Θk

l )−Xl));

9: µk+1
l = 1

I
(Hk

l )
T1;

10: B̃k
l =

√
ρl
αl

Bk
l ;

11: J̃H
k

l =
√

ρl
αl

JHk
l ;

12: end for
13: (µk+1)T = [(µk+1

1 )T . . . (µk+1
l )T . . . (µk+1

L )T];

14: (B̃k)T = [(B̃k
1)T . . . (B̃k

l )
T . . . (B̃k

L)T];

15: J̃H
k

= [J̃H
k

1 . . . J̃H
k

l . . . J̃H
k

L];

16: UDVT = J̃H
k
B̃k;

17: Ak+1 = UVT;
18: for l = 1 . . . L do
19: for r = 1 . . . R do
20: σklr = ||bkl,r||2;
21: ωklr ∈ ∂g(σklr);
22: λ̃lr = λl

√
Jlω

k
lrαl/ρl;

23: bk+1
l,r = max(0, 1− λ̃lr

||(JHk
l )

Tak+1
r ||2

)(JHk
l )

Tak+1
r ;

24: end for
25: Bk+1

l = [bk+1
l,1 . . .bk+1

l,r . . .bk+1
l,R ];

26: end for
27: (Bk+1)T = [(Bk+1

1 )T . . . (Bk+1
l )T . . . (Bk+1

L )T]
28: k = k + 1;
29: end while
30: Compute variation explained ratios.

for the rth component on Xl is defined as varExplr = 1 − ||Wl � (Xl − 1µT
l −

arb
T
l,r)||2F/||Wl�(Xl−1µT

l )||2F . For the binary data set, we use a similar strategy

as the MOFA model [89], where the Hk
l is taken as the pseudo Xl during the kth

iteration, and Hk
l rather than Xl is used to compute the variation explained

ratios. The multiple data sets can also be taken as a single full data set. In that
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case the {1/√αl}L1 values are taken as the weights for them, and then we can
compute the variation explained ratios of each component for this full data set.
The full single data set X̃ and the weight matrix W̃ are the column concatenation
of {(1/√αl)Xl}L1 and {Wl}L1 , in which Xl is replaced by Hk

l if the lth data set

is not quantitative. The offset term µ̃ and the loading matrix B̃ are the row
concatenation of {(1/√αl)µl}L1 and {(1/√αl)Bl}L1 and the score matrix Ã = A.

5.4 Simulation process

To evaluate the proposed model and the model selection procedure, three data
sets of different data types with underlying global, local common and distinct
structures are simulated. The following simulations and experiments focus on the
quantitative and binary data types. We will first show the simulation of the struc-
ture ABT, in which B is the row concatenation of {Bl}3l=1, BT = [BT

1 BT
2 BT

3 ].
The structure ABT can be expressed in the SVD type as ABT = UDVT (A = U,
B = VD), in which UTU = I, D is a diagonal matrix, and the structured sparse
pattern exists in the matrix V. First, all the elements in U and V are simulated
from the standard normal distribution. To make sure that 1TU = 0, simulated
U is first column centered, and then it is orthogonalized by the SVD algorithm
to have UTU = I. Also, V is orthogonalized by the QR algorithm to obtain
VTV = I. In this example 21 components are predefined, 7 groups of global,
local common and distinctive nature, 3 components each. The structure of these
components are set in V as indicated below,

V =

 V1

V2

V3

 =

 V1,1:3 V1,4:6 V1,7:9 0 V1,13:15 0 0
V2,1:3 V2,4:6 0 V2,10:12 0 V2,16:18 0
V3,1:3 0 V3,7:9 V3,10:12 0 0 V3,19:21

 ,

in which V1,1:3 indicates the loadings for the first three components for data
set 1, etc. After that, 21 values are sampled from N(1, 0.5), and their absolute
values are taken as the diagonal elements of D. Furthermore, an extra diagonal
matrix C, which has the same size as matrix D, is used to adjust the signal
to noise ratios (SNRs) in simulating different global, local common and distinct
structures. Then we have ABT = U(C�D)VT. In order to define the SNR, we
have to specify the noise term El for the lth data set Xl. If Xl is quantitative,
all the elements in El can be sampled from N(0, αl). If Xl is binary, according
to the latent variable interpretation of logistic PCA [95], we assume there is
a continuous latent matrix X∗l underlying the binary observation Xl, and the
elements of the noise term El follow the standard logistic distribution. After the
specification of the noise terms, we can adjust the diagonal elements in C to
satisfy the predefined SNRs in simulating the global, local common and distinct
structures. We restrict the diagonal elements of C for the same structure to share
a single value to have a unique solution. For example, for the global structure
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C123 = U:,1:3(C1:3,1:3 � D1:3,1:3)V
T
:,1:3, the corresponding noise term is E123 =

[E1 E2 E3], and the SNR of the global structure as defined as SNR =
||C123||2F
||E123||2F

.

The SNRs for the simulation of the local common (C12, C13, C23) and distinct
(D1, D2, D3) structures are defined in the same way.

If Xl is quantitative, we simply sample all the elements in µl from the stan-
dard normal distribution. If Xl is binary, the column offset µl represents the
logit transformation of the marginal probabilities of binary variables. In our sim-
ulation, we will first sample Jl marginal probabilities from a Beta distribution.
The Beta distribution can be specified in the following way. For example, if we
have 100 samples of a binary variable and we assume the marginal probability
to be 0.1, this means we only observe 100× 0.1 = 10 “1”s. If we model them as
Binomial observations with parameter π, and use a uniform prior distribution for
π, then the posterior distribution of π is π ∼ Beta(11, 91) [96]. After generating
Jl marginal probabilities from this Beta distribution, the logit transformation of
this vector of probabilities are set as µl. If Xl is quantitative, Xl is simulated as
Xl = 1µT

l + ABT
l + El, and all the elements of El are sampled from N(0, αl).

If Xl is binary, we have Θl = 1µT
l + ABT

l , and all the elements of Xl are sam-
pled from the Bernoulli distributions, whose probabilities are the corresponding
elements in the inverse logit transformation of Θl. An equivalent way to simu-
late the binary Xl is to first generate X∗l = 1µT

l + ABT
l + El, in which all the

elements in El are sampled from the standard logistic distribution. Then, all the
elements in Xl are the binary observations of the corresponding elements of X∗l ,
xlij = 1 if (x∗ij)

l > 0, and xlij = 0 vise versa. In the following sections, we will
use Gaussian-Gaussian-Gaussian (G-G-G) to represent the simulation of three
quantitative data sets; Bernoulli-Bernoulli-Bernoulli (B-B-B) for the simulation
of three binary data sets; G-B-B for a quantitative data set and two binary data
sets and G-G-B for two quantitative data sets and a binary data set.

5.5 Evaluation matrices and model selection

To evaluate the accuracy of the model in estimating the simulated parameters,
such as Θl and µl, the relative mean squared error (RMSE) is used. If, for
example, the simulated parameter is Θ, Θ = [Θ1 Θ2 Θ3], and its estimation

is Θ̂, the RMSE is defined as RMSE(Θ) =
||Θ−Θ̂||2F
||Θ||2F

. All of the following evaluation

matrices RMSE(Θl), RMSE(Θ) and RMSE(µ) will be used in the experimental
section. To evaluate the recovered subspaces with respect to the simulated global
common, local common and distinct structures, the modified RV coefficient [97]

is used. If the simulated global structure is C123, and its estimation is Ĉ123, the

similarity between the subspaces of C123 and Ĉ123 is calculated by the modified
RV coefficient.

For the real data sets, we can use the cross validation (CV) error as the proxy
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of the prediction error to estimate the performance of the model. The K-fold CV
procedure used in Chapter 4 can be quite slow for P-ESCA model. Therefore we
set up the CV procedure as follows in a similar way as Chapter 3. From each
data set Xl, we will randomly select 10% non-missing elements as Xtest

l , and these
selected elements in Xl are set to missing values. The remaining elements form
the training set Xtrain

l . For binary data, the selection of the test set samples is
performed in a stratified manner to tackle the situation of unbalanced binary data.
Here the test set consist of 10% “1”s and “0”s which are randomly selected from

Xl as Xtest
l . A P-ESCA model is constructed on the training sets

{
Xtrain
l

}L
l=1

, to

obtain an estimation of {Θ̂l}L1 , in which Θ̂l = 1µ̂l
T+ÂB̂T

l . Then the parameters

{Θ̂test
l }L1 corresponding to { ˆXtest

l}L1 are indexed. The CV error for Xl is obtained

as the negative log likelihood of using Θ̂test
l to predict Xtest

l .

If the data sets {Xl}Ll=1 are of the same data type, a single tuning parameter

λ is used to replace the {λl}Ll=1 during the model selection. First, {Xl}Ll=1 are

split into
{
Xtrain
l

}L
l=1

and {Xtest
l }

L
l=1 in the same way as described above. Then

N λ values are selected (with equal distance in log-space) and for each λ value

a P-ESCA model is constructed on the training sets
{
Xtrain
l

}L
l=1

. A warm start
strategy is used, in which the outputs of a previous model are used to initialize
the next model with a slightly higher regularization strength. The warm start
strategy has a special meaning in the current context. If some component loadings
are shrunk to 0 in the previous model, they will also be 0 in the next models with
higher λ values. Thus, the search space of the next model will be constrained
based on the learned structured sparse pattern in the previous model. In this
way, with increasing λ, components are removed adaptively. We prefer to select
the model with the minimum CV error on {Xtest

l }
L
l=1 and the corresponding value

of λ is λopt. After that we re-fit a P-ESCA model with λopt on the full data

sets {Xl}Ll=1 and the outputs derived from the selected model with minimum CV
error are used for initialization in order to preserve the learned structured sparse
pattern.

If the data sets are of mixed data types, we prefer to use distinct tuning
parameters for each data type. Suppose we have three data sets {Xl}3l=1, of which
X1 is quantitative and {Xl}3l=2 are binary. We specify two tuning parameters λg
and λb for the loading matrices corresponding to the quantitative and binary data
sets. A heuristic model selection approach, which has the same computational
complexity as tuning a single parameter, can be used for the model selection.
The splitting of {Xl}Ll=1 into the training and test sets is the same as discussed
above. Then again, N values of λg and λb are selected with equal distance in
log-space. For the first model, we fix λg to be 0 or a very small value, and tune
λb in the same way as above. The model with the minimum CV error on the
binary test sets {Xtest

l }
3
l=2 is selected, and the corresponding value of λb is λbopt.

After that, λb is fixed to λbopt, and the outputs of the above selected model are
set as the initialization for the models in the model selection of λg, which is done
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in the same way as described above. The model with the minimum CV error on
the quantitative test set Xtest

1 is selected, and the corresponding value of λg is
λgopt. After the model selection, we re-fit the P-ESCA model on the full data sets

{Xl}3l=1 with the λgopt and λbopt and again the outputs of the selected model in the
model selection process are used for initialization.

5.6 Experiments

5.6.1 Evaluating the dispersion parameter estimation pro-
cedure

The dispersion parameters of the Bernoulli and Poisson distributions can always
set to 1, while for the Binomial distribution with n experiments, it can always
be set to n. However, for a Gaussian distribution, the dispersion parameter α
represents the variance of the noise term, and is assumed to be known. Suppose
we have a data set Xl, we prefer to use a PCA model to estimate the αl before
constructing a P-ESCA model. The rank of the PCA model is selected by a
missing value based cross validation procedure similar as described above. Details
of the α estimation procedure are shown in the supplementary material. After
obtaining an estimation of α̂l, it can be casted into the model or the data set
can be scaled by

√
α̂l, which is the estimated standard deviation. We simulated

G-G-G, G-G-B and G-B-B data sets to test the α estimation procedure. The
parameters in the simulation are set as I = 100, J1 = 5000, J2 = 500, J3 = 50;
the SNRs of the global, local common and distinct structures are all set to 1;
the marginal probability is set to 0.1 to simulate unbalanced binary data sets.
The α estimation procedure was repeated 3 times and the average is taken as the
estimation. As shown in supplemental Table S5.2, the mean estimated dispersion
parameters in different situations are quite accurate, and the estimations derived
from the 3 times repetitions are very stable.

5.6.2 An example of CV error based model selection

We use the simulated G-G-G data sets as an example to show how the model
selection is performed when multiple data sets are of the same data type. The
following parameters are used in the simulation, I = 100, J1 = 1000, J2 = 500,
J3 = 100; the SNRs of global, local common and distinct structures are all set to
1; all the dispersion parameters {αl}31 are set to be 1. The signals, which are taken
as the singular values of the simulated structures, and the noise terms, which are
taken as the singular values of the corresponding residual terms, are characterized
in supplemental Fig. S5.3. The true variation explained ratios of each component
in every data set is computed using the simulated parameters, and is visualized in
supplemental Fig. S5.4. For the model selection procedure, the maximum number
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of iterations is set to 500; the stopping criteria is set to εf = 10−6; 30 λ values
are selected from the interval [1, 500] equidistant in log-space; 50 components are
used in the initialization. The values of {αl}L1 in the P-ESCA model are set to
the estimated values from the above α estimation procedure.

Fig. 5.2 shows how the CV errors, RMSEs and the RV coefficients change
with respect to λ when a P-ESCA model with a group GDP (γ = 1) penalty is
used. The top figures in Fig. 5.2 show that the CV errors change in a similar
way as the RMSEs. The model with minimum CV error has low RMSEs in esti-
mating the simulated parameters (Fig. 5.2 top right) and correctly identifies the
dimensions of the subspaces for the global, local common and distinct structures
(Fig. 5.2 bottom). However, when the group lasso penalty is used this was not
the case. Supplemental Fig. S5.5 shows that when a group lasso penalty is used,
the models with minimal CV error do not coincide with the correct dimensions
of the subspaces. In the model with minimum CV error, almost all the compo-
nents are assigned to the global structure. This result relates to the fact that
the lasso type penalty over-shrinks the non-zero parameters, and then the CV
error based model selection procedure tends to select a too complex model to
compensate to the biased parameter estimation. On the other hand, as the GDP
penalty achieves nearly unbiased parameter estimation, the CV error based model
selection procedure correctly identifies the correct model.

After the model selection, a high precision P-ESCA model (εf = 10−8) with
a group GDP penalty is re-fitted on the full data sets with the value of λ corre-
sponding to the minimum CV error and the selected structured sparse pattern.
For this selected model, the RMSEs in estimating Θ, Θ1, Θ2, Θ2 and µ are
0.0259, 0.0239, 0.0285, 0.0335 and 0.0096 respectively. The RV coefficients in
estimating the global common structure C123 is 0.9985; local common structures
C12, C13 and C23, 0.9977, 0.9969, 0.9953; the distinct structures D1, D2 and D3,
0.9961, 0.9937, 0.9779. The variation explained ratios of each component on the
three data sets computed using the estimated parameters, visualized in Fig. 5.3,
are very similar to the true ones in supplemental Fig. S5.4. These values can be
very useful in exploring the constructed model.

5.6.3 Full characterization of the P-ESCA model when
applied to multiple quantitative data sets

When applied to multiple quantitative data sets, our model is similar as the
SLIDE model, except that we use different penalties and a different model se-
lection procedure. The details of the differences between the two approaches are
summarized in the supplementary material. Since the concave GDP penalty is
capable to achieve a nearly unbiased estimation of the parameters, the P-ESCA
model with a group GDP penalty is expected to achieve similar performance to
the two stages procedure used in the SLIDE model. Therefore, we simulated seven
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Figure 5.2: The CV errors (top left), RMSEs (top right), RV coefficients of the
common structures (bottom left), and of distinct structures (bottom right) for
varying λ values for the P-ESCA model with a group GDP (γ = 1) penalty. The
red cross marker indicates the model with minimum CV error.

realistic cases by adjusting the SNRs of the simulated structures to compare the
performance of these two models and their model selection procedures. The SNRs
of the simulated structures corresponding to these seven cases are listed in sup-
plemental Table S5.3. Case 1: only the local common structures exist and they
have unequal SNRs; case 2: the JIVE case, only the global common and distinct
structures exist, and they are all of low SNRs; case3: all the simulated structures
are of low SNRs; case 4: global common structure dominate the simulation; case
5: local common structures dominate the simulation; case 6: distinct structures
dominate the simulation; case 7: none of the global, local common and distinct
structures exist.

The following parameters are used in the G-G-G data simulations, I = 100,
J1 = 1000, J2 = 500, J3 = 100, all of the {αl}31 are set to 1. In order to have
exactly 3 components for all the simulated structures, we reject the simulations
of which the singular values of the three components of any specific structure are
not 2 times larger than the singular value of the corresponding residual term. The
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Figure 5.3: Variation explained ratios computed using the estimated parameters
from the selected P-ESCA model with a group GDP penalty. From the top to the
bottom, we have data sets X1, X2 and X3; from the left to the right, we have 20
components corresponding to the global, local common and distinct structures.
The total variation explained ratios for each data set are shown on the left side
of the plot, while he variation explained ratio for each component is shown inside
the plot.

P-ESCA model with a group GDP (γ = 1) penalty is selected and re-fitted on
the full data sets in the same way as above. For the SLIDE model, the simulated
data sets {Xl}31 are column centered and block-scaled by the Frobenius norm of
each data set. Then the SLIDE model is selected and fitted using the default
parameters. The deflated column offset term is taken as the estimated µ̂. The
derived loading matrices {Bl}31 are re-scaled by the corresponding Frobenius norm
of each data set. G-G-G data sets are simulated for all the 7 cases, and for each
case, the simulation experiment (data simulation, model selection, fitting the final
model) is repeated 10 times for both the P-ESCA model and the SLIDE model.
The mean RV coefficients in evaluating the estimated global, local common and
distinct structures and the corresponding mean estimated ranks are shown in
Table 5.2, and the mean RMSEs in estimating the simulated parameters are
shown in supplemental Table S5.4. In all 7 cases, these two methods have very
accurate estimation of the subspaces corresponding to the global, local common
and distinct structures, and of the simulated parameters Θ, which is the column
concatenation of {Θl}31, {Θl}31, and µ, which is row concatenation of {µl}L1 . For
some of the cases there is a slight advantage for the P-ESCA model.

5.6.4 Full characterization of the P-ESCA model when
applied to multiple binary data sets

The performance of the proposed P-ESCA model is fully characterized with re-
spect to multiple binary data sets. Here we make a comparison to the MOFA
model, which is the Bayesian counterpart of P-ESCA. In the P-ESCA model, the
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Table 5.2: Mean RV coefficients and the mean rank estimates in evaluating the
recovered subspaces derived from 10 experiments using the P-ESCA model and
the SLIDE model for seven G-G-G simulated cases. The results are shown as
in mean RV coefficient(mean rank estimation) form. The row names 1p and 1s

indicate P-ESCA and SLIDE models applied to simulation case 1. Same rule
applies to other row names.

C123 C12 C13 C23 D1 D2 D3

1p 0 (0) 0.998(3) 0.999(3) 0.999(3) 0 (0) 0 (0) 0 (0)
1s 0 (0) 0.998(3) 0.998(3) 0.998(3) 0 (0) 0 (0) 0 (0)

2p 0.996(3) 0 (0) 0 (0) 0 (0) 0.997(3) 0.985(3) 0.973(3)
2s 0.996(3) 0 (0) 0 (0) 0 (0) 0.997(3) 0.985(3) 0.973(3)

3p 0.998(3) 0.997(3) 0.997(3) 0.995(3) 0.996(3) 0.994(3) 0.976(3)
3s 0.995(3) 0.996(3) 0.993(3) 0.991(3) 0.995(3) 0.994(3) 0.976(3)

4p 1 (3) 1 (3) 1 (3) 0.999(3) 0.997(3) 0.995(3) 0.977(3)
4s 1 (3) 1 (3) 0.999(3) 0.999(3) 0.997(3) 0.994(3) 0.977(3)

5p 1 (3) 1 (3) 1 (3) 1 (3) 0.998(3) 0.995(3) 0.977(3)
5s 0.999(3) 1 (3) 0.999(3) 0.999(3) 0.997(3) 0.995(3) 0.977(3)

6p 0.998(3) 1 (3) 0.994(3.1) 0.999(3) 0.998(2.9) 0.999(3) 0.998(3)
6s 0.996(3) 0.999(3) 0.998(3) 0.998(3) 0.999(3) 0.999(3) 0.997(3)

7p 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
7s 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (1.4)

structured sparse pattern is induced through a group concave penalty, and the
model selection is done through missing value based cross validation, while in the
MOFA model, the structured sparse pattern is induced through the automatic
relevance determination approach and the model is selected through maximizing
the marginal likelihood. In addition, MOFA model also shrinks a component to
be 0 when its variation explained ratios for all the data sets are less than a thresh-
old, the default value of which is 0. The details of the differences are summarized
in the supplementary material. For the model selection of the P-ESCA model,
the range of λ values is [1, 100], and the other parameters are the same as before.
To give an impression of the model selection process, we also characterized how
the CV errors, RMSEs and the RV coefficients change with respect to λ in the
P-ESCA model with a group GDP penalty on the simulated B-B-B data sets in
supplemental Fig. S5.6. For the MOFA model, the default parameters are used,
but as exact sparsity cannot be achieved by the automatic relevance determina-
tion procedure used in the MOFA model, we take a component for a single data
set to be 0 when the variation explained ratio of this component on this data set
is less than 0.1%.

In the seven B-B-B simulations cases, we set I = 200, and the marginal prob-
ability to be 0.1 to simulate very unbalanced binary data sets. Other parameters
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are the same as in the G-G-G simulation cases. The mean RV coefficients in
evaluating the estimated global, local common and distinct structures and the
corresponding mean estimated ranks are shown in Table 5.3, and the mean RM-
SEs in estimating the simulated parameters are shown in supplemental Table
S5.5. Compared to the results derived from the P-ESCA model on the G-G-G
data sets (Table 5.2), the recovered subspaces related to the global, local common
and distinct structures from P-ESCA model on B-B-B data sets are less accurate
with respect to RV coefficient and rank estimation, especially when the SNR of
a specific structure is much lower than others (in case 4, 5, 6). However, given
the fact that all the three data sets only have binary observations, the recovered
subspaces are accurate enough. Furthermore, it is interesting to find that such
low RMSEs in estimating {Θl}31, µ (supplemental Table S5.5) can be achieved
solely from a model on multiple binary data sets. Although these results are a
little bit counter intuitive, it is coordinate with the previous research [52, 64].
According to our previous research [64], this result mainly relates to the fact
that the GDP penalty can achieve nearly unbiased parameter estimation. On the
other hand, the RMSEs in estimating the simulated parameters from the MOFA
model (supplemental Table S5.5) are much larger. Especially for the estimation
of the simulated column offset term, all the elements in the estimated µ̂ from
the MOFA model are very close to 0, and are far away from the simulated µ.
However, the recovered subspaces from the MOFA model are comparable to the
results derived from the P-ESCA model (Table 5.3).

5.6.5 Full characterization of the P-ESCA model when
applied to multiple data sets of mixed data types

The proposed P-ESCA model is also fully characterized on the simulated multiple
data sets of mixed quantitative and binary data types. Both G-B-B and G-G-B
data sets are simulated for all the seven simulation cases. We set I = 200, all of
{αl}31 to be 1, the marginal probability in simulating unbalanced data sets to be
0.1. Other parameters are the same as above. The range of λ values for loadings
related to the quantitative data sets is [1, 500], and for loadings related to binary
data sets is [1, 100]. The mean RV coefficients of the estimated global, local
common and distinct structures and the corresponding mean ranks estimation
from the P-ESCA and the MOFA model in the seven G-B-B simulation cases
are shown in Table 5.4, for the G-G-B simulation the results are shown in Table
5.5. The mean RMSEs in estimating the simulated parameters are shown in
supplemental Table S5.6, for the G-B-B simulations are in supplemental Table
S5.7. Similar to the previous results of B-B-B simulations, the P-ESCA model
can achieve quite accurate estimates of the subspaces related to the global, local
common and distinct structures (Table 5.4, Table 5.5) when the SNRs of different
structures are relatively equal. However, when the SNR of a specific structure is
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Table 5.3: Mean RV coefficients and mean rank estimations of recovered subspaces
derived from 10 repeated simulation experiments using the P-ESCA model and
the MOFA model for seven B-B-B cases. For case 7, a one component MOFA
model is selected, however, results cannot be extracted when the offset term is
included. The row names 1p and 1m indicate P-ESCA and MOFA models applied
to simulation case 1. Same rule applies to other row names.

C123 C12 C13 C23 D1 D2 D3

1p 0(0) 0.993(2.9) 0.994(2.9) 0.991(2.5) 0(0.2) 0(0.5) 0(0)
1m 0(0) 0.834(2.1) 0.984(3.2) 0.989(3.2) 0(1.4) 0(1 ) 0(0)

2p 0.993(2.6) 0(0.4) 0(0) 0(0 ) 0.990(3 ) 0.982(3) 0.914(3)
2m 0.959(2.7) 0(0 ) 0(0.1) 0(0.2) 0.964(3.2) 0.975(3.1) 0.885(2.6)

3p 0.956(1.9) 0.959(4) 0.972(1.8) 0.939(1.9) 0.967(4.3) 0.945(4.1) 0.878(2.6)
3m 0.940(2.6) 0.925(2.3) 0.977(3.2) 0.956(3.1) 0.936(3.6) 0.934(3.7) 0.848(2.3)

4p 0.992(2.3) 0.988(3.3) 0.981(2.4) 0.980(2.2) 0.831(3.6) 0.838(3.2 ) 0.151(0.2)
4m 0.986(2.9) 0.955(2.9) 0.990(3 ) 0.985(2.9) 0.960(2.6) 0.929(2.3) 0.220(0.3)

5p 0.980(2.1) 0.990(3.8) 0.991(2.5) 0.986(2.6) 0.916(3.4) 0.808(2.3) 0.074(0.1)
5m 0.915(3.1) 0.956(2.8) 0.991(2.9) 0.984(3 ) 0.878(2.6) 0.917(2 ) 0.193(0.3)

6p 0.192(0.2) 0.981(4.7) 0.984(2.3) 0.979(2.6) 0.991(4.6) 0.988(3 ) 0.963(2.8)
6m 0.525(1.1) 0.949(2.1) 0.980(3.7) 0.979(3.4) 0.978(4.3) 0.977(4.2) 0.953(3.1)

7p 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
7m NA NA NA NA NA NA NA
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very low compared to others (in case 4, 5, 6), the P-ESCA model has difficulty
for its recovery. However, compared to the MOFA model, P-ESCA can achieve
better results with respect to the recovered subspaces (Table 5.4, Table 5.5) and
estimation of the simulated parameters (supplemental Table S5.6, Table S5.7) in
G-B-B and G-G-B simulations.

Table 5.4: Mean RV coefficients and mean rank estimations of the recovered
subspaces derived from simulation experiments using the P-ESCA model and the
MOFA model for seven G-B-B cases. The row names 1p and 1m indicate P-ESCA
and MOFA models applied to simulation case 1. Same rule applies to other row
names.

C123 C12 C13 C23 D1 D2 D3

1p 0(0) 0.997(2.8) 0.987(2.3) 0.993(3) 0(0.9) 0(0) 0(0)
1m 0(0) 0.826(2.5) 0.978(3) 0.973(3.7) 0(1.6) 0(0.5) 0(0)

2p 0.978(2.3) 0(0.5) 0(0) 0(0) 0.993(3.2) 0.981(3) 0.918(2.9)
2m 0.984(2.7) 0(0.1) 0(0) 0(0.2) 0.533(4.2) 0.975(3) 0.895(2.7)

3p 0.975(2) 0.972(3.9) 0.945(1.5) 0.974(2.2) 0.932(4.6) 0.968(3.8) 0.892(2.6)
3m 0.914(3) 0.879(2.7) 0.962(2.7) 0.971(3.1) 0.475(4.6) 0.970(2.9) 0.860(2.5)

4p 0.998(2.7) 0.995(2.9) 0.917(1.6) 0.991(2.4) 0.547(4.8) 0.909(3.3) 0(0)
4m 0.856(3.7) 0.547(2) 0.788(3.7) 0.990(3) 0.378(4.9) 0.935(2.8) 0.398(0.6)

5p 0.982(2.1) 0.995(3.4) 0.994(2.2) 0.994(2.8) 0.698(4.3) 0.929(3.1) 0.164(0.2)
5m 0.677(3.3) 0.691(2) 0.916(3.3) 0.991(3.1) 0.316(5.2) 0.835(2.8) 0.475(0.8)

6p 0(0) 0.980(5.1) 0.971(1.8) 0.989(2.5) 0.989(5.1) 0.992(3.5) 0.966(2.9)
6m 0.624(1.4) 0.750(1.9) 0.899(3.9) 0.985(3.4) 0.837(6.2) 0.978(4.3) 0.954(2.9)

7p 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
7m NA NA NA NA NA NA NA

5.7 Real data analysis

We applied the P-ESCA model on the chronic lymphocytic leukaemia (CLL)
data set [92, 89], which was used in the chapter of the MOFA model, to give an
example of the real data analysis. For the 200 samples in the CLL data set, not
all of them are fully characterized for all the measurements. Drug response data
has 184 samples and 310 variables; DNA methylation data, 196 samples and 4248
variables; transcriptome data, 136 samples and 5000 variables; mutation data,
200 samples and 69 binary variables. The missing pattern of the CLL data sets
is visualized in supplemental Fig. S5.7. Except for the missing values related to
the samples that were not measured by a specific platform, there are also some
selected variables missing in the mutation data (supplemental Fig. S5.7). All
the quantitative data sets are first column centered and scaled by the sample
standard deviation of each variable. After that, the dispersion parameters of
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Table 5.5: Mean RV coefficients and mean rank estimations of the recovered
subspaces derived from 10 simulation experiments using the P-ESCA model and
the MOFA model for seven G-G-B cases. The row names 1p and 1m indicate
P-ESCA and MOFA models applied to simulation case 1. Same rule applies to
other row names.

C123 C12 C13 C23 D1 D2 D3

1p 0(0) 0.998(3) 0.997(2.4) 0.999(2.9) 0(0.6) 0(0.1) 0(0)
1m 0(0) 0.528(3.8) 0.998(2.8) 0.998(2.9) 0(0.4) 0(0.3) 0(0)

2p 0.971(2.4) 0(0.6) 0(0) 0(0) 0.998(3) 0.995(3) 0.920(2.9)
2m 0.987(2.8) 0(1.2) 0(0) 0(0) 0.997(3) 0.994(3) 0.899(2.8)

3p 0.984(2.2) 0.977(3.8) 0.979(2.2) 0.981(2.2) 0.970(3.8) 0.968(3.8) 0.922(3)
3m 0.977(2.7) 0.524(4.3) 0.993(2.8) 0.989(2.9) 0.989(3.2) 0.980(3.1) 0.888(2.3)

4p 0.996(3) 0.965(3 ) 0.997(2.6) 0.996(2.4) 0.941(3.4) 0.899(3.6) 0.844(2.4)
4m 0.955(4) 0.673(3.1) 0.903(2.9) 0.997(2.9) 0.920(3) 0.983(3.1) 0.703(1.2)

5p 0.996(2.4) 0.998(3.6) 1(2.6) 0.999(2.6) 0.978(3.4) 0.952(3.4) 0.808(1.8)
5m 0.761(3.9) 0.715(3.2) 0.999(3) 0.998(2.9) 0.995(3.1) 0.982(3.2) 0.494(0.7)

6p 0.348(0.5) 0.984(5.5) 0.992(2.4) 0.996(2.5) 0.997(3.6) 0.997(3.5) 0.970(3)
6m 0.894(2) 0.949(5) 0.925(3.2) 0.972(3) 0.933(3) 0.973(3.1) 0.960(2.9)

7p 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
7m NA NA NA NA NA NA NA

the quantitative data sets are estimated by the α estimation procedure. Rank
estimation of each single data set was performed three times and results are shown
in supplemental Table S5.8. The P-ESCA model with a GDP (γ = 1) is selected
and re-fitted on the CLL data sets in the same way as described above. The initial
number of components is set to 50. The selected model has 41 components, and if
we take each loading vector related to a single data set in a component as a group,
there are 51 non-zero loading groups. The model selection results are shown in
supplemental Fig. S5.8. Since the variation explained ratios of 41 components
are difficult to visualize, we only show the components (Fig. 5.4), whose variation
explained ratio are larger than 2% for at least one data set. The above procedure
(processing, model selection, fitting the final model) is repeated 5 times to test
its stability. The Pearson coefficient matrix for the 5 estimations of the µ̂ and
the RV coefficient matrices for the 5 estimations of the Â, B̂ and Θ̂ are shown
in supplemental Fig. S5.9.

In [89], a 10 components MOFA model is selected on the CLL data sets. The
variation explained plots of the 10 components MOFA model, reproduced from
[89], is shown in supplemental Fig. S5.10. There is some overlap between the two
models (Fig. 5.4, supplemental Fig. S5.10). Both models have one strong common
component in which all data sets participate, and a common component in which
two (P-ESCA) or three (MOFA) data sets participate. Furthermore the drug
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response and the transcriptomic (mRNA) data have extra distinct components.
The variation explained is somewhat higher for the P-ESCA model which also uses
extra components. The amount of variation explained is the highest for the drug
response and mRNA data sets. The main difference between the models is the
fact that P-ESCA only finds a single component relevant for the binary mutation
data while MOFA finds two. The comparison of the two models with respect to
the estimated µ̂ is infeasible because the column offset term is not included in
this 10 components MOFA model. In general the P-ESCA result is more complex
than the results in [89] in terms of number of selected components and variation
explained. However, this is mainly because, during the model selection of [89],
the minimum variation explained threshold is set to 2%. If we set the threshold
to the default value 0%, and set the initial number of components to be 50, and
other parameters are kept the same, a 50 components MOFA model is selected.
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Figure 5.4: Variation explained ratios computed using the estimated parameters
from the selected P-ESCA model on CLL data sets. From the top to the bottom,
the data sets are drug response, methylation, transcriptome and mutation data.

5.8 Discussion

In this chapter, we generalized an exponential family SCA (ESCA) model for the
data integration of multiple data sets of mixed data types. Then, we introduced
the nearly unbiased group concave penalty to induce structured sparsity pattern
on the loading matrices of the ESCA model to separate the global, local common
and distinct variation. An efficient MM algorithm with analytical form updates
for all the parameters was derived to fit the proposed group concave penalty
penalized ESCA (P-ESCA) model. In addition, a missing value based cross vali-
dation procedure is developed for the model selection. In many different realistic
simulations (different SNR levels, and combinations of quantitative and or binary
data sets of different), the P-ESCA model and the model selection procedure work
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well with respect to recovering the subspaces related to the global, local common
and distinct structures, and the estimation of the simulated parameters.

The performance of the P-ESCA model and the cross validation based model
selection procedure relate to the fact that the used group concave penalty can
achieve nearly unbiased estimation of the parameters while generating sparse
solutions. The nearly unbiased parameter estimation makes the P-ESCA model
have high accuracy in the estimation of the simulated parameters, and the cross
validation error based model selection procedure is consistent. Another key point
of the model selection procedure is that the randomly sampled 10% non-missing
elements are usually a typical set of elements from the population. This makes the
CV error a good proxy of the prediction error of the model. The rank estimation
in different repetitions of the model selection procedure is robust and only differ
slightly with respect to the very weak components.

When applied to multiple quantitative data sets, the proposed P-ESCA model
can achieve slightly better performance than the SLIDE model in recovering the
subspaces of the simulated structures and in estimating the simulated parameters.
Also, since missing value problems (missing values in a single data set, or missing
complete samples in one or some of the data sets) are very common in practice,
the option of tackling missing values is a big advantage. In the P-ESCA model
and its model selection procedure, the effect of missing values is masked by using
the weight matrices, making full use of the available data sets. When applied
to the multiple binary data sets or the mixed quantitative and binary data sets,
the proposed P-ESCA model has better performance than the MOFA model
in recovering the subspaces of the simulated structures and in estimating the
simulated parameters. Furthermore, the exact orthogonality constraint can be
achieved in the P-ESCA model, which is crucial for the uniqueness of the recovered
subspaces related to the global, local common and distinct variation.
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5.9 Supplementary information

5.9.1 Dispersion parameter estimation using PCA

The notations of this subsection is the same as the Chapter 5. Before constructing
an ESCA or P-ESCA model, the dispersion parameter α of a quantitative data set
X, which is the variance of the residual term, is assumed to be known. Assume the
column centered quantitative data set is X(I × J), and the PCA model of X can
be expressed as X = ABT +E. A(I×R) and B(J×R) are the score and loading
matrix respectively; E(I×J) is the residual term and elements in E, εij ∼ N(0, α);
R is the true low rank of X. In order to tackle the potential missing value problem,
we also introduce the weight matrix W in the same way as above. The maximum
likelihood estimation of α can be expressed as α̂mle = 1

||W||0 ||W� (X−ABT)||2F ,

in which ||W||0 is the number of non-missing elements in W. Since this is a
biased estimation of α, we can adjust the estimation according to the degree of
freedom as α̂ = 1

||W||0−(I+J)R ||W � (X−ABT)||2F . The parameters R, A and B
are estimated as follows.

We select the rank R using a similar model selection strategy as in the main
text. We first split X into Xtest and Xtrain in the same way as in the main
text. Then, a series of PCA models with different number of components are
constructed on Xtrain, and the CV error is defined as the least square error in
fitting Xtest. After that R̂ is set to the number of components of the model
with the minimum CV error. Then a rank R̂ PCA model is constructed on
the full data X, and we get an estimate of Â and B̂. Then α̂ is set to α̂ =

1

||W||0−(I+J)R̂
||W � (X − ÂB̂T)||2F . The EM type algorithm used to fit the PCA

model with the option of missing values is implemented in Matlab in the same
way as in [60].

5.9.2 The difference between the SLIDE model and the P-
ESCA model when applied to multiple quantitative
data sets

The notations of this subsection is the same as the Chapter 5.

• Different processing steps. The SLIDE model does column centering and
block scaling using the Frobenius norm of the corresponding data set to
preprocess the data. Then the relative weights of the data sets in the SCA
model are set to 1. On the other hand, we estimate the dispersion parameter
(variation of the noise term) of each data set and the inverse of the estimated
dispersion parameter is equivalent to the relative weight of the data sets in
the SCA model.

• Different penalty terms. The SLIDE model uses the group lasso penalty to
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induce the structured sparsity. Because of the block scaling processing step,

there is no weight
{√

Jl
}L
l=1

on the group lasso penalty to accommodate for
the potential unequal number of variables in different data sets. On the
other hand, the weighted group concave penalty is used in the P-ESCA
model.

• Option for missing values. The option of tackling the missing value problem
is not included in the SLIDE model.

• Different model selection procedures. The SLIDE model uses a two stages
approach to do model selection, while our model selection approach is as
described as in the main text.

5.9.3 The difference between the MOFA model and the
P-ESCA model

The notations of this subsection is the same as the Chapter 5.

• Different origins. Although these two methods are similar with respect to
what they can do, they have different origins. The MOFA model is devel-
oped in the Bayesian probabilistic matrix factorization framework in the
same line as the group factor analysis model and the factor analysis model,
while the P-ESCA model is derived in the deterministic matrix factoriza-
tion framework in the same line as the SLIDE model, the SCA model and
the PCA model.

• Different ways in inducing structured sparsity. In the P-ESCA model, the
structured sparse pattern is induced through a group concave penalty, while
in the MOFA model, it is induced through the automatic relevance determi-
nation approach. The group concave penalty can shrink a group of elements
to be exactly 0, while the automatic relevance determination cannot achieve
exact sparsity. In addition, MOFA model also shrinks a component to be
0 when its variation explained ratios for all the data sets are less than a
threshold, whose default value is 0.

• Different model selection procedures. The P-ESCA model is selected by a
missing value based CV approach; while the selection of a MOFA model
relies on maximizing the marginal likelihood. In theory, maximizing the
marginal likelihood has no difficulty in tuning multiple parameters, while
the CV based model selection procedure is infeasible for such task.

• Orthogonality constraint. The orthogonality constraint ATA = I can only
be achieved in the P-ESCA model. Whether this property is meaningful
or not depends on the specific research question. However, the constraint
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is crucial for the proof of the uniqueness of the recovered subspaces corre-
sponding to the global, local common and distinct variation.

5.9.4 Supplemental tables

Table S5.1: A list of log-partition functions and their first and second order
derivatives for the Gaussian, Bernoulli and Poisson distributions. θ indicates the
natural parameter.

Distribution b(θ) b
′
(θ) b

′′
(θ)

Gaussian θ2

2
θ 1

Bernoulli log(1 + exp(θ)) exp(θ)
1+exp(θ)

exp(θ)
(1+exp(θ))2

Poisson exp(θ) exp(θ) exp(θ)

Table S5.2: Results of the α estimation procedure. 1g indicates that a Gaussian
distribution is used and αl = 1; b indicates the Bernoulli distribution. The
estimated dispersion parameter α̂l and the corresponding times are shown as
mean±std(seconds). When the estimated ranks are the same in each of the three
times CV procedure is repeated, the corresponding standard deviation is 0.

α1 α2 α3 α̂1(time) α̂2(time) α̂3(time))
1g 1g 1g 0.9920 ± 0 (9.01) 1.0029 ± 0 (2.46) 1.0183 ± 0 (17.06)
100g 25g 1g 99.7148 ± 0.7469 (10.66) 24.9525 ± 0 (2.96) 1.1609 ± 0.2437 (76.33)
1g 1g b 0.9892 ± 0 (10.92) 0.9793 ± 0 (2.80)
100g 25g b 99.8457 ± 0 (10.79) 24.7688 ± 0 (3.43)
1g b b 0.9896 ± 0 (10.90)
100g b b 100.1774 ± 0 (10.75)

5.9.5 Supplemental figures
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Table S5.3: Seven simulation cases used to evaluate the proposed P-ESCA model.
For each simulation case, the corresponding SNRs in simulating the global struc-
ture C123, local common structures, C12, C13, C23, and distinct structures D1,
D2, D3, are give. If the SNR of a specific structure is 0, it means this structure
does not exist in the simulation.

case C123 C12 C13 C23 D1 D2 D3

1 0 1 2 3 0 0 0
2 1 0 0 0 1 1 1
3 1 1 1 1 1 1 1
4 10 5 5 5 1 1 1
5 5 10 10 10 1 1 1
6 1 5 5 5 10 10 10
7 0 0 0 0 0 0 0

Table S5.4: Mean RMSEs in estimating the simulated parameters Θ, {Θ}3l=1 and
µ, derived from repeating the experiments 10 time using the P-ESCA model and
the SLIDE model for seven G-G-G simulation cases. The row names 1p and 1s

indicate P-ESCA and SLIDE models applied to simulation case 1. Same rule
applies to other row names.

RMSE(Θ) RMSE(Θ1) RMSE(Θ2) RMSE(Θ3) RMSE(µ)

1p 0.0167 0.0181 0.0152 0.0135 0.0102
1s 0.0178 0.0194 0.0161 0.0145 0.0102
2p 0.0251 0.0241 0.0255 0.0334 0.0100
2s 0.0269 0.0259 0.0273 0.0349 0.0100
3p 0.0274 0.0266 0.0278 0.0333 0.0097
3s 0.0298 0.0290 0.0301 0.0366 0.0097
4p 0.0064 0.0062 0.0065 0.0076 0.0099
4s 0.0068 0.0066 0.0069 0.0081 0.0099
5p 0.0052 0.0051 0.0052 0.0063 0.0099
5s 0.0055 0.0054 0.0056 0.0067 0.0099
6p 0.0064 0.0062 0.0065 0.0078 0.0100
6s 0.0068 0.0066 0.0068 0.0082 0.0100
7p 0.0099 0.0097 0.0104 0.0098 0.0099
7s 0.0132 0.0097 0.0104 0.0658 0.0099
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Table S5.5: Mean RMSEs in estimating the simulated parameters Θ, {Θ}3l=1 and
µ derived from repeating the experiments 10 times using the P-ESCA model and
the MOFA model for seven B-B-B simulation cases. The row names 1p and 1m

indicate P-ESCA and MOFA models applied to simulation case 1. Same rule
applies to other row names.

RMSE(Θ) RMSE(Θ1) RMSE(Θ2) RMSE(Θ3) RMSE(µ)

1p 0.0530 0.0450 0.0498 0.1218 0.0265
1m 0.4762 0.5004 0.4518 0.4130 0.9999
2p 0.0528 0.0488 0.0511 0.1009 0.0223
2m 0.5951 0.5911 0.5936 0.6432 1.0000
3p 0.0830 0.0651 0.0775 0.2922 0.0331
3m 0.5037 0.4965 0.5077 0.5558 0.9999
4p 0.1080 0.0673 0.1240 0.4298 0.0731
4m 0.3297 0.3233 0.3322 0.3805 0.9999
5p 0.1225 0.0750 0.1506 0.4546 0.0860
5m 0.3267 0.3196 0.3302 0.3802 0.9998
6p 0.1066 0.0662 0.1275 0.4123 0.0752
6m 0.3324 0.3259 0.3364 0.3788 0.9999
7p 0.0130 0.0129 0.0129 0.0133 0.0130
7m NA NA NA NA NA
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Figure S5.1: The conditional mean of x, E(x|θ), for varying θ values for Gaussian,
Bernoulli, Poisson distributions
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Table S5.6: Mean RMSEs in estimating the simulated parameters Θ, {Θ}3l=1 and
µ derived from repeating the experiments 10 times using the P-ESCA model and
the MOFA model for seven G-B-B simulation cases. The row names 1p and 1m

indicate P-ESCA and MOFA models applied to simulation case 1. Same rule
applies to other row names.

RMSE(Θ) RMSE(Θ1) RMSE(Θ2) RMSE(Θ3) RMSE(µ)

1p 0.0376 0.0078 0.0463 0.0855 0.0210
1m 0.1674 0.0023 0.3422 0.4241 1.0000
2p 0.0415 0.0105 0.0544 0.0985 0.0167
2m 0.1663 0.0020 0.3259 0.3894 1.0000
3p 0.0552 0.0110 0.0708 0.1874 0.0231
3m 0.2008 0.0029 0.3346 0.3847 1.0000
4p 0.0712 0.0021 0.0986 0.4200 0.0750
4m 0.1674 0.0023 0.3422 0.4241 1.0000
5p 0.0775 0.0018 0.1107 0.4023 0.0806
5m 0.1663 0.0020 0.3259 0.3894 1.0000
6p 0.0731 0.0027 0.0878 0.3086 0.0626
6m 0.2008 0.0029 0.3346 0.3847 1.0000
7p 0.0107 0.0050 0.0129 0.0116 0.0107
7m NA NA NA NA NA
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Table S5.7: Mean RMSEs in estimating the simulated parameters Θ, {Θ}3l=1 and
µ derived from repeating the experiments 10 times using the P-ESCA model and
the MOFA model for seven G-G-B simulation cases. The row names 1p and 1m

indicate P-ESCA and MOFA models applied to simulation case 1. Same rule
applies to other row names.

RMSE(Θ) RMSE(Θ1) RMSE(Θ2) RMSE(Θ3) RMSE(µ)

1p 0.0143 0.0089 0.0069 0.0555 0.0092
1m 0.0831 0.0091 0.0071 0.5825 1.0000
2p 0.0266 0.0126 0.0136 0.0955 0.0091
2m 0.1314 0.0129 0.0139 0.7284 1.0000
3p 0.0268 0.0137 0.0143 0.1158 0.0095
3m 0.0973 0.0139 0.0145 0.6701 1.0000
4p 0.0149 0.0030 0.0032 0.1505 0.0233
4m 0.0381 0.0031 0.0032 0.4400 1.0000
5p 0.0174 0.0025 0.0025 0.1897 0.0314
5m 0.0359 0.0025 0.0026 0.4197 1.0000
6p 0.0249 0.0032 0.0033 0.1719 0.0281
6m 0.0527 0.0033 0.0034 0.3869 1.0000
7p 0.0068 0.0050 0.0048 0.0123 0.0068
7m NA NA NA NA NA

Table S5.8: Rank estimations of the CLL data sets. Drug: drug response data;
meth: DNA methylation data; mRNA: transcriptome data; mut: mutation data.

data set data type size k = 1 k = 2 k = 3

drug quantitative 184× 310 17 17 18
meth quantitative 196× 4248 8 9 9
mRNA quantitative 136× 5000 16 18 17
mut binary 200× 69 1 1 0
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values of the simulated structure; red dots: singular values of the residual term;
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Figure S5.4: The variation explained ratios computed using the simulated pa-
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the left to the right, we have 21 components corresponding to the global, local
common and distinct structures. The total variation explained ratios for each
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estimating the common structures (bottom left), and distinct structures (bottom
right) as a function of the regularization strength λ when the P-ESCA model
with a group lasso penalty is used. The red cross marker indicates the point
corresponding to the minimum CV error.
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Figure S5.6: CV errors (top left), RMSEs (top right) and the RV coefficients in
estimating the common structures (bottom left), and distinct structures (bottom
right) as a function of the regularization strength λ for the P-ESCA model with
a group GDP penalty on the simulated B-B-B data sets. The red cross marker
indicates the point corresponding to the minimum CV error. The SNRs of global,
local common and distinct structures in the B-B-B simulation are set to be 1.
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Figure S5.7: Missing pattern of the CLL data sets. Black color indicates the data
is missing, while gray color, the data is present. Drug: drug response data; meth:
DNA methylation data; mRNA: transcriptome data; mut: mutation data.
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Chapter 6

Outlook

In the proposed penalized exponential family SCA (P-ESCA) model (Chapter
5), a group concave penalty is used to induce group-wise sparse pattern on the
loading matrix to disentangle the global, local common and distinct components.
The P-ESCA model and the associated MM algorithm can be further generalized
to include other types of penalties to induce more interesting sparse patterns on
the loading matrix, which may be useful for the data analyst. In addition, the
currently developed model selection procedure has difficulties in tuning multiple
tuning parameters. It will be worthwhile to explore other types of model selec-
tion approaches to address this issue. Also, in the current thesis, the parametric
exponential family distribution is used to tackle the heterogeneous measurement
scales. There also exist other possible non-parametric and semi-parametric ap-
proaches. It is worthwhile to generalize them for the data fusion of multiple data
sets with the two types of heterogeneity. Furthermore, it is also interesting to
generalize the P-ESCA model for prediction tasks or to taking into account the
experimental design underlining the used multiple data sets.

6.1 Including other types of sparse patterns

The developed P-ESCA model and the associated MM algorithm have a lot of po-
tential for further generalization. The options for inducing element-wise sparsity
on the loading matrix or the composition of both group-wise and element-wise
sparsity or other types of penalties can be easily included. Some examples will
be shown in the following subsections. These P-ESCA model extensions can be
selected using the developed missing value based CV procedure (Chapter 5). A
possible alternative model selection approach is the Bayesian optimization [98]
framework, which is appropriate for the tuning of multiple (usually less than 20)
continuous tuning parameters. Since this framework has been successfully ap-
plied in the automatic tuning of various machine learning algorithms [99], it will

135
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be worthwhile to explore its usage for the P-ESCA models with multiple tuning
parameters.

The following notations are the same as the P-ESCA model in Chapter 5.
Suppose the rth column of the lth loading matrix Bl is bl,r. The group con-
cave penalty on the lth loading matrix Bl is imposed on the L2 norm of bl,r as
λl
∑

r g(||bl,r||2), in which g() is a concave function. This group concave penalty
(or concave L2 norm penalty) will shrink on the group level (L2 norm of bl,r)
as a concave penalty, and in the element level (elements inside bl,r) as a ridge
regression type penalty. Sometimes, we may need other types of penalties, such
as the element-wise sparsity on the elements of Bl or the composition of both
element-wise and group-wise sparsity patterns on Bl. All these options can be
easily included into the P-ESCA model by a slightly modification of the developed
MM algorithm.

6.1.1 P-ESCA model with an element-wise concave penalty

When a single data set is used, the P-ESCA model with an element-wise concave
penalty is an approach for the sparse exponential family PCA model. When
multiple data sets are used, the model is an approach for the sparse exponential
family SCA model.

Element-wise concave penalty

An element-wise concave penalty can be imposed on the elements of Bl to induce
the element-wise sparsity on Bl. Suppose the jrth element of Bl is bljr, and its
absolute value is σljr, σljr = |bljr|. The concave penalty on Bl can be expressed as

λl
∑Jl

j

∑R
r g(σljr), in which g() is a concave function in Table 5.1. The optimiza-

tion problem associated with this P-ESCA model with an element-wise concave
penalty can be expressed as follows,

min
{µl}Ll ,A,{Bl}Ll

L∑
l=1

[
− log(p(Xl|Θl, αl)) + λl

Jl∑
j

R∑
r

g(σljr)
]

subject to Θl = 1µT
l + ABT

l , l = 1, . . . , L

1TA = 0

ATA = I

σljr = |bljr|, l = 1...L; j = 1, . . . , Jl; r = 1, . . . , R.

(6.1)

Algorithm

The algorithm developed in Section 5.3 can be modified only with respect to
the majorization step of the penalty function and the updating Bl step to fit
the P-ESCA model with an element-wise penalty in equation 6.1. Similar to the
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equation 5.5, the element-wise penalty g(σljr) is a concave function with respect
to σljr and can be majorized as g(σljr) ≤ ωkljrσljr +c, in which ωkljr = ∂g(σkljr) and

σkljr is the absolute value of the jrth element of Bk
l (the kth approximation of Bl

during the kth iteration). After majorizing the original problem in equation 6.1,
updating the offset terms {µl}L1 and score matrix A in exactly the same way as
in Section 5.3, the optimization problem associated with the updating of Bl is

min
Bl

ρl
2αl
||ABT

l − JHk
l ||2F + λl

Jl∑
j

R∑
r

ωkljrσljr

=
ρl

2αl
||Bl − (JHk

l )
TA||2F + λl

Jl∑
j

R∑
r

ωkljrσljr

=

Jl∑
j

R∑
r

[ ρl
2αl

(bljr − ((JHk
l )

TA)jr)
2 + λlω

k
ljrσljr

]
σljr = |bljr|, l = 1...L; j = 1, . . . , Jl; r = 1, . . . , R,

in which ((JHk
l )

TA)jr indicates the jrth element of the matrix (JHk
l )

TA. The
above optimization problem is simple the proximal operator of the L1 norm, and
the analytical solution exists [25]. Take λ̃ljr = λlω

k
ljrαl/ρl and vljr = ((JHk

l )
TA)jr,

the analytical solution of bljr is bljr = sign(vljr) max(0, |vljr|− λ̃ljr). To update the
parameter Bl, we can simply apply this proximal operator to all the elements of
Bl. The other parts of the algorithm are the same as in Section 5.3.

6.1.2 P-ESCA model with a concave L1 norm penalty

Concave L1 norm penalty

Another way to induce group sparsity on Bl is through the concave L1 norm
penalty [22]. Suppose the rth column of the lth loading matrix Bl is bl,r, and its

L1 norm is σlr, σlr = ||bl,r||1 =
∑Jl

j |bljr|. The concave L1 norm penalty on Bl can

be expressed as λlJl
∑R

r g(σlr), in which weight Jl is used to accommodate the
potential different number of variables in different data set, and g() is a concave
function in Table 5.1. This concave L1 norm penalty will shrink on the group
level (L1 norm of bl,r) as a concave penalty, and in the element level (elements
inside bl,r) as a lasso type penalty. The optimization problem associated with
this P-ESCA model with a concave L1 norm penalty can be expressed as follows,



138 Chapter 6. Outlook

min
{µl}Ll ,A,{Bl}Ll

L∑
l=1

[
− log(p(Xl|Θl, αl)) + λlJl

R∑
r

g(σlr)
]

subject to Θl = 1µT
l + ABT

l , l = 1, . . . , L

1TA = 0

ATA = I

σlr = ||bl,r||1, l = 1...L; r = 1, . . . , R.

(6.2)

Algorithm

The algorithm developed in Section 5.3 can be modified only with respect to the
majorization step of the penalty function and the updating Bl step to fit the
P-ESCA model with the concave L1 norm penalty in equation 6.2. Similar to the
equation 5.5, the penalty function g(σlr) is concave with respect to σlr and can be
majorized as g(σlr) ≤ ωklrσlr + c, in which ωklr = ∂g(σklr) and σklr is the L1 norm of
the rth column of Bk

l (the kth approximation of Bl during the kth iteration). After
majorizing the original problem in equation 6.2, updating the offset terms {µl}L1
and score matrix A in exactly the same way as in Section 5.3, the optimization
problem associated with the updating of Bl is

min
Bl

ρl
2αl
||ABT

l − JHk
l ||2F + λlJl

R∑
r

ωklrσlr

=
ρl

2αl
||Bl − (JHk

l )
TA||2F + λlJl

R∑
r

ωklr(

Jl∑
j

|bljr|)

=

Jl∑
j

R∑
r

[ ρl
2αl

(bljr − ((JHk
l )

TA)jr)
2 + λlJlω

k
lr|bljr|

]
.

Take λ̃ljr = λlJlω
k
lrαl/ρl and vljr = ((JHk

l )
TA)jr, the analytical solution of bljr is

bljr = sign(vljr) max(0, |vljr| − λ̃ljr). To update the parameter Bl, we can simply
apply this proximal operator to all the elements of Bl. The other parts of the
algorithm are the same as in Section 5.3.

6.1.3 P-ESCA model with a composite concave penalty

Composite concave penalty

There also exists a composite concave penalty to induce both group and element-
wise sparsity [22]. The composite concave penalty on Bl can be expressed as
λlJl

∑R
r gout(

∑Jl
j ginner(|bljr|)), in which weight Jl is used to accommodate the po-

tential different number of variables in different data set, gout() and ginner() are
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two concave functions for the group level and element level respectively. We will
use the same concave function g() from Table 5.1 for both gout() and ginner(). This
composite concave penalty will shrink both on the group level (

∑Jl
j ginner(|bljr|))

and in the element level (elements inside bl,r) as a concave penalty. The opti-
mization problem associated with this P-ESCA model with a composite concave
penalty can be expressed as follows,

min
{µl}Ll ,A,{Bl}Ll

L∑
l=1

[
− log(p(Xl|Θl, αl)) + λlJl

R∑
r

gout(

Jl∑
j

ginner(|bljr|))
]

subject to Θl = 1µT
l + ABT

l , l = 1, . . . , L

1TA = 0

ATA = I.

(6.3)

Algorithm

The algorithm developed in Section 5.3 can be modified only with respect to the
majorization step of the penalty function and the updating Bl step to fit the
P-ESCA model with a composite concave penalty in equation 6.3. Here we take
σlr =

∑Jl
j ginner(|bljr|) and σljr = |bljr|. Since both gout(σlr) and ginner(σljr) are

concave function and they are monotonically non-decreasing, their composition
is also a concave function with respect to σljr. Therefore, we can majorize the

composite function gout(
∑Jl

j ginner(σljr)) in a similar way as the equation 5.5,

gout(
∑Jl

j ginner(σljr)) ≤
∑Jl

j ω
k
ljrσljr + c, in which ωkljr = ∂gout(σ

k
lr)∂ginner(σ

k
ljr)

and σkljr is the absolute value of the jrth element of Bk
l (the kth approximation of

Bl during the kth iteration), σklr =
∑Jl

j ginner(σ
k
ljr). After majorizing the original

problem in equation 6.3, updating the offset terms {µl}L1 and score matrix A in
exactly the same way as in Section 5.3, the optimization problem associated with
the updating of Bl is

min
Bl

ρl
2αl
||ABT

l − JHk
l ||2F + λlJl

R∑
r

(

Jl∑
j

ωkljrσljr)

=
ρl

2αl
||Bl − (JHk

l )
TA||2F + λlJl

R∑
r

(

Jl∑
j

ωkljrσljr)

=

Jl∑
j

R∑
r

[ ρl
2αl

(bljr − ((JHk
l )

TA)jr)
2 + λlJlω

k
ljrσljr

]
,

Take λ̃ljr = λlJlω
k
ljrαl/ρl and vljr = ((JHk

l )
TA)jr, the analytical solution of bljr is

bljr = sign(vljr) max(0, |vljr| − λ̃ljr). To update the parameter Bl, we can simply
apply this proximal operator to all the elements of Bl. The other parts of the
algorithm are the same as in Section 5.3.
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6.1.4 P-ESCA model with other types of penalties

All the algorithms for the above P-ESCA models with different penalties are
based on the fact that the updating of Bl in equation 5.7 can be re-expressed as a
problem of finding the proximal operator for the L2 norm or the L1 norm penalty.
Therefore, P-ESCA model can also be extended to include other types of penalty
whose proximal operator has a simple or analytical solution. For example, there is
no difficulty in including concave penalties on the rows of the loading matrix Bl to
induce row-wise sparsity, which could be useful for the feature selection. Further-
more, we can also add cardinality constraints (pseudo L0 norm) on the number of
nonzero elements, the number of nonzero rows, or the number of nonzero columns
of the loading matrix Bl to induce the desired sparsity pattern. These various
L0 norm penalties are non-convex, however, there are heuristic solutions for the
corresponding proximal operator [100]. These various L0 penalties can be useful
if all our data sets are quantitative. However, when discrete data sets are used,
the derived model with the L0 norm type of penalty will have problems in con-
straining the scale of estimated parameters. The standard logistic PCA model, in
which the exact low rank constraint can be regarded as applying L0 norm penalty
on the singular values, is a good example to illustrate this point.

6.2 Other directions of tackling heterogeneous

measurement scales

In the current thesis, the heterogeneous measurement scales are accounted for by
assuming a parametric exponential family distribution in a similar way as the gen-
eralized linear models. There also existed other possible directions [38, 101, 36]
to tackle the problems induced by the heterogeneous measurement scales. One
promising alternative is the semi-parametric XPCA method [101]. In the proba-
bilistic interpretation of a PCA model on a matrix X(I × J), we assume we have
I samples from a J dimensional multivariate normal distribution and therefore
normal marginal distribution for each column. On the contrary, XPCA model
is based on a semi-parametric J dimensional multivariate distribution, which is
the combination of nonparametric marginals of all the J quantitative or discrete
columns and a Gaussian copula. The assumptions of parametric marginal dis-
tributions (normal distribution for quantitative data, Bernoulli distribution for
binary data) for the columns of the observed data set X are relaxed in the XPCA
model. Therefore, when the exponential family distribution is not a good ap-
proximation of the observed data, for example, the empirical distribution of a
quantitative variable is far from symmetric, XPCA model has a clear advantage.
Another interesting alternative is the non-parametric representation matrices ap-
proach [38], in which each variable (continuous or discrete) is represented by a
representation matrix and the resulting representation matrices can be used in
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a three way model for symmetric data. The advantage of the representation
matrices approach is that no probabilistic assumption is made for the model.

6.3 Using data fusion for supervised learning

All the methods developed in this thesis are unsupervised learning approaches. It
is worthwhile to extend these methods in the supervised learning framework for
prediction tasks. A simple approach, same as the extension of PCA to principal
component regression model for prediction tasks, is as follows. These various
unsupervised data fusion methods are taken as feature extraction approaches for
multiple data sets. The derived low dimensional score matrix can be regarded as
the extracted features and can be used as inputs for any other supervised learning
methods. However, the extracted low dimensional features are not necessarily
optimal for the prediction tasks. Therefore, when label information is available,
it is better to make full use of it to make the extracted features more informative to
the prediction tasks. The P-ESCA model can be extended from this perspective in
a similar way as extending the PCA model to the partial least squares regression
model [102]. The extracted low dimensional structures from the P-ESCA model
should not only represent the multiple data sets well but also have high covariance
with the label information.

6.4 Incorporating the information of experimen-

tal design

Sometimes, the multiple sets of measurements on the same objects result from
carefully designed experimental studies rather than observational studies. Such an
experimental design always contains several factors, such as different treatments
or different time points or their combinations, which are of interest with respect
to the research question. Therefore, these experimental factors are underlying the
multiple data sets on the same objects. To study the effects of these experimental
factors or to remove their effects on the explorative data analysis, the used data
fusion approaches should take the experimental design structure into account.
The proposed P-ESCA can be extended from this direction by including extra
low dimensional structures to account for these experimental factors in a similar
way as the ANOVA-simultaneous component analysis (ASCA) model [103].





Summary

Multiple high dimensional measurements from different platforms on the same bi-
ological system are becoming increasingly common in biological research. These
different sources of measurements not only provide us with the opportunity of a
deeper understanding of the studied system, but they also introduce some new sta-
tistical challenges. All these challenges are related to the heterogeneity of the data
sets. The first type of heterogeneity is the type of data, such as metabolomics,
proteomics and RNAseq data in genomics. These different omics data reflect the
properties of the studied biological system from different perspectives. The sec-
ond type of heterogeneity is the type of scale, which indicates the measurements
are obtained at different scales, such as binary, ordinal, interval and ratio-scaled
variables. Within this thesis, various data fusion approaches are developed to
tackle either one or two types of heterogeneity that exist in multiple data sets.

In Chapter 2, we reviewed and compared various parametric and nonpara-
metric extensions of principal component analysis (PCA) specifically geared for
binary data. The special mathematical characteristics of binary data are taken
into account from different perspectives in these different extensions of PCA. We
explored their performance with respect to finding the correct number of com-
ponents, overfitting, retrieving the correct low dimensional structure, variable
importance, etc, using both realistic simulations of binary data as well as muta-
tion, copy number aberrations (CNA) and methylation data of the GDSC1000
project. Our results indicate that if a low dimensional structure exists in the
data, most of the methods can find it. We recommend to use the parametric
logistic PCA model (projection based approach) if the probabilistic generating
process can be assumed underlying the data, and to use the nonparametric Gifi
model if such an assumption is not valid and the data is considered as given.

In Chapter 3, we developed a robust logistic PCA model via non-convex sin-
gular value thresholding. The promising logistic PCA model for binary data has
an overfitting issue because of the used exact low rank constraint. We proposed
to fit a logistic PCA model via non-convex singular value thresholding to alleviate
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the overfitting issue. An efficient majorization-minimization (MM) algorithm is
implemented to fit the model and a missing value based cross validation (CV)
procedure is introduced for the model selection. Furthermore, we re-expressed the
logistic PCA model based on the latent variable interpretation of the generalized
linear models (GLMs) on binary data. The latent variable interpretation of the
logistic PCA model not only makes the assumption of low rank structure easier to
understand, but also provides us a way to define signal to noise ratio (SNR) in the
simulation of multivariate binary data. Our experiments on realistic simulations
of imbalanced binary data and low SNR show that the CV error based model se-
lection procedure is successful in selecting the proposed model. And the selected
model demonstrates superior performance in recovering the underlying low rank
structure compared to models with exact low rank constraint and convex nuclear
norm penalty.

In the Chapter 4, we developed a generalized simultaneous component analysis
(GSCA) model for the data fusion of binary and quantitative data sets. Simulta-
neous component analysis (SCA) model is one of the standard tools for exploring
the underlying dependence structure present in multiple quantitative data sets
measured on the same objects. However, it does not have any provisions when
a part of the data are binary. To this end, we propose the GSCA model, which
takes into account the distinct mathematical properties of binary and quantita-
tive measurements in the maximum likelihood framework. In the same way as
in the SCA model, a common low dimensional subspace is assumed to represent
the shared information between these two distinct types of measurements. How-
ever, the GSCA model can easily be overfitted when a rank larger than one is
used, which can lead to the problem that some of the estimated parameters can
become very large. To achieve a low rank solution and combat overfitting, we
propose to use non-convex singular value thresholding. An efficient majorization
algorithm is developed to fit this model with different concave penalties. Realistic
simulations (low SNR and highly imbalanced binary data) are used to evaluate
the performance of the proposed model in recovering the underlying structure.
Also, a missing value based CV procedure is implemented for the model selection.
We illustrate the usefulness of the GSCA model for exploratory data analysis of
quantitative gene expression and binary CNA measurements obtained from the
GDSC1000 data sets.

In Chapter 5, we proposed a penalized exponential family SCA (P-ESCA)
model for the data fusion of multiple data sets with two types of heterogene-
ity. Multiple sets of measurements on the same objects obtained from different
platforms may reflect partially complementary information of the studied system.
However, the heterogeneity of such data sets introduces some new statistical chal-
lenges for their data fusion. First, the separation of information that is common
across all or some of the data sets, and the information that is specific to each
data set is problematic. Furthermore, these data sets are often a mix of quanti-
tative and discrete (binary or categorical) data types, while commonly used data
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fusion methods require all data sets to be quantitative. Therefore, we proposed
an exponential family simultaneous component analysis (ESCA) model to tackle
the potential mixed data types problem of multiple data sets. In addition, a
structured sparse pattern of the loading matrix is induced through a nearly unbi-
ased group concave penalty to disentangle the global, local common and distinct
information of the multiple data sets. An efficient MM algorithm is derived to fit
the proposed model. Analytic solutions are derived for updating all the parame-
ters of the model in each iteration, and the algorithm will decrease the objective
function in each iteration monotonically. For model selection, a missing value
based CV procedure is implemented. The advantages of the proposed method in
comparison with other approaches are assessed using comprehensive simulations
as well as the analysis of real data from a chronic lymphocytic leukaemia (CLL)
study.

In Chapter 6, we considered various extensions of the developed P-ESCA
model with respect to new penalties (element-wise, group-wise and their com-
position) and new model selection approach. Also, we remarked the potential
of the semi-parametric XPCA model and non-parametric representation matrices
approach in tackling the data sets of heterogeneous measurement scales. Further-
more, it is also interesting to generalize the P-ESCA model for prediction tasks
or to tacking into account the experimental design underlining the used multiple
data sets.





Samenvatting

In biologisch onderzoek wordt het steeds gebruikelijker meerdere hoog-dimen-
sionale metingen op verschillende platformen aan hetzelfde biologische systeem
uit te voeren. Deze van verschillende bronnen afkomstige metingen bieden de mo-
gelijkheid tot een beter begrip van het bestudeerde systeem, maar brengen ook
nieuwe statistische uitdagingen met zich mee. Al deze uitdagingen houden ver-
band met de heterogeniteit van de dataverzamelingen. De eerste vorm van hetero-
geniteit ligt in het type van de gegevens. Zo zijn er verschillende typen omics-data,
metabolomics, proteomics en RNAseq data in genomics, die ieder een eigen per-
spectief op de eigenschappen van het biologische systeem bieden. De tweede vorm
van heterogeniteit ligt in de meetschaal van de data. De data kunnen op verschil-
lende schalen gemeten worden, zoals binair, ordinale schaal, intervalschaal en ra-
tioschaal. In dit proefschrift worden verschillende datafusiemethoden ontwikkeld
waarmee één of beide soorten dataheterogeniteit aangepakt kunnen worden.

In hoofdstuk 2 wordt een aantal, zowel parametrische als niet-parametrische,
uitbreidingen van principale componenten analyse (PCA) vergeleken die speci-
fiek betrekking hebben op binaire data. In deze uitbreidingen van PCA wordt op
verschillende manieren rekening gehouden met de speciale wiskundige karakter-
istieken van binaire gegevens. We onderzochten de prestaties van deze uitbreidin-
gen van PCA met betrekking tot het vinden van het juiste aantal componenten,
overfitting, het vinden van de juiste laag-dimensionale structuur, het belang van
variabelen, enz. door gebruik van zowel realistische simulaties van binaire data
als van mutatiedata, ‘copy number aberrations’ (CNA) en methylatiedata van het
GDSC1000 project. Onze resultaten laten zien dat als er een laag-dimensionale
structuur in de data aanwezig is, de meeste methoden deze kunnen vinden. Wij
adviseren om het parametrisch logistisch PCA-model (op projectie gebaseerde
benadering) te gebruiken als verondersteld wordt dat een stochastisch proces aan
de data ten grondslag ligt. Als dit niet het geval is en de data als vast gegeven kan
worden beschouwd, raden we aan het niet-parametrische Gifi-model te gebruiken.

In hoofdstuk 3 hebben we een robuust logistisch PCA-model ontwikkeld met
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behulp van een niet-convexe drempelwaardenfunctie voor de singuliere waarden.
Het veelbelovende logistische PCA-model voor binaire data heeft een probleem
met over-fitting vanwege de gebruikte randvoorwaarde van een exacte lage rang.
We stellen voor om het over-fitten te verminderen door het logistische PCA-
model te fitten met gebruik van een niet-convexe drempelwaardenfunctie voor
singuliere waarden. Een efficiënt majorisatie-minimalisatie (MM) algoritme is
gëımplementeerd om het model te fitten en een op missende waarden gebaseerde
kruisvalidatie (KV) procedure is gëıntroduceerd voor modelselectie. Bovendien
hebben we het logistische PCA-model uitgedrukt op basis van de latente vari-
abelen interpretatie van gegeneraliseerde lineaire modellen (GLMs). Niet alleen
maakt de aanname van een structuur met lage rang het model beter te begri-
jpen, maar biedt ook een manier om de signaal-ruis verhouding in de simulatie
van multivariate binaire data te definiëren. Onze experimenten met realistische
simulaties van ongebalanceerde binaire data met een lage signaal-ruis verhoud-
ing laten zien dat modelselectie gebaseerd op KV-fouten goed in staat is het
voorgestelde model te selecteren. Dit geselecteerde model is uitstekend in staat
de onderliggende lage-rang structuur terug te vinden en werkt beter dan mod-
ellen met een exacte lage-rang randvoorwaarde die een convexe spoornormboete
gebruiken.

In hoofdstuk 4 ontwikkelden we een gegeneraliseerd simultaan componenten
analyse (GSCA) model voor de fusie van binaire en kwantitatieve dataverza-
melingen. Simultane componenten analyse (SCA) is één van de standaard hulp-
middelen om de onderliggende afhankelijkheidsstructuur te onderzoeken die aan-
wezig is in meerdere kwantitatieve data sets die aan hetzelfde object gemeten
zijn. Echter, SCA is niet geschikt als een deel van de data binair is. Daarom
stellen we een GSCA-model voor dat rekening houdt met de specifieke mathe-
matische eigenschappen van binaire data en kwantitatieve metingen binnen het
kader van grootste aannemelijkheid. Op dezelfde manier als voor het SCA-model
veronderstellen we het bestaan van een laag-dimensionale deelruimte waarin de
gedeelde informatie van de twee typen van metingen wordt gerepresenteerd. Het
GSCA-model is evenwel geneigd tot overfitten wanneer een rang groter dan 1
wordt gebruikt. Hierdoor kunnen sommige parameters bijzonder groot geschat
worden. Om een oplossing met lage rang zonder overfitting te vinden, stellen
we voor een niet-convexe drempelwaardefunctie te gebruiken voor de selectie van
singuliere waarden. We ontwikkelden een efficiënt majorisatie algoritme om dit
model te fitten voor verschillende concave boetefuncties. Realistische simulaties
(lage signaal-ruis verhouding en sterk ongebalanceerde binaire data) werden ge-
bruikt om te beoordelen hoe goed het model de onderliggende structuur kan
reproduceren. Ook is een op missende waarden gebaseerde kruisvalidatie geim-
plementeerd om modellen te selecteren. De bruikbaarheid van het GSCA-model
als exploratieve tool wordt gedemonstreerd aan de hand van kwantitatieve gen-
expressiedata en binaire CNA-metingen uit de GDSC1000 dataverzameling.

In hoofdstuk 5 stellen we een exponentieel SCA-model met boeteoptie (P-
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ESCA) voor om meerdere dataverzamelingen met twee typen heterogeniteit samen
te voegen. Meerdere metingen aan hetzelfde object maar uitgevoerd op verschil-
lende platforms kunnen complementaire informatie over het bestudeerde systeem
opleveren. De heterogeniteit van deze data biedt interessante nieuwe statistis-
che uitdagingen als de dataverzamelingen gefuseerd worden. Ten eerste is de
scheiding van informatie die gemeenschappelijk is voor alle (of enkele) van de
dataverzamelingen van de informatie die specifiek is voor iedere dataverzameling
afzonderlijk, lastig. Bovendien zijn deze dataverzamelingen vaak een mix van
kwantitatieve en discrete (binair of categorisch) data typen, terwijl gebruikelijke
datafusiemethoden vereisen dat alle dataverzamelingen kwantitatief zijn. Met
het door ons voorgestelde exponentiële simultane componenten analyse (ESCA)
model kunnen we dergelijke gemengde dataverzamelingen wel analyseren. Om
de globale, lokaal gemeenschappelijke en verzameling-specifieke informatie in de
verschillende dataverzamelingen te ontwarren, hebben we op de componenten-
ladingsmatrix, via een groep van concave boetefuncties bijna zonder systematis-
che fout, een gestructureerd, bijna leeg patroon opgelegd. Om het voorgestelde
model te fitten hebben we een algoritme gebaseerd op majorisatie-minimalisatie
gemaakt. Dit algoritme gebruikt analytische oplossingen om de modelparame-
ters na iedere iteratie te actualiseren; de doelfunctie wordt door het algoritme
iedere iteratie monotoon verminderd. Voor de modelselectie gebruiken we een op
missende waarden gebaseerde kruisvalidatie. De voordelen van de voorgestelde
methode in vergelijking met andere methoden werden beoordeeld met uitgebreide
simulaties en de analyse van echte data uit een chronische lymfatische leukemie
(CCL) studie.

In hoofdstuk 6 beschouwen we verschillende uitbreidingen van het ontwikkelde
P-ESCA-model met nieuwe boetesystemen (per element, per groep en element-
groep samenstelling) en een nieuwe benadering voor modelselectie. We kijken
ook naar de mogelijkheden die het semi-parametrische XPCA-model en de niet-
parametrische matrixmethode bieden om data verzamelingen met heterogene
meetschalen aan te pakken.
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