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Abstract

We prove the main rules of causal calcu-
lus (also called do-calculus) for i/o structural
causal models (ioSCMs), a generalization of a
recently proposed general class of non-/linear
structural causal models that allow for cycles,
latent confounders and arbitrary probability
distributions. We also generalize adjustment
criteria and formulas from the acyclic setting
to the general one (i.e. ioSCMs). Such crite-
ria then allow to estimate (conditional) causal
effects from observational data that was (par-
tially) gathered under selection bias and cy-
cles. This generalizes the backdoor crite-
rion, the selection-backdoor criterion and ex-
tensions of these to arbitrary ioSCMs. To-
gether, our results thus enable causal reasoning
in the presence of cycles, latent confounders
and selection bias. Finally, we extend the ID
algorithm for the identification of causal ef-
fects to ioSCMs.

1 INTRODUCTION

Statistical models are governed by the rules of proba-
bility (e.g. sum and product rule), which link joint dis-
tributions with the corresponding (conditional) marginal
ones. Causal models follow additonal rules, which relate
the observational distributions with the interventional
ones. In contrast to the rules of probability theory, which
directly follow from their axioms, the rules of causal cal-
culus need to be proven, when based on the definition of
structural causal models (SCMs). As SCMs will among
other things depend on the underlying graphical structure
(e.g. with or without cycles or bidirected edges, etc.), the
used function classes (e.g. linear or non-linear, etc.) and
the allowed probability distributions (e.g. discrete, con-

tinuous, singular or mixtures, etc.) the respective endeav-
our is not immediate.

Such a framework of causal calculus contains rules about
when one can 1.) insert/delete observations, 2.) ex-
change action/observation, 3.) insert/delete actions; and
about when and how to recover from interventions and/or
selection bias (backdoor and selection-backdoor crite-
rion), etc. (see [1, 4, 5, 14, 21–24, 26, 27, 32–35]). While
these rules have been extensively studied for acyclic
causal models, e.g. (semi-)Markovian models, which are
attached to directed acyclic graphs (DAGs) or acyclic di-
rected mixed graphs (ADMGs) (see [1,4,5,14,21–24,26,
27,32–35]), the case of causal models with cycles stayed
in the dark.

To deal with cycles and latent confounders at the same
time in this paper we will introduce the class of in-
put/output structural causal models (ioSCMs), a “condi-
tional” version of the recently proposed class of modular
structural causal models (mSCMs) (see [10, 11]) to also
include “input” nodes that can play the role of parame-
ter/context/action/intervention nodes. ioSCMs have sev-
eral desirable properties: They allow for arbitrary prob-
ability distributions, non-/linear functional relations, la-
tent confounders and cycles. They can also model non-
/probabilistic external and probabilistic internal nodes
in one framework. The cycles are modelled in a least
restrictive way such that the class of ioSCMs still be-
comes closed under arbitrary marginalizations and inter-
ventions. All causal models that are based on acyclic
graphs like DAGs, ADMGs or mDAGs (see [9, 28]) can
be interpreted as special acyclic ioSCMs. Besides feed-
back over time ioSCMs can also express instantaneous
and equilibrated feedback under the made model as-
sumptions (e.g. the ODEs in [2, 18]). All models where
the non-trivial cycles are “contractive” (negative feed-
back loops, see [11]) are ioSCMs without further as-
sumptions. Thus ioSCMs generalize all these classes
of causal models in one framework, which goes be-
yond the acyclic setting and also allows for conditional



versions of those (e.g. CADMGs), expressed via ex-
ternal non-/probabilistic “input” nodes. Also the gen-
eralized directed global Markov property for mSCMs
(see [10, 11]) generalizes to ioSCMs, i.e. ioSCMs en-
tail the conditional independence relations that follow
from the σ-separation criterion in the underlying graph,
where σ-separation generalizes the usual d-separation
(also called m- or m∗-separation, see [9, 20, 24, 28, 38])
from acyclic graphs to directed mixed graphs (DMGs)
(and even HEDGes [10] and σ-CGs [11]) with or with-
out cycles in a non-naive way.

This paper now aims at proving the mentioned main rules
of causal calculus for ioSCMs and derive adjustment cri-
teria with corresponding adjustment formulas like gen-
eralized (selection-)backdoor adjustments. We also pro-
vide an extension of the ID algorithm for the identifica-
tion of causal effects to the ioSCM setting, which reduces
to the usual one in the acyclic case.

The paper is structured as follows: We will first give the
precise definition of ioSCMs closely mirroring mSCMs
from [10, 11]. We will then review σ-separation and
generalize its criterion from mSCMs (see [10, 11]) to
ioSCMs. As a preparation for the causal calculus, which
relates observational and interventional distributions, we
will then show how one can extend a given ioSCM to
one that also incorporates additional interventional vari-
ables indicating the regime of interventions on the ob-
served nodes. We will then show how the rules of causal
calculus directly follow from applying the σ-separation
criterion to such an extended ioSCM. We then derive the
mentioned general adjustment criteria with correspond-
ing adjustment formulas. Finally, we introduce the right
definitions for ioSCMs to extend the ID algorithm for the
identification of causal effects to the general setting.

2 INPUT/OUTPUT STRUCTURAL
CAUSAL MODELS

In this section we will define input/output structural
causal models (ioSCMs), which can be seen as a “con-
ditional” version of modular structural causal models
(mSCMs) defined in [10, 11]. We will then construct
marginalized ioSCMs and intervened ioSCMs. To allow
for cycles we first need to introduce the notion of loop of
a graph and its strongly connected components.

Definition 2.1 (Loops). Let G = (V,E) be a directed
graph (with or without cycles).

1. A set of nodes S ⊆ V is called a loop of G if for
every two nodes v1, v2 ∈ S there are two directed
walks v1 · · · v2 and v2 · · · v1 in
G such that all the intermediate nodes are also in S
(if any). The sets S = {v} are also considered as

loops (independent of v v ∈ E or not).
2. The set of loops of G is written as L(G).
3. The strongly connected component of v in G is de-

fined to be: ScG(v) := AncG(v) ∩DescG(v).
4. The set of strongly connected components is S(G).

Remark 2.2. Let G = (V,E) be a directed graph.

1. We always have v ∈ ScG(v) and ScG(v) ∈ L(G).
2. If G is acyclic then: L(G) = {{v} | v ∈ V }.

In the following all spaces are meant to be equipped with
σ-algebras and all maps to be measurable. Whenever
(regular) conditional distributions occur we implicitly as-
sume standard measurable spaces (to ensure existence).

Definition 2.3 (Input/Output Structural Causal Model).
An input/output (i/o) structural causal model (ioSCM) by
definition consists of:

1. a set of nodes V + = V ∪̇U ∪̇J , where elements of V
correspond to output/observed variables, elements
of U to probabilistic latent variables and elements
of J to input/intervention variables.

2. an observation/latent/action spaceXv for every v ∈
V +, X :=

∏
v∈V + Xv ,

3. a product probability measure PU =
⊗

u∈U Pu on
the latent space XU :=

∏
u∈U Xu,

4. a directed graph structure G+ = (V +, E+) with
the properties:
(a) V = ChG

+

(U ∪ J),
(b) PaG

+

(U ∪ J) = ∅,
where ChG

+

and PaG
+

stand for children and par-
ents in G+, resp.,1

5. a system of causal mechanisms g = (gS)S∈L(G+)
S⊆V

:

gS :
∏

v∈PaG+
(S)\S

Xv →
∏

v∈S
Xv, 2

that satisfy the following global compatibility con-
ditions: For every nested pair of loops S′ ⊆
S ⊆ V of G+ and every element x

PaG
+
(S)∪S ∈∏

v∈PaG+
(S)∪S Xv we have the implication:

gS(xPaG+
(S)\S) = xS

=⇒ gS′(xPaG+
(S′)\S′) = xS′ ,

where x
PaG

+
(S′)\S′ and xS′ denote the correspond-

ing components of x
PaG

+
(S)∪S .

1To have a “reduced” form of the latent space one can in
addition impose the condition: ChG+

(u1) * ChG+

(u2) for
every two distinct u1, u2 ∈ U . This can always be achieved by
gathering latent nodes together if ChG+

(u1) ⊆ ChG+

(u2).
2Note that the index set runs over all “observable loops”

S ⊆ V , S ∈ L(G+), not just the sets {v} for v ∈ V .



The ioSCM will be denoted by M = (G+,X ,PU , g).
Definition 2.4 (Modular structural causal model, see [10,
11]). A modular structural causal model (mSCM) is an
ioSCM without input nodes, i.e. J = ∅.
Remark 2.5 (Composition of ioSCMs). Consider two
ioSCMs M1, M2 and an identification of subsets I1 ⊆
V +
1 with I2 ⊆ J2 and maps gi2 : Xi1 → Xi2 , for i1

corresponding to i2, e.g. gi2 = id if possible. We can
now “glue” them together to get a new ioSCM M3 given
by V3 := V1∪̇V2∪̇I2, U3 := U1∪̇U2, J3 = J1∪̇J2 \ I2
andG+

3 := G+
1 ∪G+

2 , where we add the the edges i1
i2, and the mechanisms gi2 and PU3

:= PU1
⊗ PU2

.
Example 2.6 (Constructing mSCMs from ioSCMs).
Given an ioSCMM = (G+,X ,PU , g) with graphG+ =
(V ∪̇U ∪̇J,E+) we can construct a well-defined mSCM
by specifying a product distribution PJ :=

⊗
j∈J Pj on

XJ :=
∏
j∈J Xj and following 2.5 with M1 with only

U1 := J2 without any edges and gluing maps gi := id.

The actual joint distributions on the observed space XV
and thus the random variables attached to any ioSCM
will be defined in the following.
Definition 2.7. Let M = (G+,X ,PU , g) be an ioSCM
with G+ = (V ∪̇U ∪̇J,E+). The following constructions
will depend on the choice of a fixed value xJ ∈ XJ .

1. The latent variables are given by (Xu)u∈U ∼ PU ,
i.e. by the canonical projections Xu : XU →
Xu, which are jointly PU -independent. We put
X

do(xJ )
u := Xu, i.e., independent of xJ .

2. For j ∈ J we put Xdo(xJ )
j := xj , the constant vari-

able given by the j-component of xJ .
3. The observed variables (X

do(xJ )
v )v∈V are induc-

tively defined by:

Xdo(xJ )
v := gS,v

(
(Xdo(xJ )

w )
w∈PaG+

(S)\S
)
,

where S := ScG
+

(v) := AncG
+

(v) ∩ DescG
+

(v)
and where the second index v refers to the v-
component of gS . The induction is taken over any
topological order of the strongly connected compo-
nents of G+, which always exists (see [10]).

4. By the compatibility condition for g we then have
that for every S ∈ L(G+) with S ⊆ V the following
equality holds:

X
do(xJ )
S = gS(X

do(xJ )

PaG
+
(S)\S),

where we put XA :=
∏
v∈A Xv and XA :=

(Xv)v∈A for subsets A.
5. We define the family of conditional distributions:

PU (XA|XB , XJ = xJ)

:= PU (XA|XB ,do(XJ = xJ))

:= PU (Xdo(xJ )
A |Xdo(xJ )

B ),

for A,B ⊆ V and xJ ∈ XJ . Note that in the fol-
lowing we will use the do and the do-free notation
(only) for the J-variables interchangeably.

6. If we, furthermore, specify a product distribution
PJ =

⊗
j∈J Pj on XJ , then we get a joint distri-

bution P on XV ∪J by setting:

P(XV , XJ) := PU (XV |do(XJ))⊗ PJ(XJ).

Remark 2.8. Let M = (G+,X ,PU , g) be an ioSCM
with G+ = (V ∪̇U ∪̇J,E+). For every subset A ⊆ V
we get a well-defined map gA : X

PaG
+
(A)\A → XA,

by recursively plugging in the gS into each other for the
biggest occuring loops S ⊆ A by the same arguments as
before. These then are all globally compatible by con-
struction and satisfy:

X
do(xJ )
A = gA(X

do(xJ )

PaG
+
(A)\A).

Similar to mSCMs (see [10, 11]) we can define the
marginalization of an ioSCM.

Definition 2.9 (Marginalization of ioSCMs). Let M =
(G+,X ,P, g) be an ioSCM with G+ = (V ∪̇U ∪̇J,E+)
and W ⊆ V a subset. The marginalized ioSCM M\W

w.r.t. W can be defined by plugging the functions gS re-
lated toW into each other. For example, when marginal-
izing out W = {w} we can define (for the non-trivial
case w ∈ PaG

+

(S) \ S):

gS′,v(xPa(G+)\W (S′)\S′) :=

gS,v
(
x
PaG

+
(S)\(S∪{w}), g{w}(xPaG+

(w)\{w})
)
,

where (G+)\W is the marginalized graph of G+ (see
Supplementary Material B), S′ ⊆ V \W := V \ W is
any loop of (G+)\W and S the corresponding induced
loop in G+.

Similar to mSCMs (see [10, 11]) we now define what it
means to intervene on observed nodes in an ioSCM.

Definition 2.10 (Perfect interventions on ioSCMs). Let
M = (G+,X ,P, g) be an ioSCM with G+ =
(V ∪̇U ∪̇J,E+). Let W ⊆ V ∪ J be a subset. We then
define the post-interventional ioSCM Mdo(W ) w.r.t. W :

1. Define the graph G+
do(W ) by removing all the edges

v w for all nodes w ∈W and v ∈ PaG
+

(w).
2. Put Vdo(W ) := V \W and Jdo(W ) := J ∪W .
3. Remove the functions gS for loops S with S ∩W 6=
∅.

The remaining functions then are clearly globally com-
patible and we get a well-defined ioSCM Mdo(W ).



3 CONDITIONAL INDEPENDENCE

Here we generalize conditional independence for struc-
tured families of distributions. The main application
will be the distributions (PU (XV |do(XJ = xJ)))xJ∈XJ

coming from ioSCMs, but the following definition might
be of more general importance.

Definition 3.1 (Conditional independence). Let XV :=∏
v∈V Xv and XJ :=

∏
j∈J Xj be product spaces and

P := (PV (XV |xJ))xJ∈XJ

a family of distributions on XV (measurably3)
parametrized by XJ . For subsets A,B,C ⊆ V ∪̇J
we write:

XA ⊥⊥P XB |XC

if and only if for every product distribu-
tion PJ =

⊗
j∈J Pj on XJ we have:

XA ⊥⊥ PV∪J XB |XC , i.e.:

PV ∪J(XA|XB , XC) = PV ∪J(XA|XC) PV ∪J -a.s.,

where PV ∪J(XV ∪J) := PV (XV |XJ) ⊗ PJ(XJ) is
the distribution given by XJ ∼ PJ and then XV ∼
PV (_|XJ).

Remark 3.2. 1. The definition 3.1 assumes that the
input variables J are considered independent, in
contrast to [3, 29], where all J are implicitely as-
sumed to be jointly confounded. We discuss this fur-
ther in Supplementary Material C.

2. In contrast with [3, 6, 29] definition 3.1 can accom-
modate any variable from V or J at any spot of the
conditional independence statement.

3. ⊥⊥ P satisfies the separoid axioms (see [6, 7, 13, 25]
or see rules 1-5 in Lem. 4.5 for ⊥⊥ P) as these rules
are preserved under conjunction.

4 σ-SEPARATION

In this section we will define σ-separation on directed
mixed graphs (DMG) and present the generalized di-
rected global Markov property stating that every ioSCM
will entail the conditional independencies that come
from σ-separation in its induced DMG. We will again
closely follow the work in [11].

Definition 4.1 (Directed mixed graph (DMG)). A di-
rected mixed graph (DMG) G consists of a set of nodes
V together with a set of directed edges ( ) and bidi-
rected edges ( ). In case G contains no directed cycles
it is called an acyclic directed mixed graph (ADMG).

3We require that for every measurable F ⊆ XV the map
XJ → [0, 1] given by xJ 7→ PV (XV ∈ F |xJ) is measur-
able. Such families of distributions are also called channels or
(stochastic) Markov (transition) kernels (see [16]).

Definition 4.2 (σ-Open walk in a DMG). Let G be a
DMG with set of nodes V andC ⊆ V a subset. Consider
a walk π in G with n ≥ 1 nodes:

v1 · · · vn.
4

The walk will be called C-σ-open if:

1. the endnodes v1, vn /∈ C, and
2. every triple of adjacent nodes in π that is of the

form:
(a) collider: vi−1 vi vi+1,

satisfies vi ∈ C,
(b) left chain: vi−1 vi vi+1,

satisfies vi /∈ C or vi ∈ C ∩ ScG(vi−1),
(c) right chain: vi−1 vi vi+1,

satisfies vi /∈ C or vi ∈ C ∩ ScG(vi+1),
(d) fork: vi−1 vi vi+1,

satisfies vi /∈ C or
vi ∈ C ∩ ScG(vi−1) ∩ ScG(vi+1).

Similar to d-separation we define σ-separation in a
DMG.
Definition 4.3 (σ-Separation in a DMG). Let G be a
DMG with set of nodes V . Let A,B,C ⊆ V be subsets.

1. We say thatA andB are σ-connected byC or not σ-
separated by C if there exists a walk π (with n ≥ 1
nodes) inGwith one endnode inA and one endnode
in B that is C-σ-open. In symbols this statement
will be written as follows:

A
σ

6⊥⊥
G
B |C.

2. Otherwise, we will say that A and B are σ-
separated by C and write:

A
σ

⊥⊥
G
B |C.

Remark 4.4. 1. In any DMG we will always have
that σ-separation implies d-separation, since every
C-d-open walk is also C-σ-open because {v} ⊆
ScG(v).

2. If a DMG G is acyclic, i.e. an ADMG, then σ-
separation coincides with d-separation (also called
m- or m∗-separation in this context).

It was shown in [10] that σ-separation satisfies the
graphoid/separoid axioms (see [6, 7, 13, 25]):
Lemma 4.5 (Graphoid and separoid axioms). LetG be a
DMG with set of nodes V and A,B,C,D ⊆ V subsets.
Then we have the following rules for σ-separation in G
(with ⊥⊥ standing for ⊥⊥ σ

G):
4The stacked edges are meant to be read as an “OR” at each

place independently. We also allow for repeated nodes in the
walks. Some authors also use the term “path” instead, which
other authors use to refer to walks without repeated nodes.



1. Redundancy: A ⊥⊥ B |A always holds.
2. Symmetry: A ⊥⊥ B |D =⇒ B ⊥⊥ A |D.
3. Decomposition: A ⊥⊥ B ∪C |D =⇒ A ⊥⊥ B |D.
4. Weak Union: A ⊥⊥ B∪C |D =⇒ A ⊥⊥ B |C∪D.
5. Contraction: (A ⊥⊥ B |C ∪D) ∧ (A ⊥⊥ C |D)

=⇒ A ⊥⊥ B ∪ C |D.
6. Intersection: (A ⊥⊥ B |C ∪D)∧ (A ⊥⊥ C |B∪D)

=⇒ A ⊥⊥ B ∪ C |D,
whenever A,B,C,D are pairwise disjoint.

7. Composition: (A ⊥⊥ B |D) ∧ (A ⊥⊥ C |D)
=⇒ A ⊥⊥ B ∪ C |D.

It was also shown that σ-separation is stable under
marginalization (see [10, 11]):
Theorem 4.6 (σ-Separation under marginalization, see
[10,11]). Let G be a DMG with set of nodes V . Then for
any setsA,B,C ⊆ V and L ⊆ V \(A∪B∪C) we have
the equivalence:

A
σ

⊥⊥
G
B |C ⇐⇒ A

σ

⊥⊥
G\L

B |C,

where G\L is the DMG that arises from G by marginal-
izing out the variables from L.

5 A GLOBAL MARKOV PROPERTY

The most important ingredient for our results is a gen-
eralized directed global Markov property that relates the
graphical structure of any ioSCM M to the conditional
independencies of the observed random variables via a
σ-separation criterion. Since we have no access to the
latent nodes u ∈ U of an ioSCM with graph G+ we
need to marginalize them out (see Supplementary Ma-
terial B). This will give us an induced directed mixed
graph (DMG) G.
Definition 5.1 (Induced DMG of an ioSCM). Let
M = (G+,X ,PU , g) be an ioSCM with G+ =
(V ∪̇U ∪̇J,E+). The induced directed mixed graph
(DMG) G of M is defined as follows:

1. G contains all nodes from V ∪ J .
2. G contains all the directed edges of G+ whose

endnodes are both in V ∪ J .
3. G contains the bidirected edge v w with v, w ∈
V if and only if v 6= w and there exists a u ∈ U

with v, w ∈ ChG
+

(u), i.e. v and w have a common
latent confounder.

The following generalized directed global Markov prop-
erty directly generalizes from mSCMs (see [10, 11]) to
ioSCMs. An alternative version with confounded input
is given in C.5.
Theorem 5.2 (σ-Separation criterion). Let M be an
ioSCM with induced DMG G. Then for all subsets

A,B,C ⊆ V ∪ J we have the implication:

A
σ

⊥⊥
G
B |C =⇒ XA ⊥⊥P XB |XC .

In words, if A and B are σ-separated by C in G then the
corresponding variables XA and XB are conditionally
independent given XC under P, i.e. under the joint dis-
tribution PU (XV |do(XJ)) ⊗ PJ(XJ) for any product
distribution PJ =

⊗
j∈J Pj .

Proof. As mentioned, after specifying the product dis-
tribution PJ the ioSCM M constitutes a well-defined
mSCM with the same induced DMG G. So the σ-
separation criterion for ioSCMs directly follows from the
mSCM-version proven in [10, 11].

Remark 5.3. Note that, since σ-separation is stable un-
der marginalization (see [10,11]), also the σ-separation
criterion is stable under marginalization.

Remark 5.4 (Causal calculus for mechanism change).
The σ-separation criterion 5.2 can be viewed as the
causal calculus for mechanism change (also sometimes
called “soft” interventions, see [8,17,19,24]). As an ex-
ample consider A,B ⊆ V , I ⊆ J . Then the graphical
separation A ⊥⊥ σ

G I |B ∪ (J \ I) implies that the condi-
tional probability PU (XA|XB ,do(XJ)) is independent
of the actual input variables in I .

6 THE EXTENDED IOSCM

In this section we want to consider (perfect) interven-
tions onto the observed nodes and improve upon the gen-
eral rules mentioned in 5.4. For an elegant treatment
of this we need to gather for a given ioSCM M all in-
terventional ioSCMs Mdo(W ), where W runs through
all subsets of observed variables, and glue them all to-
gether into one big extended ioSCM M̂ . To consider
all interventions at once we will need to introduce addi-
tional intervention variables Iv to the graph G+, v ∈ V ,
which indicate which interventional mechanisms to use.
Such techniques were already used in the acyclic case
in [21,22,24]. The definition will be made in such a way
that M̂ will still be a well-defined ioSCM. So all the re-
sults for ioSCMs will apply to M̂ , most importantly the
σ-separation criterion (Thm. 5.2).

Definition 6.1. Let M = (G+,X ,PU , g) be an ioSCM
with G+ = (V ∪̇U ∪̇J,E+). The extended ioSCM M̂ =
(Ĝ+, X̂ ,PU , ĝ) will be defined as follows:

1. For every v ∈ V define the interventional domain
Iv := Xv∪̇{�v}, where �v is a new symbol corre-
sponding to the observational (non-interventional)
regime. For a set A ⊆ V we put IA :=

∏
v∈A Iv

and �A := (�v)v∈A.



2. Let Ĝ+ be the graph G+ with the additional inter-
vention nodes Iv and directed edges Iv v for
every v ∈ V . For a uniform notation we sometimes
write Ij instead of j for j ∈ J . So we have:
Ĵ := J ∪ {Iv | v ∈ V } = {Iw |w ∈ V ∪̇J}.

3. For every A ⊆ V we will define the mechanism:

ĝA : X̂
PaĜ

+
(A)\A = IA×XPaG

+
(A)\A → XA = X̂A.

First, for xA ∈ IA we put I(xA) := {v ∈ A|xv 6=
�v}. Consider the subgraph of G+:

H(xA) := (PaG
+

(A) ∪A)do(I(xA)).

Then define recursively for v ∈ A:

ĝA,v(xA, xPaG+
(A)\A)

:=

{
xv if v ∈ I(xA),
gS,v(xPaH(xA)(S)\S) if v /∈ I(xA),

where S := ScH(xA)(v) is also a loop in G+.
4. These functions then are again globally compatible

and M̂ constitutes a well-defined ioSCM.
5. All the distributions in M̂ then are given by the gen-

eral procedure of ioSCMs (see Def. 2.7). We in-
troduce the notation for C ⊆ V and (xC , xJ) ∈
IC ×XJ :

PU (XV |IC = xC , XJ = xJ) :=

PU (XV |do((IC , IV \C , XJ) = (xC ,�V \C , xJ)).

6. The extended DMG Ĝ of G+ is then the induced
DMG of Ĝ+, i.e. the induced DMG G with the ad-
ditional edges Iv v for every v ∈ V .

The following result now relates the interventional distri-
butions of the ioSCMM with the ones from the extended
ioSCM M̂ . These relations will be used in the following.
Proposition 6.2. LetM = (G+,X ,PU , g) be an ioSCM
with G+ = (V ∪̇U ∪̇J,E+) and M̂ the extended ioSCM.
Let A,B,C ⊆ V be pairwise disjoint set of nodes and
xC∪J ∈ XC∪J . Then we have the equations:

PU (XA|XB ,do(XC∪J = xC∪J))

= PU (XA|XB , IC = xC , XJ = xJ)

= PU (XA|XB , IC = xC , XC = xC , XJ = xJ).

Proof. This follows from I(xC ,�V \C) = C. See Sup-
plementary Material D.1.

7 THE THREE MAIN RULES OF
CAUSAL CALCULUS

Notation 7.1. Since everything has been defined in detail
in the last section we now want to make use of a simpli-
fied and more suggestive notation for better readability.

1. We identify variables XA with the set of nodes A.
2. We omit values xV and the subscript in PU . E.g. we

write P(Y |IT , T, Z,do(W )) instead of

PU
(
XY | IT = xT , XT = xT , XZ = xZ ,

do(XW = xW )
)
,

where the latter comes from the extended ioSCM of
the intervened ioSCMMdo(W ) :=Mdo(W\J) ofM .

3. We abbreviate XY ⊥⊥ PU (_| do(XW=xW ))XT |XZ as
Y ⊥⊥ P T |Z,do(W ), etc..

4. We write Y ⊥⊥ σ
G IX |X,Z,do(W ) to mean

Y ⊥⊥ σ
Ĝdo(W )

IX |X,Z, where Ĝdo(W ) is the

extended DMG of the intervened graph G+
do(W ).

Theorem 7.2 (The three main rules of causal calculus).
Let M be an ioSCM with set of observed nodes V and
input nodes J and induced DMG G. Let X,Y, Z ⊆ V
and J ⊆W ⊆ V ∪ J be subsets.

1. Insertion/deletion of observation:

If Y
σ

⊥⊥
G
X|Z,do(W ) then:

P(Y |X,Z,do(W )) = P(Y |Z,do(W )).

2. Action/observation exchange:

If Y
σ

⊥⊥
G
IX |X,Z,do(W ) then:

P(Y |do(X), Z,do(W )) = P(Y |X,Z,do(W )).

3. Insertion/deletion of actions:

If Y
σ

⊥⊥
G
IX |Z,do(W ) then:

P(Y |do(X), Z,do(W )) = P(Y |Z,do(W )).

The proofs follow directly from the σ-separation crite-
rion 5.2 and Prp. 6.2 applied to the extended ioSCM and
can be found in Supplementary Material E.1.

8 ADJUSTMENT CRITERIA

Notation 8.1. Let M = (G+,X ,P, g) be an ioSCM
with G+ = (V ∪̇U ∪̇J,E+). The following set of
nodes/variables will play the described roles:

Y : the outcome variables,
X: the treatment or intervention variables,
Z0: the core set of adjustment variables,
Z+: additional adjustment variables,
Z := Z0 ∪ Z+: all actual adjustment variables,
L: “marginalizable” adjustment variables,
C: context variables,
W : default intervention variables containing J ,
S: variables inducing selection bias given S = s.



We are interested in finding a “do(X)-free”
expression for the (conditional) causal effect
P(Y |C,do(X),do(W )) only using data for C,X, Y, Z
that was gathered under selection bias S = s and inter-
vention do(W ) and additional unbiased observational
data for C,Z given do(W ). The task can be achieved
via the following criterion, which is a generalization
of the acyclic case of the selection-backdoor criterion
(see [1]), the backdoor criterion (see [21, 22, 24]) and its
extensions (also see [4, 26, 27, 32]) to general ioSCMs.

Theorem 8.2 (General adjustment criterion and for-
mula). Let the setting be like in 8.1. Assume that data
was collected under selection bias, P(V |S = s,do(W ))
(or under P(V |do(W )) and S = ∅), and there are un-
biased samples from P(Z|C,do(W )). Further assume
that the variables satisfy:

1. (Z0, L)
σ

⊥⊥
G
IX |C, do(W ), and

2. Y
σ

⊥⊥
G
(IX , Z+) |C,X,Z0, L,do(W ), and

3. Y
σ

⊥⊥
G
S |C,X,Z, do(W ), and

4. L
σ

⊥⊥
G
X |C,Z,do(W ).

Then one can estimate the conditional causal effect
P(Y |C,do(X),do(W )) via the adjustment formula:

P(Y |C,do(X),do(W ))

=

∫
P(Y |X,Z,C, S = s,do(W )) dP(Z|C,do(W )).

The proof again follows directly from the σ-separation
criterion 5.2 and Prp. 6.2 applied to the extended ioSCM
and can be found in the Supplementary Material F.1.

IX X

W

Y

Z0 L1
C

Z1
Z2

L2
S

Figure 1: An induced DMG G with input node IX (the
others are left out for readability). The variables satisfy
the general adjustment criterion for P(Y |C,do(X)) with
L = {L1, L2} and Z+ = {Z1, Z2}. Note that L2 could
also have been a latent variable. Different colours for
different node and/or edge types.

Remark 8.3. Note that the adjustment formula in the-
orem 8.2 does not depend on L. This thus allows us to
even choose variables for L that come from an ioSCM

M ′ that marginalizes to M , e.g. L ⊆ U or by extending
directed edges v w by v ` w with ` ∈ L.
This technique was used in [32] to find all adjustment
sets in the acyclic case with C = S = ∅.
Corollary 8.4. Let the notations be like in 8.1 and 8.2
and W = J = ∅. We have the following special cases,
which in the acyclic case will reduce to the ones given by
the indicated references:

1. General selection-backdoor (see [4]): C = ∅.
2. Selection-backdoor (see [1]): C = L = ∅.
3. Extended backdoor (see [26, 32]): C = S = ∅.
4. Backdoor (see [21, 22, 24]): C=S=L=Z+=∅:

(a) Z
σ

⊥⊥
G
IX , and

(b) Y
σ

⊥⊥
G
IX |X,Z, implies:

P(Y |do(X)) =

∫
P(Y |X,Z) dP(Z).

More details can be found in the Supplementary Material
F.2. Also a generalization of the criterion for selection
without/partial external data of [4, 5] is given there.

Remark 8.5. The conditions in theorems 7.2, 8.2 and
corollary 8.4 are in the acyclic setting usually phrased in
terms of sub-structures of the graph G (see [21,22,24]):

1. For rule 3 in Thm. 7.2 one usually requires
Y ⊥⊥ dX|Z,W in the graph Gdo(W ) that is further
mutilated on the set X(Z), the set of all X-nodes
that are not ancestors of any Z-node in Gdo(W ).

2. For the backdoor criterion instead of L ⊥⊥ d
G IX we

could have written that L does not contain any de-
scendent of X; and for Y ⊥⊥ d

G IX |X,Z that Z
blocks all “backdoor paths” from X to Y .

We presented the results in the formulaic terms of σ-
separation because the relations to their use is directly
indicated (e.g. in the proofs), it makes the generalization
to ioSCMs possible and when reduced to the acyclic case
it will be equivalent to the usual description.

9 IDENTIFYING CAUSAL EFFECTS

Here we extend the ID algorithm for the identification
of causal effects to ioSCMs. The main references are
[12, 14, 15, 24, 29, 34–37]. The task is to decide if a
causal effect P(Y |do(W )) in an ioSCM can be identified
from (i.e., expressed in terms of) the observational dis-
tributions P(V |do(J)) and the induced graph G. Note
that having more dependence structure (like latent con-
founders, feedback cycles, etc.) will leave us with less
identifiable causal effects in general. Due to space limi-
tations, we can only provide here the bare necessities to
state the generalized ID algorithm. We assume that the



reader is already familiar with the ID algorithm formu-
lated for ADMGs (for example, the treatment in [36]).

We generalize the notion of districts / C-components:

Definition 9.1 (Consolidated districts). Let G be a di-
rected mixed graph (DMG) with set of nodes V . Let
v ∈ V . The consolidated district CdG(v) of v in G is
given by all nodes w ∈ V for which there exist k ≥ 1
nodes (v1, . . . , vk) in G such that v1 = v, vk = w
and for i = 2, . . . , k we have that the bidirected edge
vi−1 vi is in G or that vi ∈ ScG(vi−1). For B ⊆ V
we write CdG(B) :=

⋃
v∈B CdG(v). Let CD(G) be the

set of consolidated districts of G.

We also generalize the notion of topological order:

Definition 9.2 (Apt-order, see [10]). Let G be a DMG
with set of nodes V . An assembling pseudo-topological
order (apt-order) of G is a total order < on V with the
following two properties:

1. For every v, w ∈ V we have:

w ∈ AncG(v) \ ScG(v) =⇒ w < v.

2. For every v1, v2, w ∈ V we have:

v2 ∈ ScG(v1)∧(v1 ≤ w ≤ v2) =⇒ w ∈ ScG(v1).

Remark 9.3. Let G be a DMG.

1. If G is acyclic then an apt-order < is the same as a
topological order (i.e. w ∈ PaG(v) =⇒ w < v).

2. If G has a topological order then G is acyclic.
3. For any DMG G there always exists an apt-order <

(in contrast to topological orders).

Notation 9.4. Let G be a DMG with set of nodes V and
< a apt-order on G. For elements v ∈ V and subsets
B ⊆ V we put:

1. PredG<(v) := {w ∈ V |w < v},
2. PredG≤(v) := {w ∈ V |w = v or w < v},
3. PredG≤(B) :=

⋃
v∈B PredG≤(v),

4. PredG<(B) := PredG≤(B) \B.

Remark 9.5. IfB is strongly-connected, then PredG≤(B)

is ancestral in G, i.e., AncG(PredG≤(B)) = PredG≤(B).

The notion of input variables enables the following con-
venient and intuitive construction:

Definition 9.6 (Sub-ioSCMs). LetM = (G+,X ,PU , g)
be an ioSCM with G+ = (V ∪̇U ∪̇J,E+). For C ⊆ V
non-empty define the ioSCM M[C] as follows:

1. Put G+
[C] to be the subgraph of G+

do(PaG(C)\C)
in-

duced by C ∪ PaG
+

(C).
2. V[C] := C, J[C] := PaG

+

(C) \ (C ∪ U), U[C] :=

U ∩ PaG
+

(C).

3. Keep all functions gS with S ⊆ C.
4. PU[C]

:=
⊗

u∈U[C]
Pu, i.e. the marginal of PU and

we will use the notation PU (or just P) for both.

For C ⊆ V ∪ J with C ∩ V 6= ∅ put M[C] :=M[C∩V ].

By the definition of the random variables induced by an
ioSCM we immediately get the following basic result:

Lemma 9.7. Let M = (G+,X ,PU , g) be an ioSCM
with G+ = (V ∪̇U ∪̇J,E+). For C ⊆ V , we have (in-
dices for emphasis):

PM[C]
(C|do(PaG(C) \ C)) = PM (C|do(J ∪W )),

for anyW ⊆ V \C that contains (PaG(C)∩V )\C. As a
special case: if A ⊆ G is ancestral, i.e., AncG(A) = A,

PM[A]
(A ∩ V |do(A ∩ J)) = PM (A ∩ V |do(J ∪W ))

for any W ⊆ V \A ∩ V .

The ID algorithm works by repeatedly applying the pre-
vious lemma and the following rules:

Proposition 9.8. LetM = (G+,X ,PU , g) be an ioSCM
with G+ = (V ∪̇U ∪̇J,E+) and < an apt-order for G+.

1.

P(V |do(J)) =
⊗

S∈S(G)
S⊆V

P(S|PredG<(S)∩V,do(J)).

2. For S ⊆ V a strongly connected component of G,
D := CdG(S) its consolidated district in G and
P := PaG(D) \D:

PM (S|PredG<(S) ∩ V,do(J))
= PM[D]

(S|PredG[D]

< (S) ∩D,do(P )).

3. For D ⊆ V a consolidated district of G:

P(D|do(J ∪ V \D))

=
⊗

S∈S(G)
S⊆D

P(S|PredG<(S) ∩ V,do(J)).

Proof. 1. uses the chain rule; 2. is proved in Supplemen-
tary Material G.2; 3. is shown by applying 1. and Remark
9.7 to G[D] and then making use of 2..

Remark 9.9. Naively putting the equations of Prp. 9.8
into each other would give us the equation:

P(V |do(J)) =
[ ⊗

D∈CD(G)
D⊆V

]
P(D|do(J ∪ V \D)).

Note that the product might not be well-defined as the
consolidated districts i.g. are not totally ordered by <



(in contrast to strongly connected components), even in
the acyclic case. For example, consider the graph:

v1 v2

v3 v4

This problem is usually not addressed in the literature.
The problem disappears if every strongly connected com-
ponent S ⊆ V comes with a measure µS such that
P(V |do(J)) has a density w.r.t. the product measure⊗

S∈S(G)
S⊆V

µS . Then the densities p(D|do(J ∪ V \ D))

can be multiplied in any order and the integration can be
separately done via the µS in reverse order of <.

We now have all the prerequisites to state the generalized
ID algorithm (Algorithm 1) and prove its correctness:

Theorem 9.10 (Consequence of 9.8, 9.9). Let M =
(G+,X ,PU , g) be an ioSCM withG+ = (V ∪̇U ∪̇J,E+)
with set of observed nodes V and input nodes J and dis-
tributions P(V |do(J)). Let < be an apt-order for G+.
Assume that for every strongly connected component
S ⊆ V we have a measure µS such that P(V |do(J))
has a density w.r.t. the product measure

⊗
S∈S(G)
S⊆V

µS .

Let Y ⊆ V and W ⊆ J ∪ V be subsets. If the extended
ID algorithm (see Algorithm 1) does not “FAIL” then the
causal effect P(Y |do(W )) is identifiable, i.e. it can be
computed from P(V |do(J)) alone, and the expression is
obtained by postprocessing the output of the algorithm.

Remark 9.11. 1. We make no claim about the com-
pleteness of the algorithm here.

2. The algorithm reduces to the usual version in the
acyclic case (see [29, 35–37]).

3. The main idea of the generalized ID algorithm is
to exploit that the causal effects onto ancestral
subsets and consolidated districts are identifiable.
The algorithm then alternates these constructions to
shrink towards the queried set C until convergence,
i.e. until a setA is reached that is both the ancestral
closure of C and a consolidated district in itself. If
C = A then the causal effect onto C is identifiable,
otherwise it outputs “FAIL” as no shrinking can be
done with these techniques anymore. Also see Sup-
plementary Material G.1.

10 CONCLUSION

We proved the three main rules of causal calculus and
general adjustment criteria with corresponding formu-
las to recover from interventions and selection bias

Algorithm 1 ID: Generalized ID algorithm for the iden-
tification of causal effects in general ioSCMs.

1: function ID(G, Y,W,P(V |do(J)))
2: require: Y ⊆ V , W ⊆ V , Y ∩W = ∅
3: H ← AncGV \W (Y )
4: for C ∈ CD(H) do
5: Q[C]← IDCD(G,C,CdG(C), Q[CdG(C)])
6: if Q[C] = FAIL then
7: return FAIL
8: end if
9: end for

10: Q[H]←
[⊗

C∈CD(H)

]
Q[C]

11: return P(Y |do(J,W )) =
∫
Q[H]dxH\Y

12: end function

13: function IDCD(G,C,D,Q[D])
14: require: C ⊆ D ⊆ V , CD(GD) = {D}
15: A← AncG[D](C) ∩D
16: Q[A]←

∫
Q[D]d(xD\A)

17: if A = C then
18: return Q[A]
19: else if A = D then
20: return FAIL
21: else if C ( A ( D then
22: for S ∈ S(G[A]) s.t. S ⊆ CdG[A](C) do
23: RA[S]← P(S|PredG<(S)∩A,do(J∪V \A))
24: end for
25: Q[CdG[A](C)]←⊗

S∈S(G[A])

S⊆Cd
G[A] (C)

RA[S]

26: return IDCD(G,C,CdG[A](C), Q[CdG[A](C)])
27: end if
28: end function

for general ioSCMs, which allow for arbitrary proba-
bility distributions, non-/linear functional relations, la-
tent confounders, external non-/probabilistic parame-
ter/action/intervention/context/input nodes and cycles.
This generalizes all the corresponding results of acyclic
causal models (see [1, 4,21, 22, 24, 26, 27, 32]) to general
ioSCMs. We also showed how to extend the ID algorithm
for the identification of causal effects from the acyclic
setting to general ioSCMs. In supplementary material
A we also show how to do counterfactual reasoning in
ioSCMs. Future work might address completeness ques-
tions of the ID algorithm (see [14, 24, 33, 34]).
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